Galois theory 2018-19: Example Sheet 2

1. Determine the degree over \mathbb{Q} of the splitting fields of the following polynomials:
(a) $x^{4}+1$;
(b) $x^{4}+x^{2}+1$ (note that this is reducible);
(c) $x^{6}+1$ (and so is this);
(d) $x^{6}+x^{3}+1$.
2. Show that the only \mathbb{Q}-automorphisms of $\mathbb{Q}(\sqrt{3})$ are given by the identity and by:

$$
\begin{aligned}
\mathbb{Q}(\sqrt{3}) & \rightarrow \mathbb{Q}(\sqrt{3}) \\
a+b \sqrt{3} & \mapsto a-b \sqrt{3}
\end{aligned}
$$

3. Let $K=\mathbb{Q}(\sqrt{2})$. What are the K-automorphisms of $\mathbb{Q}(\sqrt{2}, \sqrt{3})=K(\sqrt{3})$?
4. Let n be an odd prime, and $a \in \mathbb{Q}$. Show that there are no non-trivial \mathbb{Q} automorphisms of $\mathbb{Q}(\sqrt[n]{a})$.
5. Let $L=\mathbb{Q}(\sqrt[3]{3}, \sqrt{-3})$. Give a well-known group to which $\operatorname{Gal}(L / \mathbb{Q})$ is isomorphic. What would the answer be if L were $\mathbb{Q}(\sqrt[3]{3}, \sqrt{-1})$? How about $L=\mathbb{Q}(\sqrt[4]{3}, \sqrt{-1})$?
6. Explicitly compute a polynomial over \mathbb{Q} of degree six with $e^{\frac{3 \pi i}{7}}$ as a root. Prove directly that this polynomial is irreducible over \mathbb{Q}, using Eisenstein's criterion.
[Hint: try a substitution $x=y-1$.]
7. Let ζ be a primitive 15 th root of unity.
(a) Using APR, show that an element of $\operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})$ is determined by its effect on ζ, and that ζ must be mapped to ζ^{r} for some r.
(b) Write down all the possible r which may occur.
(c) Is $\operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})$ cyclic? If not, is it isomorphic to a direct product of cyclic groups, and if so, which?
8. Compute the cyclotomic polynomials λ_{n} for $n \leq 16$ using the recursive method.
9. What is $\lambda_{200}(x)$?
10. (a) Show that if $n>1$ is odd, $\lambda_{2 n}(x)=\lambda_{n}(-x)$.
(b) Show that if $m \mid n$, then the degree of $\lambda_{m n}(x)$ is the same as the degree of $\lambda_{n}\left(x^{m}\right)$. Prove also that these two polynomials have the same roots, and deduce that $\lambda_{m n}(x)=\lambda_{n}\left(x^{m}\right)$.
(c) (Use Maple.) What is the smallest n such that λ_{n} has a coefficient different from 0 or ± 1 ? Which powers of x have coefficients different from 0 or ± 1 ?
[Hint: in (a), show that ζ is a primitive $2 n$th root of unity if and only if $-\zeta$ is a primitive nth root of unity; (b) may be done similarly. In (c), you will be able to save yourself some work by thinking about what is implied by (a) and (b).]
