1. Suppose $f(x) = x^3 + ax + b$. If f has roots α , β and γ , then recall that its discriminant D(f) is $(\alpha - \beta)^2 (\alpha - \gamma)^2 (\beta - \gamma)^2$. Let M denote the matrix

$$M = \begin{pmatrix} 1 & 1 & 1\\ \alpha & \beta & \gamma\\ \alpha^2 & \beta^2 & \gamma^2 \end{pmatrix}.$$

- (a) Define $\Delta(f) = (\alpha \beta)(\beta \gamma)(\gamma \alpha)$. Show that $\Delta(f) = \det M$.
- (b) Thus $D(f) = \Delta(f)^2$. Given that det $M = \det M^t$, deduce that $D(f) = \det(MM^t)$.
- (c) Write $S_i = \alpha^i + \beta^i + \gamma^i$. Show that

$$MM^{t} = \begin{pmatrix} S_{0} & S_{1} & S_{2} \\ S_{1} & S_{2} & S_{3} \\ S_{2} & S_{3} & S_{4} \end{pmatrix}.$$

- (d) Clearly $S_0 = 3$ and $S_1 = 0$ (as S_1 is the sum of the roots, which is zero as the coefficient of x^2 in f is zero). Show that $S_2 = -2a$ by an explicit computation.
- (e) As α , β and γ are roots of f, we have

$$\alpha^{3} + a\alpha + b = 0$$

$$\beta^{3} + a\beta + b = 0$$

$$\gamma^{3} + a\gamma + b = 0$$

By summing these three, find S_3 in terms of S_0 and S_1 . Similarly, multiplying these equations by α , β and γ respectively, find S_4 in terms of S_1 and S_2 . Compute the values of S_3 and S_4 in terms of a and b.

- (f) Combining all the above, show that $D(f) = -(4a^3 + 27b^2)$.
- 2. Use the method of Q1 to show that the discriminant of the polynomial $x^4 + px + q = 0$ is $256q^3 - 27p^4$.
- 3. You are given that a quartic polynomial has the four roots $\sqrt{2} + \sqrt{5}$, $\sqrt{2} \sqrt{5}$, $-\sqrt{2} + \sqrt{5}$ and $-\sqrt{2} \sqrt{5}$. What is its discriminant? What is the Galois group of the polynomial?
- 4. What is the Galois group of the following cubics:
 - (a) $x^3 3x + 1$
 - (b) $x^3 + 3x + 1$
- 5. What is the Galois group of the following quartics:
 - (a) $x^4 + 8x + 12$
 - (b) $x^4 + 8x 12$
- 6. Which of the following polynomials are soluble by radicals over \mathbf{Q} ?

(a) $2x^5 - 10x^2 - 5x$ (b) $2x^5 - 10x - 5$ (c) $2x^6 - 10x^2 - 5$ (d) $5x^5 + 10x^4 - 2$ (e) $x^5 - 405x + 3$ (f) $4x^{10} - 40x^6 - 20x^5 + 100x^2 + 100x + 25$

Three of these polynomials have the same splitting field. Which are they?

- 7. Let $f(x) = 30x^7 70x^6 42x^5 + 105x^4 21$. Show that its Galois group over **Q** is S_7 .
- 8. Find an irreducible polynomial of degree 6 over \mathbf{Q} with 4 real roots, but whose Galois group over \mathbf{Q} is not S_6 .