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§ 1

Introduction

Given a polynomial, Galois theory associates a group to it, the properties of which
reflect (some of) the properties of the polynomial. The Galois group is, in an
algebraic sense, the symmetry group of the roots of the polynomial, and these
symmetries act on the collection of roots. One can read off a lot of information
about the polynomial from knowing how this symmetry group acts. Most impor-
tantly, the polynomial is soluble in terms of radicals (that is, using square roots,
cube roots and higher roots) if and only if its Galois group is soluble in the sense
of group theory (we’ll define this later).

Linear polynomials are trivial, and the solution to quadratic polynomials was known
to the ancient Babylonians. Cubics and quartics are harder; these were solved by
del Ferro (c.1510) and Ferrari (c.1540) respectively. These formulae prompted a
long search for general solutions in terms of radicals to equations of higher degree.
Abel (1824) proved that there exist quintics not soluble by radicals (following an
earlier flawed attempt by Ruffini (1799)), and very soon after, Galois (1831) gave
a complete characterisation of all polynomials soluble by radicals, in terms of these
symmetry groups.

Broadly, one starts with a polynomial f whose coefficients lie in a field K. So
f ∈ K[x]. Let L be a larger field in which all the roots of f lie. Then K ⊆ L is a
field extension, and to any field extension we associate a group Gal(L/K), called
the Galois group of the extension. It turns out that the group theory of Gal(L/K)
reflects many of the properties of the original polynomial. For example, the Galois
group of a quadratic polynomial will be trivial if the polynomial factors (as then
L = K) and will be cyclic with 2 elements otherwise.

We begin by reviewing the solution of equations of small degree.



2 MAS 442/6310

§ 1 Polynomials of degree 6 4

We begin by solving equations of degrees up to 4. By dividing through by the
leading coefficient, we may always assume that the equation is monic, that is, has
leading coefficient 1:

xd + a1x
d−1 + · · ·+ ad = 0.

Throughout the course we suppose our polynomials defined over a subfield K of
C.

Degree 1

The trivial case; clearly

x+ a = 0

has solution x = −a. Note that (of course!) we do not have to extend the field
K to find a root, so the roots of the polynomial lie in an extension of degree 1
over K – i.e., in K itself.

Degree 2

This has also been known for thousands of years! By completing the square, we
transform

x2 + ax+ b = 0

into (
x+

a

2

)2
=
a2

4
− b,

by adding a2

4
− b to each side. Take square roots, to get

x+
a

2
= ±

√
a2 − 4b

4
.

Then the solutions are given by

x =
−a±

√
a2 − 4b

2
.

Note that in general, the roots are contained in an extension of degree 2 over K,
obtained by adjoining the root of the discriminant a2 − 4b to K.
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Degree 3

The case of cubic equations is a little harder; it was not until about 1510 that del
Ferro (subsequently rediscovered by Tartaglia, and published by Cardano) showed
how to solve this equation. Again we start by attempting to complete the cube,
replacing the variable x by x+ a

3
. Then

x3 + ax2 + bx+ c = 0

may be rewritten(
x+

a

3

)3
+

(
b− a2

3

)(
x+

a

3

)
+

(
c− ab

3
+

2a3

27

)
= 0.

(Exercise: verify this!) Write X for x + a
3

, B for b − a2

3
and C for c − ab

3
+ 2a3

27
.

Thus we need to solve

X3 +BX + C = 0.

By trying to complete the cube, we can only eliminate the square term. Here’s the
clever idea: we write X = u+ v. Expanding, this gives:

(u+ v)3 +B(u+ v) + C = 0,

or

u3 + v3 + 3uv(u+ v) +B(u+ v) + C = 0.

We equate the terms involving u+ v and those without, and try to solve

u3 + v3 + C = 0,

3uv +B = 0.

Rewriting this gives:

u3 + v3 = −C,

u3v3 = −B
3

27
.

It follows that u3 and v3 are solutions of the quadratic

y2 + Cy − B3

27
= 0,

so u3 and v3 are

−C ±
√
C2 + 4B3

27

2
.
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Then u may be taken to be one of the three complex cube roots of

−C +
√
C2 + 4B3

27

2

and once you’ve chosen u, then the value of v is given from the equation

3uv +B = 0.

More precisely, let u0, u1 and u2 be the three cube roots of
−C+

√
C2+ 4B3

27

2
. Then

define vi by 3uivi +B = 0. The three solutions to

X3 +BX + C = 0

are given by u0 + v0, u1 + v1 and u2 + v2. Note that if u0 is one cube root,
then the others are got by multiplying by cube roots of unity. Thus u1 = ωu0 and
u2 = ω2u0, where ω = e

2πi
3 = −1+

√
−3

2
and ω2 = e

4πi
3 = −1−

√
−3

2
. But then we find

that v1 = − B
3u1

= − B
3ωu0

= 1
ω

(
− B

3u0

)
= ω2v0, and similarly v2 = ωv0. Recalling

that X = x+ a
3

, we can recover the solutions to the original cubic equation.

Note that to write the roots, we first take a square root, of C2 + 4B3

27
, to get a

quadratic extension of K, and then take a cube root of something in this extension.
Then the roots must lie in this extension, which is in general of degree 6 over K,
since we’ve had to take a square root and then a cube root, to find a field in which
to write the roots.

Example 1.1 Consider the following cubic.

x3 − 3x− 18 = 0.

Clearly x = 3 is a solution, and is real. But applying Cardan’s method gives

x =
3

√
9 +
√
80 +

3

√
9−
√
80.

