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3 1. Introduction

1 Introduction

Let p be a prime and f be a modular form with coefficients in Fp. Suppose that f is
an eigenform for the Hecke operators. A construction of Deligne (see §1.6) allows us to
associate to f a Galois representation

ρf : GQ −→ GL2(Fp),

where GQ = Gal(Q/Q) is the absolute Galois group of the rationals.

Two-dimensional mod p Galois representations arise from many different contexts. For
example (see §4.1), if E/Q is an elliptic curve, then the action of GQ on the p-torsion
points E[p] of E(Q) gives rise to a representation

ρE,p : GQ −→ Aut(E[p]) ∼= GL2(Fp).

Given an arbitrary two-dimensional mod p Galois representation ρ, does it arise from a
modular form? Serre’s conjecture provides an answer to this question: if ρ is irreducible
and odd (i.e. ρ(c) = −1 for any complex conjugation c ∈ GQ), then ρ is indeed equivalent
to ρf for some cusp form f .

The strength of the conjecture comes from the fact that as well as predicting the existence
of such a cusp form, it comes with a precise recipe for calculating its weight, level and
character. Since the spaces of modular forms of given weight, level and character are
well understood, the precision of Serre’s conjecture allows us to use it to prove some
deep results. For example, in §5.1 we show how to use a supposed counterexample to
Fermat’s last theorem to produce a Galois representation, which by Serre’s conjecture
should arise from a modular form of weight 2 and level 2. The fact that no such modular
forms exist is a contradiction. Hence, Serre’s conjecture implies Fermat’s last theorem.

The purpose of this essay is to provide a detailed description of Serre’s conjecture in its
context as a converse to the construction of Deligne. In particular, we will show how
the weight, level and character that Serre assigns to a representation can be motivated
by looking at the properties of representations which arise from modular forms.

The remainder of this chapter will focus on the technical background to Serre’s conjec-
ture. We will begin by defining the topology of GQ and the structure of its ramification
groups; we will then discuss the basic properties of Galois representations. The charac-
terisation of the one-dimensional case in §1.3 will be particularly useful for studying the
determinants of two-dimensional representations. We will then provide a brief summary
of the results we will require about modular forms and Hecke operators. Finally, at the
end of this chapter, we will state the theorem of Deligne mentioned above, and state
the properties of representations obtained in this way; these properties will be used to
motivate the statement of the weak version of Serre’s conjecture.

In chapter two, we will state Serre’s conjecture, and justify Serre’s definition of the level
and character by using the ramification properties and the characteristic equation of
representations arising from modular forms. The calculation of the weight is much more
involved and is deferred to chapter three. In §3.1 and §3.2, we will explain why the
weight depends only on the restriction of the representation ρ to an inertia group at p.
In particular, the weight reflects the kind of ramification that ρ has at p, whereas the
level reflects its ramification away from p. Sections §3.3-5 will explain results about the
structure of the group Gp = Gal(Qp/Qp) and the restriction ρ|Gp , which are then used
to give an explicit construction of the weight in §3.6-8.
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In chapter four, we will apply the results of the previous chapters to Galois representa-
tions arising from elliptic curves, and we will provide some computational examples.

Finally, in chapter five, using the results on elliptic curves from chapter four, we will show
how Serre’s conjecture can be used to prove Fermat’s last theorem and the modularity
theorem. We will finish with an example showing the limitations of the conjecture.

Our main source is the paper by Serre [Ser87] detailing his conjecture. The definitions
and proofs in the first chapter follow [DS05], with the exception of §1.5, which is taken
from [Ser87]. Chapters two, three and the first section of chapter four are derived from
[Ser87], as well as from the survey papers [Cai09], [RS99] and Edixhoven’s article in
[CSS97]. The examples in chapter four were obtained using Cremona’s tables featured
on his website. The proofs in chapter five are based on those in [Ser87] and [Dar95].

1.1 Absolute Galois groups

Definition and topology

Let K be a perfect field, and let K denote the algebraic closure of K.

Definition 1.1. The K-automorphisms of K form the absolute Galois group of K

GK = AutK(K) = Gal(K/K).

Observe that as the union of the Galois groups of all finite Galois extensions of K, GK
is a profinite group. Indeed, since K is the union of all finite Galois extensions of K,
the restriction map

GK −→ Gal(L/K)

σ −→ σ|L
is surjective for each finite Galois extension L, and the restriction maps compose over
subextensions. Conversely, every compatible system of automorphisms{

σ|L : L/K is finite Galois
}

gives an automorphism of K - i.e. an element of GK . Therefore, we can define

GK = lim←−
L

Gal(L/K).

Since each Galois group Gal(L/K) is finite, GK is profinite. We can therefore define
a natural topology on GK , the profinite or Krull topology, to be the coarsest topology
for which the restriction maps are continuous (each Gal(L/K) is given the discrete
topology). Explicitly, we take as a basis of open sets all cosets of finite index normal
subgroups of GK . By the fundamental theorem of Galois theory, we can show that if
H CGQ has finite index, then

H = ker(GQ −→ Gal(L/K)),

where L is a finite Galois extension of K. Hence, this basis of open sets is exactly the
set of cosets of every Galois group Gal(K/L) where L is a finite Galois extension of K.

Since GK is the inverse limit of finite groups it is compact. This fact will prove useful
later in allowing us to show that any representation

ρ : GK −→ GLd(Fp)

has finite image.



5 1. Introduction

The structure of GQ

In the case that K = Q, we would like to make use of the number theoretic structure of
Q. In particular, we would like to understand the behaviour of maximal ideals p ⊆ Z and
their interaction with GQ, as well as the structure Q obtains from its p-adic valuations.
Many of the results that are true for finite Galois extensions L/Q will also hold for the
algebraic extension Q/Q.

Let p ∈ Z be prime, and let p ⊆ Z be a maximal ideal lying over p (Z is the integral
closure of Z in Q). We can identify the residue field of Q with Fp by using p as the
kernel of the map

Z −→ Z/p ∼= Fp. (1.1)

As in the case of a finite extension, define the decomposition group of p to be

Dp =
{
σ ∈ GQ : σ(p) = p

}
,

the group of elements of GQ which fix p. This group acts on Z/p via σ(x+p) = σ(x)+p,
and hence, using (1.1), it can be used to define a reduction map

Dp −→ Gal(Fp/Fp) = GFp .

The group GFp is topologically generated by the Frobenius automorphism

σp : x 7−→ xp.

We would like to define an absolute Frobenius element Frobp to be the pre-image of this
automorphism. This will be well defined up to the kernel of the reduction map

Ip = ker(Dp −→ GFp),

called the inertia group of p. We also define the higher ramification groups Gp,i by

Gp,i = ker
(
Dp −→ Aut(Z/pi+1)

)
for i ≥ −1. We have Gp,−1 = Dp and Gp,0 = Ip.

Whilst the objects Frobp and the groups

Gp,i C Ip CDp

depend on the choice of ideal p lying over p, as in the case of finite extensions, GQ acts
transitively on the set of maximal ideals lying over p, and

Frobσ(p) = σ−1Frobpσ σ ∈ GQ,

Dσ(p) = σ−1Dpσ.

Hence, these objects are well defined up to conjugation. As such, we will often refer to
Frobp or Ip to denote any member of the conjugacy class.

The following theorem will be extremely useful when studying Galois representations:

Theorem 1.2 (Chebotarev’s Density Theorem). For each maximal ideal p ⊆ Z lying
over all but a finite set of primes, let Frobp be an absolute Frobenius element. The set
of such elements forms a dense subset of GQ.
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Since we will be considering Galois representations that are continuous, this theorem
will enable us to describe a Galois representation by only considering absolute Frobenius
elements.

Let Qp be the completion of Q with respect to the p-adic valuation vp, and let

Gp = Gal(Qp/Qp).

Identifying Gp with Dp, we can form local analogues

Gp,i C Ip CGp

of the inertia group and the higher ramification groups defined above.

1.2 Galois representations

We are now ready to define a Galois representation.

Definition 1.3. Let K be a field. A d-dimensional Galois representation is a homo-
morphism

ρ : GQ −→ GLd(K).

If ρ′ : GQ −→ GLd(K) is another such representation and m ∈ GLd(K) is a matrix such
that

ρ′(σ) = m−1ρ(σ)m

for all σ ∈ GQ, then we say that ρ and ρ′ are equivalent, which we denote ρ ∼ ρ′.

When K is a topological field, we require that ρ be continuous; this enables us to utilise
the profinite structure of GQ. In particular:

Lemma 1.4. Let K = Fp or C, and let

ρ : GQ −→ GLd(K)

be a (continuous) Galois representation. Then ρ has finite image.

