Galois theory 2018-19: Example Sheet 5

1. Suppose $f(x)=x^{3}+a x+b$. If f has roots α, β and γ, then recall that its discriminant $D(f)$ is $(\alpha-\beta)^{2}(\alpha-\gamma)^{2}(\beta-\gamma)^{2}$. Let M denote the matrix

$$
M=\left(\begin{array}{ccc}
1 & 1 & 1 \\
\alpha & \beta & \gamma \\
\alpha^{2} & \beta^{2} & \gamma^{2}
\end{array}\right)
$$

(a) Define $\Delta(f)=(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)$. Show that $\Delta(f)=\operatorname{det} M$.
(b) Thus $D(f)=\Delta(f)^{2}$. Given that $\operatorname{det} M=\operatorname{det} M^{t}$, deduce that $D(f)=$ $\operatorname{det}\left(M M^{t}\right)$.
(c) Write $S_{i}=\alpha^{i}+\beta^{i}+\gamma^{i}$. Show that

$$
M M^{t}=\left(\begin{array}{ccc}
S_{0} & S_{1} & S_{2} \\
S_{1} & S_{2} & S_{3} \\
S_{2} & S_{3} & S_{4}
\end{array}\right)
$$

(d) Clearly $S_{0}=3$ and $S_{1}=0$ (as S_{1} is the sum of the roots, which is zero as the coefficient of x^{2} in f is zero). Show that $S_{2}=-2 a$ by an explicit computation.
(e) As α, β and γ are roots of f, we have

$$
\begin{aligned}
& \alpha^{3}+a \alpha+b=0 \\
& \beta^{3}+a \beta+b=0 \\
& \gamma^{3}+a \gamma+b=0
\end{aligned}
$$

By summing these three, find S_{3} in terms of S_{0} and S_{1}. Similarly, multiplying these equations by α, β and γ respectively, find S_{4} in terms of S_{1} and S_{2}. Compute the values of S_{3} and S_{4} in terms of a and b.
(f) Combining all the above, show that $D(f)=-\left(4 a^{3}+27 b^{2}\right)$.
2. Use the method of Q1 to show that the discriminant of the polynomial $x^{4}+p x+q=0$ is $256 q^{3}-27 p^{4}$.
3. You are given that a quartic polynomial has the four roots $\sqrt{2}+\sqrt{5}, \sqrt{2}-\sqrt{5}$, $-\sqrt{2}+\sqrt{5}$ and $-\sqrt{2}-\sqrt{5}$. What is its discriminant? What is the Galois group of the polynomial?
4. What is the Galois group of the following cubics:
(a) $x^{3}-3 x+1$
(b) $x^{3}+3 x+1$
5. What is the Galois group of the following quartics:
(a) $x^{4}+8 x+12$
(b) $x^{4}+8 x-12$
6. Which of the following polynomials are soluble by radicals over \mathbf{Q} ?
(a) $2 x^{5}-10 x^{2}-5 x$
(b) $2 x^{5}-10 x-5$
(c) $2 x^{6}-10 x^{2}-5$
(d) $5 x^{5}+10 x^{4}-2$
(e) $x^{5}-405 x+3$
(f) $4 x^{10}-40 x^{6}-20 x^{5}+100 x^{2}+100 x+25$

Three of these polynomials have the same splitting field. Which are they?
7. Let $f(x)=30 x^{7}-70 x^{6}-42 x^{5}+105 x^{4}-21$. Show that its Galois group over \mathbf{Q} is S_{7}.
8. Find an irreducible polynomial of degree 6 over \mathbf{Q} with 4 real roots, but whose Galois group over \mathbf{Q} is not S_{6}.