If you attempt to simplify this, you will reach a point where you have to find the
real solution of x3 − 3x − 18 = 0. You can check numerically that this is close
to 3, but this is not a proof. The other roots are a pair of complex conjugates
(find them!). �

Compare this situation with the solution for quadratic equations: if a quadratic
equation with real coefficients has real solutions then the formula gives real for-
mulas for these solutions.

So the Cardano formula is of limited practical usefulness. However at least it
shows that the cubic may be solved in terms of cube and square roots and the
usual operations of arithmetic.
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Degree 4

Another Italian mathematician, Ferrari, solved the general quartic around 1540, at
about the same time as Tartaglia rediscovered del Ferro’s solution to the cubic.
Ferrari’s original method is not so amenable to analysis by Galois theory, so we
give an alternative.

Given a general quartic,

x4 + ax3 + bx2 + cx+ d = 0,

we first “complete the quartic”, replacing x by X = x+ a
4

to remove the term in
x3. We get a quartic

X4 + pX2 + qX + r = 0.

Let α1, α2, α3 and α4 denote the roots of this quartic in a larger field L. Note
that

α1 + α2 + α3 + α4 = 0.

Write

β = α1 + α2

γ = α1 + α3

δ = α1 + α4

Then observe that

α1 = (β + γ + δ)/2,

α2 = (β − γ − δ)/2,
α3 = (−β + γ − δ)/2,
α4 = (−β − γ + δ)/2,

so that the roots lie in K(β, γ, δ), i.e., if we know the values of β, γ and δ, we
can get α1, α2, α3 and α4.

Further,
β2 = (α1 + α2)

2 = −(α1 + α2)(α3 + α4)

and similarly γ2 = −(α1 + α3)(α2 + α4) and δ2 = −(α1 + α4)(α2 + α3). One
computes easily that

β2 + γ2 + δ2 = −2p
β2γ2 + β2δ2 + γ2δ2 = p2 − 4r

βγδ = −q

so that β2, γ2 and δ2 are the three roots of

Y 3 + 2pY 2 + (p2 − 4r)Y − q2 = 0.
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This cubic is known as the resolvent cubic.

We may now compute β and γ by choosing square roots of β2 and γ2; finally,
δ = − q

βγ
, and then we can recover the roots αi.

So here is the full algorithm to solve the quartic.

1. Change x into X = x + a
4

to get rid of the term in x3; we get a quartic of
the form

X4 + pX2 + qX + r = 0.

2. Form the resolvent cubic

Y 3 + 2pY 2 + (p2 − 4r)Y − q2 = 0.

3. Solve the resolvent cubic – the roots are β2, γ2 and δ2.

4. Take square roots of β2 and γ2 to get the values of β and γ, and read off
the value of δ from the equation βγδ = −q.

5. Recover the values of α1, α2, α3 and α4 given the values of β, γ and δ.

You can see from the algorithm that to write down the formula for the roots, in
terms of the coefficients (like the quadratic formula) would be far too difficult and
would probably take several pages! But note that the method requires us to take a
cube root and a square root in order to solve the resolvent cubic, and two further
square roots in step (4), making one cube root and three square roots in total.
This means that the solutions lie in a field extension of degree 3× 23 = 24.

It looks as if the roots of an equation of degree n are going to lie in some field
extension of degree n!. So a quintic equation should have its roots lying in some
extension of degree 120. If we are going to find some formula to solve the quintic,
we would need to take a fifth root, a cube root and three square roots. We will
prove the first remark here fairly soon. However, we are going to prove that there
is no formula to solve the quintic.

The main idea

How are we going to prove this result? The main idea is to use the notion of a
Galois group of a field extension. In a sense which we will explain later, it will be
a symmetry group of the extension.

Now suppose we have some polynomial whose roots can be expressed in terms of
square, cube and higher roots. For example, a root might be

α =
7

√
11− 3

3

√
5 + 2

5
√
2.
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Then α lies in the field Q(α). We can build up this field successively, first by
adjoining 5

√
2 to Q to get the field Q( 5

√
2). Then this field contains 5+ 2 5

√
2, and

we can adjoin its cube root to get the next field Q(
3
√

5 + 2 5
√
2). Finally, this field

contains 11− 3
3
√

5 + 2 5
√
2, and we can adjoin its 7th root to get the field Q(α).

We have thus obtained a sequence of fields

Q ⊆ Q
(

5
√
2
)
⊆ Q

(
3

√
5 + 2

5
√
2

)
⊆ Q

(
7

√
11− 3

3

√
5 + 2

5
√
2

)
= Q(α)

in which each field is obtained from the one before by adjoining a root of something.

The idea of Galois theory is to each field extension, we can associate a group, called
the Galois group, and its properties will reflect the properties of the extension.
Given a sequence of extensions as above, in which at each step we adjoin a root,
we get a corresponding sequence of Galois groups. This means that the Galois
group of the whole extension Q ⊆ Q(α) can be broken up into smaller chunks
corresponding to each of the steps in the extension. This means that if a polynomial
is soluble by radicals (i.e., we can express its roots using square, cube and higher
roots), then its roots lie in some extension whose Galois group has a particular form.
We will end the course by showing that the Galois group of a quintic need not
have this special form, and therefore the roots of a quintic need not be expressible
in radicals.

As you can see, the theory is going to mix some easy theory of equations, with
some field theory and some group theory.
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§ 2 Fields

In this course, all fields will be subfields of C. In particular, every field will contain
Q, and will therefore be infinite. This is not really necessary, but it leads to an
easier presentation for many of the results. In any case, we are mostly going to
be interested in solving polynomials with coefficients in Z (so certainly in Q), and
not in more general situations.

