$\S 11$ The discriminant

Note that the group S_{n} contains a normal subgroup of index 2 , namely A_{n}, the group of even permutations. Let's compute the extension of K corresponding to this subgroup.
Suppose that a degree n polynomial $f(x)$ splits as $\prod_{i=1}^{n}\left(x-\alpha_{i}\right)$ in its splitting field. Suppose all α_{i} are distinct (true if f is irreducible). The group S_{n} acts by permuting the roots (and $\operatorname{Gal}(f / K)$ is a subgroup of $\left.S_{n}\right)$.
We define $\Delta(f)=\prod_{i>j}\left(\alpha_{i}-\alpha_{j}\right)$.
Lemma 11.1 Suppose $\theta \in \operatorname{Gal}(f / K) \subseteq S_{n}$. Then

$$
\theta(\Delta(f))= \begin{cases}\Delta(f) & \text { if } \theta \text { is an even permutation } \\ -\Delta(f) & \text { if } \theta \text { is an odd permutation }\end{cases}
$$

Proof. This is an equivalent definition of even/odd.
Define the discriminant, $D(f)$, to be $\Delta(f)^{2}$. Then note that $\theta(D(f))=D(f)$ for all $\theta \in \operatorname{Gal}(f / K)$ by the lemma. It follows that $D(f)$ lies in K, as it is fixed by every element of the Galois group (using Theorem 12.3).

Corollary 11.2 Let $f \in K[x]$ have only simple roots, and let L denote a splitting field. Regard $G=\operatorname{Gal}(f / K)$ as a subgroup of S_{n}. Then the subfield of L corresponding to the subgroup $G \cap A_{n}$ is $K[\Delta(f)]$. In particular,

$$
G \subseteq A_{n} \Longleftrightarrow \Delta(f) \in K \Longleftrightarrow D(f) \text { is a square in } K .
$$

Proof. As f has distinct roots, $\Delta(f) \neq 0$, and so the lemma shows that $\theta(\Delta(f))=\Delta(f)$ if and only if $\theta \in A_{n}$. Thus $G \cap A_{n}$ is the subgroup of G corresponding to $K[\Delta(f)]$, and so

$$
G \subseteq A_{n} \Longleftrightarrow K[\Delta(f)]=K \Longleftrightarrow \Delta(f) \in K
$$

Thus the Galois group $\operatorname{Gal}(f / K)$ of a polynomial f of degree d is contained in A_{d}, not just S_{d}, if and only if its discriminant is a square in K.

Corollary 11.3 Suppose $f \in K[x]$ is an irreducible cubic equation. Then

$$
\operatorname{Gal}(f / K)= \begin{cases}A_{3} & \text { if } D(f) \text { is a square } \\ S_{3} & \text { if not }\end{cases}
$$

Proof. Let α be a root of f. As f is irreducible, it is the minimal polynomial of α. By Theorem 2.2, $[K(\alpha): K]=3$. But if L is the splitting field of $f, L \supseteq K(\alpha)$,
so we conclude that $3 \mid[L: K]$ by Theorem 2.3. Also, L / K is Galois (it's a splitting field), so $|\operatorname{Gal}(L / K)|=[L: K]$. Finally, the Galois group may be regarded as a subgroup of S_{3}, a group of order 6 . It follows that $\operatorname{Gal}(f / K)$ is either all of S_{3}, or it is a subgroup of order 3 - the only such subgroup is $A_{3}=\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right)\right\rangle$. By Corollary 11.2, the Galois group is A_{3} precisely when $D(f)$ is a square, and is S_{3} if not.

By an Exercise, the cubic $f(x)=x^{3}+a x+b$ has $D(f)=-\left(4 a^{3}+27 b^{2}\right)$.
Remark 11.4 An explicit computation (or use Maple!) shows that a quartic has the same discriminant as its resolvent cubic.

Remark 11.5 We can now classify Galois groups of irreducible quartics. As the quartic is irreducible, then its Galois group is a transitive subgroup of S_{4}. These subgroups are known; there are 5 possibilities, namely, $S_{4}, A_{4}, D_{4}, V_{4}$ and C_{4}.

We also know that if its discriminant is a square, then its Galois group is a transitive subgroup of A_{4} and must therefore be either A_{4} or V_{4} (the other groups all contain 4-cycles, so cannot be contained in A_{4}). Otherwise, its Galois group is not contained in A_{4}, so is one of S_{4}, D_{4} or C_{4}.

Also, if its resolvent cubic is irreducible, adjoining the roots of the resolvent cubic leads to an extension of degree divisible by 3 . This was the first step in constructing the splitting field of the quartic. It follows that the Galois group of the quartic must be of order divisible by 3, so must be one of S_{4} or A_{4}. Otherwise the Galois group will be one of D_{4}, V_{4} or C_{4}.
We therefore have the following classification:

$D(f)$ square?	res. cubic irred.?	Galois group
Yes	Yes	A_{4}
No	Yes	S_{4}
Yes	No	V_{4}
No	No	D_{4} or C_{4}

In fact, we can distinguish between these latter two possibilities - the Galois group is D_{4} if the quartic remains irreducible over the splitting field of the cubic, and is C_{4} if not. In general, however, it is usually easier to compute these by hand.
We have seen examples of all of these occurring earlier in the course, or on example sheets, for polynomials over \mathbb{Q}. In Exercise 25, we saw that $x^{4}+8 x+12$ has irreducible resolvent cubic, but its discriminant is 576^{2}. Thus its Galois group is A_{4}. However, $x^{4}+8 x-12$ has irreducible resolvent cubic and discriminant which is not a square, so its Galois group is S_{4}. We have just seen that $x^{4}-10 x^{2}+1$ has splitting field $\mathbb{Q}(\sqrt{2}, \sqrt{3})$, so has Galois group V_{4}. Another example is provided by $x^{4}+1$, which is the cyclotomic polynomial λ_{8} - recall that the Galois group of λ_{n} over \mathbb{Q} was $U\left(\mathbb{Z}_{n}\right)$. We see that $U\left(\mathbb{Z}_{8}\right)=\{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$ and that this is a group isomorphic to V_{4}. In $\S 6$, we found that the Galois group of $x^{4}-2$ was D_{4}.

Finally, the fifth cyclotomic polynomial $\lambda_{5}=x^{4}+x^{3}+x^{2}+x+1$ has Galois group $U\left(\mathbb{Z}_{5}\right)=\{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$, which is cyclic of order 4 .

Thus all five possible transitive subgroups of S_{4} can occur as Galois groups of polynomials over \mathbb{Q}. More generally, it is conjectured that any finite group may be realised as the Galois group of some polynomial over \mathbb{Q}. This question is known as the "Inverse Galois Problem", and is the subject of much current research.