Proof. If K = Fp, then K, and hence GLd(K), has the discrete topology. The group
GQ is compact, so its image ρ(GQ) is both compact and discrete; therefore it is finite.

If K = C, we use the fact that there is an open neighbourhood V of GLd(C) which

• contains the identity I,

• contains no non-trivial subgroups.

The pre-image U = ρ−1(V ) is an open neighbourhood of 1 ∈ GQ, and therefore contains
an open subgroup

U(F) = ker(GQ −→ Gal(F/Q))

for some Galois extension F/Q. The image ρ(U(F)) is a subgroup group of GLd(C)
contained in V , and hence is trivial. This shows that ρ factors through Gal(F/Q).
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Corollary 1.5. Let K = Fp or C, and let

ρ : GQ −→ GLd(K)

be a Galois representation. Then ker ρ is a finite index normal subgroup of GQ, and is
therefore open. Hence, there exists a finite Galois extension F/Q, such that ρ factors
through Gal(F/Q).

As a result, with K as above, a Galois representation ρ : GQ −→ GLd(K) is really just
a representation Gal(F/Q) −→ GLd(K) for some finite extension F/Q. We will often
switch between these two viewpoints.

Given a Galois representation ρ, we would like to know the value of ρ(σ) for each σ ∈ GQ.
By Chebotarev’s density theorem, the absolute Frobenius elements Frobp form a dense
subset of GQ; we can therefore obtain a lot of information about ρ by evaluating it at
these elements. However, an absolute Frobenius element Frobp is only defined up to the
inertia group Ip - i.e.

ρ(Frobp) is well defined if and only if Ip ⊆ ker ρ.

This suggests the following definition:

Definition 1.6. Let ρ be a Galois representation and p be a rational prime. If Ip ⊆ ker ρ
for any maximal ideal p ⊆ Z lying over p, then we say that ρ is unramified at p.

If Ip ⊆ ker ρ for some maximal ideal p ⊆ Z lying over p, then this will be true for every
maximal ideal lying over p. This is because all inertia groups Ip, where p lies over a
given prime p ∈ Z, are conjugate, and ker ρ is a normal subgroup of GQ.

Remark 1.7. If ρ is unramified at p, then whilst ρ(Frobp) will depend on the choice of p,
its characteristic polynomial will depend only on its conjugacy class, and therefore only
on p. Hence, it makes sense to talk about the characteristic polynomial of ρ(Frobp).

Switching viewpoints, in the case that K = Fp or C, ρ factors through some Galois group
Gal(F/Q). The representation ρ is unramified at a prime p if and only if Ip ⊆ ker ρ for
some p lying over p, which occurs if and only if

Ip
∣∣
F

= {1} ,

i.e. if the finite extension F/Q is unramified at p. Hence, saying that ρ is unramified at
p is equivalent to saying that the extension F/Q is unramified at p.

1.3 Example: one-dimensional Galois representations

Let K = Fp or C. In this section, we will classify the one-dimensional Galois represen-
tations

ρ : GQ −→ GL1(K) = K×

by showing that they correspond exactly to primitive Dirichlet characters

χ : (Z/NZ)× −→ K×.

By Corollary 1.5, ρ factors through the Galois group Gal(F/Q) of a finite Galois ex-
tension F/Q; since Gal(F/Q) ≤ K×, this group is abelian. By the Kronecker-Webber
theorem, F ⊆ Q(µN ) for some integer N ; enlarging F we can take F = Q(µN ).
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Since Gal(Q(µN )/Q) ∼= (Z/NZ)×, the following diagram commutes:

GQ K×

Gal(Q(µN )/Q) (Z/NZ)×

ρ

πN

∼
χ

and we obtain a character χ : (Z/NZ)× −→ K×. Taking N to be minimal, we obtain a
primitive character χ.

Conversely, if χ : (Z/NZ)× −→ K× is a primitive character, let ρχ,N be the unique
homomorphism making the following diagram commute:

GQ K×

Gal(Q(µN )/Q) (Z/NZ)×

ρχ

πN

∼

ρχ,N

χ

We can show that ρχ,N is continuous. Hence, χ determines a unique homomorphism

ρχ = ρχ,N ◦ πN : GQ −→ K×.

We deduce that the one-dimensional Galois representations with K = Fp and C corre-
spond exactly to primitive characters.

Now let p be a prime not dividing N . Since the extension Q(µN )/Q is unramified for
such p, so is ρχ. The facts that the isomorphism Gal(Q(µN )/Q) −→ (Z/NZ)× maps
Frobp 7−→ p, and that for any maximal ideal p ⊆ Z lying over p, we have

Frobp

∣∣
Q(µN )

= Frobp∩Q(µN ),

imply that
ρχ(Frobp) = χ(p). (1.2)

1.4 Modular forms and Hecke operators

Modular forms

The modular group SL2(Z) is the group of 2× 2 invertible matrices with integer entries.
For each positive integer N , define

Γ0(N) =


(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡

(
∗ ∗
0 ∗

)
(mod N)


and

Γ1(N) =


(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡

(
1 ∗
0 1

)
(mod N)

 .

Let Mk(N) = Mk(Γ1(N)) be the space of modular forms of weight k and level Γ1(N).
and let ε : (Z/NZ)× −→ C× be a Dirichlet character. The space Mk(N) admits a
decomposition into subspaces Mk(N, ε) which are stable under the Hecke operators. A
modular form f ∈Mk(N, ε) is defined as follows:
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Definition 1.8. A modular form of weight k, level N and character ε is a modular form

f ∈Mk(Γ1(N)) such that for all γ =

(
a b
c d

)
∈ Γ0(N),

f(γτ) = f

(
aτ + b

cτ + d

)
= ε(d)(cτ + d)kf(τ)

We denote the space of such forms Mk(N, ε). This is a finite-dimensional complex vector
space and

Mk(N) =
⊕

ε:(Z/NZ)×→C×

Mk(N, ε). (1.3)

The subspace Sk(N) = Sk(Γ1(N)) of cusp forms decomposes in the same way:

Sk(N) =
⊕

ε:(Z/NZ)×→C×

Sk(N, ε).

Observe that since γ =

(
−1 0
0 −1

)
∈ Γ0(N), if f ∈Mk(N, ε) and τ ∈ C, then

f(τ) = f(γτ) = ε(−1)(−1)kf(τ).

It follows that Mk(N, ε) is zero-dimensional unless

ε(−1) = (−1)k. (1.4)

Hecke operators

The space Mk(N) is acted on by the Hecke operators; these operators preserve the
character decomposition (1.3) of Mk(N):

• The diamond operator : for each d ∈ (Z/NZ)×, define

〈d〉f(τ) = (cτ + δ)−kf

(
aτ + b

cτ + δ

)
,

where

(
a b
c δ

)
∈ Γ0(N) and δ ≡ d (mod N).

Noting that

Mk(N, ε) =
{
f ∈MK(N) : 〈d〉f = ε(d)f ∀d ∈ (Z/NZ)×

}
,

we see that the diamond operator respects the character decomposition.

• The nth Hecke operator is an endomorphism Tn of Mk(N). If ` is a prime number
then T` is defined on the q-expansion of a modular form f ∈Mk(N) by:

T` :
∞∑
n=0

an(f)qn 7−→


∞∑
n=0

an`(f)qn + `k−1
∞∑
n=0

an(〈`〉f)qn` if ` - N

∞∑
n=0

an`(f)qn if ` | N
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The operator Tn is defined on prime powers by

T`r = T`T`r−1 − `k−1〈`〉T`r−2

for integers r ≥ 2, and is then defined multiplicatively so that Tn and Tm commute
if n and m are coprime.

If f ∈Mk(N, ε), then for ` prime,

T` :
∞∑
n=0

an(f)qn 7−→


∞∑
n=0

an`(f)qn + ε(`)`k−1
∞∑
n=0

an(f)qn` if ` - N

∞∑
n=0

an`(f)qn if ` | N

and we see that Mk(N, ε) is indeed stable under the action of Tn.

Eigenforms

Definition 1.9. A non-zero modular form f =
∑∞

n=0 an(f)qn ∈ Mk(N) is called an
eigenform if it is a simultaneous eigenvector for all the Hecke operators. If a1 = 1, we
say that f is normalised.

Let f =
∑∞

n=0 cnq
n be a normalised eigenform. Using the above formulae, we see that

for each n ∈ N,
a1(Tn(f)) = cn = cn · c1,

i.e. the eigenvalue of Tn is exactly the Foruier coefficient cn. Hence, a normalised
eigenform is completely determined by its eigenvalues. In fact, we need only know the
eigenvalues of Tp for p prime, since the formal Dirichlet series

L(s, f) =

∞∑
n=1

cnn
−s

is given by an Euler product

L(s, f) =
∏
p

(
1− cpp−s + ε(p)pk−1p−2s

)−1
.