Basic material on field extensions

The Galois group of a polynomial consists of “symmetries of field extensions”. In
this section, we will give some (mostly) elementary results that we will need for
our study. Some were in MAS 333/438, and these are the ones we will begin with.

Definition 2.1 Let K be a field. A field extension K ⊆ L, or L/K, is a field L
that contains K.

It follows that L may be thought of as a K-vector space. An extension L/K is
said to be finite if L is finite dimensional as a K-vector space. In this case, the
degree [L : K] of the extension L/K is defined to be the dimension of L as a
K-vector space. N

Then we have the following results:

Theorem 2.2 Suppose α is algebraic over the field K (i.e., satisfies a polynomial
with coefficients in K). Then the degree [K(α) : K] is equal to the degree of the
minimal polynomial of α over K.

If this degree is n, recall that this follows from the observation that every element
of K(α) can be written as a polynomial an−1α

n−1 + an−2α
n−2 + · · ·+ a0, and so

{1, α, . . . , αn−1} form a basis of K(α) over K.

Theorem 2.3 (Degrees) Suppose K ⊆M ⊆ L are field extensions. Then

[L : K] = [L :M ][M : K].

It will be rather convenient at a couple of points in the course to know that every
finite extension of fields can be generated by a single element. Before we prove
this, here’s an example from MAS 333/438:

Example 2.4 The field Q(
√
2,
√
3) = Q(

√
2+
√
3). For this, it suffices to verify

that Q(
√
2,
√
3) ⊆ Q(

√
2 +
√
3) and that Q(

√
2,
√
3) ⊇ Q(

√
2 +
√
3). From

MAS 333/438, we only have to check that
√
2 +
√
3 ∈ Q(

√
2,
√
3) (which is

obvious) and that
√
2,
√
3 ∈ Q(

√
2 +
√
3). Write α for

√
2 +
√
3. Then

α3 = 11
√
2 + 9

√
3,

so that
√
2 = α3−9α

2
. Thus

√
2 ∈ Q(α), and also

√
3 = α−

√
2 ∈ Q(α). �
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The theorem mentioned above, known as the ‘Theorem of the Primitive Element’
was covered in MAS 333/438. We will abbreviate this theorem to TPE. The proof
is quite intricate so we give it here.

Recall that C is algebraically closed, so that every polynomial over C has a root in
C. It follows inductively that a polynomial of degree n defined over C has n roots
in C.

Theorem 2.5 (Theorem of the Primitive Element) Suppose K ⊆ L is a
finite extension of fields, and that K,L ⊆ C. Then L = K(γ) for some element
γ ∈ L.

Proof. Suppose L is generated over K by m elements. We’ll first treat the
case m = 2. So suppose L = K(α, β), and let f and g denote the minimal
polynomials of α and β over K. Let α1 = α, α2, . . . , αs be the roots of f in C,
and let β1 = β, β2, . . . , βt be the roots of g. Irreducible polynomials always have
distinct roots. Thus X = αi−α1

β1−βj is the only solution (if j 6= 1) to

αi +Xβj = α1 +Xβ1.

Choosing a c ∈ K different from each of these X’s, then each αi+ cβj is different
from α + cβ. We claim that γ = α + cβ generates L over K. Certainly γ ∈
K(α, β) = L. Recall from MAS 333/438 that it suffices to verify that α, β ∈
K(γ).

The polynomials g(x) and f(γ − cx) both have coefficients in K(γ), and have
β as a root. The other roots of g(x) are β2, . . . , βt, and, as γ − cβj is not any
αi, unless i = j = 1, β is the only common root of g(x) and f(γ − cx). Thus,
(x − β) is the highest common factor of g(x) and f(γ − cx). But the highest
common factor is a polynomial defined over any field containing the coefficients of
the original two polynomials (think about how the Euclidean algorithm works for
polynomials). In particular, it follows that x− β has coefficients in K(γ), so that
β ∈ K(γ). Then α = γ − cβ ∈ K(γ). The result follows for m = 2.

More generally, if L = K(α1, . . . , αm), we can view this as K(α1, . . . , αm−2)(αm−1, αm),
and the case m = 2 allows us to write this as K(α1, . . . , αm−2)(γm−1). Again we
can rewrite this as K(α1, . . . , αm−3)(αm−2, γm−1), and use the case m = 2 to
reduce the number further still. Continuing in this way, we eventually get down to
just one element. �

So every field extension K ⊆ L can be generated by a single element γ.

Splitting fields

The splitting field of a polynomial f ∈ K[x] is basically just the smallest field
extension of K containing all the roots of f . Such fields always exist, and are of
finite degree over K.
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Definition 2.6 Let f ∈ K[x]. A field L containing K is said to split f if f
factors in L[x] into linear factors, c

∏
(x− αi), with αi ∈ L. If L is generated by

the αi over K, then L is said to be a splitting field for f over K. N

Note that this last sentence simply says that if f is a polynomial over K, then its
splitting field is got by adjoining to K all of its roots. Let α1, . . . , αn denote the
roots of f in C, where n = deg f . Then form the field L = K(α1, . . . , αn); clearly
L splits f and L is generated over K by the roots of f , so L is the splitting field
of f over K.

Examples 2.7 1. Suppose f(x) = x2 + 1 over R. Then the roots of f in C
are ±i, so that the splitting field of f over R is R(i,−i) = C.

