MATH 5202 - HOMEWORK 4

- (1) Problem 21 of chapter 9 of Rudin.
- (2) Problem 23 of chapter 9 of Rudin.
- (3) Prove that:

(a) There exists a continuously differentiable real function f defined in a neighborhood U of 1 such that f(1) = 1 and

$$x^{f(x)} + (f(x))^x = 2.$$

where x belongs to U.

(b) Find the line tangent to the graph of f at the point (1, f(1)).

(4) Prove that:

(a) There exists a continuously differentiable real function f defined in a neighborhood U of (3, -2) such that f(3, -2) = 1 and for any $(x, y) \in U$ we have:

$$(f(x,y))^{6} + x(f(x,y))^{2} + 5y(f(x,y)) + y^{2} + 2 = 0.$$

(b) If $\overline{u} \in \mathbb{R}^2$ with $|\overline{u}| = 1$ and $(D_{\overline{u}}f)(3, -2) = 0$. Find \overline{u} .

(5) Let $f : \mathbb{R} \to \mathbb{R}$ a C^1 function such that $|f'(t)| \le k < 1$ for all $t \in \mathbb{R}$. Define the map $F : \mathbb{R}^2 \to \mathbb{R}^2$ such that F(x,y) = (x + f(y), y + f(x)). Prove that F is a diffeomorphism of \mathbb{R}^2 on itself.

Bonus problem:

Let $F: U \to \mathbb{R}^m$ a C^1 function in the open set $U \subset \mathbb{R}^m$. Prove that if all the singularities of F (points for which the Jacobian is 0) are isolated points and m > 1 then F is an open map. Use this to prove the Fundamental Theorem of Algebra.