Images of Galois representations attached to low weight Siegel modular forms

Ariel Weiss

University of Sheffield

a.weiss@sheffield.ac.uk

Explicit and computational approaches to Galois representations 4th July 2018

The classical case

- $f = \sum_{n=0}^{\infty} a_n q^n \in M_k(N, \epsilon)$ normalised Hecke eigenform, $k \ge 2$
- Associated ℓ -adic Galois representation

$$ho_\ell: \mathsf{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) o \mathsf{GL}_2(\overline{\mathbf{Q}}_\ell)$$

unramified for all $p \nmid \ell N$ with

$$\operatorname{Tr} \rho_{\ell}(\operatorname{Frob}_{p}) = a_{p}, \qquad \det \rho_{\ell} = \epsilon \chi_{\ell}^{k-1}$$

ullet Associated mod ℓ Galois representation

$$\overline{
ho}_\ell: \mathsf{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) o \mathsf{GL}_2(\overline{\mathbf{F}}_\ell)$$

When are ρ_{ℓ} and $\overline{\rho}_{\ell}$ irreducible?

Example: a reducible ℓ-adic Galois representation

$$G_{12}(z) = \frac{691}{65520} + \sum_{n=1}^{\infty} \sigma_{11}(n)q^n \quad \text{\sim} \rho_{\ell} \cong \mathbf{1} \oplus \chi_{\ell}^{11}$$

Theorem (Ribet)

If f is cuspidal, then:

- **1** ρ_{ℓ} is irreducible for all ℓ ;
- $\overline{\varrho}_{\ell}$ is irreducible for all but finitely many ℓ ;

Example: a reducible mod ℓ Galois representation

$$\Delta(z) = 1 + \sum_{n \geq 2} \tau(n) q^n$$
 $\sim \sim \sim \sim$ $\overline{\rho}_{691} \cong \mathbf{1} \oplus \overline{\chi}_{691}^{11}$

Theorem (Ribet, Momose)

If f is not CM, then the image of ρ_{ℓ} is as large as possible for all but finitely many ℓ .

Genus 2 Siegel modular forms

"Cuspidal automorphic representation of $\mathsf{GSp_4}(\mathbf{A_Q}) + \mathsf{conditions}$ at ∞ "

- has weights (k_1, k_2) , $k_1 \ge k_2 \ge 2$
- has a level N
- ullet has a character ϵ
- has Hecke operators T_p and Hecke eigenvalues a_p
- 4 types of cuspidal Siegel modular form:
 - General
 - Theta lifts/Automorphic inductions
 - Saito-Kurokawa/CAP
 Yoshida/endoscopic
 reducible Galois representations
- High weight: $k_2 > 2$ Low weight: $k_2 = 2$

The high weight case: $k_2 > 2$

• Associated ℓ -adic Galois representation

$$ho_\ell: \mathsf{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})
ightarrow \mathsf{GSp_4}(\overline{\mathbf{Q}}_\ell)$$

unramified for all $p \nmid \ell N$ with

$$\operatorname{Tr} \rho_{\ell}(\operatorname{Frob}_{p}) = a_{p}, \quad \sin \rho_{\ell} = \epsilon \chi_{\ell}^{k_{1} + k_{2} - 3}$$

- Associated mod ℓ Galois representation $\overline{\rho}_\ell$: $\mathsf{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \mathsf{GSp_4}(\overline{\mathbf{F}}_\ell)$
- ρ_{ℓ} is de Rhamkinda nice for all ℓ , and is crystallinenice if $\ell \nmid N$
- The Hecke eigenvalues satisfy the generalised Ramanujan conjecture

Theorem

- **1** (Ramakrishnan) If ρ_{ℓ} is nice and $\ell > 2(k_1 + k_2 3) + 1$, then ρ_{ℓ} is irreducible:
- ② (BLGGT) $\overline{\rho}_{\ell}$ is irreducible for 100% of primes.
- **3** (Dieulefait-Zenteno) The image of $\overline{\rho}_{\ell}$ contains $\mathrm{Sp_4}(\mathbf{F}_{\ell})$ 100% of primes.