2. Suppose f(x) = x2 + 1 over Q. Then the roots of f in C are ±i, so that
the splitting field of f over Q is Q(i).

3. Suppose f(x) = x3− 1 over Q. Then f factors as (x− 1)(x2 + x+1), and

the roots are 1, ω and ω2, where ω = e
2πi
3 = −1+

√
−3

2
. Thus the splitting

field is Q(ω) = Q(
√
−3).

4. Suppose f(x) = x3 − 2 over Q. Then the roots of f in C are α, ωα, ω2α,

where α = 3
√
2 is the positive real cube root of 2, and ω = e

2πi
3 as be-

fore. Then the splitting field of f over Q is Q(α, αω, αω2) = Q(α, ω) =
Q( 3
√
2,
√
−3).

Lemma 2.8 Suppose that f ∈ K[x] is a polynomial of degree n. If L denotes a
splitting field for f , then [L : K] 6 n!.

Proof. L may be obtained by successively adjoining roots of f . Suppose that the
roots are α1, . . . , αn ∈ C. Then [K(α1) : K] 6 n, by Theorem 2.2 (as α1 is a root
of f , its minimal polynomial must divide f , so be of degree at most that of f). The
remaining roots α2, . . . , αn are roots of the polynomial f(x)/(x − α1), of degree
n − 1 and defined over K(α1). Thus adjoining α2 gives a field extension with
[K(α1, α2) : K(α1)] 6 n−1. Now the root α3 is a root of f(x)/(x−α1)(x−α2),
a polynomial of degree n− 2 over K(α1, α2). Continuing in this way, we see that

[L : K] = [K(α1, . . . , αn) : K]

= [K(α1, . . . , αn) : K(α1, . . . , αn−1)] . . . [K(α1) : K]

6 1.2 . . . n = n!

using the Degrees Theorem 2.3. �

You might have expected to get [L : K] 6 n, not n!, in the above lemma.
Sometimes this will be true, but usually it will not. Here is an example.
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Example 2.9 Consider the polynomial x3 − 2 over Q. Let’s carry out the pro-
cedure in the proof above. We start by finding a root: let’s take α = 3

√
2 to be

the real cube root of 2. Then

x3 − 2 = (x− α)(x2 + xα + α2)

is a factorisation into irreducible polynomials over Q(α); note that [Q(α) : Q] = 3
as x3 − 2 is the minimal polynomial of α over Q. So

x3 − 2

x− α
= x2 + xα + α2.

Clearly this is irreducible over Q(α) – its roots are ωα and ω2α (where as before

ω = e
2πi
3 = −1+

√
−3

2
) which are not real, so cannot lie in Q(α). To get the splitting

field, we need also to factor x2 + xα+ α2 = (x− αω)(x− αω2), and to adjoin a
root, αω say, to Q(α). Then the splitting field is Q(α, ω), and

[Q(α, ω) : Q] = [Q(α, ω) : Q(α)][Q(α) : Q] = 2.3 = 6.

�
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§ 3 Field extensions and automorphisms

Now that we have defined field extensions, we have to study their “symmetries”.
Recall (from MAS 220 or 346, for example) that geometrical figures, such as
polygons, cubes and so on, have groups of symmetries consisting of reflections
and rotations and so on, which act on the points of the figure. In this section
we will define similar ideas for field extensions; if L/K is a field extension, we
will associate to it a group, called the Galois group, whose elements act on the
elements of L, fixing every element in the bottom field K.

Automorphisms of field extensions

Our first task will be to define the notion of an automorphism of a field extension.

Definition 3.1 Let L/K be a field extension. Then a K-automorphism of L is
a map ϕ : L −→ L which fixes every element of K and satisfies the following
rules:

1. if `1 and `2 are in L, then

ϕ(`1 + `2) = ϕ(`1) + ϕ(`2),

that is, ϕ is an additive homomorphism from L to itself.

2. if `1 and `2 are in L, then

ϕ(`1`2) = ϕ(`1)ϕ(`2),

that is, ϕ is a multiplicative homomorphism from L to itself.

3. ϕ is a bijection, so it is both injective (1-1) and surjective (onto).

4. if ` ∈ K, then ϕ(`) = `.

N

These K-automorphisms of L are the “symmetries” of the field extension L/K.

Remark 3.2 Remember that a homomorphism θ : L −→ M of fields is always
injective. To see this, suppose that a non-zero element a ∈ L is mapped to 0M ,
then every element is mapped to 0M , because each element ` ∈ L is a multiple
of a, namely (`a−1)a. But θ(1L) = 1M , so 1L /∈ ker θ. Thus the kernel cannot
contain non-zero elements, so must be {0L}. Thus θ is injective.

It follows that in the third condition of Definition 3.1, we only need to check that
ϕ is surjective, as injectivity is automatically satisfied.

However, homomorphisms of fields need not be surjective; for example, any inclu-
sion of fields, such as R ↪→ C, is a homomorphism which is not surjective.
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Examples 3.3 1. Suppose L = K. Then the only K-automorphism of L is
the identity map, because such a map must fix every element of K = L.

2. The identity map on L is always a K-automorphism of L for any subfield K
of L.

3. Suppose L = C, K = R. Then there are exactly two possible K-automorphisms
of L, namely

id : C −→ C
z 7→ z

and

conj : C −→ C
z 7→ z

To see this, note that any R-automorphism of C must fix every real number.
Then if a and b are real, the axioms imply that

ϕ(a+ ib) = ϕ(a) + ϕ(i)ϕ(b) = a+ ϕ(i)b,

so that ϕ is determined by its effect on i. But also,

ϕ(i)2 = ϕ(i2) = ϕ(−1) = −1
as −1 is real. So ϕ(i) must be a square root of −1, and must therefore
be ±i. If ϕ(i) = i, then ϕ is the identity map, whereas, if ϕ(i) = −i,
it is complex conjugation. (Exercise: check that both of these are indeed
R-automorphisms of C.)