Since f is an eigenform, the action of the diamond bracket operators defines a character

ε : (Z/NZ)× −→ C×

d 7−→ 〈d〉f
f

.

We deduce that if f is an eigenform, then f ∈Mk(N, ε).

Example 1.10. The Ramanujan delta function

∆(z) = q
∏
n≥1

(1− qn)24 =
∑
n≥1

τ(n)qn

is a normalised cusp form of weight 12 and level 1. Since the space S12(1) is one-
dimensional and is preserved by the Hecke operators, ∆ must be a Hecke eigenform
with eigenvalues τ(n).
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1.5 Modular forms in characteristic p

In this section, we will define the notion of a modular form with coefficients in Fp using
Serre’s definition in [Ser87].

Let p be a prime number, and let

• N ≥ 1 be a positive integer such that p - N ,

• k ≥ 2 be a positive integer and

• ε : (Z/NZ)× −→ F
×
p be a character such that ε(−1) = (−1)k (so that the space

Mk(N, ε) is not automatically empty).

We define a modular form of type (N, k, ε) with coefficients in Fp to be the reduction
modulo p of a modular form f ∈Mk(N, ε) with coefficients in the algebraic integers.

More precisely, choose a place of Q above p, and let Zp denote the ring of integers of
Qp. The choice of place determines an embedding Z ↪→ Zp. The ring Zp has a natural

reduction map to its residue field Fp, so we obtain a homomorphism

Z −→ Fp

z 7−→ z̃.
(1.5)

The character ε has finite image lying in a finite field Fq. Let

ε0 : (Z/NZ)× −→ Z
×
p

denote the Teichmuller lift of ε, the unique character ε0 such that for all x ∈ (Z/NZ)×

ε(x) = ε0(x) (mod Fq)

and
ε0(x)q = ε0(x).

Since ε0 takes values in the N th roots of unity, the image of ε0 lies in Z
× ⊆ C×.

Definition 1.11. A modular form of type (N, k, ε) with coefficients in Fp is a formal
power series

f =

∞∑
n=0

anq
n an ∈ Fp

for which there exists a modular form

F =
∞∑
n=0

Anq
n, An ∈ Z

in Mk(N, ε0) such that Ãn = an for all n. A cusp form of type (N, k, ε) with coefficients
in Fp is defined analogously.

We denote the space of modular forms of type (N, k, ε) with coefficients in Fp by M̃k(N, ε)

and the subspace of cusp forms by S̃k(N, ε). These spaces have the following properties
(see [Ser87] §3.1):

1. The dimension of S̃k(N, ε) as a vector space over Fp is equal to the dimension of
the corresponding space Sk(N, ε0) as a vector space over C.
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2. The spaces M̃k(N, ε) and S̃k(N, ε) are stable under the action of the Hecke oper-
ators T` for prime `, defined by

T` :
∞∑
n=0

anq
n 7−→


∞∑
n=0

an`q
n + ε(`)`k−1

∞∑
n=0

anq
n` if ` - pN

∞∑
n=0

an`a
n if ` | pN

(1.6)

Moreover, for n,m coprime, the Hecke operators Tn, Tm commute.

For ` 6= p, this follows from the similar properties in characteristic zero. For ` = p,
observe that Tp is the reduction mod p of the characteristic zero Hecke operator

Tp :
∞∑
n=0

anq
n 7−→

∞∑
n=0

apnq
n + ε0(p)p

k−1
∞∑
n=0

anq
pn

thanks to the hypothesis k ≥ 2.

3. If

f =

∞∑
n=1

anq
n ∈ S̃k(N, ε)

is a non-zero normalised Hecke eigenform, then by definition, f is the reduction
mod p of some normalised cusp form

F =
∞∑
n=1

Anq
n

of type (N, k, ε0) with coefficients in Z. This F will also be a Hecke eigenform,
with coefficients satisfying

Ã` = a`

for any prime number `.

1.6 Galois representations arising from mod p modular forms

Let f =
∑∞

n=0 anq
n be an eigenform with coefficients in Fp. By a construction of

Deligne ([DS74], Theorem 6.7), we can associate to f a mod p Galois representation ρf .
Specifically:

Theorem 1.12 (Deligne). Let N be an integer, p be a prime not dividing N , and let f
be a non-zero normalised eigenform of type (N, k, ε) with coefficients in Fp. Then there
exists a continuous, semisimple Galois representation

ρf : GQ → GL2(Fp)

such that for any prime ` - pN

• ρf is unramified at `

• ρf (Frob`) has characteristic polynomial

X2 − a`X + ε(`)`k−1. (1.7)
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Observe that since ρf is unramified at `, Remark 1.7 shows that the characteristic
polynomial of ρf (Frob`) is well defined. We can state formula (1.7) equivalently as

det ρf (Frob`) = ε(`)`k−1 and tr ρf (Frob`) = a`. (1.8)

Remarks 1.13.

1. Let χp : GQ −→ (Z/pZ)× be the pth cyclotomic character, obtained by the action
of GQ on the pth roots of unity - i.e. the character such that for every σ ∈ GQ,
we have

σ(ζp) = ζχ(σ)p

where ζp is a primitive pth root of unity. Recall equation (1.2), that if ρχ is the
representation induced by χ, then

ρχ(Frobp) = χ(p).

By Chebotarev’s density theorem and the continuity of ρf , it follows that (1.8)
can be rewritten as

det ρf = εχk−1p and tr ρf (Frob`) = a` (1.9)

Here, we are viewing ε as a character GQ −→ F
×
p obtained by lifting

ε : (Z/NZ)× −→ F
×
p to GQ.

2. Let c ∈ GQ be any complex conjugation. Then by (1.4)

det ρf (c) = ε(−1)(−1)k−1 = (−1)k(−1)k−1 = −1.

A representation with this property is called an odd representation.

3. The representation ρf need not be irreducible - indeed, if f ∈ M̃k(N, ε) is a non-
cuspidal eigenform then ρf must be reducible. For example, if N = 1 and k > 2,
then f is the reduction mod p of an Eisenstein series

Ek(τ) =
Bk
2k
−
∞∑
n=1

σk−1(n)qn,

where
σk−1(n) =

∑
m|n
m>0

mk−1

and Bk is the kth Bernoulli number. Ek is a Hecke eigenform, so we only need to
calculate σk−1 at primes. Evaluating at a prime ` gives

a` = σk−1(`) = 1 + `k−1

Let ρf be the mod p representation corresponding to f . If ` 6= p is prime, then ρf
is unramified at `, and ρf (Frob`) has characteristic polynomial

X2 − (1 + `k−1)X + `k−1.

We deduce that

ρf =

(
1 0
0 χk−1p

)
= 1⊕ χk−1p

is reducible. The proof for the general case is similar (see [DS05] Theorem 9.6.6).
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2 Serre’s conjecture

We stated in §1.6 that if f ∈ M̃k(N, ε) is a eigenform with coefficients in Fp, then we
can associate to f a Galois representation

ρf : GQ −→ GL2(Fp).

Suppose now that we are given a Galois representation

ρ : GQ −→ GL2(Fp).

We would like to investigate the converse of Deligne’s theorem: does ρ arise from a
modular form - i.e. is ρ ∼ ρf for some eigenform f?

The remarks at the end of the previous section show that in order for this to be possible
ρ must certainly be odd (i.e. det ρ(c) = −1 where c is any complex conjugation).
Moreover, restricting our attention to cuspidal eigenforms, we can assume that ρ is
irreducible. The weak version of Serre’s conjecture states that in this situation, ρ is
indeed modular:

Theorem 2.1 (Serre’s Conjecture, Weak Version). Let

ρ : GQ −→ GL(V ) ∼= GL2(Fp)

be a Galois representation, V being a two-dimensional vector space over Fp. Suppose
that ρ is irreducible and odd. Then there exists a cuspidal eigenform f with coefficients
in Fp whose associated representation ρf is equivalent to ρ.

Beyond conjecturing the existence of such a modular form, Serre gives a precise recipe
for its level N(ρ), weight k(ρ) and character ε(ρ). This chapter will explain Serre’s
recipe for the level and character of the representation; the next chapter will explain the
construction of the weight.

2.1 The level N(ρ)

In this section, we will define the level N(ρ) of the representation ρ to be the prime-to-p
part of the global Artin conductor of ρ. The results of Carayol ([Car89]) and Livné
([Liv89]) show that this value is optimal, in the sense that if ρ arises from a cuspidal
eigenform f ∈ S̃k(N, ε), then N(ρ) | N .

