MATH 5202-HOMEWORK 4

(1) Problem 21 of chapter 9 of Rudin.
(2) Problem 23 of chapter 9 of Rudin.
(3) Prove that:
(a) There exists a continuously differentiable real function f defined in a neighborhood U of 1 such that $f(1)=1$ and

$$
x^{f(x)}+(f(x))^{x}=2
$$

where x belongs to U.
(b) Find the line tangent to the graph of f at the point $(1, f(1))$.
(4) Prove that:
(a) There exists a continuously differentiable real function f defined in a neighborhood U of $(3,-2)$ such that $f(3 .-2)=1$ and for any $(x, y) \in U$ we have:

$$
(f(x, y))^{6}+x(f(x, y))^{2}+5 y(f(x, y))+y^{2}+2=0
$$

(b) If $\bar{u} \in \mathbb{R}^{2}$ with $|\bar{u}|=1$ and $\left(D_{\bar{u}} f\right)(3,-2)=0$. Find \bar{u}.
(5) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ a C^{1} function such that $\left|f^{\prime}(t)\right| \leq k<1$ for all $t \in \mathbb{R}$. Define the map $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $F(x, y)=(x+f(y), y+f(x))$. Prove that F is a diffeomorphism of \mathbb{R}^{2} on itself.
Bonus problem:
Let $F: U \rightarrow \mathbb{R}^{m}$ a C^{1} function in the open set $U \subset \mathbb{R}^{m}$. Prove that if all the singularities of F (points for which the Jacobian is 0) are isolated points and $m>1$ then F is an open map. Use this to prove the Fundamental Theorem of Algebra.

