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§ 7 Soluble groups

Remember our plan for proving the insolubility of the quintic. The basic idea is the
following. Suppose that a polynomial is soluble by radicals (we’ll make this more
precise later). This implies that all of its roots have a certain form, and thus that
the splitting field extension has a certain structure. We will see that this implies
that the corresponding Galois group has a similar sort of structure. By exhibiting
explicit examples of quintics whose Galois groups do not have this structure, we
will see that not every quintic is soluble by radicals. We first need a digression in
group theory.

In this section we develop the group theory necessary for applications to Galois
theory. We begin with a summary of the results from this section that we will need
for applications to Galois theory.

Definition 7.1 A group G is soluble provided it has a chain of subgroups

G = G0 > G1 > · · · > Gn = {1}

with each Gi+1 �Gi and Gi/Gi+1 abelian. N

We start by recalling the first isomorphism theorem for groups (we’ve already used
it, in fact!):

Theorem 7.2 Let ' : G �! H be a group homomorphism. Then ker' is a
normal subgroup of G and there is an isomorphism G/ ker ' ! Im'.

As corollaries, we deduce the second and third isomorphism theorems. Let’s start
with the second.

If H is a subgroup of G, and N �G, then write

HN = {hn : h 2 H,n 2 N}.

It is a subgroup of G.

Theorem 7.3 Let H and N be subgroups of G with N �G. Then H \N �H

and
H/H \N ⇠= HN/N.

Proof. Define a map � : H �! HN/N by h 7! hN . It is not hard to see that
� is a surjective homomorphism with kernel H \ N . The result follows from the
first isomorphism theorem. ⇥
Next, we do the third isomorphism theorem.
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Theorem 7.4 Let H and N be normal subgroups of G with H ◆ N . Then
H/N �G/N and

(G/N)/(H/N) ⇠= G/H.

Proof. Define a map  : G/N ! G/H by  (gN) = gH. It is easy to check
that  is a well-defined surjective homomorphism with kernel H/N . Now use the
first isomorphism theorem. ⇥
Having proven these technical results, we can now return to the study of soluble
groups.

Theorem 7.5 Let G be a group and H, N subgroups of G with N �G. Then

1. if G is soluble then H is soluble;

2. if G is soluble then G/N is soluble;

3. if N and G/N are soluble then G is soluble.

Proof. 1. By definition, G has a chain

G = G0 .G1 . · · · .Gn = {1}

with each Gi/Gi+1 abelian. Set Hi = Gi \H. So we have

H = H0 .H1 . · · · .Hr = {1}

(where we have deleted any redundant terms).

Note that Hi+1 = Gi+1\H = (Gi\H)\Gi+1. Thus, by the second isomorphism
theorem (7.3),

Hi/Hi+1 = (Gi \H)/((Gi \H) \Gi+1) ⇠= (Gi \H)Gi+1/Gi+1.

This last group is a subgroup of the abelian group Gi/Gi+1 and so is abelian. This
proves 1.

2. Again G has the chain of 1. Apply the canonical homomorphism ⇡ : G ! G/N

sending g to gN . Then we get

G/N = G0N/N .G1N/N . · · · .GnN/N = {1G/N}

(discarding redundant terms). Now,

(GiN/N)/(Gi+1N/N) ⇠= GiN/Gi+1N,

by the third isomorphism theorem (7.4). On the other hand, the latter group is

Gi(Gi+1N)/Gi+1N
⇠= Gi/Gi \ (Gi+1N),
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by the second isomorphism theorem. Finally, by the third isomorphism theorem,
we have

Gi/Gi \Gi+1N
⇠= (Gi/Gi+1)/((Gi \Gi+1N)/Gi+1))

which (being a quotient of the abelian group Gi/Gi+1) is abelian.

3. Let G denote the quotient G/N . Suppose

G .G1 . · · · .Gn = {1}

and
N .N1 . · · · .Nm = {1}

with all successive quotients being abelian. Let

Gi = {g 2 G | gN 2 Gi}.

Firstly, we see that Gi is a subgroup of G. For this, we use the subgroup criterion.
Clearly 1 2 Gi. Let g1, g2 2 Gi. Consider g1g

�1
2 . Then

(g1g
�1
2 )N = (g1N)(g2N)�1 2 Gi

as Gi is a group. It follows that g1g
�1
2 2 Gi, and, by the subgroup criterion, Gi is

a group.

