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§ 1

Introduction

Given a polynomial, Galois theory associates a group to it, the properties of which
reflect (some of) the properties of the polynomial. The Galois group is, in an
algebraic sense, the symmetry group of the roots of the polynomial, and these
symmetries act on the collection of roots. One can read o↵ a lot of information
about the polynomial from knowing how this symmetry group acts. Most impor-
tantly, the polynomial is soluble in terms of radicals (that is, using square roots,
cube roots and higher roots) if and only if its Galois group is soluble in the sense
of group theory (we’ll define this later).

Linear polynomials are trivial, and the solution to quadratic polynomials was known
to the ancient Babylonians. Cubics and quartics are harder; these were solved by
del Ferro (c.1510) and Ferrari (c.1540) respectively. These formulae prompted a
long search for general solutions in terms of radicals to equations of higher degree.
Abel (1824) proved that there exist quintics not soluble by radicals (following an
earlier flawed attempt by Ru�ni (1799)), and very soon after, Galois (1831) gave
a complete characterisation of all polynomials soluble by radicals, in terms of these
symmetry groups.

Broadly, one starts with a polynomial f whose coe�cients lie in a field K. So
f 2 K[x]. Let L be a larger field in which all the roots of f lie. Then K ✓ L is a
field extension, and to any field extension we associate a group Gal(L/K), called
the Galois group of the extension. It turns out that the group theory of Gal(L/K)
reflects many of the properties of the original polynomial. For example, the Galois
group of a quadratic polynomial will be trivial if the polynomial factors (as then
L = K) and will be cyclic with 2 elements otherwise.

We begin by reviewing the solution of equations of small degree.
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§ 1 Polynomials of degree 6 4

We begin by solving equations of degrees up to 4. By dividing through by the
leading coe�cient, we may always assume that the equation is monic, that is, has
leading coe�cient 1:

x
d + a1x

d�1 + · · ·+ ad = 0.

Throughout the course we suppose our polynomials defined over a subfield K of
C.

Degree 1

The trivial case; clearly

x+ a = 0

has solution x = �a. Note that (of course!) we do not have to extend the field
K to find a root, so the roots of the polynomial lie in an extension of degree 1
over K – i.e., in K itself.

Degree 2

This has also been known for thousands of years! By completing the square, we
transform

x
2 + ax+ b = 0

into
⇣
x+

a

2

⌘2
=

a
2

4
� b,

by adding a
2

4 � b to each side. Take square roots, to get

x+
a

2
= ±

r
a2 � 4b

4
.

Then the solutions are given by

x =
�a±

p
a2 � 4b

2
.

Note that in general, the roots are contained in an extension of degree 2 over K,
obtained by adjoining the root of the discriminant a2 � 4b to K.



§1 POLYNOMIALS OF DEGREE 6 4 3

Degree 3

The case of cubic equations is a little harder; it was not until about 1510 that del
Ferro (subsequently rediscovered by Tartaglia, and published by Cardano) showed
how to solve this equation. Again we start by attempting to complete the cube,
replacing the variable x by x+ a

3 . Then

x
3 + ax

2 + bx+ c = 0

may be rewritten

⇣
x+

a

3

⌘3
+

✓
b� a

2

3

◆⇣
x+

a

3

⌘
+

✓
c� ab

3
+

2a3

27

◆
= 0.

(Exercise: verify this!) Write X for x + a

3 , B for b � a
2

3 and C for c � ab

3 + 2a3

27 .
Thus we need to solve

X
3 +BX + C = 0.

By trying to complete the cube, we can only eliminate the square term. Here’s the
clever idea: we write X = u+ v. Expanding, this gives:

(u+ v)3 +B(u+ v) + C = 0,

or
u
3 + v

3 + 3uv(u+ v) + B(u+ v) + C = 0.

We equate the terms involving u+ v and those without, and try to solve

u
3 + v

3 + C = 0,

3uv +B = 0.

Rewriting this gives:

u
3 + v

3 = �C,

u
3
v
3 = �B

3

27
.

It follows that u3 and v
3 are solutions of the quadratic

y
2 + Cy � B

3

27
= 0,

so u
3 and v

3 are

�C ±
q

C2 + 4B3

27

2
.
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Then u may be taken to be one of the three complex cube roots of

�C +
q
C2 + 4B3

27

2

and once you’ve chosen u, then the value of v is given from the equation

3uv +B = 0.

More precisely, let u0, u1 and u2 be the three cube roots of
�C+

q
C2+ 4B3

27

2 . Then
define vi by 3uivi +B = 0. The three solutions to

X
3 +BX + C = 0

are given by u0 + v0, u1 + v1 and u2 + v2. Note that if u0 is one cube root,
then the others are got by multiplying by cube roots of unity. Thus u1 = !u0 and
u2 = !

2
u0, where ! = e

2⇡i
3 = �1+

p
�3

2 and !2 = e
4⇡i
3 = �1�

p
�3

2 . But then we find

that v1 = � B

3u1
= � B

3!u0
= 1

!

⇣
� B

3u0

⌘
= !

2
v0, and similarly v2 = !v0. Recalling

that X = x+ a

3 , we can recover the solutions to the original cubic equation.

Note that to write the roots, we first take a square root, of C2 + 4B3

27 , to get a
quadratic extension ofK, and then take a cube root of something in this extension.
Then the roots must lie in this extension, which is in general of degree 6 over K,
since we’ve had to take a square root and then a cube root, to find a field in which
to write the roots.

Example 1.1 Consider the following cubic.

x
3 � 3x� 18 = 0.

Clearly x = 3 is a solution, and is real. But applying Cardan’s method gives

x =
3

q
9 +

p
80 +

3

q
9�

p
80.

If you attempt to simplify this, you will reach a point where you have to find the
real solution of x3 � 3x � 18 = 0. You can check numerically that this is close
to 3, but this is not a proof. The other roots are a pair of complex conjugates
(find them!). ⇥

Compare this situation with the solution for quadratic equations: if a quadratic
equation with real coe�cients has real solutions then the formula gives real for-
mulas for these solutions.

So the Cardano formula is of limited practical usefulness. However at least it
shows that the cubic may be solved in terms of cube and square roots and the
usual operations of arithmetic.
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Degree 4

Another Italian mathematician, Ferrari, solved the general quartic around 1540, at
about the same time as Tartaglia rediscovered del Ferro’s solution to the cubic.
Ferrari’s original method is not so amenable to analysis by Galois theory, so we
give an alternative.

Given a general quartic,

x
4 + ax

3 + bx
2 + cx+ d = 0,

we first “complete the quartic”, replacing x by X = x+ a

4 to remove the term in
x
3. We get a quartic

X
4 + pX

2 + qX + r = 0.

Let ↵1, ↵2, ↵3 and ↵4 denote the roots of this quartic in a larger field L. Note
that

↵1 + ↵2 + ↵3 + ↵4 = 0.

Write

� = ↵1 + ↵2

� = ↵1 + ↵3

� = ↵1 + ↵4

Then observe that

↵1 = (� + � + �)/2,

↵2 = (� � � � �)/2,

↵3 = (�� + � � �)/2,

↵4 = (�� � � + �)/2,

so that the roots lie in K(�, �, �), i.e., if we know the values of �, � and �, we
can get ↵1, ↵2, ↵3 and ↵4.

Further,
�
2 = (↵1 + ↵2)

2 = �(↵1 + ↵2)(↵3 + ↵4)

and similarly �2 = �(↵1 + ↵3)(↵2 + ↵4) and �2 = �(↵1 + ↵4)(↵2 + ↵3). One
computes easily that

�
2 + �

2 + �
2 = �2p

�
2
�
2 + �

2
�
2 + �

2
�
2 = p

2 � 4r

��� = �q

so that �2, �2 and �2 are the three roots of

Y
3 + 2pY 2 + (p2 � 4r)Y � q

2 = 0.
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This cubic is known as the resolvent cubic.

We may now compute � and � by choosing square roots of �2 and �2; finally,
� = � q

��
, and then we can recover the roots ↵i.

So here is the full algorithm to solve the quartic.

1. Change x into X = x + a

4 to get rid of the term in x
3; we get a quartic of

the form
X

4 + pX
2 + qX + r = 0.

2. Form the resolvent cubic

Y
3 + 2pY 2 + (p2 � 4r)Y � q

2 = 0.

3. Solve the resolvent cubic – the roots are �2, �2 and �2.

4. Take square roots of �2 and �2 to get the values of � and �, and read o↵
the value of � from the equation ��� = �q.

5. Recover the values of ↵1, ↵2, ↵3 and ↵4 given the values of �, � and �.

You can see from the algorithm that to write down the formula for the roots, in
terms of the coe�cients (like the quadratic formula) would be far too di�cult and
would probably take several pages! But note that the method requires us to take a
cube root and a square root in order to solve the resolvent cubic, and two further
square roots in step (4), making one cube root and three square roots in total.
This means that the solutions lie in a field extension of degree 3⇥ 23 = 24.

It looks as if the roots of an equation of degree n are going to lie in some field
extension of degree n!. So a quintic equation should have its roots lying in some
extension of degree 120. If we are going to find some formula to solve the quintic,
we would need to take a fifth root, a cube root and three square roots. We will
prove the first remark here fairly soon. However, we are going to prove that there
is no formula to solve the quintic.

The main idea

How are we going to prove this result? The main idea is to use the notion of a
Galois group of a field extension. In a sense which we will explain later, it will be
a symmetry group of the extension.

Now suppose we have some polynomial whose roots can be expressed in terms of
square, cube and higher roots. For example, a root might be

↵ =
7

r

11� 3
3

q
5 + 2 5

p
2.
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Then ↵ lies in the field Q(↵). We can build up this field successively, first by
adjoining 5

p
2 to Q to get the field Q( 5

p
2). Then this field contains 5 + 2 5

p
2, and

we can adjoin its cube root to get the next field Q(
3
p

5 + 2 5
p
2). Finally, this field

contains 11� 3
3
p

5 + 2 5
p
2, and we can adjoin its 7th root to get the field Q(↵).

We have thus obtained a sequence of fields

Q ✓ Q
⇣

5
p
2
⌘
✓ Q

✓
3

q
5 + 2 5

p
2

◆
✓ Q

 
7

r

11� 3
3

q
5 + 2 5

p
2

!
= Q(↵)

in which each field is obtained from the one before by adjoining a root of something.

The idea of Galois theory is to each field extension, we can associate a group, called
the Galois group, and its properties will reflect the properties of the extension.
Given a sequence of extensions as above, in which at each step we adjoin a root,
we get a corresponding sequence of Galois groups. This means that the Galois
group of the whole extension Q ✓ Q(↵) can be broken up into smaller chunks
corresponding to each of the steps in the extension. This means that if a polynomial
is soluble by radicals (i.e., we can express its roots using square, cube and higher
roots), then its roots lie in some extension whose Galois group has a particular form.
We will end the course by showing that the Galois group of a quintic need not
have this special form, and therefore the roots of a quintic need not be expressible
in radicals.

As you can see, the theory is going to mix some easy theory of equations, with
some field theory and some group theory.
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§ 2 Fields

In this course, all fields will be subfields of C. In particular, every field will contain
Q, and will therefore be infinite. This is not really necessary, but it leads to an
easier presentation for many of the results. In any case, we are mostly going to
be interested in solving polynomials with coe�cients in Z (so certainly in Q), and
not in more general situations.

Basic material on field extensions

The Galois group of a polynomial consists of “symmetries of field extensions”. In
this section, we will give some (mostly) elementary results that we will need for
our study. Some were in MAS 333/438, and these are the ones we will begin with.

Definition 2.1 Let K be a field. A field extension K ✓ L, or L/K, is a field L

that contains K.

It follows that L may be thought of as a K-vector space. An extension L/K is
said to be finite if L is finite dimensional as a K-vector space. In this case, the
degree [L : K] of the extension L/K is defined to be the dimension of L as a
K-vector space. N

Then we have the following results:

Theorem 2.2 Suppose ↵ is algebraic over the field K (i.e., satisfies a polynomial
with coe�cients in K). Then the degree [K(↵) : K] is equal to the degree of the
minimal polynomial of ↵ over K.

If this degree is n, recall that this follows from the observation that every element
of K(↵) can be written as a polynomial an�1↵

n�1 + an�2↵
n�2 + · · ·+ a0, and so

{1,↵, . . . ,↵n�1} form a basis of K(↵) over K.

Theorem 2.3 (Degrees) Suppose K ✓ M ✓ L are field extensions. Then

[L : K] = [L : M ][M : K].

It will be rather convenient at a couple of points in the course to know that every
finite extension of fields can be generated by a single element. Before we prove
this, here’s an example from MAS 333/438:

Example 2.4 The field Q(
p
2,
p
3) = Q(

p
2+

p
3). For this, it su�ces to verify

that Q(
p
2,
p
3) ✓ Q(

p
2 +

p
3) and that Q(

p
2,
p
3) ◆ Q(

p
2 +

p
3). From

MAS 333/438, we only have to check that
p
2 +

p
3 2 Q(

p
2,
p
3) (which is

obvious) and that
p
2,

p
3 2 Q(

p
2 +

p
3). Write ↵ for

p
2 +

p
3. Then

↵
3 = 11

p
2 + 9

p
3,

so that
p
2 = ↵

3�9↵
2 . Thus

p
2 2 Q(↵), and also

p
3 = ↵�

p
2 2 Q(↵). ⇥
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The theorem mentioned above, known as the ‘Theorem of the Primitive Element’
was covered in MAS 333/438. We will abbreviate this theorem to TPE. The proof
is quite intricate so we give it here.

Recall that C is algebraically closed, so that every polynomial over C has a root in
C. It follows inductively that a polynomial of degree n defined over C has n roots
in C.
Theorem 2.5 (Theorem of the Primitive Element) Suppose K ✓ L is a
finite extension of fields, and that K,L ✓ C. Then L = K(�) for some element
� 2 L.

Proof. Suppose L is generated over K by m elements. We’ll first treat the
case m = 2. So suppose L = K(↵, �), and let f and g denote the minimal
polynomials of ↵ and � over K. Let ↵1 = ↵,↵2, . . . ,↵s be the roots of f in C,
and let �1 = �, �2, . . . , �t be the roots of g. Irreducible polynomials always have
distinct roots. Thus X = ↵i�↵1

�1��j is the only solution (if j 6= 1) to

↵i +X�j = ↵1 +X�1.

Choosing a c 2 K di↵erent from each of these X’s, then each ↵i+ c�j is di↵erent
from ↵ + c�. We claim that � = ↵ + c� generates L over K. Certainly � 2
K(↵, �) = L. Recall from MAS 333/438 that it su�ces to verify that ↵, � 2
K(�).

The polynomials g(x) and f(� � cx) both have coe�cients in K(�), and have
� as a root. The other roots of g(x) are �2, . . . , �t, and, as � � c�j is not any
↵i, unless i = j = 1, � is the only common root of g(x) and f(� � cx). Thus,
(x � �) is the highest common factor of g(x) and f(� � cx). But the highest
common factor is a polynomial defined over any field containing the coe�cients of
the original two polynomials (think about how the Euclidean algorithm works for
polynomials). In particular, it follows that x� � has coe�cients in K(�), so that
� 2 K(�). Then ↵ = � � c� 2 K(�). The result follows for m = 2.