Deligne’s theorem states that if ρf : GQ −→ GL2(Fp) is the Galois representation

corresponding to an eigenform f ∈ S̃k(N, ε) where (N, p) = 1, then f is unramified at
every prime ` - pN . The level N(ρ) must therefore depend on the ramification of ρ at
primes ` 6= p, and should be of the form

N(ρ) =
∏

`6=p prime

`n(`,ρ), (2.1)

where n(`, ρ) ∈ Z and

n(`, ρ) = 0 if ρ is unramified at `,

n(`, ρ) > 0 if ρ is ramified at `.
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Thus, it makes sense to consider the local representation

ρ` : G` = Gal(Q`/Q`) −→ GL2(V )

formed by restricting ρ to G`. The group G` comes with a filtration

G` = G`,−1 ⊃ G`,0 ⊃ G`,1 ⊃ · · ·

of higher ramification groups. It is natural to consider the action of each G`,i on V . In
particular, let

V G`,i =
{
v ∈ V : ρ(σ)v = v ∀σ ∈ G`,i

}
be the subspace of V of elements invariant under the action of G`,i. For example,
G`,0 = I` is the inertia group at ` and by definition,

ρ is unramified at ` ⇐⇒ V = V I` (2.2)

Similarly,
G`,i ⊆ ker ρ ⇐⇒ V = V G`,i

Hence, the codimension of V G`,i in V is a good measure of the level of higher ramification
of ρ.

We define n(`, ρ) to be the local Artin conductor

n(`, ρ) =
∞∑
i=0

1

[G`,0, G`,i]
dim(V/V G`,i)

or equivalently as
n(`, ρ) = dim(V/V I`) + b(V )

where b(V ) is the Swan conductor or the wild invariant as defined in [Ser77]. Serre
shows in [Ser79] chapter VI that n(`, ρ) is a non-negative integer. Observe that:

1. n(`, ρ) = 0 if and only if V = V G`,0 . By (2.2), this occurs if and only if ρ is
unramified at `.

2. Similarly, n(`, ρ) = 1 if and only if ρ is tamely ramified at `.

2.2 The character ε(ρ)

Deligne’s theorem states that if f ∈ S̃k(N, ε) is an eigenform with corresponding Galois
representation ρf , then

det ρf = εχk−1p , (2.3)

where χp is the pth cyclotomic character. Since ε and χp are characters of level N and
p respectively, we can view det ρf as a character of level pN . By the Chinese remainder
theorem, the group (Z/pNZ)× is canonically isomorphic to (Z/pZ)××(Z/NZ)×. Under
this decomposition, the restriction of det ρf to (Z/pZ)× is χk−1p , and the restriction to
(Z/NZ)× is ε. This is shown in the following diagram:

(Z/NZ)×

GQ (Z/pNZ)× F
×
p

(Z/pZ)×

ε

πpN

χk−1
p
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Now let us return to our representation ρ. We will extract the character ε(ρ) from det ρ
in an analogous way. By the results of §1.3, the one-dimensional representation

det ρ : GQ −→ Fp

corresponds to a character
χ : Z/MZ −→ Fp

for some integer M ≥ 1, such that det ρ is unramified for all primes ` - M . Assuming
that ρ arises from a modular form of level N(ρ), where N(ρ) is as in the previous section,
we see that ρ is unramified away from pN(ρ). It follows that det ρ can be considered as
a character of (Z/pnZ)×× (Z/N(ρ)mZ)× for some n,m ≥ 1. We show that we can take
n,m = 1:

• Since
(Z/pnZ)× ∼= Z/pn−1Z× Z/(p− 1)Z

and χ takes values in F
×
p , which contains no p-power roots of unity, we can take

n = 1.

• Comparing formula (2.1) for ρ and det ρ, we see that N(det ρ) | N(ρ); the relation-
ship of the conductor N(det ρ) with the class field theoretic conductor (see [AT68]
Theorem XI.14) then shows that we can also take m = 1.

We therefore obtain a character

χ : (Z/pN(ρ)Z)× ∼= (Z/pZ)× × (Z/N(ρ)Z)× −→ F
×
p ,

and as before we define, by the restriction of χ to (Z/N(ρ)Z)× and (Z/pZ)× respectively,
the character

ε(ρ) : (Z/N(ρ)Z)× −→ F
×
p (2.4)

and a corresponding homomorphism

ϕ : (Z/pZ)× −→ F
×
p .

Since (Z/pZ)× is a cyclic group of order p− 1, viewing (Z/pZ)× as a subgroup of F
×
p ,

the homomorphism ϕ is of the form

x 7−→ xh h ∈ Z/(p− 1)Z.

We will see in §3.4 that the homomorphisms GQ −→ Fp which factor through Fp form
a cyclic group generated by the cyclotomic character χp. Hence, we can write

ϕ = χhp ,

and we deduce that
det ρ = εχhp .

Comparing this to (2.3), we see that h should be related to k(ρ) by the congruence

h ≡ k(ρ)− 1 (mod p− 1). (2.5)
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3 The weight

3.1 Motivation

In this chapter, we will define the weight k(ρ) attached to the representation ρ, following
Serre’s definitions. At the end of the previous chapter, we showed that the determinant
det ρ is given by a product εχhp , where ε is a character of level N(ρ). Since p - N(ρ), ε
is unramified at p, and restricting to an inertia group Ip lying over p we have

det ρ|Ip = χhp

Comparing this to equation (2.3), we see that if ρ arises from a modular form of weight
k(ρ), then h must satisfy

h ≡ k(ρ)− 1 (mod p− 1).

In particular, if we knew that 2 ≤ k(ρ) ≤ p + 1, then up to some ambiguity with the
cases k(ρ) = 2 and k(ρ) = p + 1 (see §3.8), we would be able determine the weight
directly from det ρ|Ip .

Suppose that f =
∑∞

n=1 anq
n is a normalised cuspidal eigenform of type (N, k, ε) with

coefficients in Fp, and that 2 ≤ k ≤ p+ 1. Let

• ρf be the mod p Galois representation associated to f ,

• ρf,p = ρ|Gp be its restriction to Gp,

• λ(a) denote the unramified character Gp −→ F
×
p such that λ(Frobp) = a for any

a ∈ F
×
p .

The following two theorems (see [Edi92] §2.4) tell us the form that ρf
∣∣
Ip

should take:

Theorem 3.1 (Deligne). Suppose that ap 6= 0. Then ρf,p is reducible and

ρf,p =

(
χk−1p λ(ε(p)/ap) ∗

0 λ(ap)

)
.

In this case, we have

ρf
∣∣
Ip

=

(
χk−1p ∗

0 1

)
.

Theorem 3.2 (Fontaine). Suppose that ap = 0. Then ρf,p is irreducible and

ρf
∣∣
Ip

=

(
ψ′k−1 0

0 ψk−1

)
.

where ψ,ψ′ are the two fundamental characters of level 2 (see §3.4).

If ρ takes one of the above forms, then we set k(ρ) to be k. In §3.2, we will show that
for every representation ρ, there is a twist of ρ by a power of the cyclotomic character
that takes one of these forms. In particular, the weight depends only on the restriction
of ρ to an inertia subgroup Ip lying over p. We see that whilst the level depends on the
ramification of ρ away from p, the weight depends on the ramification of ρ at p.
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3.2 Twists of representations

In [Kat76], Katz shows that there is a derivation

θ : M̃k(N, ε) −→ M̃k+p+1(N, ε),

whose action on q-expansions is given by

q
d

dq
:
∞∑
n=0

anq
n 7−→

∞∑
n=0

nanq
n.

This map preserves the subspace of cusp forms. Moreover, by computing the action of
the Hecke operators using (1.6), we observe that for all primes `

T`(θf) = `θ(T`(f)). (3.1)

As a result, if f is a normalised eigenform of type (N, k, ε) with eigenvalues a`, then θf
is an eigenform of type (N, k + p+ 1, ε) with eigenvalues `a`.

Let f ∈ S̃k(N, ε) be a normalised eigenform, and let ρf and ρθf be the mod p Galois
representations corresponding to f and θf . Let ` - pN be prime, and let Frob` be an
absolute Frobenius element corresponding to `. Equation (1.8) shows that ρθf (Frob`)
has characteristic polynomial

X2 − `a`X + ε(`)`k+p.