Next we check that Gi/N = Gi. The quotient Gi/N consists of all cosets gN with
g 2 Gi – but the defining property of this group is that these cosets all lie in Gi. It
follows that Gi/N ✓ Gi. Conversely, every element of Gi is some coset gN , and
then the corresponding g must lie in Gi, whereupon the inclusion Gi/N �! Gi is
surjective.

Lastly, we claim that Gi+1 � Gi. Let g 2 Gi+1, and � 2 Gi. Then we want to
show that ��1

g� 2 Gi+1. But

(��1
g�)N = (�N)�1(gN)(�N) 2 Gi+1

because Gi+1 � Gi. It follows that �
�1
g� 2 Gi+1, as required. By the third

isomorphism theorem, we also see that

Gi

Gi+1

=
Gi/N

Gi+1/N

⇠=
Gi

Gi+1
,

so that each quotient Gi/Gi+1 is abelian. Then the sequence

G .G1 . · · · .Gn = N .N1 . · · · .Nm = {1}

is a series whose successive quotients are all abelian. Thus G is soluble. ⇥
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Remark 7.6 1. Abelian groups are soluble (consider the series G . {1}).

2. S3 is soluble. A suitable chain is given by:

S3 . h(123)i . {1}.

3. S4 is soluble. Here, a suitable chain is given by:

S4 . A4 . V4 . {1},

where V4 = {1, (12)(34), (13)(24), (14)(23)}.

4. D4 is soluble. (It is a subgroup of S4.)

5. A group G is called simple if it is non-trivial and it has no normal subgroups
besides {1} and G. A group which is soluble and simple is easily seen to be
cyclic of prime order.

6. If n � 5 then An is simple and so An is not soluble, for n � 5.

7. If n � 5, it follows that Sn is not soluble (if Sn were to be soluble, then its
subgroup An would be soluble, and it isn’t).

The crucial result is that S1, S2, S3 and S4 are soluble groups, but S5 is not. This
will reflect the fact that polynomials of degree up to 4 are soluble by radicals, but
that quintics are not in general.
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§ 8 Solubility of polynomials

Let’s start by making the (now obvious) definition of the Galois group of a poly-
nomial.

Definition 8.1 Let K be a field, and let f 2 K[x]. Let L be the splitting
field of f over K. Define the Galois group of f to be Gal(L/K). (Note that
L/K is Galois as L is a splitting field (Theorem 5.8).) We will denote this group
Gal(f/K). N

We will explain that many of the properties of f will be reflected in properties of
its Galois group. Most importantly, we will see that if the polynomial is soluble in
radicals then its Galois group is a soluble group. In fact, the converse is also true,
and is proven in Appendix C. As we have produced examples of non-soluble groups,
this may indicate that not every polynomial is soluble by radicals. To confirm this,
we will give an explicit quintic whose Galois group is S5.

Let’s first recall some earlier results, Lemma 4.10 and Lemma 4.11.

Lemma 4.10. Let n � 1 be an integer, and let L be the splitting field over K

of xn � 1. Then Gal(L/K) is abelian.

Lemma 4.11. Let K be a field containing the nth roots of unity. Let a 2 K.
If L denotes the splitting field of xn � a over K, then Gal(L/K) is cyclic (of
order dividing n).

If the conditions of Lemma 4.11 hold, we call L/K a Kummer extension.

Now we turn to solubility by radicals.

Definition 8.2 Let K be a field, and let f 2 K[x]. The equation f(x) = 0 is
said to be soluble by radicals over K if there is an extension field M of K such
that

1. M splits f

2. M has a chain of subfields

K = K0 ⇢ K1 ⇢ K2 ⇢ · · · ⇢ Km = M

such that, for each i, Ki+1 = Ki(di) with d
ni
i

2 Ki for some positive integer
ni.

N
Remark 8.3 Then f is soluble by radicals if and only if the roots of f are given
by expressions involving elements of K and +, �, ⇥, /, and nth roots.
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Now we can prove the theorem which will imply the insolubility of the general
quintic.

Theorem 8.4 If a polynomial f 2 K[x] is soluble by radicals, then Gal(f/K) is
a soluble group.

Proof. We first find a Galois extension eL of K with Gal(eL/K) soluble and such
that eL splits f .