More generally, if L = K(↵1, . . . ,↵m), we can view this asK(↵1, . . . ,↵m�2)(↵m�1,↵m),
and the case m = 2 allows us to write this as K(↵1, . . . ,↵m�2)(�m�1). Again we
can rewrite this as K(↵1, . . . ,↵m�3)(↵m�2, �m�1), and use the case m = 2 to
reduce the number further still. Continuing in this way, we eventually get down to
just one element. ⇥
So every field extension K ✓ L can be generated by a single element �.

Splitting fields

The splitting field of a polynomial f 2 K[x] is basically just the smallest field
extension of K containing all the roots of f . Such fields always exist, and are of
finite degree over K.
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Definition 2.6 Let f 2 K[x]. A field L containing K is said to split f if f
factors in L[x] into linear factors, c

Q
(x� ↵i), with ↵i 2 L. If L is generated by

the ↵i over K, then L is said to be a splitting field for f over K. N

Note that this last sentence simply says that if f is a polynomial over K, then its
splitting field is got by adjoining to K all of its roots. Let ↵1, . . . ,↵n denote the
roots of f in C, where n = deg f . Then form the field L = K(↵1, . . . ,↵n); clearly
L splits f and L is generated over K by the roots of f , so L is the splitting field
of f over K.

Examples 2.7 1. Suppose f(x) = x
2 + 1 over R. Then the roots of f in C

are ±i, so that the splitting field of f over R is R(i,�i) = C.

2. Suppose f(x) = x
2 + 1 over Q. Then the roots of f in C are ±i, so that

the splitting field of f over Q is Q(i).

3. Suppose f(x) = x
3 � 1 over Q. Then f factors as (x� 1)(x2 + x+1), and

the roots are 1, ! and !2, where ! = e
2⇡i
3 = �1+

p
�3

2 . Thus the splitting
field is Q(!) = Q(

p
�3).

4. Suppose f(x) = x
3 � 2 over Q. Then the roots of f in C are ↵,!↵,!2

↵,
where ↵ = 3

p
2 is the positive real cube root of 2, and ! = e

2⇡i
3 as be-

fore. Then the splitting field of f over Q is Q(↵,↵!,↵!2) = Q(↵,!) =
Q( 3

p
2,
p
�3).

Lemma 2.8 Suppose that f 2 K[x] is a polynomial of degree n. If L denotes a
splitting field for f , then [L : K] 6 n!.

Proof. L may be obtained by successively adjoining roots of f . Suppose that the
roots are ↵1, . . . ,↵n 2 C. Then [K(↵1) : K] 6 n, by Theorem 2.2 (as ↵1 is a root
of f , its minimal polynomial must divide f , so be of degree at most that of f). The
remaining roots ↵2, . . . ,↵n are roots of the polynomial f(x)/(x � ↵1), of degree
n � 1 and defined over K(↵1). Thus adjoining ↵2 gives a field extension with
[K(↵1,↵2) : K(↵1)] 6 n�1. Now the root ↵3 is a root of f(x)/(x�↵1)(x�↵2),
a polynomial of degree n� 2 over K(↵1,↵2). Continuing in this way, we see that

[L : K] = [K(↵1, . . . ,↵n) : K]

= [K(↵1, . . . ,↵n) : K(↵1, . . . ,↵n�1)] . . . [K(↵1) : K]

6 1.2 . . . n = n!

using the Degrees Theorem 2.3. ⇥
You might have expected to get [L : K] 6 n, not n!, in the above lemma.
Sometimes this will be true, but usually it will not. Here is an example.
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Example 2.9 Consider the polynomial x3 � 2 over Q. Let’s carry out the pro-
cedure in the proof above. We start by finding a root: let’s take ↵ = 3

p
2 to be

the real cube root of 2. Then

x
3 � 2 = (x� ↵)(x2 + x↵ + ↵

2)

is a factorisation into irreducible polynomials over Q(↵); note that [Q(↵) : Q] = 3
as x3 � 2 is the minimal polynomial of ↵ over Q. So

x
3 � 2

x� ↵
= x

2 + x↵ + ↵
2
.

Clearly this is irreducible over Q(↵) – its roots are !↵ and !2
↵ (where as before

! = e
2⇡i
3 = �1+

p
�3

2 ) which are not real, so cannot lie in Q(↵). To get the splitting
field, we need also to factor x2 + x↵+ ↵

2 = (x� ↵!)(x� ↵!
2), and to adjoin a

root, ↵! say, to Q(↵). Then the splitting field is Q(↵,!), and

[Q(↵,!) : Q] = [Q(↵,!) : Q(↵)][Q(↵) : Q] = 2.3 = 6.

⇥
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§ 3 Field extensions and automorphisms

Now that we have defined field extensions, we have to study their “symmetries”.
Recall (from MAS 220 or 346, for example) that geometrical figures, such as
polygons, cubes and so on, have groups of symmetries consisting of reflections
and rotations and so on, which act on the points of the figure. In this section
we will define similar ideas for field extensions; if L/K is a field extension, we
will associate to it a group, called the Galois group, whose elements act on the
elements of L, fixing every element in the bottom field K.

Automorphisms of field extensions

Our first task will be to define the notion of an automorphism of a field extension.

Definition 3.1 Let L/K be a field extension. Then a K-automorphism of L is
a map ' : L �! L which fixes every element of K and satisfies the following
rules:

1. if `1 and `2 are in L, then

'(`1 + `2) = '(`1) + '(`2),

that is, ' is an additive homomorphism from L to itself.

2. if `1 and `2 are in L, then

'(`1`2) = '(`1)'(`2),

that is, ' is a multiplicative homomorphism from L to itself.

3. ' is a bijection, so it is both injective (1-1) and surjective (onto).

4. if ` 2 K, then '(`) = `.

N

These K-automorphisms of L are the “symmetries” of the field extension L/K.

Remark 3.2 Remember that a homomorphism ✓ : L �! M of fields is always
injective. To see this, suppose that a non-zero element a 2 L is mapped to 0M ,
then every element is mapped to 0M , because each element ` 2 L is a multiple
of a, namely (`a�1)a. But ✓(1L) = 1M , so 1L /2 ker ✓. Thus the kernel cannot
contain non-zero elements, so must be {0L}. Thus ✓ is injective.

It follows that in the third condition of Definition 3.1, we only need to check that
' is surjective, as injectivity is automatically satisfied.

However, homomorphisms of fields need not be surjective; for example, any inclu-
sion of fields, such as R ,! C, is a homomorphism which is not surjective.
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Examples 3.3 1. Suppose L = K. Then the only K-automorphism of L is
the identity map, because such a map must fix every element of K = L.

2. The identity map on L is always a K-automorphism of L for any subfield K

of L.

3. Suppose L = C,K = R. Then there are exactly two possibleK-automorphisms
of L, namely

id : C �! C
z 7! z

and

conj : C �! C
z 7! z

To see this, note that any R-automorphism of C must fix every real number.
Then if a and b are real, the axioms imply that

'(a+ ib) = '(a) + '(i)'(b) = a+ '(i)b,

so that ' is determined by its e↵ect on i. But also,

'(i)2 = '(i2) = '(�1) = �1

as �1 is real. So '(i) must be a square root of �1, and must therefore
be ±i. If '(i) = i, then ' is the identity map, whereas, if '(i) = �i,
it is complex conjugation. (Exercise: check that both of these are indeed
R-automorphisms of C.)

4. Following the last example, show that if L = Q(
p
2) and K = Q, then there

are precisely two K-automorphisms of L, namely

'1 = id : Q(
p
2) �! Q(

p
2)

a+ b

p
2 7! a+ b

p
2

and

'2 : Q(
p
2) �! Q(

p
2)

a+ b

p
2 7! a� b

p
2

5. If L = Q( 3
p
2) and K = Q, then the only K-automorphism of L is the

identity. For this, we use a similar method as above to see that if ✓ is an
automorphism, then ✓( 3

p
2) must again be a cube root of 2 contained in L.

But there is only one cube root of 2 contained in L, namely 3
p
2 itself; the

other roots are complex, whereas L ⇢ R. It follows that not only does ✓ fix
Q, but it also fixes 3

p
2, and so it fixes all of L.

6. If L = Q(
p
2,
p
3) and K = Q, then, as above, a K-automorphism mapsp

2 to ±
p
2 and

p
3 to ±

p
3. This gives four K-automorphisms of L.
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Galois groups of field extensions

Now we come to the central definition of the course.

Definition 3.4 Let K ✓ L be a field extension. The Galois group of L over K
is the group of all K-automorphisms of L, and is denoted Gal(L/K). N

Given ✓ and ' in Gal(L/K), and a 2 L, define

(✓')(a) = ✓('(a)).

That is, the multiplication of elements of the Galois group is composition of maps.
Remember, for ✓' one applies ' first, and then applies ✓ to the result.

Proposition 3.5 Let K ✓ L be a field extension. Then Gal(L/K) is a group
under composition of maps.

Proof. The set of bijections L �! L forms a group, and so we can use the
subgroup criterion. This is easy and left as an exercise. One has to check, for
example, that if ✓ and ' are both K-automorphisms of L, then so is ✓', which
means that we must verify all the conditions of Definition 3.1, all of which are
easy:

(✓')(`1)+(✓')(`2) = ✓('(`1))+✓('(`2)) = ✓('(`1)+'(`2)) = ✓('(`1+`2)) = (✓')(`1+`2).

The other conditions are just as easy. ⇥
Example 3.6 Suppose K = R, and L = C. We have already seen that the
only two R-automorphisms of C are the identity and complex conjugation. It
follows that Gal(C/R) is a group with 2 elements, hence is cyclic, generated by
the complex conjugation (and indeed, conjugating a complex number twice returns
you to the original number). ⇥
Example 3.7 In the same way, Gal(Q(

p
2)/Q) ⇠= C2, the generator being the

conjugation map conj : a+ b
p
2 7! a� b

p
2. ⇥

Example 3.8 Suppose K = Q and L = Q( 3
p
2). Then, as we have already seen,

Gal(L/K) is trivial (i.e., just has the identity automorphism of L), as there are
no non-trivial K-automorphisms of L. ⇥

Now we prove an important result explaining how roots of polynomials behave
under these symmetries.

Lemma 3.9 Suppose K ✓ L is a field extension, and that ↵ 2 L satisfies
a polynomial equation f(x) = 0, where f has coe�cients in K. If ✓ is a K-
automorphism of L, then ✓(↵) is also a root of f .



§3 FIELD EXTENSIONS AND AUTOMORPHISMS 15

Proof. Suppose f(x) = anx
n + an�1x

n�1 + · · · + a0. If ↵ is a root of f , then
an↵

n + an�1↵
n�1 + · · ·+ a0 = 0. Applying ✓,

✓(an)✓(↵)
n + ✓(an�1)✓(↵)

n�1 + · · ·+ ✓(a0) = ✓(0) = 0,

as ✓ is an automorphism. Then as ✓ fixes every element of K, we see that

0 = an✓(↵)
n + an�1✓(↵)

n�1 + · · ·+ a0,

so that ✓(↵) is also a root of f . ⇥
We will refer to the following special case as ‘APR’ (‘Automorphisms Permute
Roots’).

Theorem 3.10 (APR) Let K ✓ L be a field extension, and let ↵ 2 L be
algebraic over K with minimal polynomial f 2 K[x] over K. If ✓ 2 Gal(L/K),
then ✓(↵) is also a root of f .

Let’s restate the above result:

a K-automorphism of L maps any element of L to another element
with the same minimal polynomial over K.

We have already seen lots of examples of this. For example, if L = Q(
p
2) and

K = Q, then the two automorphisms map
p
2 to ±

p
2, which are the two roots

of the minimal polynomial x2 � 2 of
p
2 over Q. This shows that there can’t be

too many K-automorphisms of L when L/K is a field extension, as each element
of L can only be mapped to a finite number of elements of L. If L/K is finite, so
generated by a single element, L = K(�), say, then every automorphism is then
completely determined by its e↵ect on �, and so there are only a finite number of
K-automorphisms of L.

We’ll now prove a bound for the size of the Galois group. For this, we’ll begin by
proving a fairly general result (which we will also need in §5), and then state a
special case from which we can deduce our bound.

Remember that a field homomorphism ' : K1 �! K2 is a map satisfying

'(k + k
0) = '(k) + '(k0) for all k, k0 2 K1;

'(kk0) = '(k)'(k0) for all k, k0 2 K1;

'(1) = 1.

Theorem 3.11 Let ↵ be algebraic over K with minimal polynomial f 2 K[x],
and consider the extension K ✓ K(↵). Let K ✓ L. Then there is a bijection
between the set of homomorphisms ✓ : K(↵) �! L that fix elements of K and
the set of distinct roots of f(x) in L.



16 MAS 442/6310

Proof. Write

H = {homomorphisms ✓ : K(↵) �! L that fix elements of K}

and
R = {distinct roots of f(x) in L}.

We define a map R ! H. Take � 2 R. We will define a homomorphism
✓� : K(↵) ! L.

Remember that the elements of K(↵) are all
P

n

i=0 ai↵
i where n is the degree of

f and ai 2 K.

Define

✓� : K(↵) �! L,

nX

i=0

ai↵
i 7!

nX

i=0

ai�
i
.

This clearly fixes every element of K. It is an easy exercise to see that ✓� is a
homomorphism. (Note that if � is not a root of f , then ✓�(f(↵)) = f(�), so that
✓�(0) 6= 0, so the map is not a homomorphism.)

Conversely, given a homomorphism ✓ : K(↵) �! L, we must have

✓

 
nX

i=0

ai↵
i

!
=

nX

i=0

✓(ai)✓(↵)
i =

nX

i=0

ai✓(↵)
i
.

Write f(x) =
P

n

i=0 cix
i. Then

P
n

i=0 ci↵
i = 0. Applying ✓, we have that

nX

i=0

ci✓(↵)
i = 0,

so ✓(↵) is a root of f(x).

Finally, it is an easy exercise to check that the maps � 7! ✓� and ✓ 7! ✓(↵) are
mutually inverse. ⇥
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Corollary 3.12 Let ↵ be algebraic over K. Then |Gal(K(↵)/K)| is equal to
the number of distinct roots of the minimal polynomial m↵ of ↵ over K in K(↵).

If � is such a root, the corresponding automorphism maps ↵ to �.

Proof. This is just a special case of Theorem 3.11, when L = K(↵), except that
Theorem 3.11 uses homomorphisms, while the Galois group consists of automor-
phisms. We have to check that homomorphisms from K(↵) to itself are necessarily
bijections. But we have already explained in Remark 3.2 that homomorphisms are
necessarily injective. However, we can regard a homomorphism as a linear map of
vector spaces over K. Since the kernel is trivial, the rank-nullity theorem shows
that the dimension of the image is equal to the dimension ofK(↵); since the image
is contained in K(↵), they must be equal, and so homomorphisms are necessrily
also surjective. ⇥
Immediately we get a bound on the size of the Galois group:

Corollary 3.13 Let K ✓ L be a finite extension of fields. Then

|Gal(L/K)| 6 [L : K].