4. Following the last example, show that if L = Q(
√
2) and K = Q, then there

are precisely two K-automorphisms of L, namely

ϕ1 = id : Q(
√
2) −→ Q(

√
2)

a+ b
√
2 7→ a+ b

√
2

and

ϕ2 : Q(
√
2) −→ Q(

√
2)

a+ b
√
2 7→ a− b

√
2

5. If L = Q( 3
√
2) and K = Q, then the only K-automorphism of L is the

identity. For this, we use a similar method as above to see that if θ is an
automorphism, then θ( 3

√
2) must again be a cube root of 2 contained in L.

But there is only one cube root of 2 contained in L, namely 3
√
2 itself; the

other roots are complex, whereas L ⊂ R. It follows that not only does θ fix
Q, but it also fixes 3

√
2, and so it fixes all of L.

6. If L = Q(
√
2,
√
3) and K = Q, then, as above, a K-automorphism maps√

2 to ±
√
2 and

√
3 to ±

√
3. This gives four K-automorphisms of L.
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Galois groups of field extensions

Now we come to the central definition of the course.

Definition 3.4 Let K ⊆ L be a field extension. The Galois group of L over K
is the group of all K-automorphisms of L, and is denoted Gal(L/K). N

Given θ and ϕ in Gal(L/K), and a ∈ L, define

(θϕ)(a) = θ(ϕ(a)).

That is, the multiplication of elements of the Galois group is composition of maps.
Remember, for θϕ one applies ϕ first, and then applies θ to the result.

Proposition 3.5 Let K ⊆ L be a field extension. Then Gal(L/K) is a group
under composition of maps.

Proof. The set of bijections L −→ L forms a group, and so we can use the
subgroup criterion. This is easy and left as an exercise. One has to check, for
example, that if θ and ϕ are both K-automorphisms of L, then so is θϕ, which
means that we must verify all the conditions of Definition 3.1, all of which are
easy:

(θϕ)(`1)+(θϕ)(`2) = θ(ϕ(`1))+θ(ϕ(`2)) = θ(ϕ(`1)+ϕ(`2)) = θ(ϕ(`1+`2)) = (θϕ)(`1+`2).

The other conditions are just as easy. �

Example 3.6 Suppose K = R, and L = C. We have already seen that the
only two R-automorphisms of C are the identity and complex conjugation. It
follows that Gal(C/R) is a group with 2 elements, hence is cyclic, generated by
the complex conjugation (and indeed, conjugating a complex number twice returns
you to the original number). �

Example 3.7 In the same way, Gal(Q(
√
2)/Q) ∼= C2, the generator being the

conjugation map conj : a+ b
√
2 7→ a− b

√
2. �

Example 3.8 Suppose K = Q and L = Q( 3
√
2). Then, as we have already seen,

Gal(L/K) is trivial (i.e., just has the identity automorphism of L), as there are
no non-trivial K-automorphisms of L. �

Now we prove an important result explaining how roots of polynomials behave
under these symmetries.

Lemma 3.9 Suppose K ⊆ L is a field extension, and that α ∈ L satisfies
a polynomial equation f(x) = 0, where f has coefficients in K. If θ is a K-
automorphism of L, then θ(α) is also a root of f .
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Proof. Suppose f(x) = anx
n + an−1x

n−1 + · · · + a0. If α is a root of f , then
anα

n + an−1α
n−1 + · · ·+ a0 = 0. Applying θ,

θ(an)θ(α)
n + θ(an−1)θ(α)

n−1 + · · ·+ θ(a0) = θ(0) = 0,

as θ is an automorphism. Then as θ fixes every element of K, we see that

0 = anθ(α)
n + an−1θ(α)

n−1 + · · ·+ a0,

so that θ(α) is also a root of f . �

We will refer to the following special case as ‘APR’ (‘Automorphisms Permute
Roots’).

Theorem 3.10 (APR) Let K ⊆ L be a field extension, and let α ∈ L be
algebraic over K with minimal polynomial f ∈ K[x] over K. If θ ∈ Gal(L/K),
then θ(α) is also a root of f .

Let’s restate the above result:

a K-automorphism of L maps any element of L to another element
with the same minimal polynomial over K.

We have already seen lots of examples of this. For example, if L = Q(
√
2) and

K = Q, then the two automorphisms map
√
2 to ±

√
2, which are the two roots

of the minimal polynomial x2 − 2 of
√
2 over Q. This shows that there can’t be

too many K-automorphisms of L when L/K is a field extension, as each element
of L can only be mapped to a finite number of elements of L. If L/K is finite, so
generated by a single element, L = K(γ), say, then every automorphism is then
completely determined by its effect on γ, and so there are only a finite number of
K-automorphisms of L.

We’ll now prove a bound for the size of the Galois group. For this, we’ll begin by
proving a fairly general result (which we will also need in §5), and then state a
special case from which we can deduce our bound.

Remember that a field homomorphism ϕ : K1 −→ K2 is a map satisfying

ϕ(k + k′) = ϕ(k) + ϕ(k′) for all k, k′ ∈ K1;

ϕ(kk′) = ϕ(k)ϕ(k′) for all k, k′ ∈ K1;

ϕ(1) = 1.