This su�ces to show that Gal(f/K) is soluble, because if L is the splitting field
of f , we have K ✓ L ✓ eL, and then by Theorem 5.15, Gal(f/K) = Gal(L/K)
is a quotient of Gal(eL/K) – and quotients of soluble groups by normal subgroups
are again soluble (by Theorem 7.5 (2)).

We are given that f splits in an extension M = Km of K with the following
property: Km = K(d1, . . . , dm) and, for all i, there exists a positive integer ni

such that dni
i

2 K(d1, . . . , di�1). As before, let ⇣ denote a primitive nth root of
unity, where n =

Q
i
ni.

Let eL be the smallest Galois extension of K which contains Km(⇣). Then certainly
eL splits f (as it contains Km).

Suppose Gal(eL/K) = {✓1 = id, ✓2, . . . , ✓r}. Then each ✓i(⇣) (necessarily a power
of ⇣ by APR 3.10) and each ✓i(dj) necessarily also lies in eL. Conversely, eL is
generated by these elements.

Adjoining the generating elements

⇣, d1, d2, . . . , dm, ✓2(d1), ✓2(d2), . . . , ✓r(dm)

one at a time, we get a sequence of fields

K ✓ K(⇣) ✓ K(⇣, d1) ✓ K(⇣, d1, d2) ✓ · · · ✓ eL

in which the first extension is Galois and abelian (by Lemma 4.10) and each sub-
sequent non-trivial extension is Galois with cyclic Galois group (by Lemma 4.11).

This corresponds to the chain of subgroups

Gal(eL/K) .Gal(eL/K(⇣)) .Gal(eL/K(⇣, d1)) . · · · .Gal(eL/eL) = {1}

shows that Gal(eL/K) is soluble, as each successive non-trivial quotient after the
first (which is abelian) is cyclic (using Theorem 5.15). ⇥

The converse theorem

The converse of this theorem is also true. Hence a polynomial is soluble by radicals
if and only if its Galois group is soluble. To prove this fact, we will some auxiliary
lemmas.
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Lemma 8.5 Let G be a finite abelian group. Then there exists a chain of sub-
groups (each necessarily normal in G)

G = G0 .G1 . · · · .Gn = {1}

with each Gi/Gi+1 cyclic of prime order.

Example 8.6 If G = hai is cyclic of order 30 then one gets such a chain by

hai . ha2i . ha6i . {1}.

Here, the factors are C2, C3 and C5. ⇥

Proof. If G is trivial or cyclic of prime order then the result holds trivially.
Otherwise G has a non-trivial, proper subgroup G1. Choose G1 to be maximal
(i.e., there is no subgroup N with G .N > G1). By induction on the order of G,
the subgroup G1 has an appropriate chain of subgroups

G1 .G2 . · · · .Gn = {1}.

Furthermore, G/G1 has no non-trivial, proper subgroups and so is cyclic of prime
order. The result follows. ⇥
As a result of this lemma, we can give an alternative characterisation of when
groups are soluble.

Corollary 8.7 A finite group G is soluble if and only if there is a chain of
subgroups

G = G0 > G1 > · · · > Gn = {1}

with each Gi+1 �Gi and Gi/Gi+1 cyclic of prime order.

Proof. ((=) is clear.

(=)) Let G be finite and soluble. Take a series

G .G1 .G2 . · · · .Gn = {1}.

The successive quotients are abelian. In particular, the quotient G = G/G1 is
abelian. By the previous lemma, there is a sequence

G .G1 . · · · .Gm = {1}

in which each quotient is a cyclic group of prime order. By the same technique as
Theorem 7.5 (3), we can lift this to a series

G .G11 . · · · .G1m = G1
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and all successive quotients are cyclic of prime order. Similarly, between G1 and
G2 we can construct a sequence

G1 .G21 . · · · .G2r = G2,

and so on between each pair of terms. Stringing these together gives a sequence
of the desired type. ⇥
Our next result gives a converse to Lemma 4.11.

Lemma 8.8 (Kummer Theory) Let ⇣ be a primitive nth root of unity, and let
K ✓ C be a field such that K � Q(⇣). Suppose that L/K is a Galois extension
with Galois group Cn. Then L/K is a Kummer extension—i.e. there exists ↵ 2 K

such that
L = K( n

p
↵).