Proof. By TPE (Theorem 2.5), we may assume L = K(↵) for some ↵ 2 L. Let
f 2 K[x] denote the minimal polynomial of ↵ over K. Then the degree of f is
[L : K], using Theorem 2.2.

But |Gal(K(↵)/K)| is the number of roots of f in K(↵), and this is bounded by
the degree of f , which is [L : K], as already remarked. ⇥
Next, we need to consider the case of splitting field extensions and in particular
the action of the Galois group on the roots of the polynomial.

Example 3.14 We compute the Galois group of the extension L/K where K =
Q again, and where L is the splitting field of x3 � 2, namely L = Q(↵,!), where
↵ = 3

p
2 and ! = e

2⇡i
3 . An automorphism ✓ of Gal(L/K) must send 3

p
2 to

another cube root of 2 in L, i.e., !i
↵ for i = 0, 1 or 2, and also must send ! to

another root of x2 + x+ 1, so either fixes ! or sends it to its conjugate, ! = !
2.

There are therefore six K-automorphisms of L, given by

↵ 7! ↵, ! 7! !

↵ 7! ↵, ! 7! !
2

↵ 7! !↵, ! 7! !

↵ 7! !↵, ! 7! !
2

↵ 7! !
2
↵, ! 7! !

↵ 7! !
2
↵, ! 7! !

2
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Note that if ' and  denote the second and third of these automorphisms, then
the automorphisms are id, ',  ,  ',  2 and ' respectively. It follows that the
Galois group is generated by ' and  of order 2 and 3 respectively, and one easily
verifies that ' ' =  

�1, so that the group is isomorphic to D3, the dihedral group
with 6 elements. One can also view D3 as S3, as D3 is the group of symmetries
of a triangle, and each symmetry gives a permutation of the three vertices.

The roots of x3 � 2 are given by ↵1 = ↵, ↵2 = !↵ and ↵3 = !
2
↵. Let’s work out

how these automorphisms act on the roots of the equation. For example, consider
the automorphism which sends ↵ 7! !↵ and ! 7! !

2. Then this sends ↵1 = ↵ to
!↵ = ↵2, ↵2 = !↵ to !2

.!↵ = ↵ = ↵1, and ↵3 = !
2
↵ to (!2)2.!↵ = !

2
↵ = ↵3.

Thus it exchanges the first two roots, and we regard it as the permutation (1 2)
in S3. With this notation, we see that the six permutations correspond to the
elements

id, (2 3), (1 2 3), (1 2), (1 3 2), (1 3)

in S3 respectively. This proves that the Galois group Gal(L/K) is equal to S3. ⇥

Example 3.15 SupposeK = Q and L = Q(
p
2,
p
3). Let ' be aK-automorphism

of L. Since (
p
2)2 = 2, we see that '(

p
2)2 = '(2) = 2, so that '(

p
2) = ±

p
2,

and similarly, '(
p
3) = ±

p
3. There are thus 4 K-automorphisms of L, induced

by:
p
2 7!

p
2,

p
3 7!

p
3 (the identity)p

2 7!
p
2,

p
3 7! �

p
3p

2 7! �
p
2,

p
3 7!

p
3p

2 7! �
p
2,

p
3 7! �

p
3

Let’s first regard L as the splitting field of (x2 � 2)(x2 � 3) over Q. If the roots
are ↵1 =

p
2, ↵2 = �

p
2, ↵3 =

p
3, ↵4 = �

p
3, then the four automorphisms

permute the ↵i as id, (3 4), (1 2), (1 2)(3 4) respectively. This shows that the
Galois group has four elements and looks like the subgroup of S4 isomorphic to
C2 ⇥ C2 generated by two disjoint transpositions.

But we can also regard L = Q(
p
2,
p
3) as Q(

p
2+

p
3). The minimal polynomial

for
p
2 +

p
3 over Q is x4 � 10x2 + 1 (exercise), whose four roots are given by

�1 =
p
2 +

p
3, �2 =

p
2�

p
3, �3 = �

p
2 +

p
3, �4 = �

p
2�

p
3.

Then the four K-automorphisms of L are given by

�1 7! �1, �2 7! �2, �3 7! �3, �4 7! �4

�1 7! �2, �2 7! �1, �3 7! �4, �4 7! �3

�1 7! �3, �2 7! �4, �3 7! �1, �4 7! �2

�1 7! �4, �2 7! �3, �3 7! �2, �4 7! �1
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Here, the four automorphisms act by the following permutations: id, (1 2)(3 4),
(1 3)(2 4), (1 4)(2 3), which is the well-known Klein 4-subgroup V4 of S4. Note
that it is also isomorphic to C2⇥C2, generated by two elements of order 2, although
the actual permutations involved look di↵erent.

So the Galois group is isomorphic to C2 ⇥ C2, but, depending on how we regard
L as a splitting field, we can realise this group in di↵erent ways as subgroups of
S4. ⇥

These examples indicate how we can regard the K-automorphisms of L, in the
case where L is a splitting field of some polynomial over K, as being permutations
of the roots of the polynomial. Let’s record this formally.

Lemma 3.16 Suppose L is the splitting field of a polynomial f of degree n over
K. List the roots of f in L as {↵1, . . . ,↵n}. Then the action of Gal(L/K) on
the roots gives an injective homomorphism of groups

Gal(L/K) �! Sn,

where Sn is the group of permutations of n objects.

Here, ' 2 Gal(L/K) gives us a permutation � in Sn if ' acts on {↵1, . . . ,↵n}
by the permutation �, i.e., if '(↵i) = ↵�(i).

Proof. L = K(↵1, . . . ,↵n), where ↵1, . . . ,↵n are the roots of f in L. We can
look at the action ' 2 Gal(L/K) on the roots of f . By APR (Theorem 3.10),
'(↵i) is also a root of f , so is one of {↵1, . . . ,↵n}. As ' is injective, ' is a permu-
tation of the set of ↵i. In this way, we obtain a homomorphism Gal(L/K) �! Sn.
It is injective – if ✓ lies in the kernel, then ✓ is mapped to the trivial permutation,
so that it sends each ↵i to itself, as well as fixing K, so it therefore fixes all of L.

⇥
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§ 4 Example: Cyclotomic polynomials, roots of unity

This section is not completely central to our goal of proving the unsolvability of
the quintic. However, it is an important family of examples in Galois theory.

We will consider in a little more detail the Galois groups associated to roots of
unity. We start with an example.

Example 4.1 Let ⇣ 2 C be a primitive 5th root of unity. The minimal polynomial
of ⇣ over Q is x

5�1
x�1 = x

4+x
3+x

2+x+1. The remaining roots of this polynomial
are the other three primitive 5th roots of unity. If ⇠ is one of them, then ⇠ = ⇣

j

for some j. It follows that Q(⇠) = Q(⇣). It follows easily from Corollary 3.12 that
if ⇠ is any primitive 5th root of unity, then there is a Q-automorphism of Q(⇣)
sending ⇣ to ⇠. Thus

Gal(Q(⇣)/Q) = {✓1, ✓2, ✓3, ✓4}

where ✓i is the Q-automorphism sending ⇣ to ⇣ i.

Note that ✓1 = id, and that

✓
2
2(⇣) = ✓2(⇣

2) = (⇣2)2 = ⇣
4
,

✓
3
2(⇣) = ✓2(⇣

4) = (⇣4)2 = ⇣
8 = ⇣

3
,

(so ✓22 = ✓4 and ✓32 = ✓3) so that Gal(Q(⇣)/Q) is cyclic with 4 elements, and is
generated by ✓2 (✓22 = ✓4 and ✓32 = ✓3). ⇥

In order to state the most general result, we need to define cyclotomic polynomials.

Definition 4.2 Let n � 1. Define the nth cyclotomic polynomial by

�n(x) =
Y

primitive nth roots of unity

(x� ⇣).

N

Let’s write down the first few:

�1(x) = x� 1

�2(x) = x+ 1

�3(x) = (x� !)(x� !
2) = x

2 + x+ 1

�4(x) = (x+ i)(x� i) = x
2 + 1

�5(x) =
x
5 � 1

x� 1
= x

4 + x
3 + x

2 + x+ 1

�6(x) = (x+ !)(x+ !
2) = x

2 � x+ 1

where ! denotes a primitive cube root of unity. In general, one can see that
�p(x) =

x
p�1
x�1 = x

p�1 + · · ·+ 1 when p is a prime.
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We have the following formula, which allows us to compute the cyclotomic poly-
nomials inductively:

Lemma 4.3
x
n � 1 =

Y

d|n

�d(x).

Proof. An nth root of unity will be a primitive dth root for some d|n. Conversely,
if d|n, a primitive dth root of unity is an nth root of unity. ⇥
For example, if n = 6, the 6th roots of unity are 1, �1, ±! and ±!2. We split
these into the primitive 1st roots, i.e., 1, the primitive square roots, i.e., �1, the
primitive cube roots, i.e., ! and !2, and the primitive 6th roots, �! and �!2. It
is clear then that the product of the cyclotomic polynomials �d for d|6 is x6 � 1.
Indeed, since the roots of x6 � 1 are the sixth roots of unity, we have:

x
6 � 1 = (x� 1)(x� e

2⇡i
6 )(x� e

4⇡i
6 )(x� e

6⇡i
6 )(x� e

8⇡i
6 )(x� e

10⇡i
6 )

= (x� 1)(x+ !
2)(x� !)(x+ 1)(x� !

2)(x+ !)

= (x� 1)(x+ 1)[(x� !)(x� !
2)][(x+ !)(x+ !

2)]

= �1(x)�2(x)�3(x)�6(x).

Remark 4.4 Note that the nth roots of unity are e
2⇡im

n for m = 0, . . . , n � 1.
Further, e

2⇡im
n is primitive if m and n are coprime. It follows that the number of

primitive nth roots of unity is

'(n) = |{0 6 m 6 n� 1 | m and n are coprime}|.

As there is a factor of �n for every primitive nth root of unity, it follows that
deg �n = '(n). Incidentally, if we look at the degrees of the polynomials in
Lemma 4.3, we deduce that n =

P
d|n '(d), which is an interesting number-

theoretic result in its own right.

Proposition 4.5 �n is a monic polynomial with integer coe�cients.

Proof. By induction on n. Note �1 = x � 1 satisfies the Proposition. Let
f(x) =

Q
d|n,d<n

�d(x). Then by induction, f is monic with integer coe�cients.
By Lemma 4.3, xn � 1 = f�n. Now we use the following:

Claim. If p = qr is a product of polynomials, where p and q are monic with integer
coe�cients, then so is r.

Proof. Suppose

p(x) = x
s+t + p1x

s+t�1 + · · ·+ ps+t

q(x) = x
s + q1x

s�1 + · · ·+ qs

r(x) = r0x
t + r1x

t�1 + · · ·+ rt
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By comparing coe�cients of xs+t, we see r0 = 1, so r is monic. Also, suppose we
have shown that r0, . . . rk�1 2 Z. Then, comparing coe�cients of xs+t�k, we see
that

pk = qk + qk�1r1 + · · ·+ q1rk�1 + rk,

so we see rk 2 Z. Inductively, each ri 2 Z, so r 2 Z[x]. This proves the claim.

Now apply this with p = x
n � 1, q = f and r = �n, to see that �n 2 Z[x]. ⇥

Fact 4.6 �n is irreducible in Q[x] and hence is the minimal polynomial of any
primitive nth root of unity. (In practice, one can often use Eisenstein’s criterion
after replacing x with x+ 1 or x� 1 to deduce the irreducibility of �n.)

Definition 4.7 If ⇣ is a primitive nth root of unity, then the extension Q(⇣) is
the nth cyclotomic extension of Q. N

Note that [Q(⇣) : Q] = '(n). Finally, we can give the structure of the Galois
group of these cyclotomic extensions.

Theorem 4.8 Gal(Q(⇣)/Q) ⇠= U(Zn), the multiplicative group of integers mod-
ulo n and prime to n.

Proof. As already remarked, the primitive roots of unity are exactly ⇣r, with
(r, n) = 1. Further, Q(⇣r) = Q(⇣) for such r. Then

Gal(Q(⇣)/Q) = {'r | 1 6 r 6 n, (r, n) = 1},

where 'r is the Q-automorphism mapping ⇣ to ⇣r. As ⇣r = ⇣
s whenever r ⌘ s

(mod n), we should really write 'r as 'r. Thus we get a bijection

U(Zn) �! Gal(Q(⇣)/Q)

r 7! 'r

As 'r �'s = 'rs, because (⇣s)r = ⇣
rs, it is a group homomorphism, and the result

follows. ⇥
Remark 4.9 It follows that Gal(Q(⇣)/Q) is cyclic when U(Zn) is cyclic. This
is true when n is prime but not true if n is divisible by two or more distinct odd
primes.

While we are thinking about roots of unity, we’ll end the section with a couple of
easy results which we’ll need later.

Lemma 4.10 Let n � 1 be an integer, and let L be the splitting field over K of
x
n � 1. Then Gal(L/K) is abelian.
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Proof. If ⇣ = e
2⇡i
n denotes a primitive nth root of unity in L, then L = K(⇣),

and all K-automorphisms of L are given by ⇣ 7! ⇣
i for i prime to n. Composing

any two automorphisms of this form is independent of the order of composition
(as (⇣ i)j = (⇣j)i), so that Gal(L/K) is abelian. ⇥
Lemma 4.11 Let K be a field containing the nth roots of unity. Let a 2 K. If
L denotes the splitting field of xn � a over K, then Gal(L/K) is cyclic (of order
dividing n).

Proof. Let ↵ denote any root of xn � a in L. Then all roots are given by ⇣j↵,
where ⇣ = e

2⇡i
n 2 K, for j = 0, . . . , n � 1. Hence the splitting field L is K(↵),

and the map ✓ 7! ✓(↵)
↵

gives an injective homomorphism from Gal(L/K) �! h⇣i.
⇥



24 MAS 442/6310

§ 5 Galois extensions

Let f(x) 2 K[x] be a polynomial with splitting field Kf/K. Recall that our goal
for the course is to use the group theoretic properties of Gal(Kf/K) to understand
the properties of f .

So far, we have attached a Galois group to any field extension L/K. In this section,
we will see that a certain class of field extensions, the Galois extensions, will be
the right extensions to study.

Normal extensions and Galois extensions

Example 5.1 Consider the extension Q( 4
p
2)/Q. This field extension behaves

badly in a number of ways:

1. The minimal polynomial of 4
p
2 over Q is f(x) = x

4 � 2. The field Q( 4
p
2)

does not contain all of the roots of f : it contains neither i 4
p
2 nor �i

4
p
2.

In particular, the field extension Q( 4
p
2)/Q does not capture all of the infor-

mation coming from the polynomial f . Indeed, Q( 4
p
2)/Q is not the splitting

field of any polynomial.

2. The Galois group of Q( 4
p
2)/Q is

Gal(Q( 4
p
2)/Q) = {id, conj},

where id is the identity, and conj : 4
p
2 7! � 4

p
2.

However, if we consider Q( 4
p
2) as an extension of Q(

p
2), then the Galois

group of Q( 4
p
2)/Q(

p
2) is

Gal(Q( 4
p
2)/Q(

p
2)) = {id, conj},

and hence,
Gal(Q( 4

p
2)/Q(

p
2)) = Gal(Q( 4

p
2)/Q).