Theorem 3.11 Let α be algebraic over K with minimal polynomial f ∈ K[x],
and consider the extension K ⊆ K(α). Let K ⊆ L. Then there is a bijection
between the set of homomorphisms θ : K(α) −→ L that fix elements of K and
the set of distinct roots of f(x) in L.
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Proof. Write

H = {homomorphisms θ : K(α) −→ L that fix elements of K}

and
R = {distinct roots of f(x) in L}.

We define a map R → H. Take β ∈ R. We will define a homomorphism
θβ : K(α)→ L.

Remember that the elements of K(α) are all
∑n

i=0 aiα
i where n is the degree of

f and ai ∈ K.

Define

θβ : K(α) −→ L,
n∑
i=0

aiα
i 7→

n∑
i=0

aiβ
i.

This clearly fixes every element of K. It is an easy exercise to see that θβ is a
homomorphism. (Note that if β is not a root of f , then θβ(f(α)) = f(β), so that
θβ(0) 6= 0, so the map is not a homomorphism.)

Conversely, given a homomorphism θ : K(α) −→ L, we must have

θ

(
n∑
i=0

aiα
i

)
=

n∑
i=0

θ(ai)θ(α)
i =

n∑
i=0

aiθ(α)
i.

Write f(x) =
∑n

i=0 cix
i. Then

∑n
i=0 ciα

i = 0. Applying θ, we have that

n∑
i=0

ciθ(α)
i = 0,

so θ(α) is a root of f(x).

Finally, it is an easy exercise to check that the maps β 7→ θβ and θ 7→ θ(α) are
mutually inverse. �
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Corollary 3.12 Let α be algebraic over K. Then |Gal(K(α)/K)| is equal to
the number of distinct roots of the minimal polynomial mα of α over K in K(α).

If β is such a root, the corresponding automorphism maps α to β.

Proof. This is just a special case of Theorem 3.11, when L = K(α), except that
Theorem 3.11 uses homomorphisms, while the Galois group consists of automor-
phisms. We have to check that homomorphisms from K(α) to itself are necessarily
bijections. But we have already explained in Remark 3.2 that homomorphisms are
necessarily injective. However, we can regard a homomorphism as a linear map of
vector spaces over K. Since the kernel is trivial, the rank-nullity theorem shows
that the dimension of the image is equal to the dimension of K(α); since the image
is contained in K(α), they must be equal, and so homomorphisms are necessrily
also surjective. �

Immediately we get a bound on the size of the Galois group:

Corollary 3.13 Let K ⊆ L be a finite extension of fields. Then

|Gal(L/K)| 6 [L : K].

Proof. By TPE (Theorem 2.5), we may assume L = K(α) for some α ∈ L. Let
f ∈ K[x] denote the minimal polynomial of α over K. Then the degree of f is
[L : K], using Theorem 2.2.

But |Gal(K(α)/K)| is the number of roots of f in K(α), and this is bounded by
the degree of f , which is [L : K], as already remarked. �

Next, we need to consider the case of splitting field extensions and in particular
the action of the Galois group on the roots of the polynomial.

Example 3.14 We compute the Galois group of the extension L/K where K =
Q again, and where L is the splitting field of x3 − 2, namely L = Q(α, ω), where

α = 3
√
2 and ω = e

2πi
3 . An automorphism θ of Gal(L/K) must send 3

√
2 to

another cube root of 2 in L, i.e., ωiα for i = 0, 1 or 2, and also must send ω to
another root of x2 + x+ 1, so either fixes ω or sends it to its conjugate, ω = ω2.
There are therefore six K-automorphisms of L, given by

α 7→ α, ω 7→ ω

α 7→ α, ω 7→ ω2

α 7→ ωα, ω 7→ ω

α 7→ ωα, ω 7→ ω2

α 7→ ω2α, ω 7→ ω

α 7→ ω2α, ω 7→ ω2
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Note that if ϕ and ψ denote the second and third of these automorphisms, then
the automorphisms are id, ϕ, ψ, ψϕ, ψ2 and ϕψ respectively. It follows that the
Galois group is generated by ϕ and ψ of order 2 and 3 respectively, and one easily
verifies that ϕψϕ = ψ−1, so that the group is isomorphic to D3, the dihedral group
with 6 elements. One can also view D3 as S3, as D3 is the group of symmetries
of a triangle, and each symmetry gives a permutation of the three vertices.

The roots of x3− 2 are given by α1 = α, α2 = ωα and α3 = ω2α. Let’s work out
how these automorphisms act on the roots of the equation. For example, consider
the automorphism which sends α 7→ ωα and ω 7→ ω2. Then this sends α1 = α to
ωα = α2, α2 = ωα to ω2.ωα = α = α1, and α3 = ω2α to (ω2)2.ωα = ω2α = α3.
Thus it exchanges the first two roots, and we regard it as the permutation (1 2)
in S3. With this notation, we see that the six permutations correspond to the
elements

id, (2 3), (1 2 3), (1 2), (1 3 2), (1 3)

in S3 respectively. This proves that the Galois group Gal(L/K) is equal to S3. �

Example 3.15 Suppose K = Q and L = Q(
√
2,
√
3). Let ϕ be a K-automorphism

of L. Since (
√
2)2 = 2, we see that ϕ(

√
2)2 = ϕ(2) = 2, so that ϕ(

√
2) = ±

√
2,

and similarly, ϕ(
√
3) = ±

√
3. There are thus 4 K-automorphisms of L, induced

by:
√
2 7→

√
2,

√
3 7→

√
3 (the identity)√

2 7→
√
2,

√
3 7→ −

√
3√

2 7→ −
√
2,

√
3 7→

√
3√

2 7→ −
√
2,

√
3 7→ −

√
3

Let’s first regard L as the splitting field of (x2 − 2)(x2 − 3) over Q. If the roots
are α1 =

√
2, α2 = −

√
2, α3 =

√
3, α4 = −

√
3, then the four automorphisms

permute the αi as id, (3 4), (1 2), (1 2)(3 4) respectively. This shows that the
Galois group has four elements and looks like the subgroup of S4 isomorphic to
C2 × C2 generated by two disjoint transpositions.

