- 1. Let ζ be a primitive *n*th root of unity, where $n \geq 3$, and write $\beta = \zeta + \frac{1}{\zeta}$.
 - (a) Show that ζ satisfies a quadratic equation over $\mathbb{Q}(\beta)$ and deduce that $[\mathbb{Q}(\zeta) : \mathbb{Q}(\beta)] \leq 2$.
 - (b) Show that $\mathbb{Q}(\beta) \subset \mathbb{R}$, and deduce that $\zeta \notin \mathbb{Q}(\beta)$.
 - (c) Deduce that $[\mathbb{Q}(\zeta) : \mathbb{Q}(\beta)] = 2$ and hence calculate $[\mathbb{Q}(\beta) : \mathbb{Q}]$.
 - (d) Prove by induction that for all m, $\zeta^m + \frac{1}{\zeta^m} \in \mathbb{Q}(\beta)$.
 - (e) Express $\zeta^5 + \frac{1}{\zeta^5}$ as a polynomial in β .

[Hint for (d) and (e): if $\zeta^m + \frac{1}{\zeta^m} = P_m(\beta)$, show that $\zeta^{m+1} + \frac{1}{\zeta^{m+1}} = P_1(\beta)P_m(\beta) - P_{m-1}(\beta)$.]

- 2. Let ζ be a primitive 5th root of unity, and let α denote the real 5th root of 2. You are given that $\mathbb{Q}(\zeta, \alpha)$ is the splitting field of $x^5 2$ over \mathbb{Q} and that $[\mathbb{Q}(\zeta, \alpha) : \mathbb{Q}] = 20$.
 - (a) Specify the elements of $\operatorname{Gal}(\mathbb{Q}(\zeta, \alpha)/\mathbb{Q})$ by writing down how they act on ζ and on α .
 - (b) Show that there exist automorphisms $\phi, \psi \in \text{Gal}(\mathbb{Q}(\zeta, \alpha)/\mathbb{Q})$ such that ϕ has order 4, ψ has order 5, and $\text{Gal}(\mathbb{Q}(\zeta, \alpha)/\mathbb{Q}) = \langle \phi, \psi \rangle$.
 - (c) Write $\phi \psi \phi^{-1}$ in the form $\phi^i \psi^j$.
 - (d) Recall that if $\beta = \zeta + \frac{1}{\zeta}$, then $\mathbb{Q}(\beta) = \mathbb{Q}(\sqrt{5})$. Under the Galois correspondence, what should be the order of the corresponding subgroup $\operatorname{Gal}(\mathbb{Q}(\zeta, \alpha)/\mathbb{Q}(\beta))$?
 - (e) Show that the group $\operatorname{Gal}(\mathbb{Q}(\zeta, \alpha)/\mathbb{Q}(\beta))$ is $\langle \phi^2, \psi \rangle$.
- 3. Let L be the splitting field of $x^7 3$ over \mathbb{Q} . You know that $[L : \mathbb{Q}] = 42$. Calculate the elements of $\operatorname{Gal}(L/\mathbb{Q})$. Find $\psi, \phi \in \operatorname{Gal}(L/\mathbb{Q})$ which satisfy:
 - (a) ψ has order 7, ϕ has order 6
 - (b) $\phi \psi \phi^{-1} = \psi^3$
 - (c) $\operatorname{Gal}(L/\mathbb{Q}) = \langle \phi, \psi \rangle$
- 4. In Maple, you can compute Galois groups of polynomials as follows.

Type infolevel [galois] :=2; and then compute the Galois groups of a polynomial f (of degree up to 7), type galois(f); (you should replace f here by x^5-2 or x^7-3, for example). Try lots of different examples and write a paragraph or two describing how Maple's algorithm seems to work. Amongst others, you may like to compare what happens in the following examples:

- $x^5 4x + 2$, $x^5 + 20x + 16$, $x^5 2$, $x^5 5x + 12$, $x^5 + x^4 4x^3 3x^2 + 3x + 1$;
- $x^4 + 8x + 12$, $x^4 + 8x 12$, $x^4 10x^2 + 1$, $x^4 + 1$, $x^4 + x^3 + x^2 + x + 1$;
- $x^3 + 3x + 1, x^3 3x + 1$.