Galois theory 2018-19: Example Sheet 3

1. Let $K=\mathbb{Q}(i)$. You are given that $[K(\sqrt[4]{2}): K]=4$. Prove that $\operatorname{Gal}(K(\sqrt[4]{2}) / K) \cong$ C_{4}, the cyclic group of 4 elements.
2. Which of the following extensions are Galois? When they are Galois, say whether the Galois groups are cyclic or not.
(a) $K=\mathbb{Q}, L=K\left(e^{\frac{2 \pi i}{5}}\right)$
(b) $K=\mathbb{Q}, L=K(\sqrt[5]{3})$
(c) $K=\mathbb{Q}\left(e^{\frac{2 \pi i}{5}}\right), L=K(\sqrt[5]{3})$
3. Let $\zeta=e^{\frac{2 \pi i}{5}}$ and put $\beta=\zeta+\frac{1}{\zeta}$. Given that $\zeta^{4}+\zeta^{3}+\zeta^{2}+\zeta+1=0$, show that $\beta=\frac{-1+\sqrt{5}}{2}$, and deduce that $\sqrt{5} \in \mathbb{Q}(\zeta)$.
Draw the subfield and subgroup lattices for the field extension $\mathbb{Q}\left(e^{\frac{2 \pi i}{5}}\right) / \mathbb{Q}$.
4. Let $\zeta=e^{\frac{2 \pi i}{11}}$, and put $\beta=\zeta+\frac{1}{\zeta}=2 \cos \left(\frac{2 \pi}{11}\right)$ (by de Moivre's Theorem). Put $\gamma=\zeta+\zeta^{3}+\zeta^{4}+\zeta^{5}+\zeta^{9}$, and recall that

$$
\lambda_{11}(x)=x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1
$$

has roots $\zeta, \zeta^{2}, \ldots, \zeta^{10}=\zeta^{-1}$.
(a) Explain why β satisfies a quintic equation over \mathbb{Q}, and write it down.
(b) Expand γ^{2} in powers of ζ, and hence deduce that $\gamma^{2}+\gamma+3=0$. Show that $\mathbb{Q}(\sqrt{-11}) \subseteq \mathbb{Q}(\zeta)$.
(c) Use a result in the course to show that $\operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})$ is cyclic with 10 elements.
(d) Thus $\operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})=\left\{1, \theta, \ldots, \theta^{9}\right\}$, where θ is some automorphism of order 10. Recall that any subgroup of a cyclic group is again cyclic. Write down the subgroups of $\operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})$, and draw the subgroup lattice.
(e) Using the earlier parts of the question, draw the subfield lattice.
5. Let $f(x)=x^{4}+x^{2}+4$. Let L be a splitting field for f over \mathbb{Q}. Let $\alpha=$ $\sqrt{-\frac{1}{2}+\frac{1}{2} \sqrt{-15}}$. You are given that $[L: \mathbb{Q}]=4$.
(a) Show that the roots of f are $\pm \alpha, \pm \frac{2}{\alpha}$.
(b) Show that $L=\mathbb{Q}(\alpha)$.
(c) Compute $\operatorname{Gal}(L / \mathbb{Q})$. What well-known group is it?
6. Let $f=x^{4}+8 x^{2}-2 \in \mathbb{Q}[x]$, and let M be the splitting field for f over \mathbb{Q}. Let $\alpha=\sqrt{3 \sqrt{2}-4}$. It is given that $M=\mathbb{Q}(\alpha, i \sqrt{2})$ and that $[M: \mathbb{Q}]=8$.
(a) Show that f has roots $\pm \alpha, \pm \frac{i \sqrt{2}}{\alpha}$.
(b) Compute the elements of $\operatorname{Gal}(M / \mathbb{Q})$ and write down in a table their effect on α and $i \sqrt{2}$.
(c) Show that there exist automorphisms $\phi, \psi \in \operatorname{Gal}(M / \mathbb{Q})$ such that ϕ has order $4, \psi$ has order 2 , and $\operatorname{Gal}(M / \mathbb{Q})=\langle\phi, \psi\rangle$.
(d) Write $\psi \phi \psi^{-1}$ in the form $\phi^{i} \psi^{j}$. To what well-known group is $\operatorname{Gal}(M / \mathbb{Q})$ isomorphic?

