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The following generalization of the Lebesgue Dominated Convergence Theorem, the 
proof of which we leave as an exercise (see Problem 32), is often useful (see Problem 33). 

Theorem 19 (General Lebesgue Dominated Convergenee Theorem) Let Un} be a sequence 
of measurable functions on E that converges pointwise a.e. on E to f. Suppose there is a 
sequence {gn} of nonnegative measurable functions on E that converges pointwise a.e. on E to 
g and dominates Un} on E in the sense that 

Ifnl::5 gn on Eforalln. 

If lim r gn = r g < 00, then lim r fn = r I. 
n-+oo}E}E n-+oo}E 1e 

Remark In Fatou's Lemma and the Lebesgue Dominated Convergence Theorem, the 
assumption of pointwise convergence a.e. on E rather than on all of E is not a decoration 
pinned on to honor generality. It is necessary for future applications of these results. We 
provide one illustration of this necessity. Suppose I is an increasing function on all of R. A 
forthcoming theorem of Lebesgue (Lebesgue's Theorem of Chapter 6) tells us that 

lim I(x + \;) - I(x) = !,(x) for almost all x. 
n-+OO n (22) 

From this and Fatou's Lemma we will show that for any closed, bounded interval [a, b), 

t !,(x)dX::5 I(b) - I(a). 

In general, given a nondegenerate closed, bounded interval [a, b) and a subset A of [a, b) that 
has measure zero, there is an increasing function Ion [a, b) for which the limit in (22) fails to 
exist at each point in A (see Problem 10 of Chapter 6). 

PROBLEMS 
28. Let I be integrable over E and C a measurable subset of E. Show that Ic I = IE I . xc· 
29. For a measurable function I on [1. (0) which is bounded on bounded sets, define an = 1:+1 I 

for each natural number n. Is it true that I is integrable over [1. (0) if and ofily if the series 
an converges? Is it true that I is integrable over [1. (0) if and only if the series an 

converges absolutely? 
30. Let g be a nonnegative integrable function over E and suppose {fn} is a sequence of 

measurable functions on E such that for each n, 1/,,1 ::5 g a.e.on E. Show that 

L liminfln ::::liminf Lin ::::limsup Lin:::: L lim sup In. 

31. Let I be a measurable function on E which can be expressed as I = g + h on E, where g is 
finite and integrable over E and h is nonnegative on E. Define IE I = IE g + IE h. Show that 
this is properly defined in the sense that it is independent of the particular choice of finite 
integrable function g and nonnegative function h whose sum is I. 
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32. Prove the General Lebesgue Dominated Convergence Theorem by following the proof of 
the Lebesgue Dominated Convergence Theorem, but replacing the sequences {g - In} and 
{g + fn}, respectively, by {gn - fn} and {gn + fn}. 

33. Let Un} be a sequence of integrable functions on E for which In -+ f a.e. on E and f is 
integrable over E. Show that IE If - fnl-+ 0 if and only if limn-> 00 IE Ifni = IE If I· (Hint: 
Use the General Lebesgue Dominated Convergence Theorem.) 

34. Let I be a nonnegative measurable function on R. Show that 

lim in f=l f· 
n-+oo -n R 

35. Let I be a real-valued function of two variables (x, y) that is defined on the square 
Q = ({x, y) I 0 x I, 0 y I} and is a measurable function of x for each fixed value 
of y. Suppose for each fixed value of x, limy->o f(x, y) = f(x) and that for all y, we have 
If(x, y)1 g(x), where g is integrable over [0, 1]. Show that 

lim 11 f(x, y)dx = 11 f(x)dx. 
y->o 0 0 

Also show that if the function f( x, y) is continuous in y for each x, then 

h(y) = l f(x, y)dx 

is a continuous function of y. 

36. Let f be a real-valued function of two variables (x, y) that is defined on the square 
Q = {(x, y) I 0 x I, 0 y I} and is a measurable function of x for each fixed value of 
y. For each (x, y) E Q let the partial derivative a f / ay exist. Suppose there is a function g that 
is integrable over [0, 1] and such that 

y)1 y)EQ. 

Prove that 

d [11 ] 11 af dy 0 I(x, y)dx = 0 ay(x, y)dxforallyE[O, 1]. 

4.5 COUNTABLE ADDITIVITY AND CONTINUITY OF INTEGRATION 
The linearity and monotonicity properties of the Lebesgue integral, which we established 
in the preceding section, are extensions of familiar properties of the Riemann integral. In 
this brief section we establish tWo properties of the Lebesgue integral which have no coun-
terpart for the Riemann integral. The following countable additivity property for Lebesgue 
integration is a companion of the countable additivity property for Lebesgue measure. 

Theorem 20 (the Countable Additivity of Integration) Let f be integrable over E and 
a disjoint countable collection of measurable subsets of E whose union is E. Then 

1 00 1 f=L f· 
E n=l En 

(23) 