In particular, the Galois group of Q( 4
p
2)/Q does not capture all of the

information of the extensionQ( 4
p
2)/Q. Rather, it only sees the subextension

Q( 4
p
2)/Q(

p
2).

3. The order of the Galois group of Q( 4
p
2)/Q is 2, which is smaller than the

degree [Q( 4
p
2) : Q].

Based on this example, the right extensions to study will be those without these
bad properties.
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Definition 5.2 A finite extension K ✓ L is normal if for every ` 2 L, the
minimal polynomial f of ` over K splits into linear factors in L.

Equivalently, if f(x) 2 K[x] is a polynomial, then L either contains all the roots
of f or none of the roots of f . N

Examples 5.3 1. The extension Q( 4
p
2)/Q is not normal, since it does not

contain all the roots of x4 � 2.

2. The extension Q(
p
2)/Q is normal. Indeed, every element of Q(

p
2) is of

the form a+ b
p
2, a, b 2 Q, and the second root of the minimal polynomial

of a+ b
p
2 is a� b

p
2.

3. A similar argument shows that every extension L/K of degree 2 is normal.
In particular, the extension Q( 4

p
2)/Q(

p
2) is normal.

Definition 5.4 A finite extension K ✓ L of fields is Galois if

|Gal(L/K)| = [L : K].

N

Examples 5.5 1. The extension Q( 4
p
2)/Q is not Galois.

2. The extension Q( 3
p
2,!), where ! is a primitive cubed root of unity, is Galois.

3. Every extension L/K of degree 2 is Galois. Indeed, we can write L = K(
p
�)

for some � 2 L, and
Gal(L/K) = {id, conj},

where id is the identity, and conj :
p
� 7! �

p
�, so

|Gal(L/K)| = [L : K] = 2.

Definition 5.6 Let L be a field, and let S be a finite set of automorphisms L.
The fixed field of S

L
S = {x 2 L : ✓(x) = x for all ✓ 2 S}.

N

(To see that L
S is a field, use the subfield criterion, noting that by definition

L
S ✓ L.)

Examples 5.7 1. If L = Q( 4
p
2), then

L
Gal(L/Q) = L

{id,conj} = Q(
p
2).
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2. If L = Q(
p
2)), then

L
Gal(L/Q) = L

{id,conj} = Q.

We have the following theorem:

Theorem 5.8 Let K ✓ L be a finite extension of fields. Assume that K,L ✓ C.
The following are equivalent:

1. L/K is Galois;

2. L is the splitting field of an irreducible polynomial f 2 K[x];

3. L/K is normal;

4. K = L
Gal(L/K).

This equivalence is one of our first indications that a statement purely about fields
(“L is the splitting field of a polynomial over K”) is equivalent to a statement
about the Galois group (“|Gal(L/K)| = [L : K]”). We will prove that (1) =)
(2) =) (3) =) (1) and that (1) () (4). We first prove (1) =) (2).

Lemma 5.9 Suppose K ✓ L is an extension of fields. If L/K is Galois, then L

is the splitting field of an irreducible polynomial over K.

Proof. By TPE (Theorem 2.5), there exists an ↵ 2 L such that L = K(↵). Let
f(x) denote the minimal polynomial of ↵ over K. We know:

• [L : K] is equal to the degree of f (Theorem 2.2),

• |Gal(L/K)| is equal to the number of distinct roots of f in L (Corol-
lary 3.12).

So we see that [L : K] = |Gal(L/K)| implies that the number of roots of f in L

is equal to the degree of f , i.e., if f factorises over L into distinct linear factors.
We have therefore shown that if L/K is Galois, then L is the splitting field of a
polynomial over K. ⇥
Next, we prove that (2) =) (3).

Lemma 5.10 Let L be the splitting field of an irreducible polynomial over K.
Then L/K is normal.
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Proof. Suppose L is the splitting field of a polynomial f 2 K[x]. Let g 2 K[x]
be any other polynomial with a root ↵ 2 L. Suppose that � is another root of g.
We need to show that � 2 L.

By Theorem 3.11, there is an isomorphism ✓ : K(↵) ! K(�) which fixes K and
maps ↵ 7! �.

Let ↵1, . . . ,↵n be the roots of f . Then it is a fact that we can define a homomor-
phism

' : K(↵,↵1, . . . ,↵n) ! K(�,↵1, . . . ,↵n)

that maps ↵ 7! �. Note that ' is a map L ! L(�).

But by APR (Theorem 3.10), ' must map each of the roots of f to another root
of f . Since L is generated by the roots of f , it follows that '(L) ✓ L. Hence
L(�) = L, so � 2 L, as required. ⇥
We now prove that (3) =) (1).

Lemma 5.11 Suppose K ✓ L is an extension of fields, and that K,L ✓ C. If
L/K is normal, then L/K is Galois.

Proof.

By TPE (Theorem 2.5), there exists an ↵ 2 L such that L = K(↵). Let f(x)
denote the minimal polynomial of ↵ over K. We know:

• [L : K] is equal to the degree of f (Theorem 2.2);

• |Gal(L/K)| is equal to the number of distinct roots of f in L (Corol-
lary 3.12).

Since L/K is normal and ↵ 2 L, L must contain all the roots of f . Hence,

|Gal(L/K)| = #{roots of f} = deg(f) = [L : K],

so L/K is Galois. ⇥
We complete the proof of Theorem 5.8 by proving (1) () (4).

Proof of Theorem 5.8.

We’ll first show that (1) =) (4). Assume that L/K is Galois, and let G =
Gal(L/K). We need to show that LG = K.

Consider the Galois group Gal(L/LG). Then G ✓ Gal(L/LG). Indeed, G acts on
L and fixes LG.

However, we have K ✓ L
G ⇢ L. So

|G| 6 |Gal(L/LG)| 6 [L : LG] 6 [L : K].
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Since L/K is Galois, |G| = [L : K], and hence [L : LG] = [L : K]. so L
G = K

as required.

We’ll now show that (4) =) (1). Write G = Gal(L/K) and suppose that
L
G = K. We need to show that L/K is Galois. By TPE (Theorem 2.5), there

exists an ↵ 2 L such that L = K(↵). Let f(x) denote the minimal polynomial of
↵ over K.

Consider the polynomial

g(x) =
Y

'2Gal(L/K)

(x� '(↵)) 2 L[x],

i.e. the polynomial in L[x] whose roots are '(↵) for all ' 2 Gal(L/K). We will
show that g(x) 2 K[X].

Suppose that ✓ 2 Gal(L/K). Then

✓(g(x)) = ✓

0

@
Y

'2Gal(L/K)

(x� '(↵))

1

A

=
Y

'2Gal(L/K)

(x� ✓'(↵))

=
Y

 2Gal(L/K)

(x�  (↵)) where  = ✓'

= g(x).

Hence, ✓ fixes all the coe�cients of g(x), so g(x) 2 L
G[x]. Since L

G = K, we
have g(x) 2 K[X].

But ↵ is a root of g(x), so we must have f(x) | g(x). Hence,

[L : K] = deg(f) 6 deg(g) = |Gal(L/K)| 6 [L : K],

from which it follows that |Gal(L/K)| = [L : K]. Hence, L/K is Galois. ⇥

Subextensions of Galois extensions

Remember from the sketch of our plan that we are going to try to build up larger
extensions from small ones. This means that it is important to consider chains of
extensions.

Corollary 5.12 Suppose L/K is a Galois extension, and that K ✓ M ✓ L is
an intermediate field. Then L/M is Galois.
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Proof. Suppose that L is the splitting field of some polynomial f 2 K[x]. Then
certainly f 2 M [x], as K ✓ M ; but L splits f and is generated over K by the
roots, so it is also generated over M by the roots. Thus L is the splitting field for
f over M , and is therefore Galois by Theorem 5.8. ⇥
Note that any automorphism of L which fixes every element of M will certainly
fix every element of K. It follows that Gal(L/M) is a subset (and therefore a
subgroup) of Gal(L/K).

However, in general, M/K need not be Galois. We have already seen a simple
example:

Q ✓ Q( 3
p
2) ✓ Q( 3

p
2,!).

Let’s now think about the case of field extensions K ✓ M ✓ L, in which L/K

is Galois (and therefore so is L/M). Remarkably, the condition that M/K should
be Galois has a simple reformulation in terms of groups.

Lemma 5.13 Let K ✓ M ✓ L be finite extensions of fields. If M/K is Galois,
then '(M) = M for all ' 2 Gal(L/K).

Proof. We may suppose that M = K(↵) is the splitting field for the irreducible
polynomial m↵ by TPE (Theorem 2.5). The element ' must map ↵ to another
root of m↵ by APR (Theorem 3.10); but this root, � say, is also in M , because
M splits m↵. It then follows that '(M) ✓ M , and similarly '�1(M) ✓ M , so
'(M) = M . ⇥
The situation when M/K is Galois is explained by the following theorem.

Theorem 5.14 Let K ⇢ L be a Galois extension, and let M be an intermediate
field. Then M/K is Galois if and only if Gal(L/M) � Gal(L/K). In this case,
there is an isomorphism

Gal(L/K)

Gal(L/M)
⇠= Gal(M/K).

We will prove each direction of this if and only if statement separately.

Theorem 5.15 Let K ⇢ L be a Galois extension, and let M be an intermediate
field. Then ifM/K is Galois, Gal(L/M)�Gal(L/K), and there is an isomorphism

Gal(L/K)

Gal(L/M)
⇠= Gal(M/K).

Proof. If M/K is Galois, then '(M) = M for all ' 2 Gal(L/K), by the
preceding Lemma. That is, given m 2 M , '(m) 2 M also. Since any ✓ in
Gal(L/M) will fix all elements of M , we see that ✓('(m)) = '(m) for all m 2 M ,
✓ 2 Gal(L/M) and ' 2 Gal(L/K). Therefore '�1

✓'(m) = m, and so '�1
✓'
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fixes every element of M . It follows that '�1
✓' 2 Gal(L/M), and therefore

Gal(L/M)�Gal(L/K).

For the second part, define a map

� : Gal(L/K) �! Gal(M/K)

' 7! '|M

where '|M is the restriction of ' to M ! M (recall that '(M) = M). So
'|M 2 Gal(M/K), as required. The map that sends each ' to '|M is easily
seen to be a group homomorphism, and its kernel consists of all ' such that
'|M(m) = m for all m 2 M , i.e., ' 2 Gal(L/M).

Then the first isomorphism theorem for groups gives:

Gal(L/K)

Gal(L/M)
⇠= Im� ✓ Gal(M/K).

However, if we compare the sizes of the two sides, bearing in mind that L/K and
L/M are both Galois (by Corollary 5.12):

|Im�| = |Gal(L/K)|
|Gal(L/M)| =

[L : K]

[L : M ]
= [M : K] = |Gal(M/K)|

using the Degrees Theorem 2.3, and so Im� = Gal(M/K). ⇥

Theorem 5.16 Suppose that L/K is Galois, and let M be an intermediate field.
If Gal(L/M)�Gal(L/K), then M/K is Galois.

Proof. Note that

Gal(L/M)�Gal(L/K)

() '
�1
✓' 2 Gal(L/M) for all ✓ 2 Gal(L/M),' 2 Gal(L/K)

() '
�1
✓'(m) = m for all m 2 M, ✓ 2 Gal(L/M),' 2 Gal(L/K)

() ✓'(m) = '(m) for all m 2 M, ✓ 2 Gal(L/M),' 2 Gal(L/K)

() '(M) ✓ L
Gal(L/M) for all ' 2 Gal(L/K)

() '(M) ✓ M for all ' 2 Gal(L/K) by Theorem 5.8

() '(M) = M for all ' 2 Gal(L/K)

As in Theorem 5.15, define

� : Gal(L/K) �! Gal(M/K)

✓ 7! ✓M
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where ✓M(m) = ✓(m) for m 2 M . As ✓(M) = M , ✓M 2 Gal(M/K), as
required. Also, one easily sees that � is a group homomorphism. Further, its
kernel is Gal(L/M). The first isomorphism theorem gives

Gal(L/K)

Gal(L/M)
⇠= Im� ✓ Gal(M/K).

and, as in the proof of Theorem 5.15,

[M : K] � |Gal(M/K)| �
����
Gal(L/K)

Gal(L/M)

���� =
[L : K]

[L : M ]
= [M : K],

and so [M : K] = |Gal(M/K)|, and M/K is therefore Galois. ⇥
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§ 6 The Galois correspondence

Before we look at the principal application, to the insolubility of the quintic, we
will look at the Galois correspondence. The main theorem of the theory is that
a polynomial is soluble if and only if the Galois group of its splitting field has a
particular property (also called solubility). One result, that there exist polynomials
whose Galois groups are not soluble, does not require the Galois correspondence.
However, the converse, that if the Galois group of a polynomial is soluble, then
the polynomial is soluble, does require the correspondence.

The Fundamental Theorem of Galois Theory

The aim of the fundamental theorem of Galois theory is to compare, in the case
where L/K is Galois, intermediate subfields K ✓ M ✓ L and subgroups of
Gal(L/K). The answer is as nice as one could hope for, although the proof (see
Theorem 12.2) is quite long.

Definition 6.1 Let L/K be a Galois extension, and let H be a subgroup of
Gal(L/K). Then we write L

H for

L
H = {` 2 L | ✓(`) = ` for all ✓ 2 H},

the fixed field of H. N

(To see that L
H is a field, use the subfield criterion, noting that by definition

L
H ✓ L.)

Theorem 6.2 (Fundamental Theorem of Galois Theory) Let L be a Ga-
lois extension of K, and let G = Gal(L/K). There is a bijection from

S := {subgroups of G}

to
F := {intermediate fields K ✓ M ✓ L}

given by H 7! L
H with inverse M 7! Gal(L/M).

Moreover, the correspondence is inclusion reversing, that is,

H1 ◆ H2 () L
H1 ✓ L

H2 ,

and indexes equal degrees, that is,

|H1|
|H2|

= [LH2 : LH1 ].

Finally, normal subgroups of G correspond to intermediate fields K ✓ M ✓ L

such that M/K is Galois.
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Terminology: for any inclusion of subgroups of any group, |H1|
|H2| is called the index

of H2 in H1. It is the number of cosets h1H2 for h1 2 H1.

Proof. Let H be a subgroup of G, and let M be an intermediate subfield K ✓
M ✓ L. To prove that S and F are in bijection, we need to show that the maps
we’ve constructed are mutually inverse, i.e. that

• L
Gal(L/M) = M ;

• Gal(L/LH) = H.

For the first part, by Corollary 5.12, L/M is Galois. Hence, by part (4) of Theo-
rem 5.8, LGal(L/M) = M .

For the second part, first observe that H ✓ Gal(L/LH)—indeed, H acts on L

and fixes LH . We will show that |Gal(L/LH)| 6 |H|, so that this inclusion is an
equality. Our argument will mimic the proof of (4) =) (1) in Theorem 5.8.

Let M = L
H . Then by Corollary 5.12, L/M is Galois. By TPE (Theorem 2.5),

there exists an ↵ 2 L such that L = M(↵). Let f(x) denote the minimal
polynomial of ↵ over M .