Proof. Write Gal(L/K) = h'i for a choice of generator ' 2 Gal(L/K).

Suppose that we could find an element � 2 L
⇥ such that '(�) = ⇣�. Then:

• The elements 'i(�) = ⇣
i
� would give n distinct elements of K. Moreover,

by Theorem 3.10 (APR), these elements are roots of the minimal polynomial
of �. It follows that [K(�) : K] � n. Since [L : K] = n, it follows that
L = K(�).

• We have '(�n) = '(�)n = �
n, so that �n 2 L

{'} = L
Gal(L/K) = K.

Writing ↵ = �
n, we would therefore be able to deduce that L = K( n

p
↵).

Hence, it is su�cient to prove that there is an element � 2 L
⇥ such that '(�) =

⇣�. Equivalently, viewing ' as a K-linear map L ! L, it is su�cient to prove
that ' has ⇣ as an eigenvalue.

Write µn for the multiplicative group of nth roots of 1. Let ⇤ denote the set of
eigenvalues of '. It’s clear that ⇤ ⇢ µn. Indeed, if � 2 ⇤ has eigenvector � 2 L

⇥,
then

� = '
n(�) = �

n
�,

from which it follows that �n = 1.

Moreover, ⇤ is a group under multiplication: if �1,�2 2 ⇤, and �i has eigenvector
�i, then because ' is also a field homomorphism,

'(�1�
�1
2 ) = '(�1)'(�2)

�1 = �1�
�1
2 (�1�

�1
2 ),

so that �1�
�1
2 2 ⇤.

The subgroups of µn are exactly the groups µd for d | n. Suppose that ⇤ = µd

for some d | n. Since '
n = 1, ' is diagonalisable. And since ⇤ = µd, then '

d is
a diagonalisable linear map with eigenvalues all 1. So '

d = 1. Hence, we must
have d = n. The result follows. ⇥
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Theorem 8.9 Let f 2 K[x]. IfGal(f/K) is soluble, then f is soluble by radicals.

Proof. Write L for the splitting field of f . By the assumption that Gal(L/K)
is soluble combined with Lemma 8.7, we can find

Gal(L/K) = G0 ⇤G1 ⇤ · · ·⇤Gn = {1}

such that Gi/Gi+1 is cyclic of order ni. Applying the fundamental theorem of
Galois theory, we can find

K = K0 ⇢ K1 ⇢ · · · ⇢ Kn = L

such that Gal(Ki+1/Ki) = Gi/Gi+1.

Let K 0
i
= Ki(⇣) with ⇣ is a primitive

Q
i
nith root of 1. So we have

K ⇢ K(⇣) ⇢ K1(⇣) ⇢ · · · ⇢ Kn(⇣) = L(⇣).

Clearly L(⇣) splits f over K, so it remains to show that for each i, K
0
i+1 =

K
0
i
( mi
p
di) for some di 2 K

0
i
. Now, for each i, the map

Gal(K 0
i+/K

0
i
) ! Gal(Ki+1/Ki)

given by ' 7! '|Ki+1 is an injection: by Theorem 2.5 (TPE), Ki+1 = Ki(�) for
some � 2 Ki, K 0

i+1 = K
0
i
(�) by definition, and hence, any ' 2 Gal(K 0

i+1/K
0
i
) is

determined by '(�). Moreover, K 0
i+1/K

0
i
is Galois, since it is the splitting field of

the minimal polynomial of �.

Hence, by Lemma 8.8, each K
0
i+1/K

0
i
is a Kummer extension. The result follows.

⇥
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§ 9 Polynomials again

Let f 2 K[x] be a polynomial of degree n and let L be its splitting field. We have
already seen the following:

• The Galois group Gal(f/K) = Gal(L/K) may be regarded as a subgroup
of the symmetric group Sn (Lemma 3.16), simply by looking at the action
of each automorphism on the n roots of f in L;

• f is soluble by radicals implies that Gal(f/K) is a soluble group (Theo-
rem 8.4), and in Appendix C we prove the converse (Theorem 8.9);

• Sn is soluble for n = 1, 2, 3, 4 and is not soluble for n � 5 (Remark 7.6);

• Any subgroup of a soluble group is again soluble (Theorem 7.5(1)).

Together, these imply that any polynomial of degree up to 4 is soluble by radicals,
which, of course, we saw in Chapter 1. We’ll make a few remarks on the process
for finding roots from a more Galois-theoretic point of view.

