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§ 11 The discriminant

Note that the group Sn contains a normal subgroup of index 2, namely An, the
group of even permutations. Let’s compute the extension of K corresponding to
this subgroup.

Suppose that a degree n polynomial f(x) splits as
Q

n

i=1(x � ↵i) in its splitting
field. Suppose all ↵i are distinct (true if f is irreducible). The group Sn acts by
permuting the roots (and Gal(f/K) is a subgroup of Sn).

We define �(f) =
Q

i>j
(↵i � ↵j).

Lemma 11.1 Suppose ✓ 2 Gal(f/K) ✓ Sn. Then

✓(�(f)) =

⇢
�(f) if ✓ is an even permutation
��(f) if ✓ is an odd permutation

Proof. This is an equivalent definition of even/odd. ⇥
Define the discriminant, D(f), to be �(f)2. Then note that ✓(D(f)) = D(f)
for all ✓ 2 Gal(f/K) by the lemma. It follows that D(f) lies in K, as it is fixed
by every element of the Galois group (using Theorem 12.3).

Corollary 11.2 Let f 2 K[x] have only simple roots, and let L denote a splitting
field. Regard G = Gal(f/K) as a subgroup of Sn. Then the subfield of L

corresponding to the subgroup G \ An is K[�(f)]. In particular,

G ✓ An () �(f) 2 K () D(f) is a square in K.

Proof. As f has distinct roots, �(f) 6= 0, and so the lemma shows that
✓(�(f)) = �(f) if and only if ✓ 2 An. Thus G \ An is the subgroup of G
corresponding to K[�(f)], and so

G ✓ An () K[�(f)] = K () �(f) 2 K.

⇥
Thus the Galois group Gal(f/K) of a polynomial f of degree d is contained in
Ad, not just Sd, if and only if its discriminant is a square in K.

Corollary 11.3 Suppose f 2 K[x] is an irreducible cubic equation. Then

Gal(f/K) =

⇢
A3 if D(f) is a square
S3 if not

Proof. Let ↵ be a root of f . As f is irreducible, it is the minimal polynomial of ↵.
By Theorem 2.2, [K(↵) : K] = 3. But if L is the splitting field of f , L ◆ K(↵),
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so we conclude that 3|[L : K] by Theorem 2.3. Also, L/K is Galois (it’s a splitting
field), so |Gal(L/K)| = [L : K]. Finally, the Galois group may be regarded as a
subgroup of S3, a group of order 6. It follows that Gal(f/K) is either all of S3,
or it is a subgroup of order 3 – the only such subgroup is A3 = h(1 2 3)i. By
Corollary 11.2, the Galois group is A3 precisely when D(f) is a square, and is S3

if not. ⇥
By an Exercise, the cubic f(x) = x

3 + ax+ b has D(f) = �(4a3 + 27b2).

Remark 11.4 An explicit computation (or use Maple!) shows that a quartic has
the same discriminant as its resolvent cubic.

Remark 11.5 We can now classify Galois groups of irreducible quartics. As the
quartic is irreducible, then its Galois group is a transitive subgroup of S4. These
subgroups are known; there are 5 possibilities, namely, S4, A4, D4, V4 and C4.

We also know that if its discriminant is a square, then its Galois group is a tran-
sitive subgroup of A4 and must therefore be either A4 or V4 (the other groups all
contain 4-cycles, so cannot be contained in A4). Otherwise, its Galois group is
not contained in A4, so is one of S4, D4 or C4.

Also, if its resolvent cubic is irreducible, adjoining the roots of the resolvent cubic
leads to an extension of degree divisible by 3. This was the first step in constructing
the splitting field of the quartic. It follows that the Galois group of the quartic
must be of order divisible by 3, so must be one of S4 or A4. Otherwise the Galois
group will be one of D4, V4 or C4.

We therefore have the following classification:

D(f) square? res. cubic irred.? Galois group
Yes Yes A4

No Yes S4

Yes No V4

No No D4 or C4

In fact, we can distinguish between these latter two possibilities – the Galois group
is D4 if the quartic remains irreducible over the splitting field of the cubic, and is
C4 if not. In general, however, it is usually easier to compute these by hand.

We have seen examples of all of these occurring earlier in the course, or on example
sheets, for polynomials over Q. In Exercise 25, we saw that x

4 + 8x + 12 has
irreducible resolvent cubic, but its discriminant is 5762. Thus its Galois group is
A4. However, x4 +8x� 12 has irreducible resolvent cubic and discriminant which
is not a square, so its Galois group is S4. We have just seen that x4�10x2+1 has
splitting field Q(

p
2,
p
3), so has Galois group V4. Another example is provided

by x
4 + 1, which is the cyclotomic polynomial �8 – recall that the Galois group

of �n over Q was U(Zn). We see that U(Z8) = {1, 3, 5, 7} and that this is a
group isomorphic to V4. In §6, we found that the Galois group of x4 � 2 was D4.
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Finally, the fifth cyclotomic polynomial �5 = x
4+x

3+x
2+x+1 has Galois group

U(Z5) = {1, 2, 3, 4}, which is cyclic of order 4.

Thus all five possible transitive subgroups of S4 can occur as Galois groups of
polynomials over Q. More generally, it is conjectured that any finite group may be
realised as the Galois group of some polynomial over Q. This question is known
as the “Inverse Galois Problem”, and is the subject of much current research.