Consider the polynomial

g(x) =
Y

'2H

(x� '(↵)) 2 L[x],

i.e. the polynomial in L[x] whose roots are '(↵) for all ' 2 H. We will show that
g(x) 2 M [X].

Suppose that ✓ 2 H. Then

✓(g(x)) = ✓

 
Y

'2H

(x� '(↵))

!

=
Y

'2H

(x� ✓'(↵))

=
Y

 2H

(x�  (↵)) where  = ✓'

= g(x).

Hence, ✓ fixes all the coe�cients of g(x), so g(x) 2 L
H [x] = M [x]. But ↵ is a

root of g(x), so we must have f(x) | g(x). Hence,

[L : M ] = deg(f) 6 deg(g) = |H|,

from which it follows that Gal(L/M) = H, as required.
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It follows that the two maps H 7! L
H and M 7! Gal(L/M) are inverse bijections.

For the other part, observe that if H1 ◆ H2, we have L
H1 ✓ L

H2 (anything
in L fixed by H1 will be fixed by H2); conversely, if L

H1 ✓ L
H2 , the first

part of the theorem shows that then Gal(L/LH1) ◆ Gal(L/LH2), and also that
Gal(L/LHi) = Hi, so that H1 ◆ H2.

For the assertion about indexes and degrees, first observe that it is immediate if
H2 = 1. In this case, LH2 = L, and

(H1 : 1) = |H1| = |Gal(L/LH1)| = [L : LH1 ].

Now consider the general case. We use the special case above to see that
|Hi| = [L : LHi ]. But also we have:

|H1| = |H2|(H1 : H2) and [L : LH1 ] = [L : LH2 ][LH2 : LH1 ]

(by the Degrees Theorem 2.3). Comparing these gives the result.

⇥
Example 6.3 We are now going to look at the Galois theory of the polynomial
x
3 � 2. Its splitting field is Q( 3

p
2,!), where ! is a primitive cube root of unity,

so this is Galois over Q. Let’s first look at all of the subfields of this field. I claim
that the subfield lattice is:

Q

Q(!)

Q(!2 3
p
2)Q(! 3

p
2) Q( 3

p
2)

Q( 3
p
2,!)

Figure 1: Lattice of subfields of Q( 3
p
2,!).

(One pictures the lattice of subfields of a field L by drawing a line between two
subfields K and M whenever K ⇢ M and there are no subfields strictly between
K and M . Further, one arranges it so that M is higher up on the page than K.)
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Q-auto e↵ect on 3
p
2 e↵ect on ! permutation

1 3
p
2 ! id

'
3
p
2 !

2 (2 3)
 !

3
p
2 ! (1 2 3)

 ' !
3
p
2 !

2 (1 2)
 

2
!
2 3
p
2 ! (1 3 2)

' !
2 3
p
2 !

2 (1 3)

Table 1

The idea of Galois theory is that this is reflected by the group theoretical structure
of the subgroups of the Galois group. We have already seen thatGal(Q( 3

p
2,!)/Q)

is S3. Now S3 has the (upside-down) subgroup lattice shown in Figure 2.

6

3

2

1

S3

h(123)i

h(12)i h(13)i h(23)i

{1}

Figure 2: Subgroup lattice of S3.

Note that the pictures look alike!

So the Galois correspondence is between the six subfields of Q( 3
p
2,!) and the six

subgroups of S3.

We now check that the above pictures correspond.

Table 1 shows the isomorphism Gal(Q( 3
p
2,!)/Q) ⇠= S3.
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Thus, if we consider the subfield Q(!) of Q( 3
p
2,!), then we can see that Q(!) ✓

Q( 3
p
2,!)h(123)i. This is because  (!) = !. Note that [Q(!) : Q] = 2.

Now we use the Galois correspondence to see that the degree equals the index,
and so we see that we have an equality Q(!) = Q( 3

p
2,!)h(123)i.

In a similar way, we can identify the fixed field of each subgroup of S3, and they
correspond as in the picture. (Exercise: which of the fields are Galois extensions
of Q?) ⇥

Example 6.4 Let L = Q( 4
p
2, i), the splitting field of x4 � 2 over Q. Thus

Q ✓ L is Galois. [L : Q] = 8, as [L : Q( 4
p
2)] = 2 and [Q( 4

p
2) : Q] = 4. Then

|Gal(L/Q)| = 8.

Now 4
p
2 has minimal polynomial x4 � 2, whose roots are 4

p
2, i 4

p
2, � 4

p
2 and

�i
4
p
2. Further, i has minimal polynomial x2 + 1, whose roots are ±i.

The eight possible Q-automorphisms of M are given in the following table:

Q-auto e↵ect on 4
p
2 e↵ect on i permutation remarks

1 4
p
2 i id

r i
4
p
2 i (1 2 3 4) r

4 = 1
r
2 � 4

p
2 i (1 3)(2 4)

r
3 �i

4
p
2 i (1 4 3 2)

s
4
p
2 �i (2 4) s

2 = 1
rs i

4
p
2 �i (1 2)(3 4)

r
2
s � 4

p
2 �i (1 3)

r
3
s �i

4
p
2 �i (1 4)(2 3) r

3
s = sr

It follows that Gal(L/Q) = hr, s | r4 = s
2 = 1, r3s = sri ⇠= D4. The (upside-

down) subgroup lattice of D4 is shown in Figure 3.

The subfield lattice of L is shown in Figure 4.

We leave it as an exercise to verify the correspondence. We give just one example,
namely, the field M = Q((1 + i) 4

p
2). We first prove it is fixed by rs.

rs((1 + i) 4
p
2) = rs( 4

p
2) + rs(i 4

p
2) = i

4
p
2 + 4

p
2 = (1 + i) 4

p
2.

Next we check that it is not fixed by r
2:

r
2((1 + i) 4

p
2) = r

2( 4
p
2) + r

2(i 4
p
2) = � 4

p
2� i

4
p
2 = �(1 + i) 4

p
2.

It follows that the subgroup of D4 corresponding to M must be a subgroup con-
taining rs but not r2. A quick examination of the list of subgroups shows that the
only possibility is {1, rs}. The other correspondences are similar. ⇥
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8

4

2

1

D4

hriC2 ⇥ C2
⇠= {1, s, r2, r2s} {1, rs, r3s, r2} ⇠= C2 ⇥ C2

{1, s} {1, rs}{1, r2s} {1, r3s}{1, r2}

{1}

Figure 3: The subgroup lattice of D4. The normal
subgroups are boxed.

1

2

4

8

Q

Q(i)Q(
p
2) Q(i

p
2)

Q( 4
p
2) Q(�)Q(i 4

p
2) Q(�)Q(

p
2, i)

L = Q(i, 4
p
2)

Figure 4: The subfield lattice of L = Q(i, 4
p
2).

The subfields of L which are Galois extensions of
Q are boxed. Note � = (1 + i) 4

p
2.
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§ 7 Soluble groups

Remember our plan for proving the insolubility of the quintic. The basic idea is the
following. Suppose that a polynomial is soluble by radicals (we’ll make this more
precise later). This implies that all of its roots have a certain form, and thus that
the splitting field extension has a certain structure. We will see that this implies
that the corresponding Galois group has a similar sort of structure. By exhibiting
explicit examples of quintics whose Galois groups do not have this structure, we
will see that not every quintic is soluble by radicals. We first need a digression in
group theory.

In this section we develop the group theory necessary for applications to Galois
theory. We begin with a summary of the results from this section that we will need
for applications to Galois theory.

Definition 7.1 A group G is soluble provided it has a chain of subgroups

G = G0 > G1 > · · · > Gn = {1}

with each Gi+1 �Gi and Gi/Gi+1 abelian. N

We start by recalling the first isomorphism theorem for groups (we’ve already used
it, in fact!):

Theorem 7.2 Let ' : G �! H be a group homomorphism. Then ker' is a
normal subgroup of G and there is an isomorphism G/ ker '! Im'.

As corollaries, we deduce the second and third isomorphism theorems. Let’s start
with the second.

If H is a subgroup of G, and N �G, then write

HN = {hn : h 2 H,n 2 N}.

It is a subgroup of G.

Theorem 7.3 Let H and N be subgroups of G with N �G. Then H \N �H

and
H/H \N ⇠= HN/N.

Proof. Define a map � : H �! HN/N by h 7! hN . It is not hard to see that
� is a surjective homomorphism with kernel H \ N . The result follows from the
first isomorphism theorem. ⇥
Next, we do the third isomorphism theorem.
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Theorem 7.4 Let H and N be normal subgroups of G with H ◆ N . Then
H/N �G/N and

(G/N)/(H/N) ⇠= G/H.

Proof. Define a map  : G/N ! G/H by  (gN) = gH. It is easy to check
that  is a well-defined surjective homomorphism with kernel H/N . Now use the
first isomorphism theorem. ⇥
Having proven these technical results, we can now return to the study of soluble
groups.

Theorem 7.5 Let G be a group and H, N subgroups of G with N �G. Then

1. if G is soluble then H is soluble;

2. if G is soluble then G/N is soluble;

3. if N and G/N are soluble then G is soluble.

Proof. 1. By definition, G has a chain

G = G0 .G1 . · · · .Gn = {1}

with each Gi/Gi+1 abelian. Set Hi = Gi \H. So we have

H = H0 .H1 . · · · .Hr = {1}

(where we have deleted any redundant terms).

Note that Hi+1 = Gi+1\H = (Gi\H)\Gi+1. Thus, by the second isomorphism
theorem (7.3),

Hi/Hi+1 = (Gi \H)/((Gi \H) \Gi+1) ⇠= (Gi \H)Gi+1/Gi+1.

This last group is a subgroup of the abelian group Gi/Gi+1 and so is abelian. This
proves 1.

2. Again G has the chain of 1. Apply the canonical homomorphism ⇡ : G ! G/N

sending g to gN . Then we get

G/N = G0N/N .G1N/N . · · · .GnN/N = {1G/N}

(discarding redundant terms). Now,

(GiN/N)/(Gi+1N/N) ⇠= GiN/Gi+1N,

by the third isomorphism theorem (7.4). On the other hand, the latter group is

Gi(Gi+1N)/Gi+1N
⇠= Gi/Gi \ (Gi+1N),
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by the second isomorphism theorem. Finally, by the third isomorphism theorem,
we have

Gi/Gi \Gi+1N
⇠= (Gi/Gi+1)/((Gi \Gi+1N)/Gi+1))

which (being a quotient of the abelian group Gi/Gi+1) is abelian.

3. Let G denote the quotient G/N . Suppose

G .G1 . · · · .Gn = {1}

and
N .N1 . · · · .Nm = {1}

with all successive quotients being abelian. Let

Gi = {g 2 G | gN 2 Gi}.

Firstly, we see that Gi is a subgroup of G. For this, we use the subgroup criterion.
Clearly 1 2 Gi. Let g1, g2 2 Gi. Consider g1g

�1
2 . Then

(g1g
�1
2 )N = (g1N)(g2N)�1 2 Gi

as Gi is a group. It follows that g1g
�1
2 2 Gi, and, by the subgroup criterion, Gi is

a group.

Next we check that Gi/N = Gi. The quotient Gi/N consists of all cosets gN with
g 2 Gi – but the defining property of this group is that these cosets all lie in Gi. It
follows that Gi/N ✓ Gi. Conversely, every element of Gi is some coset gN , and
then the corresponding g must lie in Gi, whereupon the inclusion Gi/N �! Gi is
surjective.

Lastly, we claim that Gi+1 � Gi. Let g 2 Gi+1, and � 2 Gi. Then we want to
show that ��1

g� 2 Gi+1. But

(��1
g�)N = (�N)�1(gN)(�N) 2 Gi+1

because Gi+1 � Gi. It follows that ��1
g� 2 Gi+1, as required. By the third

isomorphism theorem, we also see that

Gi

Gi+1

=
Gi/N

Gi+1/N

⇠=
Gi

Gi+1
,

so that each quotient Gi/Gi+1 is abelian. Then the sequence

G .G1 . · · · .Gn = N .N1 . · · · .Nm = {1}

is a series whose successive quotients are all abelian. Thus G is soluble. ⇥
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Remark 7.6 1. Abelian groups are soluble (consider the series G . {1}).

2. S3 is soluble. A suitable chain is given by:

S3 . h(123)i . {1}.

3. S4 is soluble. Here, a suitable chain is given by:

S4 . A4 . V4 . {1},

where V4 = {1, (12)(34), (13)(24), (14)(23)}.

4. D4 is soluble. (It is a subgroup of S4.)

5. A group G is called simple if it is non-trivial and it has no normal subgroups
besides {1} and G. A group which is soluble and simple is easily seen to be
cyclic of prime order.

6. If n � 5 then An is simple and so An is not soluble, for n � 5.

7. If n � 5, it follows that Sn is not soluble (if Sn were to be soluble, then its
subgroup An would be soluble, and it isn’t).

The crucial result is that S1, S2, S3 and S4 are soluble groups, but S5 is not. This
will reflect the fact that polynomials of degree up to 4 are soluble by radicals, but
that quintics are not in general.



§8 SOLUBILITY OF POLYNOMIALS 47

§ 8 Solubility of polynomials

Let’s start by making the (now obvious) definition of the Galois group of a poly-
nomial.

Definition 8.1 Let K be a field, and let f 2 K[x]. Let L be the splitting
field of f over K. Define the Galois group of f to be Gal(L/K). (Note that
L/K is Galois as L is a splitting field (Theorem 5.8).) We will denote this group
Gal(f/K). N

We will explain that many of the properties of f will be reflected in properties of
its Galois group. Most importantly, we will see that if the polynomial is soluble in
radicals then its Galois group is a soluble group. In fact, the converse is also true,
and is proven in Appendix C. As we have produced examples of non-soluble groups,
this may indicate that not every polynomial is soluble by radicals. To confirm this,
we will give an explicit quintic whose Galois group is S5.

Let’s first recall some earlier results, Lemma 4.10 and Lemma 4.11.

Lemma 4.10. Let n � 1 be an integer, and let L be the splitting field over K

of xn � 1. Then Gal(L/K) is abelian.

Lemma 4.11. Let K be a field containing the nth roots of unity. Let a 2 K.
If L denotes the splitting field of xn � a over K, then Gal(L/K) is cyclic (of
order dividing n).

If the conditions of Lemma 4.11 hold, we call L/K a Kummer extension.

Now we turn to solubility by radicals.

Definition 8.2 Let K be a field, and let f 2 K[x]. The equation f(x) = 0 is
said to be soluble by radicals over K if there is an extension field M of K such
that

1. M splits f

2. M has a chain of subfields

K = K0 ⇢ K1 ⇢ K2 ⇢ · · · ⇢ Km = M

such that, for each i, Ki+1 = Ki(di) with d
ni
i

2 Ki for some positive integer
ni.

N
Remark 8.3 Then f is soluble by radicals if and only if the roots of f are given
by expressions involving elements of K and +, �, ⇥, /, and nth roots.
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Now we can prove the theorem which will imply the insolubility of the general
quintic.

Theorem 8.4 If a polynomial f 2 K[x] is soluble by radicals, then Gal(f/K) is
a soluble group.

