Galois theory 2018-19: Example Sheet 4

1. Let ζ be a primitive nth root of unity, where $n \geq 3$, and write $\beta=\zeta+\frac{1}{\zeta}$.
(a) Show that ζ satisfies a quadratic equation over $\mathbb{Q}(\beta)$ and deduce that $[\mathbb{Q}(\zeta)$: $\mathbb{Q}(\beta)] \leq 2$.
(b) Show that $\mathbb{Q}(\beta) \subset \mathbb{R}$, and deduce that $\zeta \notin \mathbb{Q}(\beta)$.
(c) Deduce that $[\mathbb{Q}(\zeta): \mathbb{Q}(\beta)]=2$ and hence calculate $[\mathbb{Q}(\beta): \mathbb{Q}]$.
(d) Prove by induction that for all $m, \zeta^{m}+\frac{1}{\zeta^{m}} \in \mathbb{Q}(\beta)$.
(e) Express $\zeta^{5}+\frac{1}{\zeta^{5}}$ as a polynomial in β.
[Hint for (d) and (e): if $\zeta^{m}+\frac{1}{\zeta^{m}}=P_{m}(\beta)$, show that $\zeta^{m+1}+\frac{1}{\zeta^{m+1}}=P_{1}(\beta) P_{m}(\beta)-$ $P_{m-1}(\beta)$.]
2. Let ζ be a primitive 5 th root of unity, and let α denote the real 5 th root of 2. You are given that $\mathbb{Q}(\zeta, \alpha)$ is the splitting field of $x^{5}-2$ over \mathbb{Q} and that $[\mathbb{Q}(\zeta, \alpha): \mathbb{Q}]=20$.
(a) Specify the elements of $\operatorname{Gal}(\mathbb{Q}(\zeta, \alpha) / \mathbb{Q})$ by writing down how they act on ζ and on α.
(b) Show that there exist automorphisms $\phi, \psi \in \operatorname{Gal}(\mathbb{Q}(\zeta, \alpha) / \mathbb{Q})$ such that ϕ has order $4, \psi$ has order 5 , and $\operatorname{Gal}(\mathbb{Q}(\zeta, \alpha) / \mathbb{Q})=\langle\phi, \psi\rangle$.
(c) Write $\phi \psi \phi^{-1}$ in the form $\phi^{i} \psi^{j}$.
(d) Recall that if $\beta=\zeta+\frac{1}{\zeta}$, then $\mathbb{Q}(\beta)=\mathbb{Q}(\sqrt{5})$. Under the Galois correspondence, what should be the order of the corresponding subgroup $\operatorname{Gal}(\mathbb{Q}(\zeta, \alpha) / \mathbb{Q}(\beta))$?
(e) Show that the group $\operatorname{Gal}(\mathbb{Q}(\zeta, \alpha) / \mathbb{Q}(\beta))$ is $\left\langle\phi^{2}, \psi\right\rangle$.
3. Let L be the splitting field of $x^{7}-3$ over \mathbb{Q}. You know that $[L: \mathbb{Q}]=42$. Calculate the elements of $\operatorname{Gal}(L / \mathbb{Q})$. Find $\psi, \phi \in \operatorname{Gal}(L / \mathbb{Q})$ which satisfy:
(a) ψ has order $7, \phi$ has order 6
(b) $\phi \psi \phi^{-1}=\psi^{3}$
(c) $\operatorname{Gal}(L / \mathbb{Q})=\langle\phi, \psi\rangle$
4. In Maple, you can compute Galois groups of polynomials as follows.

Type infolevel [galois]:=2; and then compute the Galois groups of a polynomial f (of degree up to 7), type galois (f); (you should replace f here by $x^{\wedge} 5-2$ or $x^{\wedge} 7-3$, for example). Try lots of different examples and write a paragraph or two describing how Maple's algorithm seems to work. Amongst others, you may like to compare what happens in the following examples:

- $x^{5}-4 x+2, x^{5}+20 x+16, x^{5}-2, x^{5}-5 x+12, x^{5}+x^{4}-4 x^{3}-3 x^{2}+3 x+1$;
- $x^{4}+8 x+12, x^{4}+8 x-12, x^{4}-10 x^{2}+1, x^{4}+1, x^{4}+x^{3}+x^{2}+x+1$;
- $x^{3}+3 x+1, x^{3}-3 x+1$.