The low weight case: $k_2 = 2$

• Associated ℓ -adic Galois representation

$$ho_\ell: \mathsf{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) o \mathsf{GSp}_4(\overline{\mathbf{Q}}_\ell)$$

unramified for all $p \nmid \ell N$ with

$$\operatorname{Tr} \rho_{\ell}(\operatorname{Frob}_{p}) = a_{p}, \qquad \sin \rho_{\ell} = \epsilon \chi_{\ell}^{k_{1} - 1}$$

 $\bullet \ \, \mathsf{Associated} \ \, \mathsf{mod} \ \, \ell \ \, \mathsf{Galois} \ \, \mathsf{representation} \ \, \overline{\rho}_\ell : \mathsf{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \mathsf{GSp}_4(\overline{\mathbf{F}}_\ell)$

Theorem (W.)

- If ρ_{ℓ} is nice and $\ell > 2(k_1 1) + 1$, then ρ_{ℓ} is irreducible;
- **2** $\overline{\rho}_{\ell}$ is irreducible for all but finitely many such primes;
- **1** The image of $\overline{\rho}_{\ell}$ contains $\mathrm{Sp_4}(\mathbf{F}_{\ell})$ for all but finitely many such primes.

A theoretically checkable condition

Theorem (Jorza)

If $\ell \nmid N$ and the ℓ -th Hecke polynomial has distinct roots, then ρ_{ℓ} is nice.

Corollary

If $\ell > (2k_1 - 1) + 1$, $\ell \nmid N$, and the ℓ -th Hecke polynomial has distinct roots, then ρ_{ℓ} is irreducible.

Theorem (W.)

The ℓ -th Hecke polynomial has distinct roots for 100% of primes. Hence, ρ_ℓ is nice for 100% of primes.

Irreducibility and modularity

Sketch proof for modular forms (Ribet).

If $f \in S_k(N, \epsilon) \leftrightarrow \rho_\ell$ and ρ_ℓ is reducible then

Kinda nice
$$\implies \rho_{\ell} \simeq \psi \oplus \varphi \chi_{\ell}^{k-1}$$

- **1 CFT:** ψ, φ correspond to Hecke (in this case Dirichlet) characters.
- ② Get an equality of partial L-functions

$$L^*(f \otimes \psi^{-1}, s) = \zeta^*(s)L^*(\varphi\psi^{-1}, s+k-1);$$

3 The RHS has a pole at s = 1, but the LHS is holomorphic.

Idea: use the modularity of the subrepresentations of ρ_{ℓ} to get a contradiction on the automorphic side.

Irreducibility and modularity II

Idea: use the modularity of the subrepresentations of ρ_{ℓ} to get a contradiction on the automorphic side.

Key lemma (W.)

Either ρ_{ℓ} is irreducible, or it splits as a direct sum of two-dimensional representations which are irreducible, regular and odd.

Theorem (Taylor)

If ℓ is sufficiently large, and $\rho: \mathsf{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \mathsf{GL}_2(\overline{\mathbf{Q}}_\ell)$ is irreducible, regular, crystalline and odd, then ρ is potentially modular.

- If ρ_{ℓ} is reducible then $\rho_{\ell} \simeq \sigma_1 \oplus \sigma_2$.
- If ρ_{ℓ} is also crystalline, find automorphic representations π_1 , π_2 of $\mathsf{GL}_2(\mathbf{A}_K)$ corresponding to $\sigma_1|_K$, $\sigma_2|_K$.
- Apply a standard L-functions argument.

Irreducibility in general

Conjecture

If π is a cuspidal automorphic representation of $GL_n(\mathbf{A}_K)$ then ρ_ℓ is irreducible for all primes.

Known results:

- n = 2: Ribet
- n = 3: Blasius-Rogawski if K totally real, π essentially self dual

Partial results:

• (Barnet-Lamb–Gee–Geraghty–Taylor) if K is CM and π is "extremely regular", then ρ_ℓ is irreducible for 100% of primes.

Thank you for listening!