Similarly, χp ⊗ ρf (Frob`) has characteristic polynomial

X2 − χp(Frob`)a`X + ε(`)χ2
p(Frob`)`

k−1,

and the fact that the cyclotomic character χp satisfies

χp(Frob`) = ` (mod p) ` 6= p

shows that these polynomials are equal mod p. By Chebotarev’s density theorem, this
means that ρθf and χp ⊗ ρf have the same characteristic polynomial. It follows by the
Brauer-Nesbitt theorem, which states that semisimple representations are determined
by their characteristic polynomials, that

ρθf ∼ χp ⊗ ρf .

We call the representation χp ⊗ ρf a twist of ρf by χp. The usefulness of these twists
comes from the following theorem (see [Edi92] Theorem 3.4):

Theorem 3.3. Let f be an eigenform of type (N, k, ε) with coefficients in Fp. Then
there exist integers i and k′ with

0 ≤ i ≤ p− 1 and 2 ≤ k′ ≤ p+ 1

and an eigenform g of type (N, k′, ε), such that f and θig have the same eigenvalues for
all the operators T` (` 6= p).

In particular, we have
ρf ∼ ρθig ∼ χip ⊗ ρg.
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3.3 The structure of Gal(Qp/Qp)

In the previous section, we showed that the weight k(ρ) depends on the restriction of ρ
to the inertia group at p. In order to understand this, we will need to understand the
structure of Gal(Qp/Qp). Recall from §1.1 that we have a sequence of subgroups

Gp,i ⊆ Ip ⊆ Gp.

Let

• Iw ∼= Gp,1 C Ip be the wild inertia group, the largest pro-p subgroup of Ip.

• It = Ip/Iw be the tame inertia group.

• Qunr
p be the maximal unramified extension of Qp.

• Qtr
p be the maximal tamely ramified extension of Qp.

We obtain the following tower of fields with their corresponding Galois groups:

Qp

Qtr
p

Qunr
p

Qp

Iw

Ip

Gp It

Recall that since Ip is the kernel of the reduction homomorphism Gp −→ Gal(Fp/Fp),
we have

Gal(Fp/Fp) ∼= Gp/Ip.

Hence, Gal(Fp/Fp) acts naturally on It, so we can view It as a Gal(Fp/Fp)-module.

Lemma 3.4. There is an identification of Gal(Fp/Fp)-modules

It = lim←−
n≥1

F×pn ,

where the transition maps are the norm maps

F×qm −→ F×q

ζ 7−→ ζ
qm−1
q−1 = NFqm/Fq(ζ).

Proof. The field Qtr
p consists of all totally and tamely ramified extensions of Qunr

p ; since
all such extensions are of the form Qunr

p ( n
√
p) for integers n such that p - n, we deduce

that
Qtr
p = lim−→

p-n
Qunr
p ( n
√
p). (3.2)
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Similarly, since the unramified extensions of Qp are the extensions Qp(ζn) for integers
n for which p - n, we have

Qunr
p = lim−→

p-n
Qp(ζn). (3.3)

For each n not divisible by p, Kummer theory gives us a canonical isomorphism

Gal(Qunr
p ( n
√
p)/Qunr

p ) −→ µn

σ 7−→
σ( n
√
p)

n
√
p

,

where µn = µn(Qp) is the group of nth roots of unity, which are contained in Qunr
p by

(3.3). Each such isomorphism lifts to a map Ip −→ µn, which factors through It due to
identification (3.2). Write θn : It −→ µn for this map.

We obtain an identification

It = Gal(Qtr
p /Q

unr
p ) = lim←−

p-n
Gal(Qunr

p ( n
√
p)/Qunr

p ) = lim←−
p-n

µn.

We can show that this is an identification of Gal(Fp/Fp)-modules, and that we obtain
an identification

It = lim←−
n≥1

Fpn

with the transition maps as claimed.

3.4 Fundamental characters

Definition 3.5. Let φ : It −→ Fp be any continuous character. We say that φ is of
level n if n is the smallest integer such that φ factors through F×pn :

It ∼= lim←−n F×pn F
×
p

F×pn

φ

The continuity of φ ensures that such an n exists.

In the previous section, we defined a map

θn : It −→ µn(Qp).

The group µn(Qp) lies in the ring of integers Zp of Qp. Composing this map with

reduction modulo the maximal ideal of Zp gives a mod p character of It as illustrated:

It F
×
p

µn(Qp) µn(Fp)

θn

∼
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The embedding µn(Fp) ↪→ F
×
p is in general non-canonical and non-unique. Let q = pn

with n ≥ 1. Since
µq−1(Fq) = F×q ,

the map θq−1 : It −→ µq−1 allows us to define a character

φ : It −→ F×q .

Each of the n embeddings Fpn ↪→ Fp induces different embedding F×pn ↪→ F
×
p .

Definition 3.6. The fundamental characters of level n are the characters induced by
composing φ with one of the n embeddings Fpn ↪→ Fp

It F
×
p ⊆ Fp

F×pn ⊆ Fpn

φ
n embeddings

These characters form a generating set for the group of characters of It of level n.

Example 3.7. The mod p cyclotomic character χp is tamely ramified (since Qp(ζp)/Qp

is), and hence gives an character of It. Let ψ be the fundamental character of level 1.
By definition, we have a commutative diagram

It Gal(Qunr
p ( p−1

√
p)/Qunr

p ) F×p

µp−1(Qp) µp−1(F
×
p )

ψ

θp−1

∼

Similarly, the character χp satisfies the following commutative diagram

It Gal(Qunr
p (ζp)/Q

unr
p ) F×p

µp−1(Qp) µp−1(F
×
p )

χp

∼

The fact that Qunr
p (ζp) = Qunr

p ( p−1
√
p) shows that ψ = χp.

Example 3.8. There are two fundamental characters of level 2, which we denote ψ and
ψ′. We have

ψp = ψ′ ψ′p = ψ.
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3.5 The local representation at p

Let ρp be the restriction of ρ to Gp, and let V ss denote the semisimplification of V with
respect to the action of Gp.

Lemma 3.9. The wild ramification group Iw acts trivially on V ss.

Proof. We follow the proof of Proposition 4 in [Ser72]. The key fact is that Iw is a pro-p
group, and hence that the orbits of its action on any finite set X must have p-power
order. In particular, if #X is itself a power of p, then by a combinatorial argument, this
action cannot be trivial.

We need show that Iw acts trivially on each of the direct summands of V ss; hence,
without loss of generality, we can assume that V = V ss is simple. By Theorem 1.4, the
image of ρp is finite; therefore, it can be realised over a finite extension K of Fp.

Let V ′ = KIw be the space upon which Iw acts trivially. Iw acts on K and its orbits
have p-power order. The orbit {0} has size 1, and #K is a power of p; since the orbits
partition K, there must be at least p − 1 other singleton orbits - i.e. at least p − 1
non-trivial points fixed by Iw. Hence, V ′ is non-trivial.

Since Iw C Gp, the space V ′ is stable under the action of Gp. But V ′ is a non-trivial
subspace, so it follows that V ′ = K. This proves the lemma.

Corollary 3.10. The tame ramification group It ∼= Ip/Iw acts on V ss.

The group
It ∼= lim←−

m≥1
F×pm

is abelian; hence all its irreducible representations are one-dimensional. Therefore, the
two-dimensional representation ρss|It is reducible, and can be written as a direct sum
of two characters

ϕ,ϕ′ : It −→ F
×
p .

Proposition 3.11. The characters ϕ and ϕ′ have level 1 or 2. If they have level 2, then
they are conjugate, and we have ϕ′ = ϕp and ϕ = ϕ′p.

Proof. Let σ be any element of Gp whose image in Gp/Ip ∼= Gal(Fp/Fp) = GFp is the
Frobenius automorphism

Frobp : x 7−→ xp.

The group GFp acts on It by conjugation. Since

It = lim←−
n≥1

F×pn

as GFp-modules, conjugation by σ acts on It = Ip/Iw via u 7−→ up. Hence, for each
u ∈ Ip, we have

σuσ−1 = up (mod Iw).

The two representations u 7−→ ρss(u)p and u 7−→ ρss(u) are therefore equivalent via
conjugation by ρss(σ):

ρss(σ)ρss(u)ρss(σ−1) = ρss(σuσ−1)

= ρss(up) = ρss(u)p
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and hence, both representations can be expressed as a direct sum of ϕ and ϕ′. We
deduce that {

ϕ,ϕ′
}

=
{
ϕp, ϕ′p

}
.