Proof. We first find a Galois extension eL of K with Gal(eL/K) soluble and such
that eL splits f .

This su�ces to show that Gal(f/K) is soluble, because if L is the splitting field
of f , we have K ✓ L ✓ eL, and then by Theorem 5.15, Gal(f/K) = Gal(L/K)
is a quotient of Gal(eL/K) – and quotients of soluble groups by normal subgroups
are again soluble (by Theorem 7.5 (2)).

We are given that f splits in an extension M = Km of K with the following
property: Km = K(d1, . . . , dm) and, for all i, there exists a positive integer ni

such that dni
i

2 K(d1, . . . , di�1). As before, let ⇣ denote a primitive nth root of
unity, where n =

Q
i
ni.

Let eL be the smallest Galois extension of K which contains Km(⇣). Then certainly
eL splits f (as it contains Km).

Suppose Gal(eL/K) = {✓1 = id, ✓2, . . . , ✓r}. Then each ✓i(⇣) (necessarily a power
of ⇣ by APR 3.10) and each ✓i(dj) necessarily also lies in eL. Conversely, eL is
generated by these elements.

Adjoining the generating elements

⇣, d1, d2, . . . , dm, ✓2(d1), ✓2(d2), . . . , ✓r(dm)

one at a time, we get a sequence of fields

K ✓ K(⇣) ✓ K(⇣, d1) ✓ K(⇣, d1, d2) ✓ · · · ✓ eL

in which the first extension is Galois and abelian (by Lemma 4.10) and each sub-
sequent non-trivial extension is Galois with cyclic Galois group (by Lemma 4.11).

This corresponds to the chain of subgroups

Gal(eL/K) .Gal(eL/K(⇣)) .Gal(eL/K(⇣, d1)) . · · · .Gal(eL/eL) = {1}

shows that Gal(eL/K) is soluble, as each successive non-trivial quotient after the
first (which is abelian) is cyclic (using Theorem 5.15). ⇥

The converse theorem

The converse of this theorem is also true. Hence a polynomial is soluble by radicals
if and only if its Galois group is soluble. To prove this fact, we will some auxiliary
lemmas.
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Lemma 8.5 Let G be a finite abelian group. Then there exists a chain of sub-
groups (each necessarily normal in G)

G = G0 .G1 . · · · .Gn = {1}

with each Gi/Gi+1 cyclic of prime order.

Example 8.6 If G = hai is cyclic of order 30 then one gets such a chain by

hai . ha2i . ha6i . {1}.

Here, the factors are C2, C3 and C5. ⇥

Proof. If G is trivial or cyclic of prime order then the result holds trivially.
Otherwise G has a non-trivial, proper subgroup G1. Choose G1 to be maximal
(i.e., there is no subgroup N with G .N > G1). By induction on the order of G,
the subgroup G1 has an appropriate chain of subgroups

G1 .G2 . · · · .Gn = {1}.

Furthermore, G/G1 has no non-trivial, proper subgroups and so is cyclic of prime
order. The result follows. ⇥
As a result of this lemma, we can give an alternative characterisation of when
groups are soluble.

Corollary 8.7 A finite group G is soluble if and only if there is a chain of
subgroups

G = G0 > G1 > · · · > Gn = {1}

with each Gi+1 �Gi and Gi/Gi+1 cyclic of prime order.

Proof. ((=) is clear.

(=)) Let G be finite and soluble. Take a series

G .G1 .G2 . · · · .Gn = {1}.

The successive quotients are abelian. In particular, the quotient G = G/G1 is
abelian. By the previous lemma, there is a sequence

G .G1 . · · · .Gm = {1}

in which each quotient is a cyclic group of prime order. By the same technique as
Theorem 7.5 (3), we can lift this to a series

G .G11 . · · · .G1m = G1
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and all successive quotients are cyclic of prime order. Similarly, between G1 and
G2 we can construct a sequence

G1 .G21 . · · · .G2r = G2,

and so on between each pair of terms. Stringing these together gives a sequence
of the desired type. ⇥
Our next result gives a converse to Lemma 4.11.

Lemma 8.8 (Kummer Theory) Let ⇣ be a primitive nth root of unity, and let
K ✓ C be a field such that K � Q(⇣). Suppose that L/K is a Galois extension
with Galois group Cn. Then L/K is a Kummer extension—i.e. there exists ↵ 2 K

such that
L = K( n

p
↵).

Proof. Write Gal(L/K) = h'i for a choice of generator ' 2 Gal(L/K).

Suppose that we could find an element � 2 L
⇥ such that '(�) = ⇣�. Then:

• The elements 'i(�) = ⇣
i
� would give n distinct elements of K. Moreover,

by Theorem 3.10 (APR), these elements are roots of the minimal polynomial
of �. It follows that [K(�) : K] � n. Since [L : K] = n, it follows that
L = K(�).

• We have '(�n) = '(�)n = �
n, so that �n 2 L

{'} = L
Gal(L/K) = K.

Writing ↵ = �
n, we would therefore be able to deduce that L = K( n

p
↵).

Hence, it is su�cient to prove that there is an element � 2 L
⇥ such that '(�) =

⇣�. Equivalently, viewing ' as a K-linear map L ! L, it is su�cient to prove
that ' has ⇣ as an eigenvalue.

Write µn for the multiplicative group of nth roots of 1. Let ⇤ denote the set of
eigenvalues of '. It’s clear that if ⇤ ⇢ mun. Indeed, if � 2 ⇤ has eigenvector
� 2 L

⇥, then
� = '

n(�) = �
n
�,

from which it follows that �n = 1.

Moreover, ⇤ is a group under multiplication: if �1,�2 2 ⇤, and �i has eigenvector
�i, then because ' is also a field homomorphism,

'(�1�
�1
2 ) = '(�1)'(�2)

�1 = �1�
�1
2 (�1�

�1
2 ),

so that �1�
�1
2 2 ⇤.

The subgroups of µn are exactly the groups µd for d | n. Suppose that ⇤ = µd

for some d | n. Since 'n = 1, ' is diagonalisable. And since ⇤ = µd, then 'd is
a diagonalisable linear map with eigenvalues all 1. So 'd = 1. Hence, we must
have d = n. The result follows. ⇥
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Theorem 8.9 Let f 2 K[x]. IfGal(f/K) is soluble, then f is soluble by radicals.

Proof. Write L for the splitting field of f . By the assumption that Gal(L/K)
is soluble combined with Lemma 13.3, we can find

Gal(L/K) = G0 ⇤G1 ⇤ · · ·⇤Gn = {1}

such that Gi/Gi+1 is cyclic of order ni. Applying the fundamental theorem of
Galois theory, we can find

K = K0 ⇢ K1 ⇢ · · · ⇢ Kn = L

such that Gal(Ki/Ki+1) = Gi/Gi+1.

Let K 0
i
= Ki(⇣) with ⇣ is a primitive

Q
i
nith root of 1. So we have

K ⇢ K(⇣) ⇢ K1(⇣) ⇢ · · · ⇢ Kn(⇣) = L(⇣).

Clearly L(⇣) splits f over K, so it remains to show that for each i, K
0
i
=

K
0
i+1(

mi
p

(di) for some di 2 K
0
i+1. Now, for each i, the map

Gal(K 0
i
/K

0
i+1) ! Gal(Ki/Ki+1)

given by ' 7! '|Ki is an injection: by Theorem 2.5 (TPE), Ki = Ki+1(�) for
some � 2 Ki+1, K 0

i
= K

0
i+1(�) by definition, and hence, any ' 2 Gal(K 0

i
/K

0
i+1)

is determined by '(�). Moreover, K 0
i
/K

0
i+1 is Galois, since it is the splitting field

of the minimal polynomial of �.

Hence, by Lemma 8.8, each K
0
i
/K

0
i+1 is a Kummer extension. The result follows.

⇥
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§ 9 Polynomials again

Let f 2 K[x] be a polynomial of degree n and let L be its splitting field. We have
already seen the following:

• The Galois group Gal(f/K) = Gal(L/K) may be regarded as a subgroup
of the symmetric group Sn (Lemma 3.16), simply by looking at the action
of each automorphism on the n roots of f in L;

• f is soluble by radicals implies that Gal(f/K) is a soluble group (Theo-
rem 8.4), and in Appendix C we prove the converse (Theorem 13.10);

• Sn is soluble for n = 1, 2, 3, 4 and is not soluble for n � 5 (Remark 7.6);

• Any subgroup of a soluble group is again soluble (Theorem 7.5(1)).

Together, these imply that any polynomial of degree up to 4 is soluble by radicals,
which, of course, we saw in Chapter 1. We’ll make a few remarks on the process
for finding roots from a more Galois-theoretic point of view.

Later in the section, we will explain how to construct polynomials whose Galois
group is S5, and which are therefore not soluble by radicals.

Transitivity

Suppose that f(x) 2 K[x] is an irreducible polynomial of degree n. Then we know
that Gal(f/K) ⇢ Sn. But clearly, there are restrictions on what the Galois group
of f can be! For example, if Gal(f/K) is the trivial group, then that means f

must have been completely reducible. In this subsection, we will prove that the
Galois group of an irreducible polynomial of degree n is a transitive subgroup of
Sn. Roughly, this means that given any two roots of f , there is an element of the
Galois group which maps the first root to the second root.

Definition 9.1 We say that a subgroup G ✓ Sn is transitive if for any pair i,
j 2 {1, . . . , n}, there is a permutation ⇢ 2 G such that ⇢ maps i to j. N

Then we have

Proposition 9.2 Let f 2 K[x] have only simple roots. Then f(x) is irreducible
if and only if Gal(f/K) permutes the roots of f transitively.

Proof. First suppose f is irreducible. Let L denote a splitting field for f over
K. If ↵ and � are any two roots in L of f , then there is a K-automorphism of L
mapping ↵ to �. It follows that Gal(f/K) acts transitively on the roots.
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Conversely, if f is reducible, and ↵ is a root of f , let g denote the minimal
polynomial of ↵ over K. As f(↵) = 0, we have that g|f ; further f 6= g as f is
reducible and g is irreducible. So f = gh with deg h � 1. By APR (Theorem 3.10),
automorphisms of L permute the roots of g. So automorphisms of L can only map
↵ to other roots of g; if � is a root of h, there is no automorphism mapping ↵ to
�. ⇥

Example 9.3 We illustrate this with one of the earlier examples. Let K = Q and
L = Q(

p
2,
p
3). We saw earlier that Gal(L/K) = V4, and computed the action

of the group of the roots of (x2 � 2)(x2 � 3) and on the roots of x4 � 10x2 + 1,
the minimal polynomial of

p
2+

p
3. We saw that in the first case, the action was

not transitive, and corresponded to the subgroup generated by (1 2) and (3 4),
whereas in the second case, it was transitive, and corresponded to the subgroup
of S4 generated by (1 2)(3 4) and (1 3)(2 4). ⇥

Polynomials of degree 6 4

Degree 1

Note that when solving an equation of degree 1 over a field K, the root also
lies in K. So the splitting field of a degree 1 polynomial over K is K itself. And
indeed this also follows from the Galois-theoretic observation that the Galois group
Gal(f/K) is a subgroup of the 1-element group S1.

Degree 2

Since the solutions to

x
2 + ax+ b = 0

are

x =
�a±

p
a2 � 4b

2
,

in general, the roots are contained in an extension of degree 2 over K, obtained
by adjoining the root of the discriminant a2 � 4b to K. Again, this could have
been expected from the Galois theory, as S2 is a group with 2 elements. If the
square root lies in K (equivalently, if the quadratic factors), then the splitting field
is K itself, and the Galois group of the polynomial is trivial, otherwise, it has 2
elements, and is therefore cyclic.
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Degree 3

Remember that we solved the cubic as follows. We started by completing the
cube, replacing the variable x by x+ a

3 . Then

x
3 + ax

2 + bx+ c = 0

may be put in the form
X

3 +BX + C = 0.

Then we wrote X = u+ v, and derived a pair of equations

u
3 + v

3 + C = 0,

3uv +B = 0.

This led to a quadratic whose roots were u
3 and v

3:

y
2 + Cy � B

3

27
= 0,

so u
3 and v

3 are

�C ±
q
C2 + 4B3

27

2
.

Then u may be taken to be one of the three complex cube roots of

�C +
q
C2 + 4B3

27

2

and the choice of v may be read o↵ from the equation 3uv +B = 0.

Now, suppose that we’re given an irreducible polynomial f(x) = x
3 + Bx + C 2

K[x] of degree 3. Let’s see how we can use Galois theory to rederive this method.
Let L be the splitting field of f , and let M = L(!), where ! is a primitive cubed
root of 1. Then we have

K ⇢ K(!) ⇢ M.

We know that Gal(M/K(!)) is a transitive subgroup of S3, so is either A3 =
h(123)i or S3. Either way, by the Galois correspondence, we can find an interme-
diate extension

K(!) ⇢ K1 ⇢ M,

where K1 is the fixed field M
A3 .

Now suppose that f has roots ↵1,↵2,↵3 2 M . Equating x
3 + bx + C = (x �

↵1)(x� ↵2)(x� ↵3), we find that

0 = ↵1 + ↵2 + ↵3

B = ↵1↵2 + ↵2↵3 + ↵3↵1

C = �↵1↵2↵3.
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We want to find a generator for K1/K(!). Since K1 = M
(123), and (123) acts

on {↵1,↵2,↵3}, we should look for combinations of ↵1,↵2,↵3 which are fixed by
(123). Consider the elements

u =
1

3
(↵1 + !↵2 + !

2
↵
3)

v =
1

3
(↵1 + !

2
↵2 + !↵

3)

in M . We will make a few observations:

• We can recover ↵1,↵2,↵3 from u, v. Indeed,

↵1 = u+ v

↵2 = !
2
u+ !v = !

2(u+ !
2
v)

↵3 = !u+ !
2
v = !(u+ !v).

• We have (123)u = !u, so that (123)u3 = u
3. Hence, u3 2 M

(123) = K1.
Similarly, v3 2 K1.

• We have

u
3 + v

3 = (u+ v)(u+ !v)(u+ !
2
v) = ↵1↵2↵3 = �C

uv =
1

9
(↵3

1 + ↵
3
2 + ↵� 33 + (! + !

2)(↵1↵2 + ↵2↵3 + ↵3↵1)

=
1

9
((↵1 + ↵2 + ↵3)

3 � 3(↵1↵2 + ↵2↵3 + ↵3↵1))

= �1

3
B.

Hence u
3 and v

3 are roots of the polynomial

y
2 + Cy � B

3

27
= 0.

We find that

K ⇢ K(!) ⇢ K(u3) = K(

r
C2 +

4B3

27
) ⇢ K(u) = M.

This shows that f is soluble by radicals, as well as giving a method to solve f by
finding u and v.
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Degree 4

To solve the quartic we started by constructing the resolvent cubic:

X
4 + pX

2 + qX + r = 0,

we started by constructing the resolvent cubic:

Y
3 + 2pY 2 + (p2 � 4r)Y � q

2 = 0.