Later in the section, we will explain how to construct polynomials whose Galois
group is S5, and which are therefore not soluble by radicals.

Transitivity

Suppose that f(x) 2 K[x] is an irreducible polynomial of degree n. Then we know
that Gal(f/K) ⇢ Sn. But clearly, there are restrictions on what the Galois group
of f can be! For example, if Gal(f/K) is the trivial group, then that means f

must have been completely reducible. In this subsection, we will prove that the
Galois group of an irreducible polynomial of degree n is a transitive subgroup of
Sn. Roughly, this means that given any two roots of f , there is an element of the
Galois group which maps the first root to the second root.

Definition 9.1 We say that a subgroup G ✓ Sn is transitive if for any pair i,
j 2 {1, . . . , n}, there is a permutation ⇢ 2 G such that ⇢ maps i to j. N

Then we have

Proposition 9.2 Let f 2 K[x] have only simple roots. Then f(x) is irreducible
if and only if Gal(f/K) permutes the roots of f transitively.

Proof. First suppose f is irreducible. Let L denote a splitting field for f over
K. If ↵ and � are any two roots in L of f , then there is a K-automorphism of L
mapping ↵ to �. It follows that Gal(f/K) acts transitively on the roots.
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Conversely, if f is reducible, and ↵ is a root of f , let g denote the minimal
polynomial of ↵ over K. As f(↵) = 0, we have that g|f ; further f 6= g as f is
reducible and g is irreducible. So f = gh with deg h � 1. By APR (Theorem 3.10),
automorphisms of L permute the roots of g. So automorphisms of L can only map
↵ to other roots of g; if � is a root of h, there is no automorphism mapping ↵ to
�. ⇥

Example 9.3 We illustrate this with one of the earlier examples. Let K = Q and
L = Q(

p
2,
p
3). We saw earlier that Gal(L/K) = V4, and computed the action

of the group of the roots of (x2 � 2)(x2 � 3) and on the roots of x4 � 10x2 + 1,
the minimal polynomial of

p
2+

p
3. We saw that in the first case, the action was

not transitive, and corresponded to the subgroup generated by (1 2) and (3 4),
whereas in the second case, it was transitive, and corresponded to the subgroup
of S4 generated by (1 2)(3 4) and (1 3)(2 4). ⇥

Polynomials of degree 6 4

Degree 1

Note that when solving an equation of degree 1 over a field K, the root also
lies in K. So the splitting field of a degree 1 polynomial over K is K itself. And
indeed this also follows from the Galois-theoretic observation that the Galois group
Gal(f/K) is a subgroup of the 1-element group S1.

Degree 2

Since the solutions to

x
2 + ax+ b = 0

are

x =
�a±

p
a2 � 4b

2
,

in general, the roots are contained in an extension of degree 2 over K, obtained
by adjoining the root of the discriminant a2 � 4b to K. Again, this could have
been expected from the Galois theory, as S2 is a group with 2 elements. If the
square root lies in K (equivalently, if the quadratic factors), then the splitting field
is K itself, and the Galois group of the polynomial is trivial, otherwise, it has 2
elements, and is therefore cyclic.



54 MAS 442/6310

Degree 3

Remember that we solved the cubic as follows. We started by completing the
cube, replacing the variable x by x+ a

3 . Then

x
3 + ax

2 + bx+ c = 0

may be put in the form
X

3 +BX + C = 0.

Then we wrote X = u+ v, and derived a pair of equations

u
3 + v

3 + C = 0,

3uv +B = 0.

This led to a quadratic whose roots were u
3 and v

3:

y
2 + Cy � B

3

27
= 0,

so u
3 and v

3 are

�C ±
q
C2 + 4B3

27

2
.

Then u may be taken to be one of the three complex cube roots of

�C +
q
C2 + 4B3

27

2

and the choice of v may be read o↵ from the equation 3uv +B = 0.

Now, suppose that we’re given an irreducible polynomial f(x) = x
3 + Bx + C 2

K[x] of degree 3. Let’s see how we can use Galois theory to rederive this method.
Let L be the splitting field of f , and let M = L(!), where ! is a primitive cubed
root of 1. Then we have

K ⇢ K(!) ⇢ M.