There are then two cases:

1. We have ϕp = ϕ and ϕ′p = ϕ′. In this case, the two characters ϕ and ϕ′ have level
1.

2. We have ϕp = ϕ′ and ϕ′p = ϕ, and the two characters ϕ and ϕ′ have level 2.

3.6 Definition of k(ρ) when ϕ and ϕ′ have level 2

Suppose that we are in case 2 of Proposition 3.11: that ϕ and ϕ′ have level 2. We can
write ϕ and ϕ′ uniquely as

ϕ = ψaψ′b

ϕ′ = ϕp = (ψp)a(ψ′p)b = ψbψ′a

where ψ,ψ′ are the fundamental characters of level 2 and 0 ≤ a, b ≤ p − 1. Since ϕ
has level 2, and ψψ′ = χp, we have a 6= b. Interchanging ϕ and ϕ′ as necessary, we can
therefore assume that 0 ≤ a < b ≤ p− 1.

Lemma 3.12. The representation ρp : Gp −→ GL(V ) is irreducible.

Proof. Suppose not. Then V contains a stable one-dimensional subspace and the action
of It on this subspace is given by one of the characters ϕ,ϕ′. This character can be
extended to a tame character Φ of Gp. Note that since

σuσ−1 ≡ up (mod Iw)

for any u ∈ It and σ ∈ Gp a lift of Frobp ∈ GFp , the fact that Φ is tame (so that Φ|Iw
is trivial) means that Φ|Ip takes values in F×p . Hence, it is of level 1, contradicting our

assumption that ϕ and ϕ′ have level 2.

Hence, by Lemma 3.9, the wild inertia group Iw acts trivially on V . Therefore, the
restriction of ρp to the inertia group takes the form

ρp
∣∣
Ip

= ρp
∣∣
It

=

(
ψaψ′b 0

0 ψ′aψb

)
= χap

(
ψ′b−a 0

0 ψb−a

)
.

This is exactly of the form of a twist of a representation arising from an eigenform with
ap = 0 as in Fontaine’s theorem (Theorem 3.2). We write

ρp = χap ⊗ ρ′p,
where ρ′p is a representation whose restriction to Ip is(

ψ′b−a 0
0 ψb−a

)
.

The weight of the untwisted representation ρ′p should be k = b − a + 1, and hence, by
the results of §3.2, we define

k(ρ) = b− a+ 1 + a(p+ 1) = 1 + pa+ b.
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3.7 Definition of k(ρ) when ϕ and ϕ′ have level 1, and Iw acts
trivially

Suppose that we are in case 1 of Proposition 3.11, but that Iw acts trivially on V . We
have

(ϕ,ϕ′) = (χap, χ
b
p)

for some 0 ≤ a, b ≤ p − 2. Interchanging ϕ and ϕ′ as necessary, we can assume that
a ≤ b. The restriction of ρp to the inertia takes the form

ρp
∣∣
Ip

= ρp
∣∣
It

=

(
χbp 0

0 χap

)
= χap

(
χb−ap 0

0 1

)
.

This is of the form
χap ⊗ ρ′p,

where ρ′p arises from an eigenform with ap 6= 0 as in Deligne’s theorem (Theorem 3.1).
The weight of ρp should be k = b− a+ 1. Hence we define

k(ρ) =

{
1 + pa+ b if (a, b) 6= (0, 0)

p if (a, b) = (0, 0)

Remark 3.13. The case (a, b) = (0, 0) corresponds to the case where Ip acts trivially on
V - i.e. where ρp is unramified. The formula k(ρ) = 1 + pa + b would give k(ρ) = 1 in
this case. However, in Serre’s definition of mod p modular forms, the forms of weight
1 have different properties to those of other weights; we avoid these by translating the
weight by p− 1 to give k(ρ) = p.

3.8 Definition of k(ρ) when ϕ and ϕ′ have level 1, and Iw does
not act trivially

Suppose that Iw does not act trivially, so that the action of Ip is not tame. The proof
of Lemma 3.9 shows that V Iw forms a stable one-dimensional subspace of V . Hence Gp
acts on the spaces V/V Iw , V Iw via two characters, θ1, θ2:

ρp =

(
θ2 ∗
0 θ1

)
.

We can write θ1 and θ2 uniquely as

θ1 = χαp ε1, θ2 = χβp ε2,

where 0 ≤ α ≤ p− 2 and 1 ≤ β ≤ p− 1. The restriction of ρp to Ip is therefore

ρp
∣∣
Ip

=

(
χβp ∗
0 χαp

)
.

In this case, the roles of α and β are not symmetric, so we cannot just swap them to
ensure that α < β. Hence, we let

a = min(α, β), b = max(α, β).
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There are now two cases:

(i) If β 6= α+ 1, then we proceed as in §3.7 and set

k(ρ) = 1 + pa+ b.

(ii) If β = α + 1, then χβ−αp = χp. Hence the restriction of ρp to the inertia is of the
form

ρp
∣∣
Ip

= χαp

(
χp ∗
0 1

)
, (3.4)

and it is unclear whether the untwisted representation should have weight 2 or
p+ 1. Which it should be will depend on the type of wild ramification - whether
ρ is peu ramifié or très ramifié.

Recall from section §3.3 that we have the following tower of fields with their
corresponding Galois groups:

Qp

Qtr
p

Qunr
p

Qp

Iw

Ip

Gp It

The representation ρp
∣∣
Ip

factors through some Galois group Gal(K/Qunr
p ) of a

totally ramified finite extension K/Qunr
p . The wild inertia group ρp(Ip) is the

Galois group of K/Kt, where Kt is the largest tamely ramified extension of Qunr
p

contained in K.

K

Kt

Qunr
p

ρp(Ip)

ρp(Iw)

Since β = α + 1, the action of Gal(Kt/Q
unr
p ) = ρp(Ip)/ρp(Iw) on V ss gives a

faithful representation of the form(
χα+1
p 0

0 χαp

)
,

and we deduce that Gal(Kt/Q
unr
p ) has order p − 1. Since Kt ⊇ Qunr

p (ζp), we
conclude that Kt = Qunr

p (ζp), and that Gal(Kt/Q
unr
p ) ∼= (Z/pZ)×.
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On the other hand, the group Gal(K/Kt) = ρp(Iw) is a finite abelian p-group.
Since χp acts trivially on Iw, we see that ρp(Iw) is of the form(

1 ∗
0 1

)

and is therefore killed by p. Hence, ρp(Ip) is an abelian group of type (p, p, . . . , p).

The group Gal(Kt/Q
unr
p ) ∼= (Z/pZ)× acts on Gal(K/Kt) by conjugation via the

character χβ−αp = χp. Using Kummer theory, we deduce that

K = Kt(x
1/p
1 , . . . x1/pm ), where pm = [K : Kt], (3.5)

and the xi are elements of (Qunr
p )×/(Qunr

p )×p.

Definition 3.14. Let vp denote the p-adic valuation of Qunr
p , normalised so that

vp(p) = 1.

a) If the xi can be chosen to satisfy

vp(xi) ≡ 0 (mod p) for i = 1, . . .m,

then we say that the extension K (and hence the representation ρp) is peu
ramifié.

b) Otherwise, we say that K and ρp are both très ramifié.

We can now define the integer k(ρ):

(ii1) If ρp is peu ramifié, then we let the untwisted part of (3.4) have k = 2 so that

k(ρ) = 2 + α(p+ 1) = 1 + pa+ b

(ii2) If ρp is très ramifié and p ≥ 3, then we let the untwisted part of (3.4) have
k = p+ 1 so that

k(ρ) = p+ 1 + p(α+ 1) = 1 + pa+ b+ p− 1.

In the case that p = 2, we let k(ρ) = 4.

We can now state the strong version of Serre’s conjecture:

Theorem 3.15 (Serre’s Conjecture, Strong Version). Let

ρ : GQ −→ GL(V ) ∼= GL2(Fp)

be a Galois representation, V being a two-dimensional vector space over Fp. Suppose
that ρ is irreducible and odd. Then there exists a cuspidal eigenform f with coefficients
in Fp of type (N(ρ), k(ρ), ε(ρ)) whose associated representation ρf is equivalent to ρ.
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4 Examples

4.1 Galois representations arising from semistable elliptic curves

Let E be a semistable elliptic curve over Q - i.e. a curve which has good or multiplicative
reduction at every prime p. Let jE be its modular invariant, and E[p] = E[p](Q) be the
group of its p-torsion points. As an abstract group, E[p] is isomorphic to Z/pZ×Z/pZ,
and can therefore be viewed as a two-dimensional vector space over Fp. The action of
GQ on E[p] defines a representation

ρE,p : GQ −→ Aut(E[p]) ∼= GL2(Fp).