The roots of this cubic were �2, �2 and �2, where � = ↵1 + ↵2, � = ↵1 + ↵3 and
� = ↵1 + ↵4. The procedure to write down the roots of the quartic is as follows.
Firstly, solve the resolvent cubic, which, as we saw above, means that we must
first adjoin a square root, and then a cube root. This gives values of �2, �2 and
�
2. To get the possible values of � and �, we have to adjoin square roots of �2

and �2. Then the value of � can be read o↵, and the roots of the quartic can be
recovered from just knowing �, � and � (and the fact that the sum of the roots,
↵1 + ↵2 + ↵3 + ↵4 = 0).

Now let’s see how we can rederive this from a Galois theoretic point of view. Sup-
pose that f is irreducible. If M is the splitting field of f over K, then Gal(M/K)
is a transitive subgroup of S4. Moreover, S4 is solvable, and

S4 ⇤ A4 ⇤ V4 ⇤ C2 ⇤ {1}.

In fact V � S4 and S4/V
⇠= S3. This suggests that we can solve f by combining

the solutions of a cubic polynomial (to give the V to S4 part) and two quadratic
polynomials (to give the {1} to C2 to V4 part).

Assume that K contains enough roots of unity (we need 12th roots). If not, we
can just add these roots to K as before. Then we can find subfields

K ⇢ M
V4 ⇢ M

V2 ⇢ M,

where each extension is obtained by adding an n
th root. Our goal is to find these

generators. Note that these extensions may be trivial, depending on the Galois
group of f .

Let ↵1,↵2,↵3,↵4 be the roots of f . As before, Gal(f/K) acts on the roots of
f . In order to find M

V4 , we should look for elements of M that are fixed by
(12)(34), (13)(24), (14)(23) 2 V4. Consider the elements

� = ↵1 + ↵2 = �↵3 � ↵4

� = ↵1 + ↵3 = �↵2 � ↵4

� = ↵1 + ↵4 = �↵2 � ↵3
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As before, we can recover the ↵i from �, �, �. For example,

↵1 =
1

2
(� + � + �).

In addition, for each ' 2 V4 we have '(�) = ±�, '(�) = ±� and '(�) = ±�.
Hence, �2

, �
2
, �

2 2 M
V4 . We can show computationally that �2

, �
2
, �

2 solve a
cubic equation over K.

Hence, we can start by solving this cubic, to find the extension K1 = M
V4 =

K(�2
, �

2
, �

2). In general this requires an extension of degree 6, and Gal(K1/K) ⇠=
S3. Having done this, we choose a square root � of �2 and a square root � of
�
2. So the field M = K(�, �, �), in which all the roots ↵i lie, is obtained from

M by adjoining two further square roots. The group Gal(M/K1) is in general
isomorphic to V4. This fits in with the series

1� C2 � V4 � A4 � S4;

solving the cubic corresponds to the group S4/V4
⇠= S3, and then the two further

square roots corresponds to the group V4 = C2 ⇥ C2.

Insolubility of the general quintic

From the patterns emerging above, one might guess that the Galois group for the
general quintic should be isomorphic to S5, and therefore not be a soluble group.
By the above, this would imply that the general quintic has no solution in terms
of radicals. In fact, it is not too hard to show that the general polynomial of
degree n has Galois group Sn. Here, however, we will give an explicit example of
a polynomial not soluble by radicals.

We first use a group theoretical lemma.

Lemma 9.4 Let p be a prime number. Let G be a subgroup of Sp which is
transitive and contains a transposition. Then G = Sp.

Proof. Let S = {1, . . . , p}, and define a relation ⇠ on S by i ⇠ j if and only
if i = j or (i j) 2 G. ⇠ is clearly reflexive and symmetric. Further, if i ⇠ j and
j ⇠ k, then either i = j, i = k or j = k (in which case it is easy to see that
i ⇠ k) or (i k) = (i j)(j k)(i j) 2 G. So ⇠ is an equivalence relation.

If a 2 S, denote its equivalence class by a. Let b 2 S. As G is transitive, there
exists ✓ 2 G with ✓(a) = b.

Let c 2 a. Either c = a or (a c) 2 G. Consider ✓(c). Either ✓(c) = ✓(a) or
(✓(a) ✓(c)) = ✓(a c)✓�1 2 G.
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In either case, ✓(c) ⇠ b. It follows that ✓ gives a bijection from the equivalence
class of a to the equivalence class of b. So |a| = |b|. But S is partitioned into
equivalence classes, and |S| = p, so either all classes have 1 element each, or there
is only one class with p elements. The first case is ruled out because G contains
a transposition. Thus all transpositions (i j) lie in G. But Sp is generated by the
transpositions. ⇥
Example 9.5 Let f(x) = x

5 � 6x+ 3 2 Q[x]. Then f(x) = 0 is not soluble by
radicals over Q. ⇥

Proof. Note that f 0(x) = 5x4�6 and so has two real zeros. By Rolle’s theorem,
between any two real roots of f , there is a real root of f 0. Thus f has at most
three real zeros.

f(�2) = �17, f(�1) = 8, f(1) = �2 and f(2) = 23, so f has exactly three real
roots.

Let G = Gal(f/Q). f is irreducible by Eisenstein (p = 3), so G acts transitively
on the roots of f (by Proposition 9.2). Also, complex conjugation fixes the three
real roots amd interchanges the other two, so G contains a transposition. By the
lemma, G = S5. Thus f is not soluble in radicals. ⇥
Note that the same argument shows the following: suppose f(x) 2 Q[x] is a
polynomial such that

• deg f = p, a prime at least 5,

• f is irreducible over Q,

• f has p� 2 real roots, and one pair of complex conjugate roots.

Then f is not soluble by radicals over Q.

For this, the second and third hypotheses show that Gal(f/Q) is a transitive
subgroup of Sp which contains a transposition. Given that p is prime, the lemma
now implies that Gal(f/Q) = Sp. As p � 5, we know that Sp is not a soluble
group, and we conclude that f is not soluble by radicals.

(Note that it is important that p be prime – the polynomial x4 � 2 is irreducible
over Q, and has two real roots and one pair of complex conjugate roots, but its
Galois group is D4, not S4.)
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§ 10 Some extensions of small degree

Proposition 10.1 Let K be a field and let L be an extension of K of degree
two.

(a) There is an element ↵ 2 L \K such that L = K(↵) and ↵2 2 K.

(b) The element ↵ has the following uniqueness property: if L = K(�) for some
other element � 2 L \K with �2 2 K, then � = q↵ for some q 2 K.

(c) There is an automorphism � : L ! L that acts as the identity on K and
satisfies �(↵) = �↵.

(d) We have �2 = 1 and G(L/K) = {1, �} ' C2.

Proof: First choose any element � 2 L \ K. We claim that 1 and � are
linearly independent over K. To see this, consider a linear relation a.1 + b� = 0
with a, b 2 K. If b 6= 0 we can rearrange to get � = �ab

�1 2 K, contrary to
assumption. We therefore have b = 0 so the original relation reduces to a = 0 as
required. As dimK(L) = 2 this means that {1,�} is a basis for L over K.

We can therefore write ��2 in terms of this basis, say as ��2 = b� + c, or
equivalently �

2 + b� + c = 0. Next put ↵ = � + b/2 2 L. We find that
↵
2 = �

2 + b� + b
2
/4 = �c + b

2
/4 2 K. By the same logic as for � we also see

that {1,↵} is a basis for L and so L = K(↵), which proves (a).

Now suppose we have another element � 2 L \ K with �2 2 K. We can write
� = x+ y↵ for some x, y 2 K. As � 62 K we have y 6= 0. This gives

�
2 = (x2 + y

2
a) + 2xy↵,

which is assumed to lie in K, so we must have 2xy = 0. As y 6= 0 this gives x = 0
and thus � = y↵, proving (b).

Next, as {1,↵} is a basis, we can define a K-linear map � : L ! L by

�(x+ y↵) = x� y↵,

for any x, y 2 K. This satisfies �(�(x+ y↵)) = �(x� y↵) = x+ y↵, so �2 = id.
It also has �(0) = 0 and �(1) = 1. Now consider elements µ = u + v↵ and
⌫ = x+ y↵ in L. We have

µ⌫ = (ux+ vya) + (vx+ uy)↵,

�(µ⌫) = (ux+ vya)� (vx+ uy)↵,

�(µ)�(⌫) = (u� v↵)(x� y↵) = (ux+ vya)� (vx+ uy)↵ = �(µ⌫),

so � is a field automorphism.
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Now let ⌧ be any other automorphism of L with ⌧ |K = id. Write a = ↵
2 2 K.

We can apply ⌧ to the equation ↵2�a = 0 to get ⌧(↵)2�a = 0, or in other words
⌧(↵)2 � ↵

2 = 0, or in other words (⌧(↵)� ↵)(⌧(↵) + ↵) = 0, so either ⌧(↵) = ↵

or ⌧(↵) = �↵. In the first case we have ⌧ = id, and in the second case we have
⌧ = �. It follows that G(L/K) = {id, �} as claimed. ⇥
Proposition 10.2 Let p and q be distinct prime numbers, put

B = {1,pp,
p
q,
p
pq} ⇢ R,

and let L be the span of B over Q.

(a) The set B is linearly independent over Q, so is a basis for L, and [L : Q] = 4.

(b) L is a splitting field for the polynomial (t2 � p)(t2 � q) 2 Q[t].

(c) There are automorphisms � and ⌧ of L given by

�(w + x
p
p+ y

p
q + z

p
pq) = w � x

p
p+ y

p
q � z

p
pq

⌧(w + x
p
p+ y

p
q + z

p
pq) = w + x

p
p� y

p
q � z

p
pq.

(d) We have �2 = ⌧
2 = 1 and �⌧ = ⌧�, andG(L/Q) = {1, �, ⌧, �⌧} ' C2⇥C2.

Proof: For part (a), consider a nontrivial linear relation w+x
p
p+y

p
q+z

p
pq =

0. Here w, x, y, z 2 Q, but after multiplying through by a suitable integer we can
clear the denominators and so assume that w, x, y, z 2 Z. We can then divide
through by any common factor and thus assume that gcd(w, x, y, z) = 1. Now
rearrange the relation as w+x

p
p = �(y+ z

p
p)
p
q and square both sides to get

(w2 + px
2) + 2wx

p
p = (y2 + pz

2)q + 2yzq
p
p.

We know that 1 and
p
p are linearly independent over Q, so we conclude that

wx = yzq,

w
2 + px

2 = (y2 + pz
2)q.

From the first of these we see that either w or x is divisible by q. In either case
we can feed this fact into the second equation to see that w

2 and x
2 are both

divisible by q, so w and x are both divisible by q, say w = qw
0 and x = qx

0. We
can substitute these in the previous equations and cancel common factors to get

yz = w
0
x
0
q

y
2 + pz

2 = (w02 + px
02)q.
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The same logic now tells us that y and z are both divisible by q, contradicting the
assumption that gcd(w, x, y, z) = 1. It follows that there can be no such linear
relation, which proves (a).

For (b), the main point to check is that L is actually a subfield of R. To see this,
write e0 = 1, e1 =

p
p, e2 =

p
q and e3 =

p
pq. By a straightforward check

of the 16 possible cases, we see that eiej is always a rational multiple of ek for
some k (for example e1e3 = pe2). In particular, we have eiej 2 L. Now suppose
we have two elements x, y 2 L, say x =

P3
i=0 xiei and y =

P3
j=0 yjej. Then

xy =
P

i,j
xiyjeiej with xiyj 2 Q and eiej 2 L, and L is a vector space over Q,

so xy 2 L. We therefore see that L is a subring of R. As L is finite-dimensional
it follows that L is a subfield of R. It is clearly generated by the roots of the
polynomial

f(t) = (t2 � p)(t2 � q) = (t�p
p)(t+

p
p)(t�p

q)(t+
p
q),

so it is a splitting field for f(t).

Next, we can regard L as a degree two extension of Q(
p
q) obtained by adjoining a

square root of p. Proposition 10.1 therefore gives us an automorphism � of L that
acts as the identity on Q(

p
q), and this is clearly described by the formula stated

above. Similarly, we obtain the automorphism ⌧ by regarding L as Q(
p
p)(

p
q)

rather than Q(
p
q)(

p
p). This proves (c).

Now let ✓ be an arbitrary automorphism of L (which automatically acts as the
identity on Q). We must then have ✓(

p
p)2 = ✓(

p
p
2) = ✓(p) = p, so ✓(

p
p) =

±p
p. Similarly we have ✓(

p
q) = ±p

q, and it follows by inspection that there
is a unique automorphism ' 2 {1, �, ⌧, �⌧} that has the same e↵ect on

p
p andp

q as ✓. This means that the automorphism  = '
�1
✓ has  (

p
p) =

p
p and

 (
p
q) =

p
q, and therefore also  (

p
pq) =  (

p
p) (

p
q) =

p
pq. As B is a basis

for L over Q and  acts as the identity on B, we see that  = id, and so ✓ = '.
This proves (d). ⇥
We next consider two di↵erent cubic equations for which the answers work out
quite neatly. In a later section we will see that general cubics are conceptually not
too di↵erent, although the formulae are typically less tidy.

Example 10.3 We will construct and study a splitting field for the polynomial
f(x) = x

3� 3x� 3 2 Q[x]. This is an Eisenstein polynomial for the prime 3, so it
is irreducible over Q. We start by noting that (3+

p
5)/2 is a positive real number,

with inverse (3 �
p
5)/2. We let � denote the real cube root of (3 +

p
5)/2, so

that ��1 is the real cube root of (3�
p
5)/2. Then put ! = (

p
�3� 1)/2 2 C,

so !3 = 1 and !2 + ! + 1 = 0. Finally, put ↵i = !
i
� + 1/(!i

�) for i = 0, 1, 2.
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We claim that these are roots of f(x). Indeed, we have

↵
3
i
= (!i

�)3 + 3(!i
�)2/(!i

�) + 3!i
�/(!i

�)2 + 1/(!i
�)3

= �
3 + �

�3 + 3(!i
� + !

�i
�
�1)

= (3 +
p
5)/2 + (3�

p
5)/2 + 3↵i = 3 + 3↵i,

which rearranges to give f(↵i) = 0 as claimed. We also note that ↵0 is real,
whereas ↵1 and ↵2 are non-real and are complex conjugates of each other. It
follows that we have three distinct roots of f(x), and thus that f(x) = (x �
↵0)(x�↵1)(x�↵2), so the splitting field is generated by ↵0, ↵1 and ↵2. We write
L for this splitting field.

Next, note that ! (the complex conjugate of !) is !�1, and so ↵1 = ↵2 and ↵2 =
↵1, whereas ↵0 = ↵0 because ↵0 is real. This means that conjugation permutes
the roots ↵i and so preserves L. We thus have an automorphism � : L ! L given
by �(a) = a for all a 2 L.

We also claim that there is an automorphism ⇢ of L with ⇢(↵0) = ↵1 and ⇢(↵1) =
↵2 and ⇢(↵2) = ↵0. Indeed, part (c) of Proposition ?? tells us that there is
an automorphism � such that �(↵0) = ↵1. We know that � permutes the set
R = {↵0,↵1,↵2} of roots of f(x), so it must either be the three-cycle (↵0 ↵1 ↵2)
or the transposition (↵0 ↵1). In the first case, we can just take ⇢ = �; in the second,
we can take ⇢ = ��. It is now easy to check that the set {1, ⇢, ⇢2, �, ⇢�, ⇢2�}
gives all six permutations of R. It follows by Proposition ?? that the Galois group
G(L/Q) is the full group ⌃R ' ⌃3.