But we can also regard L = Q(
√
2,
√
3) as Q(

√
2+
√
3). The minimal polynomial

for
√
2 +
√
3 over Q is x4 − 10x2 + 1 (exercise), whose four roots are given by

β1 =
√
2 +
√
3, β2 =

√
2−
√
3, β3 = −

√
2 +
√
3, β4 = −

√
2−
√
3.

Then the four K-automorphisms of L are given by

β1 7→ β1, β2 7→ β2, β3 7→ β3, β4 7→ β4

β1 7→ β2, β2 7→ β1, β3 7→ β4, β4 7→ β3

β1 7→ β3, β2 7→ β4, β3 7→ β1, β4 7→ β2

β1 7→ β4, β2 7→ β3, β3 7→ β2, β4 7→ β1
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Here, the four automorphisms act by the following permutations: id, (1 2)(3 4),
(1 3)(2 4), (1 4)(2 3), which is the well-known Klein 4-subgroup V4 of S4. Note
that it is also isomorphic to C2×C2, generated by two elements of order 2, although
the actual permutations involved look different.

So the Galois group is isomorphic to C2 × C2, but, depending on how we regard
L as a splitting field, we can realise this group in different ways as subgroups of
S4. �

These examples indicate how we can regard the K-automorphisms of L, in the
case where L is a splitting field of some polynomial over K, as being permutations
of the roots of the polynomial. Let’s record this formally.

Lemma 3.16 Suppose L is the splitting field of a polynomial f of degree n over
K. List the roots of f in L as {α1, . . . , αn}. Then the action of Gal(L/K) on
the roots gives an injective homomorphism of groups

Gal(L/K) −→ Sn,

where Sn is the group of permutations of n objects.

Here, ϕ ∈ Gal(L/K) gives us a permutation σ in Sn if ϕ acts on {α1, . . . , αn}
by the permutation σ, i.e., if ϕ(αi) = ασ(i).

Proof. L = K(α1, . . . , αn), where α1, . . . , αn are the roots of f in L. We can
look at the action ϕ ∈ Gal(L/K) on the roots of f . By APR (Theorem 3.10),
ϕ(αi) is also a root of f , so is one of {α1, . . . , αn}. As ϕ is injective, ϕ is a permu-
tation of the set of αi. In this way, we obtain a homomorphism Gal(L/K) −→ Sn.
It is injective – if θ lies in the kernel, then θ is mapped to the trivial permutation,
so that it sends each αi to itself, as well as fixing K, so it therefore fixes all of L.

�
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§ 4 Example: Cyclotomic polynomials, roots of unity

This section is not completely central to our goal of proving the unsolvability of
the quintic. However, it is an important family of examples in Galois theory.

We will consider in a little more detail the Galois groups associated to roots of
unity. We start with an example.

Example 4.1 Let ζ ∈ C be a primitive 5th root of unity. The minimal polynomial
of ζ over Q is x5−1

x−1 = x4+x3+x2+x+1. The remaining roots of this polynomial

are the other three primitive 5th roots of unity. If ξ is one of them, then ξ = ζj

for some j. It follows that Q(ξ) = Q(ζ). It follows easily from Corollary 3.12 that
if ξ is any primitive 5th root of unity, then there is a Q-automorphism of Q(ζ)
sending ζ to ξ. Thus

Gal(Q(ζ)/Q) = {θ1, θ2, θ3, θ4}

where θi is the Q-automorphism sending ζ to ζ i.

Note that θ1 = id, and that

θ22(ζ) = θ2(ζ
2) = (ζ2)2 = ζ4,

θ32(ζ) = θ2(ζ
4) = (ζ4)2 = ζ8 = ζ3,

(so θ22 = θ4 and θ32 = θ3) so that Gal(Q(ζ)/Q) is cyclic with 4 elements, and is
generated by θ2 (θ22 = θ4 and θ32 = θ3). �

In order to state the most general result, we need to define cyclotomic polynomials.

Definition 4.2 Let n ≥ 1. Define the nth cyclotomic polynomial by

λn(x) =
∏

primitive nth roots of unity

(x− ζ).

N

Let’s write down the first few:

λ1(x) = x− 1

λ2(x) = x+ 1

λ3(x) = (x− ω)(x− ω2) = x2 + x+ 1

λ4(x) = (x+ i)(x− i) = x2 + 1

λ5(x) =
x5 − 1

x− 1
= x4 + x3 + x2 + x+ 1

λ6(x) = (x+ ω)(x+ ω2) = x2 − x+ 1

where ω denotes a primitive cube root of unity. In general, one can see that
λp(x) =

xp−1
x−1 = xp−1 + · · ·+ 1 when p is a prime.
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We have the following formula, which allows us to compute the cyclotomic poly-
nomials inductively:

Lemma 4.3
xn − 1 =

∏
d|n

λd(x).