In this section, we will show how to explicitly calculate the predicted level, weight and
character of ρE,p:

Theorem 4.1. Let E/Q be a semistable elliptic curve with minimal discriminant ∆E.
Let v` be the normalised `-adic valuation of Q. Then

1. ε(ρE,p) = 1,

2. N(ρE,p) =
∏
6̀=p
`n(`,ρE,p) where n(`, ρE,p) =

{
0 if v`(∆E) ≡ 0 (mod p)

1 if v`(∆E) 6≡ 0 (mod p)

3. k(ρE,p) =

{
2 if vp(∆E) ≡ 0 (mod p)

p+ 1 otherwise.

Proof.

1. We can define the Weil pairing on E

ep : E[p]× E[p] −→ µp.

This pairing is bilinear, alternating (i.e. ep(T, T ) = 1), non-degenerate and Galois
invariant (see [CSS97] §II.8). Hence, ep induces an isomorphism of Galois modules

E[p] ∧ E[p] −→ µp.

Therefore, for each σ ∈ GQ, S, T ∈ E[p], we have with this identification

χp(σ)(S ∧ T ) = σ(S ∧ T ) by the definition of χp

= σ(S) ∧ σ(T ) by Galois invariance

= ρE,p(σ)S ∧ ρE,p(σ)T.

We deduce that
det ρE,p = χp.

and hence that ε(ρE,p) = 1.

2. To calculate N(ρE,p), we will split into two cases, depending on whether or not E
has a good reduction mod `.

Suppose first that E has a good reduction mod ` - i.e. that v`(∆E) = 0. We will
show that ρE,p is unramified at `; from here, we can deduce that ` - N(ρE,p).
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Let λ be a choice of prime lying above `; this choice of prime allows us to define
a reduction map Dλ −→ Gal(F`/F`) where Dλ is the decomposition group of λ.
Let Ẽ be the reduction of E mod `. Then there is a commutative diagram (see
[DS05] p383)

Dλ Aut(E[p])

Gal(F`/F`) Aut(Ẽ[p])

where the top map is the restriction of ρE,p to Dλ and the bottom map is given

by the action of Gal(F`/F`) on Ẽ. The map Dλ −→ Gal(F`/F`) has kernel Iλ;
hence, the inertia group Iλ lies in the kernel of the composite map

Dλ −→ Aut(E[p]) −→ Aut(Ẽ[p]).

Since E has good reduction at `, the second map is an isomorphism. Hence,
Iλ ⊆ ker ρE,p, and ρE,p is unramified at ` as claimed.

Now suppose that E has multiplicative reduction mod `. Then there exists an
unramified extension K of Q` over which E has split multiplicative reduction at `
- i.e. the two tangent lines to the node on Ẽ(Fp) have slopes defined over Fp.

By consideration of the Tate curve (see [DDT94] Proposition 1.5, [Cai09] Theorem
6.2.1), there is a `-adic analytic isomorphism of Gal(Q`/K)-modules

Φ : Q
×
` /q

Z −→ E(Q`), (4.1)

where q is defined in terms of the j-invariant jE of E:

jE =
1

q
+ 744 + 196884q + · · · .

Under this isomorphism, E[p] corresponds to the subgroup

〈ζp, q1/p〉 =
{
ζap (q1/p)b : 0 ≤ a, b < p

}
of elements of Q

×
` /q

Z of order p.

We need to show that Q`(E[p]) is tamely ramified, and unramified if and only if
p | v`(∆E). This will hold if and only if it holds for the extension K(ζp, q

1/p)/K
(since K/Q` is unramified).

The extension has degree p2; hence if ` 6= p, then since the wild inertia group Iw
is a `-group contained in Gal(K(ζp, q

1/p)/K), it must be trivial, so the extension
is indeed tamely ramified. It will be unramified if and only if v`(q

1/p) ∈ Z (here
v` is the extension of v` to K(q1/p)). This will occur if and only if p | v`(q). Since

v`(q) = −v`(jE) = v`(∆E),

the result follows.

3. Since det ρE,p = χp, the weight k(ρE,p) must satisfy

k(ρE,p)− 1 ≡ 1 (mod p− 1).
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If E has good reduction mod p, then ρE,p will be finite at p, which is an equivalent
definition to ρE,p being peu ramifié (see [Ser87] Propositon 4).

If E has multiplicative reduction mod p, then working over an unramified quadratic
extension K of Qp and using the Tate model (see [Ser87] §2.9), we have an exact
sequence of Galois modules over K

0 −→ µp −→ E[p] −→ Z/pZ −→ 0.

We deduce that

ρE,p

∣∣∣
Ip

∼=

(
χp ∗
0 1

)
,

and therefore that

k(ρE,p) =

{
2 if ρE,p is peu ramifié,

p+ 1 if ρE,p is très ramifié.

As before, under the isomorphism (4.1), E[p] corresponds to 〈ζp, q1/p〉. By equation
(3.5), we need to consider the field extension

Kt(ζp, q
1/p) = Kt(q

1/p).

This will be peu ramifié if and only if vp(q) ≡ 0 (mod p) - i.e. if p - vp(∆E), as
required.

4.2 Computational examples

1. Consider the elliptic curve

A : y2 + y = x3 + x2 − 23x− 50,

which has conductor NA = 37 and minimal discriminant ∆A = 373.

Let ρA,3 be the mod 3 representation corresponding to A. If ρA,3 were irreducible,
then by Theorem 4.1, it would arise from a modular form of weight 2 and level 1.
Since the space of such forms is empty, we deduce that ρA,3 is reducible.

2. More generally, suppose p < 11 and that

ρ : GQ −→ GL2(Fp)

is an odd Galois representation that is unramified away from p, so that N(ρ) = 1.
By Theorem 3.3, there is a twist of ρ such that 2 ≤ k(ρ) ≤ p+ 1. Since the spaces
Sk(1) are all zero for k ≤ 11, we deduce that ρ cannot be irreducible. Therefore,
there are no two-dimensional irreducible unramified mod p Galois representations
when p < 11.

3. The above result is false for p = 11. Indeed, consider the elliptic curve

B : y2 + y = x3 − x2,

which has conductor NB = 11 and minimal discriminant ∆B = −11.
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Let ρB,11 be the mod 11 representation corresponding to B. Since B is semistable
(NB is square-free), it follows from Mazur’s theorem (Theorem 5.3) that ρB,11 is
irreducible (the proof is similar to that of Corollary 5.4). We have N(ρB,11) = 1
and k(ρB,11) = 12. The space S12(1) has dimension 1, and contains a unique
eigenform

∆(z) =
∑
n≥1

τ(n)qn = q
∏
n≥1

(1− qn)24,

where τ is the Ramanujan tau function. We can compare the values of τ` with the
traces of absolute Frobenius elements on B[11]:

` 2 3 5 7 11 13 17 19

τ(`) -24 252 4830 -16744 534612 -577738 -6905934 10661420
a`(B) -2 -1 1 -2 1 4 -2 0

We check that

tr (ρA,11(Frob`)) = a`(B) ≡ τ(n) (mod 11)

for all the values calculated (including for ` = 11, although this is not expected).
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5 Applications

5.1 Fermat’s last theorem

Theorem 5.1 (Fermat’s Last Theorem). The equation

xn + yn = zn, xyz 6= 0

has no integer solutions when n ≥ 3.

In this section, we will show how to deduce Fermat’s last theorem from Serre’s conjecture
in the case that n is a prime number greater than or equal to 5.

Suppose that
ap + bp = cp, abc 6= 0, p ≥ 5

is a solution to Fermat’s equation. The idea of the proof is to use this proposed solu-
tion to write down a semistable elliptic curve, known as the Frey curve, and to apply
Serre’s conjecture to its corresponding mod p Galois representation. However, due to
the properties of the chosen elliptic curve, this Galois representation cannot be mod-
ular, as there are no non-zero modular forms of the prescribed weight and level. This
contradicts Serre’s conjecture.

Definition 5.2. The Frey curve associated with this proposed solution to Fermat’s
equation is the elliptic curve

E : y2 = x(x− ap)(x+ bp).

In order to be able to apply the results of §4.1, we would like E to be semistable.
Without loss of generality, we can assume that a, b, c are pairwise coprime. This ensures
that E has good or multiplicative reduction at any prime ` 6= 2 (since at most one of
a, b can be divisible by `). By swapping a and b, and by changing signs as needed, we
can also assume that

a ≡ −1 (mod 4), b ≡ 0 (mod 4)

thereby ensuring that E has at worst multiplicative reduction at ` = 2.

We can also check that the corresponding Galois representation

ρE,p : GQ −→ GL2(Fp)

is irreducible. This follows from the following theorem of Mazur ([Maz78] Theorem 2):

Theorem 5.3 (Mazur). If E/Q is an elliptic curve, then its torsion subgroup is iso-
morphic to one of the following:

• Z/NZ, 1 ≤ N ≤ 10, N = 12,

• Z/2NZ× Z/2Z, 1 ≤ n ≤ 4.