Example 10.4 Consider the polynomial f(x) = x
3+x

2�2x�1. We first claim
that this is irreducible over Q. Indeed, if it were reducible we would have f(x) =
g(x)h(x) for some monic polynomials g(x), h(x) 2 Q[x] with deg(g(x)) = 1 and
deg(h(x)) = 2. Gauss’ Lemma would then tell us that g(x), h(x) 2 Z[x]. This
would mean that g(x) = x� a for some a 2 Z, and thus f(a) = 0. However, we
have f(2m) = 2(4m3 +2m2 �m)� 1 and f(2m+1) = 2(4m3 +8m2 +3m)� 1
so f(a) is odd for all a 2 Z, which is a contradiction.

We now exhibit the roots of f(x). Write

⇣ = exp(2⇡i/7) = cos(2⇡/7) + i sin(2⇡/7)

↵ = ⇣ + ⇣
�1 = 2 cos(2⇡/7)

� = ⇣
2 + ⇣

�2 = 2 cos(4⇡/7)

� = ⇣
4 + ⇣

�4 = 2 cos(8⇡/7).

(Remember that ⇣4 = ⇣
�3.) We claim that ↵, � and � are roots of f(x). First
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calculate f(↵). We have:

↵
3 = ⇣

�3 + 3⇣�1 + 3⇣ + ⇣
3

↵
2 = ⇣

�2 + 2 + ⇣
2

�2↵ = �2⇣�1 � 2⇣

�1 = �1.

If we add together the left hand sides we get f(↵), and if we add together the
right hand sides we get

P3
i=�3 ⇣

i.

Now remember that ⇣7 = 1 and ⇣ 6= 1, so

1 + ⇣ + ⇣
2 + ⇣

3 + ⇣
4 + ⇣

5 + ⇣
6 = 0.

Dividing by ⇣3 we get
P3

i=�3 ⇣
i = 0, so f(↵) = 0.

By a modification of this calculation we also have f(�) = f(�) = 0.

We now have three distinct roots for the cubic polynomial f(x), so we have

f(x) = (x� ↵)(x� �)(x� �).

We now claim that

Q(↵) = Q(�) = Q(�) = Q(↵, �, �). (1)

First, observe that

↵
2 � 2 = (⇣�2 + 2 + ⇣

2)� 2 = ⇣
�2 + ⇣

2 = �

�
2 � 2 = (⇣�4 + 2 + ⇣

4)� 2 = ⇣
�4 + ⇣

4 = �

�
2 � 2 = (⇣�8 + 2 + ⇣

8)� 2 = ⇣
�8 + ⇣

8 = ⇣
�1 + ⇣ = ↵.

The first of these shows that � 2 Q(↵), and so Q(�) ✓ Q(↵). From the other
equations we see that Q(�) ✓ Q(�) and Q(↵) ✓ Q(�). Altogether we have
Q(↵) ✓ Q(�) ✓ Q(�) ✓ Q(↵), which implies (1).

So Q(↵) is a splitting field for f(x).

Next, Proposition ?? tells us that there is an automorphism � of Q(↵) with
�(↵) = �. Applying � to � = ↵

2 � 2 we get

�(�) = �(↵2 � 2) = �(↵)2 � 2 = �
2 � 2 = �.

By a similar argument we have �(�) = �
2 � 2 = ↵, so � corresponds to the

three-cycle (↵ � �). We also know that |G(Q(↵)/Q)| = [Q(↵) : Q] = 3, and it
follows that G(Q(↵)/Q) = {1, �, �2} ' C3.
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Example 10.5 Consider the polynomial f(x) = x
4 � 10x2 + 20, which is irre-

ducible over Q by Eisenstein’s criterion at the prime 5. This is a quadratic function
of x2, so by the usual formula it vanishes when x

2 = (10±
p
100� 4⇥ 20)/2 =

5 ±
p
5 (and both of these values are positive real numbers). The roots of f(x)

are therefore ↵, �, �↵ and �� where ↵ =
p

5 +
p
5 and � =

p
5�

p
5. It is a

special feature of this example that � can be expressed in terms of ↵. To see this,
note that ↵2 = 5 +

p
5 and so ↵4 = 30 + 10

p
5. Then put �0 = 1

2↵
3 � 3↵ and

note that

↵�
0 = 1

2↵
4 � 3↵2 = 15 + 5

p
5� 15� 3

p
5 = �2

p
5

↵� =
q

(5 +
p
5)(5�

p
5) =

q
52 �

p
5
2
=

p
25� 5 = 2

p
5.

This shows that ↵�0 = �↵�, so � = ��0 = �(12↵
3 � ↵) 2 Q(↵). This shows

that all roots of f(x) lie in Q(↵), so Q(↵) is a splitting field for f(x) over Q. By
Proposition ?? there is an automorphism � of Q(↵) with �(↵) = �. It follows
that

�(
p
5) = �(↵2 � 5) = �(↵)2 � 5 = �

2 � 5 = �
p
5.

We now apply � to the equation ↵� = 2
p
5 to get ��(�) = �2

p
5. We can

then divide this by the original equation ↵� = 2
p
5 to get �(�)/↵ = �1, so

�(�) = �↵. Moreover, as � is a homomorphism we have �(�a) = ��(a) for
all a, so �(�↵) = �� and �(��) = ↵. This shows that � corresponds to the
four-cycle (↵ � �↵ ��). It follows that the automorphisms {1, �, �2

, �
3} are all

di↵erent, but |G(Q(↵)/Q)| = [Q(↵) : Q] = 4, so we have

G(Q(↵)/Q) = {1, �, �2
, �

3} ' C4.

Example 10.6 Consider the polynomial f(x) = x
4�6x2+2 = (x2�3�

p
7)(x2�

3+
p
7), which is irreducible over Q, by Eisenstein’s criterion at the prime 2. The

roots are ↵, �↵, � and ��, where ↵ =
p
3 +

p
7 and � =

p
3�

p
7. Let K

be the splitting field, which is generated by ↵ and �. Note that this contains the
elements

p
7 = ↵

2� 3 and
p
2 = ↵�. We can draw the set R of roots in a square

as follows:
↵ �

�� �↵

We claim that G(L/Q) can be identified with the group D8 of rotations and
reflections of this square. Indeed, we can define a permutation µ = (↵ �↵)(� �
�) 2 ⌃R, and we put H = {� 2 ⌃R | �µ��1 = µ}. One can see that H is a
proper subgroup of ⌃R containing D8, so |H| is divisible by |D8| = 8 and strictly
less than |⌃R| = 24, so |H| = 8 and H = D8. Next, if � 2 G(K/Q) then �
satisfies �(�a) = ��(a) for all a 2 K, so we have �µ = µ�, so � 2 H = D8.
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It follows that G(K/Q) is a subgroup of D8 of order equal to [K : Q], so it
will su�ce to check that [K : Q] = 8. As f(x) is irreducible we certainly have
[Q(�) : Q] = [Q(↵) : Q] = deg(f(x)) = 4 and K = Q(↵)(�) with �2 = 3�

p
7 2

Q(
p
7) ✓ Q(↵), so [K : Q(↵)] is either 1 (if � 2 Q(↵)) or 2 (if � 62 Q(↵)). It

would be an odd coincidence if � were already in Q(↵) and the reader may wish
to take it on trust that this is not the case. However, for completeness we will
give a proof below. Assuming this, we have [K : Q] = [K : Q(↵)][Q(↵) : Q] = 8
as required.

For the proof that � 62 Q(↵), we first observe that [Q(�) : Q] = 4 > 2 =
[Q(

p
7) : Q], so � 62 Q(

p
7). Similarly, we have ↵ 62 Q(

p
7). We also claim that

�/↵ 62 Q(
p
7). Indeed, if it were we could multiply by ↵2 = 3 +

p
7 2 Q(

p
7) to

see that
p
2 = ↵� 2 Q(

p
7), which would contradict the case (p, q) = (2, 7) of

Proposition 10.2. Now suppose (for a contradiction) that � 2 Q(↵). We can then
write � = u+v↵ for some u, v 2 Q(

p
7). As � 62 Q(

p
7) we must have v 6= 0, and

as �/↵ 62 Q(
p
7) we must have u 6= 0. We can now square the relation � = u+v↵

and rearrange to get ↵ = (�2 � u
2 � v

2
↵
2)/(2uv). As u, v,↵2

, �
2 2 Q(

p
7) this

gives ↵ 2 Q(
p
7), which is the required contradiction.
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§ 11 The discriminant

Note that the group Sn contains a normal subgroup of index 2, namely An, the
group of even permutations. Let’s compute the extension of K corresponding to
this subgroup.

Suppose that a degree n polynomial f(x) splits as
Q

n

i=1(x � ↵i) in its splitting
field. Suppose all ↵i are distinct (true if f is irreducible). The group Sn acts by
permuting the roots (and Gal(f/K) is a subgroup of Sn).

We define �(f) =
Q

i>j
(↵i � ↵j).

Lemma 11.1 Suppose ✓ 2 Gal(f/K) ✓ Sn. Then

✓(�(f)) =

⇢
�(f) if ✓ is an even permutation
��(f) if ✓ is an odd permutation

Proof. This is an equivalent definition of even/odd. ⇥
Define the discriminant, D(f), to be �(f)2. Then note that ✓(D(f)) = D(f)
for all ✓ 2 Gal(f/K) by the lemma. It follows that D(f) lies in K, as it is fixed
by every element of the Galois group (using Theorem 12.3).

Corollary 11.2 Let f 2 K[x] have only simple roots, and let L denote a splitting
field. Regard G = Gal(f/K) as a subgroup of Sn. Then the subfield of L

corresponding to the subgroup G \ An is K[�(f)]. In particular,

G ✓ An () �(f) 2 K () D(f) is a square in K.

Proof. As f has distinct roots, �(f) 6= 0, and so the lemma shows that
✓(�(f)) = �(f) if and only if ✓ 2 An. Thus G \ An is the subgroup of G
corresponding to K[�(f)], and so

G ✓ An () K[�(f)] = K () �(f) 2 K.

⇥
Thus the Galois group Gal(f/K) of a polynomial f of degree d is contained in
Ad, not just Sd, if and only if its discriminant is a square in K.

Corollary 11.3 Suppose f 2 K[x] is an irreducible cubic equation. Then

Gal(f/K) =

⇢
A3 if D(f) is a square
S3 if not

Proof. Let ↵ be a root of f . As f is irreducible, it is the minimal polynomial of ↵.
By Theorem 2.2, [K(↵) : K] = 3. But if L is the splitting field of f , L ◆ K(↵),
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so we conclude that 3|[L : K] by Theorem 2.3. Also, L/K is Galois (it’s a splitting
field), so |Gal(L/K)| = [L : K]. Finally, the Galois group may be regarded as a
subgroup of S3, a group of order 6. It follows that Gal(f/K) is either all of S3,
or it is a subgroup of order 3 – the only such subgroup is A3 = h(1 2 3)i. By
Corollary 11.2, the Galois group is A3 precisely when D(f) is a square, and is S3

if not. ⇥
By an Exercise, the cubic f(x) = x

3 + ax+ b has D(f) = �(4a3 + 27b2).

Remark 11.4 An explicit computation (or use Maple!) shows that a quartic has
the same discriminant as its resolvent cubic.

Remark 11.5 We can now classify Galois groups of irreducible quartics. As the
quartic is irreducible, then its Galois group is a transitive subgroup of S4. These
subgroups are known; there are 5 possibilities, namely, S4, A4, D4, V4 and C4.

We also know that if its discriminant is a square, then its Galois group is a tran-
sitive subgroup of A4 and must therefore be either A4 or V4 (the other groups all
contain 4-cycles, so cannot be contained in A4). Otherwise, its Galois group is
not contained in A4, so is one of S4, D4 or C4.

Also, if its resolvent cubic is irreducible, adjoining the roots of the resolvent cubic
leads to an extension of degree divisible by 3. This was the first step in constructing
the splitting field of the quartic. It follows that the Galois group of the quartic
must be of order divisible by 3, so must be one of S4 or A4. Otherwise the Galois
group will be one of D4, V4 or C4.

We therefore have the following classification:

D(f) square? res. cubic irred.? Galois group
Yes Yes A4

No Yes S4

Yes No V4

No No D4 or C4

In fact, we can distinguish between these latter two possibilities – the Galois group
is D4 if the quartic remains irreducible over the splitting field of the cubic, and is
C4 if not. In general, however, it is usually easier to compute these by hand.

We have seen examples of all of these occurring earlier in the course, or on example
sheets, for polynomials over Q. In Exercise 25, we saw that x

4 + 8x + 12 has
irreducible resolvent cubic, but its discriminant is 5762. Thus its Galois group is
A4. However, x4 +8x� 12 has irreducible resolvent cubic and discriminant which
is not a square, so its Galois group is S4. We have just seen that x4�10x2+1 has
splitting field Q(

p
2,
p
3), so has Galois group V4. Another example is provided

by x
4 + 1, which is the cyclotomic polynomial �8 – recall that the Galois group

of �n over Q was U(Zn). We see that U(Z8) = {1, 3, 5, 7} and that this is a
group isomorphic to V4. In §6, we found that the Galois group of x4 � 2 was D4.



§11 THE DISCRIMINANT 57

Finally, the fifth cyclotomic polynomial �5 = x
4+x

3+x
2+x+1 has Galois group

U(Z5) = {1, 2, 3, 4}, which is cyclic of order 4.

Thus all five possible transitive subgroups of S4 can occur as Galois groups of
polynomials over Q. More generally, it is conjectured that any finite group may be
realised as the Galois group of some polynomial over Q. This question is known
as the “Inverse Galois Problem”, and is the subject of much current research.



List of groups

This is a list of groups which will be encountered in the course. Probably you will
have met them already. There will be more detail when we come to make use of
them.

Cyclic groups

The cyclic group of order n, denoted Cn, is often written as

Z/nZ = {0, 1, 2, . . . , n� 1}

under addition mod n.

Equally often, Cn is taken to be the set of nth roots of 1 in the complex plane,
under multiplication.

Symmetric groups

The symmetric group on n symbols, denoted Sn, is the group of all permutations
on {1, 2, . . . , n} or on any other convenient set of n symbols. Note: we compose
permutations from right to left as with maps in general.

Alternating groups

The alternating group on n symbols, denoted An, is the group of all permutations
on {1, 2, . . . , n} (or on any other convenient set of n symbols) which have even
parity.

Remember that any permutation � 2 Sn can be written as a product of transposi-
tions, and that the parity (even/odd) of the number of transpositions is the same
for all such products.

Dihedral groups

The dihedral groups are the isometry groups of regular polygons in the plane.

We will denote the dihedral group for the n-gon by Dn. It is also sometimes
denoted D2n, since it has 2n elements.

Denote rotation through 2⇡
n
byR. ThenR generates a cyclic subgroup, {I, R,R

2
, . . . , R

n�1}.
Denote reflection by F ; clearly F

2 = I. Lastly, FRF = R
�1.


