MATH 6222-HOMEWORK 1

(due on February 11th)
Exercises 1.1.2, 1.2.3, 1.2.4, 1.2.11(a), 1.3.3, 1.3.4, 1.4.1 (see below), 1.4.4 and 1.5.3 on J. Lebl's notes at: http://www.jirka.org/scv/scv.pdf

Let $\mathbb{B}_{n} \subset \mathbb{C}^{n}$ be the unit ball and $G_{n}=\left\{\left(w^{\prime}, w_{n}\right) \in \mathbb{C}^{n}, \operatorname{Im} w_{n}>\left|w^{\prime}\right|^{2}\right\} . G_{n}$ is called the Siegel upper half-space. Define $\phi(z)=\left(w_{1}, \ldots, w_{n}\right)$ by $w_{j}=z_{j} /\left(1+z_{n}\right)$ for $1 \leq j \leq n-1$ and $w_{n}=i\left(1-z_{n}\right) /\left(1+z_{n}\right)$. Show that:
(i) Show that $\phi: \mathbb{B}_{n} \rightarrow G_{n}$ is biholomorphic. (ϕ is called the Cayley transform).
(ii) The boundary $b G_{n}=\left\{\left(z^{\prime}, t+i\left|z^{\prime}\right|^{2}\right), z^{\prime} \in \mathbb{C}^{n-1}, t \in \mathbb{R}\right\}$ is naturally identified with $\mathbb{C}^{n-1} \times \mathbb{R}=\left\{\left(z^{\prime}, t\right)\right\}$. Show that the multiplication:

$$
\left(z^{\prime}, t\right) \cdot\left(w^{\prime}, u\right)=\left(z^{\prime}+w^{\prime}, t+u+2 \operatorname{Im}<z^{\prime}, w^{\prime}>\right)
$$

(where $<z^{\prime}, w^{\prime}>=\sum_{i=1}^{n-1} z_{i} \overline{w_{i}}$) turns $b G_{n}$ into a group which is non-abelian if $n>1$. (This group is called the Heisenberg group of order $n-1$).
Problem 1.4.1 (typos corrrected):
a) Let Δ be an analytic disc and $\Delta \cap \partial \mathbb{B}_{n} \neq \emptyset$. Prove Δ contains points not in $\overline{\mathbb{B}_{n}}$.
b) Let Δ be an analytic disc. Prove that $\Delta \cap \partial \mathbb{B}_{n}$ is nowhere dense in Δ.
c) Find an analytic disc, such that $(1,0) \in \Delta, \Delta \cap \mathbb{B}_{2}=\emptyset$ and locally near $(1,0) \in \partial \mathbb{B}_{2}$, the set $\Delta \cap \partial \mathbb{B}_{2}$ is the curve defined by $\operatorname{Im} z_{1}=0, \operatorname{Im} z_{2}=$ $0,\left(\operatorname{Re} z_{1}\right)^{2}+\left(\operatorname{Re} z_{2}\right)^{2}=1$.
bonus problem:
Find a concrete power series whose convergence domain is the two-dimensional unit ball $\left\{\left(z_{1}, z_{2}\right),\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}<1\right\}$.