Corollary 5.4. The representation ρE,p is irreducible.

Proof. Any semistable elliptic curve with a rational subgroup of order ` is necessarily
isogenous to an elliptic curve with a rational point of order ` (see [DDT94] Theorem
2.9).
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Since
E[2] =

{
O, (0, 0), (ap, 0), (−bp, 0)

}
consists of only rational points, we use deduce that E is isogenous to an elliptic curve
whose torsion subgroup has order divisible by 4.

Suppose that ρE,p is reducible - i.e. that the torsion subgroup of E contains a subgroup
of order p. By the same argument as above, the torsion subgroup of E must have order
divisible by p, and hence by 4p ≥ 20 (here we use the fact that p ≥ 5). This contradicts
Mazur’s theorem.

We’ve now shown that the Galois representation ρE,p is irreducible. Since every elliptic
curve has the automorphism −1, we can check that ρE,p is odd, and hence that it satisfies
the conditions of Serre’s conjecture. The key fact about this representation is that it
has very little ramification. Indeed, E has minimal discriminant

∆E = 2−8(abc)2p,

so the results of §4.1 show that ρE,p is unramified outside 2 and p, and that Serre’s
conjecture predicts the weight and level of ρE,p to be

N(ρE,p) = 1 or 2 k(ρE,p) = 2

where the value of N depends on the ramification at 2. But there are no non-trivial
eigenforms of weight 2 and level 2, contradicting Serre’s conjecture. Thus, Serre’s con-
jecture implies Fermat’s last theorem.

5.2 The modularity theorem

Let f ∈ S2(N,1) be a normalised eigenform of weight 2 and level N with trivial char-
acter. Since f is a normalised eigenform, its Fourier coefficients are algebraic integers.

Suppose that the Fourier coefficients of f are rational integers. Then there exists a
holomorphic map from the upper half plane

H ∪ {cusps} −→ C/Λf

where Λf is a rank 2 lattice in C, and hence E = C/Λf is an elliptic curve. In fact, this
curve can be defined over Q, and has a good reduction for all primes p - N . We obtain
a map


Normalised eigenforms

of level N with
coefficients in Z


{

Elliptic curves over
Q of conductor N

}

The modularity theorem states that every elliptic curve over Q arises in this way:

Theorem 5.5 (Modularity Theorem). Let E be an elliptic curve over Q with conductor
N . Then there exists a normalised eigenform f =

∑∞
n=1 an(f)qn ∈ S2(N,1), such that

E is isogenous to C/Λf .
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Proof. For simplicity, we will prove this in the case that E is semistable. The proof of
the general case is almost identical, but requires more care when defining the weight
and level of the representation ρE,p, and in determining when it is irreducible.

Let p be a prime number not dividing N , and let

ρE,p : GQ −→ GL2(Fp)

be the Galois representation arising from the action of GQ on E[p]. In order to apply
Serre’s conjecture to ρE,p, we need it to be irreducible. Since E is semistable, the same
proof as that in Corollary 5.4 shows that ρE,p will be irreducible if p > 7.

Let ∆E be the minimal discriminant of E. The results of §4.1 show that for all but
finitely many primes, the Serre invariants attached to ρE,p will be (N, 2,1).

Serre’s conjecture says that there exists a cuspidal eigenform

fp =
∞∑
n=1

an,p q
n

of type (N, 2,1) with coefficients in Fp such that ρf ∼ ρE,p. This will in turn arise as a
reduction mod p of a cuspidal eigenform

Fp =

∞∑
n=1

Anq
n ∈ S2(N,1).

The crucial fact is that the weight and level of these modular forms are independent of
p. Since, there are only a finite number of normalised cuspidal eigenforms of weight 2
and level N , there exists an infinite set of primes P and a choice of F such that

F̃ = fp for all p ∈ P.

We show that F has coefficients in Z. Let ` be a prime not dividing N , so that the
curve E has good reduction at `. Let

a` = `+ 1−#E(F`)

It follows from the corresponding result for p-adic representations (see [DS05] Theorem
9.4.1) that

a` ≡ tr ρE,p(Frob`) (mod p) for all p 6= `,

and hence by Deligne’s theorem (Theorem 1.12) that

a` ≡ a`,p (mod p) for all p 6= `.

Hence, for every prime p ∈ P with p 6= `, the algebraic integer A` − a` has image in Fp

equal to 0. Since P is infinite, this means that

A` = a` for all ` - N. (5.1)

In particular, the Fourier coefficients of F lie in Z, and hence, we can associate to F an
elliptic curve EF /Q.

One can show that E and EF are actually isogenous. Indeed, equation (5.1) shows that
if ρE,p and ρEF ,p are the p-adic Galois representations attached to E and EF , then both
have the same characteristic equation and are therefore equivalent. This proves strong
version R of the modularity theorem in [DS05] (see Theorem 9.6.3 there). The proof
that E and EF are isogenous follows from this.
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5.3 The equation Axn +Byn = Czn

In solving Diophantine equations, methods based on Serre’s conjecture usually involve
proving that a particular equation has no solutions, by constructing a modular form
that does not exist. As a result, it is much harder to apply techniques based on Serre’s
conjecture to equations such as

Axn +Bxn = Czn A,B,C ∈ Z, n ≥ 3,

where there should be only finitely many solutions, but for example, (−1)5+25 = 31 ·15,
so non-trivial solutions do exist.

In this section, by combining Serre’s conjecture with other conjectural results about
Galois representations, we will show that the above equation has only finitely many
solutions (x, y, z, n) where n > 3. For a fixed choice n > 3, it follows from the Faltings’
theorem on curves of genus g > 1 that there are only finitely many solutions. By com-
bining Serre’s conjecture with the following conjecture due to Frey ([Dar95] Conjecture
4.3), we can prove the stronger result where n is not fixed.

Conjecture 5.6 (Frey). Let A/Q be an elliptic curve. There are only finitely many
pairs (E, p) consisting of an elliptic curve E/Q which is not isogenous to A and a prime
number p > 5, such that the corresponding representations

ρE,p : GQ −→ Aut(E[p])

and
ρA,p : GQ −→ Aut(A[p])

are equivalent.

Theorem 5.7. Assume Serre’s conjecture and Frey’s conjecture. Then the equation

Axn +Byn = Czn, n > 3, gcd(x, y, z) = 1

has only finitely many integer solutions (x, y, z, n).

Sketch of proof. Suppose for contradiction that there are infinitely many solutions. Since
for each fixed n > 3, the equation has only finitely many solutions, we can construct an
infinite set of solutions of the form (ai, bi, ci, pi) where the pi ≥ 5 are distinct primes.
Moreover, we can assume that for each i, pi - 2ABC.

The idea of the proof is to attach to each solution (ai, bi, ci, pi) a corresponding Frey
curve

Ei : y2 = x(x−Aapii )(x+Bbpii ).

Unlike in the proof of Fermat’s last theorem, the lack of symmetry means that we
cannot assume that Ei is semistable, but a generalisation of the results in §4.1 (see
for example [Cai09] Remark 6.2.2) allows us to show that the level N(ρEi,pi) of the
corresponding mod pi Galois representation divides 32(ABC)2, and that this condition
is independent of i. Moreover, for p sufficiently large (indeed p > 163 will suffice), ρEi,pi
will be irreducible.
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The proof now proceeds similarly to the proof of the modularity theorem. Using Serre’s
conjecture, we obtain from each ρEi,pi a corresponding mod pi eigenform fi, which itself

arises from a normalised eigenform Fi with coefficients in Zp. The level of Fi must
divide 32(ABC)2, and since the set of such eigenforms is finite, we deduce that there is
an eigenform F whose reduction mod pi is equal to fi for infinitely many i.

As before, we show that F has integer coefficients. Indeed, for ` - 2ABC, the curve Ei
has either a good or multiplicative reduction mod `. If it has a good reduction, then
the Hasse bound gives

|a`(Ei)| = |`+ 1−#Ei(F`)| ≤ 2
√
`,

and if it has a multiplicative reduction, then

ã`(Ei) = ±(`+ 1)

in Fp, where z̃ denotes the reduction map defined in equation (1.5). Hence, as i varies,

ã`(Ei) can only take finitely many values, and therefore, it will take some value a

infinitely many times. Since ã`(Ei) = a`(fi), it follows that

ã`(f) = a

for infinitely many i, and therefore that a`(f) = a is an integer.

Hence, F has a corresponding elliptic curve EF /Q, and

EF [pi] ∼= Ei[pi]

as GQ modules. This contradicts Frey’s conjecture.
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