We know that Gal(M/K(!)) is a transitive subgroup of S3, so is either A3 =
h(123)i or S3. Either way, by the Galois correspondence, we can find an interme-
diate extension

K(!) ⇢ K1 ⇢ M,

where K1 is the fixed field M
A3 .

Now suppose that f has roots ↵1,↵2,↵3 2 M . Equating x
3 + bx + C = (x �

↵1)(x� ↵2)(x� ↵3), we find that

0 = ↵1 + ↵2 + ↵3

B = ↵1↵2 + ↵2↵3 + ↵3↵1

C = �↵1↵2↵3.
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We want to find a generator for K1/K(!). Since K1 = M
(123), and (123) acts

on {↵1,↵2,↵3}, we should look for combinations of ↵1,↵2,↵3 which are fixed by
(123). Consider the elements

u =
1

3
(↵1 + !↵2 + !

2
↵
3)

v =
1

3
(↵1 + !

2
↵2 + !↵

3)

in M . We will make a few observations:

• We can recover ↵1,↵2,↵3 from u, v. Indeed,

↵1 = u+ v

↵2 = !
2
u+ !v = !

2(u+ !
2
v)

↵3 = !u+ !
2
v = !(u+ !v).

• We have (123)u = !u, so that (123)u3 = u
3. Hence, u3 2 M

(123) = K1.
Similarly, v3 2 K1.

• We have

u
3 + v

3 = (u+ v)(u+ !v)(u+ !
2
v) = ↵1↵2↵3 = �C

uv =
1

9
(↵3

1 + ↵
3
2 + ↵� 33 + (! + !

2)(↵1↵2 + ↵2↵3 + ↵3↵1)

=
1

9
((↵1 + ↵2 + ↵3)

3 � 3(↵1↵2 + ↵2↵3 + ↵3↵1))

= �1

3
B.

Hence u
3 and v

3 are roots of the polynomial

y
2 + Cy � B

3

27
= 0.

We find that

K ⇢ K(!) ⇢ K(u3) = K(

r
C2 +

4B3

27
) ⇢ K(u) = M.

This shows that f is soluble by radicals, as well as giving a method to solve f by
finding u and v.
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Degree 4

To solve the quartic we started by constructing the resolvent cubic:

X
4 + pX

2 + qX + r = 0,

we started by constructing the resolvent cubic:

Y
3 + 2pY 2 + (p2 � 4r)Y � q

2 = 0.

The roots of this cubic were �
2, �2 and �

2, where � = ↵1 + ↵2, � = ↵1 + ↵3 and
� = ↵1 + ↵4. The procedure to write down the roots of the quartic is as follows.
Firstly, solve the resolvent cubic, which, as we saw above, means that we must
first adjoin a square root, and then a cube root. This gives values of �2, �2 and
�
2. To get the possible values of � and �, we have to adjoin square roots of �2

and �
2. Then the value of � can be read o↵, and the roots of the quartic can be

recovered from just knowing �, � and � (and the fact that the sum of the roots,
↵1 + ↵2 + ↵3 + ↵4 = 0).

Now let’s see how we can rederive this from a Galois theoretic point of view. Sup-
pose that f is irreducible. If M is the splitting field of f over K, then Gal(M/K)
is a transitive subgroup of S4. Moreover, S4 is solvable, and

S4 ⇤ A4 ⇤ V4 ⇤ C2 ⇤ {1}.

In fact V � S4 and S4/V
⇠= S3. This suggests that we can solve f by combining

the solutions of a cubic polynomial (to give the V to S4 part) and two quadratic
polynomials (to give the {1} to C2 to V4 part).

Assume that K contains enough roots of unity (we need 12th roots). If not, we
can just add these roots to K as before. Then we can find subfields

K ⇢ M
V4 ⇢ M

V2 ⇢ M,

where each extension is obtained by adding an n
th root. Our goal is to find these

generators. Note that these extensions may be trivial, depending on the Galois
group of f .

Let ↵1,↵2,↵3,↵4 be the roots of f . As before, Gal(f/K) acts on the roots of
f . In order to find M

V4 , we should look for elements of M that are fixed by
(12)(34), (13)(24), (14)(23) 2 V4. Consider the elements

� = ↵1 + ↵2 = �↵3 � ↵4

� = ↵1 + ↵3 = �↵2 � ↵4

� = ↵1 + ↵4 = �↵2 � ↵3
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As before, we can recover the ↵i from �, �, �. For example,

↵1 =
1

2
(� + � + �).

