- 1. Determine the degree over \mathbb{Q} of the splitting fields of the following polynomials:
 - (a) $x^4 + 1;$
 - (b) $x^4 + x^2 + 1$ (note that this is reducible);
 - (c) $x^6 + 1$ (and so is this);
 - (d) $x^6 + x^3 + 1$.
- 2. Show that the only Q-automorphisms of $\mathbb{Q}(\sqrt{3})$ are given by the identity and by:

$$\begin{array}{rcl} \mathbb{Q}(\sqrt{3}) & \to & \mathbb{Q}(\sqrt{3}) \\ a + b\sqrt{3} & \mapsto & a - b\sqrt{3} \end{array}$$

- 3. Let $K = \mathbb{Q}(\sqrt{2})$. What are the K-automorphisms of $\mathbb{Q}(\sqrt{2},\sqrt{3}) = K(\sqrt{3})$?
- 4. Let *n* be an odd prime, and $a \in \mathbb{Q}$. Show that there are no non-trivial \mathbb{Q} -automorphisms of $\mathbb{Q}(\sqrt[n]{a})$.
- 5. Let $L = \mathbb{Q}(\sqrt[3]{3}, \sqrt{-3})$. Give a well-known group to which $\operatorname{Gal}(L/\mathbb{Q})$ is isomorphic. What would the answer be if L were $\mathbb{Q}(\sqrt[3]{3}, \sqrt{-1})$? How about $L = \mathbb{Q}(\sqrt[4]{3}, \sqrt{-1})$?
- 6. Explicitly compute a polynomial over Q of degree six with e^{3πi}/₇ as a root. Prove directly that this polynomial is irreducible over Q, using Eisenstein's criterion.
 [Hint: try a substitution x = y 1.]
- 7. Let ζ be a primitive 15th root of unity.
 - (a) Using APR, show that an element of $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$ is determined by its effect on ζ , and that ζ must be mapped to ζ^r for some r.
 - (b) Write down all the possible r which may occur.
 - (c) Is $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$ cyclic? If not, is it isomorphic to a direct product of cyclic groups, and if so, which?
- 8. Compute the cyclotomic polynomials λ_n for $n \leq 16$ using the recursive method.
- 9. What is $\lambda_{200}(x)$?
- 10. (a) Show that if n > 1 is odd, $\lambda_{2n}(x) = \lambda_n(-x)$.
 - (b) Show that if m|n, then the degree of $\lambda_{mn}(x)$ is the same as the degree of $\lambda_n(x^m)$. Prove also that these two polynomials have the same roots, and deduce that $\lambda_{mn}(x) = \lambda_n(x^m)$.
 - (c) (Use Maple.) What is the smallest n such that λ_n has a coefficient different from 0 or ± 1 ? Which powers of x have coefficients different from 0 or ± 1 ?

[Hint: in (a), show that ζ is a primitive 2nth root of unity if and only if $-\zeta$ is a primitive nth root of unity; (b) may be done similarly. In (c), you will be able to save yourself some work by thinking about what is implied by (a) and (b).]