Irreducibility of Galois representations associated to low weight Siegel modular forms

Ariel Weiss

University of Sheffield

a.weiss@sheffield.ac.uk

32nd Automorphic Forms Workshop 21st March 2018

1 / 10

The classical case

•
$$f = \sum_{n=0}^{\infty} a_n q^n \in M_k(N,\epsilon)$$
 normalised Hecke eigenform, $k \ge 2$

• Associated ℓ -adic Galois representation

$$ho_\ell:\mathsf{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})
ightarrow\mathsf{GL}_2(\overline{\mathbf{Q}}_\ell)$$

unramified for all $p \nmid \ell N$ with

$$\operatorname{Tr} \rho_{\ell}(\operatorname{Frob}_{\rho}) = a_{\rho}, \quad \det \rho_{\ell} = \epsilon \chi_{\ell}^{k-1}$$

 \bullet Associated mod ℓ Galois representation

$$\overline{\rho}_{\ell} : \mathsf{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \mathsf{GL}_2(\overline{\mathbf{F}}_{\ell})$$

When are ρ_ℓ and $\overline{\rho}_\ell$ irreducible?

Example: a reducible ℓ -adic Galois representation

Theorem (Ribet)

If f is cuspidal, then

- **1** ρ_{ℓ} is irreducible for all ℓ ;
- **2** $\overline{\rho}_{\ell}$ is irreducible for all but finitely many ℓ .

Example: a reducible mod ℓ Galois representation

$$\Delta(z) = 1 + \sum_{n \ge 2} \tau(n) q^n \quad \checkmark \qquad \overline{\rho}_{691} \cong \mathbf{1} \oplus \overline{\chi}_{691}^{11}$$

Genus 2 Siegel modular forms

"Cuspidal automorphic representation of $\text{GSp}_4(\textbf{A}_{\textbf{Q}})$ + conditions at ∞ "

- has weights (k_1, k_2) , $k_1 \ge k_2 \ge 2$
- has a level N
- has a character ϵ
- has Hecke operators T_p and Hecke eigenvalues a_p
- 4 types of cuspidal Siegel modular form:
 - General
 - Theta lifts/Automorphic inductions
 - Saito-Kurokawa/CAP
 - Yoshida/endoscopic

reducible Galois representations

High weight: $k_2 > 2$ Low weight: $k_2 = 2$

The high weight case: $k_2 > 2$

• Associated *l*-adic Galois representation

$$o_\ell:\mathsf{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})
ightarrow\mathsf{GSp}_4(\overline{\mathbf{Q}}_\ell)$$

unramified for all $p \nmid \ell N$ with

$${\sf Tr}\,
ho_\ell({\sf Frob}_{
ho})=a_{
ho},\qquad {\sf sim}
ho_\ell=\epsilon\chi_\ell^{k_1+k_2-3}$$

- Associated mod ℓ Galois representation $\overline{\rho}_{\ell}$: Gal($\overline{\mathbf{Q}}/\mathbf{Q}$) $\rightarrow \mathsf{GSp}_4(\overline{\mathbf{F}}_{\ell})$
- ρ_ℓ is always "kinda nice", and is "nice" if $\ell \nmid N$
- The Hecke eigenvalues satisfy the generalised Ramanujan conjecture

Theorem

- (Ramakrishnan) If ρ_ℓ is nice and ℓ > 2(k₁ + k₂ − 3) + 1, then ρ_ℓ is irreducible;
- (Dieulefait-Zenteno) $\overline{\rho}_{\ell}$ is irreducible for 100% of primes.

The low weight case: $k_2 = 2$

• Associated *l*-adic Galois representation

$$ho_\ell:\mathsf{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})
ightarrow\mathsf{GSp}_4(\overline{\mathbf{Q}}_\ell)$$

unramified for all $p \nmid \ell N$ with

$${\sf Tr}\,
ho_\ell({\sf Frob}_{
ho})={\sf a}_{
ho},\qquad {\sf sim}\,
ho_\ell=\epsilon\chi_\ell^{k_1-1}$$

• Associated mod ℓ Galois representation $\overline{\rho}_{\ell}$: $\mathsf{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \mathsf{GSp}_4(\overline{\mathbf{F}}_{\ell})$

Theorem (W.)

- If ρ_{ℓ} is nice and $\ell > 2(k_1 1) + 1$, then ρ_{ℓ} is irreducible;
- **2** $\overline{\rho}_{\ell}$ is irreducible for all but finitely many such primes.

Theorem (W.)

For 100% of primes ℓ , ρ_{ℓ} is nice.

Irreducibility and modularity

Sketch proof for modular forms.

If $f \in S_k(N,\epsilon) \leftrightarrow \rho_\ell$ and ρ_ℓ is reducible then

kinda nice"
$$\implies
ho_\ell \simeq \psi \oplus arphi \chi_\ell^{k-1}$$

Q CFT: ψ, φ correspond to Hecke (in this case Dirichlet) characters.

Write down another modular form

$$E_{k}^{\psi,\varphi} = a_{0} + \sum_{n=1}^{\infty} \left(\sum_{d|n} \psi(\frac{n}{d})\varphi(d)d^{k-1} \right) q^{n}$$

where $a_p(E_k^{\psi,\varphi}) = \psi(p) + \varphi(p)p^{k-1} = \operatorname{Tr} \rho_\ell(\operatorname{Frob}_p) = a_p(f)$. Strong multiplicity one: $f = E_k^{\psi,\varphi}$.

Idea: use the modularity of the subrepresentations of ρ_{ℓ} to get a contradiction on the automorphic side.

Ariel Weiss (Sheffield)

Irreducibility and modularity II

Idea: use the modularity of the subrepresentations of ρ_{ℓ} to get a contradiction on the automorphic side.

Key lemma (W.)

Either ρ_ℓ is irreducible, or it splits as a direct sum of two-dimensional representations which are irreducible, regular and odd.

Theorem (Taylor)

If ℓ is sufficiently large, and ρ : Gal $(\overline{\mathbf{Q}}/\mathbf{Q}) \to \operatorname{GL}_2(\overline{\mathbf{Q}}_{\ell})$ is an irreducible, regular, odd and nice Galois representation, then ρ is potentially modular.

- If ρ_{ℓ} is reducible then $\rho_{\ell} \simeq \sigma_1 \oplus \sigma_2$.
- If ρ_ℓ is also nice, find automorphic representations π₁, π₂ of GL₂(**A**_K) corresponding to σ₁|_K, σ₂|_K.
- Apply a standard *L*-functions argument.

Conjecture

If π is a cuspidal automorphic representation of $GL_n(\mathbf{A}_K)$ then ρ_ℓ is irreducible for all primes.

Known results:

- *n* = 2: Ribet
- n = 3: Blasius-Rogawski if K totally real, π essentially self dual

Partial results:

• (Barnet-Lamb–Gee–Geraghty–Taylor) if K is CM and π is "extremely regular", then ρ_{ℓ} is irreducible for 100% of primes.

Thank you for listening!

10 / 10