MATH 5202 - HOMEWORK 8

Let *E* be a measurable set. Recall the following definition: We say a family \mathcal{F} of measurable functions on *E* is said to be **uniformly integrable over** *E* provided for each $\epsilon > 0$, there is a $\delta > 0$ such that for each $f \in \mathcal{F}$, if $A \subseteq E$ is measurable and $\lambda(A) < \delta$, then $\int_A |f| d\lambda < \epsilon$.

- (1) Prove the following: Assume E has finite measure. Let the sequence of functions $\{f_n\}$ be uniformly integrable over E. If $f_n \to f$ pointwise a.e. on E, then f is integrable over E.
- (2) Show that the proposition above is false if $E = \mathbb{R}$.
- (3) Let *E* be a set of finite measure. Suppose $\{h_n\}$ is a sequence of nonnegative integrable functions that converges pointwise a.e. on *E* to $h \equiv 0$. Then prove: $\lim_{n\to\infty} \int_E h_n d\lambda = 0$ if and only if $\{h_n\}$ is uniformly integrable over *E*.
- (4) Show that the statement above is false without the assumptions of h_n are non negative. What about when E has infinite measure?
- (5) Problem 52 of Royden chapter 4.