In addition, for each ' 2 V4 we have '(�) = ±�, '(�) = ±� and '(�) = ±�.
Hence, �2

, �
2
, �

2 2 M
V4 . We can show computationally that �

2
, �

2
, �

2 solve a
cubic equation over K.

Hence, we can start by solving this cubic, to find the extension K1 = M
V4 =

K(�2
, �

2
, �

2). In general this requires an extension of degree 6, and Gal(K1/K) ⇠=
S3. Having done this, we choose a square root � of �2 and a square root � of
�
2. So the field M = K(�, �, �), in which all the roots ↵i lie, is obtained from

M by adjoining two further square roots. The group Gal(M/K1) is in general
isomorphic to V4. This fits in with the series

1� C2 � V4 � A4 � S4;

solving the cubic corresponds to the group S4/V4
⇠= S3, and then the two further

square roots corresponds to the group V4 = C2 ⇥ C2.

Insolubility of the general quintic

From the patterns emerging above, one might guess that the Galois group for the
general quintic should be isomorphic to S5, and therefore not be a soluble group.
By the above, this would imply that the general quintic has no solution in terms
of radicals. In fact, it is not too hard to show that the general polynomial of
degree n has Galois group Sn. Here, however, we will give an explicit example of
a polynomial not soluble by radicals.

We first use a group theoretical lemma.

Lemma 9.4 Let p be a prime number. Let G be a subgroup of Sp which is
transitive and contains a transposition. Then G = Sp.

Proof. Let S = {1, . . . , p}, and define a relation ⇠ on S by i ⇠ j if and only
if i = j or (i j) 2 G. ⇠ is clearly reflexive and symmetric. Further, if i ⇠ j and
j ⇠ k, then either i = j, i = k or j = k (in which case it is easy to see that
i ⇠ k) or (i k) = (i j)(j k)(i j) 2 G. So ⇠ is an equivalence relation.

If a 2 S, denote its equivalence class by a. Let b 2 S. As G is transitive, there
exists ✓ 2 G with ✓(a) = b.

Let c 2 a. Either c = a or (a c) 2 G. Consider ✓(c). Either ✓(c) = ✓(a) or
(✓(a) ✓(c)) = ✓(a c)✓�1 2 G.
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In either case, ✓(c) ⇠ b. It follows that ✓ gives a bijection from the equivalence
class of a to the equivalence class of b. So |a| = |b|. But S is partitioned into
equivalence classes, and |S| = p, so either all classes have 1 element each, or there
is only one class with p elements. The first case is ruled out because G contains
a transposition. Thus all transpositions (i j) lie in G. But Sp is generated by the
transpositions. ⇥
Example 9.5 Let f(x) = x

5 � 6x+ 3 2 Q[x]. Then f(x) = 0 is not soluble by
radicals over Q. ⇥

Proof. Note that f 0(x) = 5x4�6 and so has two real zeros. By Rolle’s theorem,
between any two real roots of f , there is a real root of f 0. Thus f has at most
three real zeros.

f(�2) = �17, f(�1) = 8, f(1) = �2 and f(2) = 23, so f has exactly three real
roots.

Let G = Gal(f/Q). f is irreducible by Eisenstein (p = 3), so G acts transitively
on the roots of f (by Proposition 9.2). Also, complex conjugation fixes the three
real roots amd interchanges the other two, so G contains a transposition. By the
lemma, G = S5. Thus f is not soluble in radicals. ⇥
Note that the same argument shows the following: suppose f(x) 2 Q[x] is a
polynomial such that

• deg f = p, a prime at least 5,

• f is irreducible over Q,

• f has p� 2 real roots, and one pair of complex conjugate roots.

Then f is not soluble by radicals over Q.

For this, the second and third hypotheses show that Gal(f/Q) is a transitive
subgroup of Sp which contains a transposition. Given that p is prime, the lemma
now implies that Gal(f/Q) = Sp. As p � 5, we know that Sp is not a soluble
group, and we conclude that f is not soluble by radicals.

(Note that it is important that p be prime – the polynomial x4 � 2 is irreducible
over Q, and has two real roots and one pair of complex conjugate roots, but its
Galois group is D4, not S4.)