Proof. An nth root of unity will be a primitive dth root for some d|n. Conversely,
if d|n, a primitive dth root of unity is an nth root of unity. �

For example, if n = 6, the 6th roots of unity are 1, −1, ±ω and ±ω2. We split
these into the primitive 1st roots, i.e., 1, the primitive square roots, i.e., −1, the
primitive cube roots, i.e., ω and ω2, and the primitive 6th roots, −ω and −ω2. It
is clear then that the product of the cyclotomic polynomials λd for d|6 is x6 − 1.
Indeed, since the roots of x6 − 1 are the sixth roots of unity, we have:

x6 − 1 = (x− 1)(x− e
2πi
6 )(x− e

4πi
6 )(x− e

6πi
6 )(x− e

8πi
6 )(x− e

10πi
6 )

= (x− 1)(x+ ω2)(x− ω)(x+ 1)(x− ω2)(x+ ω)

= (x− 1)(x+ 1)[(x− ω)(x− ω2)][(x+ ω)(x+ ω2)]

= λ1(x)λ2(x)λ3(x)λ6(x).

Remark 4.4 Note that the nth roots of unity are e
2πim
n for m = 0, . . . , n − 1.

Further, e
2πim
n is primitive if m and n are coprime. It follows that the number of

primitive nth roots of unity is

ϕ(n) = |{0 6 m 6 n− 1 | m and n are coprime}|.

As there is a factor of λn for every primitive nth root of unity, it follows that
deg λn = ϕ(n). Incidentally, if we look at the degrees of the polynomials in
Lemma 4.3, we deduce that n =

∑
d|n ϕ(d), which is an interesting number-

theoretic result in its own right.

Proposition 4.5 λn is a monic polynomial with integer coefficients.

Proof. By induction on n. Note λ1 = x − 1 satisfies the Proposition. Let
f(x) =

∏
d|n,d<n λd(x). Then by induction, f is monic with integer coefficients.

By Lemma 4.3, xn − 1 = fλn. Now we use the following:

Claim. If p = qr is a product of polynomials, where p and q are monic with integer
coefficients, then so is r.

Proof. Suppose

p(x) = xs+t + p1x
s+t−1 + · · ·+ ps+t

q(x) = xs + q1x
s−1 + · · ·+ qs

r(x) = r0x
t + r1x

t−1 + · · ·+ rt
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By comparing coefficients of xs+t, we see r0 = 1, so r is monic. Also, suppose we
have shown that r0, . . . rk−1 ∈ Z. Then, comparing coefficients of xs+t−k, we see
that

pk = qk + qk−1r1 + · · ·+ q1rk−1 + rk,

so we see rk ∈ Z. Inductively, each ri ∈ Z, so r ∈ Z[x]. This proves the claim.

Now apply this with p = xn − 1, q = f and r = λn, to see that λn ∈ Z[x]. �

Fact 4.6 λn is irreducible in Q[x] and hence is the minimal polynomial of any
primitive nth root of unity. (In practice, one can often use Eisenstein’s criterion
after replacing x with x+ 1 or x− 1 to deduce the irreducibility of λn.)

Definition 4.7 If ζ is a primitive nth root of unity, then the extension Q(ζ) is
the nth cyclotomic extension of Q. N

Note that [Q(ζ) : Q] = ϕ(n). Finally, we can give the structure of the Galois
group of these cyclotomic extensions.

Theorem 4.8 Gal(Q(ζ)/Q) ∼= U(Zn), the multiplicative group of integers mod-
ulo n and prime to n.

Proof. As already remarked, the primitive roots of unity are exactly ζr, with
(r, n) = 1. Further, Q(ζr) = Q(ζ) for such r. Then

Gal(Q(ζ)/Q) = {ϕr | 1 6 r 6 n, (r, n) = 1},

where ϕr is the Q-automorphism mapping ζ to ζr. As ζr = ζs whenever r ≡ s
(mod n), we should really write ϕr as ϕr. Thus we get a bijection

U(Zn) −→ Gal(Q(ζ)/Q)

r 7→ ϕr

As ϕr ◦ϕs = ϕrs, because (ζs)r = ζrs, it is a group homomorphism, and the result
follows. �

Remark 4.9 It follows that Gal(Q(ζ)/Q) is cyclic when U(Zn) is cyclic. This
is true when n is prime but not true if n is divisible by two or more distinct odd
primes.

While we are thinking about roots of unity, we’ll end the section with a couple of
easy results which we’ll need later.

Lemma 4.10 Let n ≥ 1 be an integer, and let L be the splitting field over K of
xn − 1. Then Gal(L/K) is abelian.
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Proof. If ζ = e
2πi
n denotes a primitive nth root of unity in L, then L = K(ζ),

and all K-automorphisms of L are given by ζ 7→ ζ i for i prime to n. Composing
any two automorphisms of this form is independent of the order of composition
(as (ζ i)j = (ζj)i), so that Gal(L/K) is abelian. �

Lemma 4.11 Let K be a field containing the nth roots of unity. Let a ∈ K. If
L denotes the splitting field of xn − a over K, then Gal(L/K) is cyclic (of order
dividing n).

Proof. Let α denote any root of xn − a in L. Then all roots are given by ζjα,
where ζ = e

2πi
n ∈ K, for j = 0, . . . , n − 1. Hence the splitting field L is K(α),

and the map θ 7→ θ(α)
α

gives an injective homomorphism from Gal(L/K) −→ 〈ζ〉.
�


