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Q1 (i)(a) Bookwork

Suppose (∗) has a repeated root. Then the LHS factorizes as

t3 + pt+ q = (t− u)2(t− v) 1

where u, v ∈ R (possibly equal). Expanding out we have

2u+ v = 0, 2uv + u2 = p, −u2v = q.

Eliminating v, this gives
p = −3u2, q = 2u3. 1

To eliminate u, cube the first equation and square the second. We obtain

4p3 + 27q2 = 0. 1

So if (∗) has repeated roots, the quantity 4p3 + 27q2 is zero.

(b) Unseen Suppose (∗) has one real and two complex, non-real, roots. Then it factorizes
as

t3 + pt+ q = (t− u)(t2 + bt+ c) 1

where b2 − 4c < 0. Expanding out we get

b− u = 0, c− bu = p, −cu = q, 1

so
4p3 + 27q2 = 4(c− b2) + 27b2c2 = 4c3 + 15b2c2 + 12b4c− 4b6. 1

This is the negative of

4b6 − 12b4c− 15b2c2 − 4c3 = (b2 − 4c)(4b4 + 4b2c+ c2). 2

Now 4b4 + 4b2c + c2 > 0 and can only be zero if b = c = 0 and therefore p = q = 0,
contradicting the assumption of non-real roots. 1

Since b2 − 4c < 0 we get 4p3 + 27q2 > 0.

(ii) Bookwork

The characteristic of a field K is the least positive integer n such that n1 = 0. 1 If no
such n exists then K has characteristic zero. 1

A homomorphism of fields is a map ϕ : K → L such that ϕ(0K) = 0L, ϕ(1K) = 1L, 1
ϕ(a+ b) = ϕ(a) + ϕ(b) and ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ K. 1

The degree of a homomorphism ϕ : K → L is the dimension of the vector space L over
ϕ(K). 1, any equivalent formulation acceptable

An automorphism of fields is a homomorphism ϕ : K → L which is a bijection. 1

An ideal in a ring R is a subset I which contains the zero element, is closed under addition,
and is such that if a ∈ R and b ∈ I then ab ∈ I. 3
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(iii) Bookwork

(a) Take a ∈ K with a 6= 0. Then a−1 exists and aa−1 = 1K . So ϕ(a)ϕ(a−1) = ϕ(1K) =
1L. In particular ϕ(a) 6= 0L. 2

(b) If n ∈ N and n1K 6= 0K then ϕ(n1K) 6= 0L, by (a). 1 And

ϕ(n1K) = ϕ(1K + · · ·+ 1K) (n times) = 1L + · · ·+ 1L = n1L

so n1L 6= 0L. 1 Likewise n1K = 0K implies that n1L = 0L. So, for n ∈ N,

n1K 6= 0K if and only if n1L 6= 0L. 1

It follows that K has characteristic 0 if and only if L has characteristic 0.

If K has characteristic p then p1K = 0K but n1K 6= 0K for n = 1, . . . , p− 1. So p1L = 0L
but n1L 6= 0L for n = 1, . . . , p − 1. 1 Therefore L has characteristic p. The converse is
similar. 1
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2(a) Bookwork

A polynomial is primitive if there is no prime p which divides all its coefficients. Denote
by πp the canonical ring homomorphism Z[x] → Fp[x]. Then q(x) ∈ Z[x] is primitive if
and only if πp(f(x)) 6= 0 for all primes p. 2

Consider a prime p. By the assumption we have πp(f(x)) 6= 0 and πp(g(x)) 6= 0. Since
Fp is a field, we have πp(f(x))πp(g(x)) 6= 0. 1 Now πp(f(x)g(x)) = πp(f(x))πp(g(x)), so
πp(f(x)g(x)) 6= 0. 1

As this holds for all p it follows that f(x)g(x) is primitive, as claimed. 1

(b) Bookwork

Let u be the least common multiple of the denominators of the coefficients of f , or
equivalently the smallest positive integer such that the polynomial f(x) = uf(x) lies in
Z[x]. 1 We claim that f(x) is primitive.

Indeed, if it were not primitive, there would be a prime p that divides all the coefficients
of f(x), and then 1

p
uf(x) would also be in Z[x], contradicting the definition of u. So f(x)

must be primitive after all. 2

Similarly, we can find an integer v > 0 such that the polynomial g(x) = vg(x) is integral
and primitive.

Now put q(x) = f(x)g(x), and note from (a) that q(x) is primitive. 1

On the other hand, we have q(x) = uvf(x)g(x) = uvq(x), with uv ∈ N and q(x) ∈ Z[x]. It
follows that any prime dividing uv divides all the coefficients of q(x), which is impossible
because q(x) is primitive. 2

It follows that there cannot be any primes dividing uv, so we must have u = v = 1. Thus
f(x) = f(x) ∈ Z[x] and g(x) = g(x) ∈ Z[x] as claimed. 1

(c) Standard type

The only quadratics over F2 are x2, x2 + 1, x2 + x and x2 + x+ 1. 2

Of these we have that x2, x2 +1 = (x+1)2 and x2 + x = x(x+1) are not irreducible. 1

p(x) := x2 + x+ 1 has p(0) = 1 and p(1) = 1 so is irreducible over F2. 1

(d) Standard type

First, in F2 we have f(0) = 1 and f(1) = 1, so f(x) has no roots, so it has no factors of
degree one. 1 Thus, the only way it could factorise would be as an irreducible quadratic
times an irreducible cubic. 1

By long division over F2 we get

f(x) = (x3 + x2)(x2 + x+ 1) + 1, 2

so f(x) is not divisible by x2 + x+ 1. It is therefore irreducible as claimed. 1

Now suppose there is a factorisation f(x) = g(x)h(x) in Q[x], where g(x) and h(x) are
monic. Then from (b) it follows that g(x), h(x) ∈ Z[x], so we can reduce everything
modulo 2. 1
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We then have f(x) = g(x)h(x) in F2[x], but f(x) is irreducible, so one of the factors must
be equal to one, say g(x) = 1. 1 As g(x) is monic, the only way we can have g(x) = 1

is if g(x) = 1. 1 We deduce that f(x) is irreducible in Q[x], as claimed. 1
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3 Bookwork

(a) We argue by induction on n.

If n = 1 then we have b1θ1(a) = 0 for all a ∈ L, and we can take a = 1 to see that b1 = 0;
this starts the induction. 1

Now suppose the result true for some specific n > 1. 1 Fix some t ∈ L, and put
ci = bi(θi(t)− θn(t)), 1 so cn = 0.

We claim that
∑n−1

i=1 ciθi(a) = 0 for all a ∈ L.
Indeed, the relation

∑n
i=1 biθi(a) = 0 is valid for all a ∈ L, so it works for ta in place of a,

which gives
∑n

i=1 biθi(t)θi(a) = 0. 1

On the other hand, we can just multiply the relation
∑n

i=1 biθi(a) = 0 by θn(t) to
get

∑n
i=1 biθn(t)θi(a) = 0, 1 and then subtract this from the previous relation to get∑n−1

i=1 ciθi(a) = 0 as claimed. 1

We deduce from the induction hypothesis that c1 = · · · = cn−1 = 0, so bi(θi(t)−θn(t)) = 0
for all i < n (and all t ∈ L, because t was arbitrary). 1

By assumption the homomorphisms θi are all different, so for each i < n we can choose
ti ∈ L with θi(ti) 6= θn(ti). We can then take t = ti in the relation bi(θi(t)− θn(t)) = 0 to
get bi = 0. 1

This shows that b1 = · · · = bn−1 = 0, so the relation
∑n

i=1 biθi(a) reduces to bnθn(a) = 0

for all a. 1

Now take a = 1 to see that bn = 0 as well. This completes the induction. 1

(b)

Write m = deg(ϕ) and let e1, · · · , em be a basis for L over ϕ(K). 1

Let θ1, . . . , θn be the distinct elements of E(ϕ, ψ).

Define v1, . . . , vn ∈Mm by

vi = (θi(e1), . . . , θi(em)). 1

We claim that these n vectors are linearly independent over M .

To see this, consider a linear relation b1v1 + · · · + bnvn = 0 with b1, . . . , bn ∈ M . 1 So∑n
i=1 biθi(ej) = 0 for all j.

Now consider an arbitrary element a ∈ L. As the elements ej give a basis for L over
ϕ(K), we can write a =

∑m
j=1 ϕ(xj)ej for some x1, . . . , xm ∈ K. 1 We can then apply θi

to this. Since θiϕ = ψ, we get

θi(a) =
m∑
j=1

ψ(xj)θi(ej). 2

It follows that
n∑

i=1

biθi(a) =
n∑

i=1

m∑
j=1

biψ(xj)θi(ej) =
m∑
j=1

(
ψ(xj)

n∑
i=1

biθi(ej)

)
= 0. 1
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By (a) we have b1 = · · · = bn = 0. 1 We deduce that the vectors v1, . . . , vn in Mm

are linearly independent 1 . The length of any linearly independent list is at most the
dimension of the containing space, so we have n 6 m 1 ; that is, |E(ϕ, ψ)| 6 deg(ϕ).

(c)

Let N/K be a field extension of finite degree. We say that N is normal over K if for
every monic irreducible polynomial f(x) ∈ K[x], either f has no roots in N or f splits
properly over N 3 .

Equivalently: for any other extension L/K, either EK(L,N) = ∅ or |EK(L,N)| = [L : K]
(where EK(L,N) = {ϕ : L→ N | ϕ|K = 1}). 2

Alternatively, it is equivalent to say that |G(N/K)| = [N : K]. (2 also for this answer)
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4(a) Standard type.

The set
B = {1,

√
2,
√
3,
√
7,
√
6,
√
14,
√
21,
√
42}

is a basis for L over Q. 3

(b) Standard type.

We can define automorphisms ϕ, ψ, ω ∈ G(L/Q) by

ϕ(
√
2) = −

√
2 ϕ(

√
3) =

√
3 ϕ(

√
7) =

√
7

ψ(
√
2) =

√
2 ψ(

√
3) = −

√
3 ψ(

√
7) =

√
7

ω(
√
2) =

√
2 ω(

√
3) =

√
3 ω(

√
7) = −

√
7. 3

More explicitly, we have

ϕ(a+ b
√
2 + c

√
3 + d

√
7 + e

√
6 + f

√
14 + g

√
21 + h

√
42) =

a− b
√
2 + c

√
3 + d

√
7− e

√
6− f

√
14 + g

√
21− h

√
42

and so on. These automorphisms commute with each other and satisfy ϕ2 = ψ2 = ω2 = 1.

The full group is

G(L/Q) = {1, ϕ, ψ, ω, ϕψ, ϕω, ψω, ϕψω} ∼= C2 × C2 × C2. 3

(c) Close to standard type.

Hi is the set of automorphisms θ ∈ G(L/Q) satisfying θ|Ki
= 1. For example, this means

that H1 is the group of those θ ∈ G(L/K) for which θ(
√
14) =

√
14, or equivalently

θ(
√
2)θ(
√
7) =

√
2
√
7. This gives the list

H1 = {1, ϕω, ψ, ϕψω}. 2

Similarly, we have

H2 = {1, ϕψω} 1

H4 = {1, ϕψ, ϕω, ψω}. 1

For H3, we note that any θ ∈ G(L/Q) has θ(
√
2 +
√
7) = ±

√
2 ±
√
7. As

√
2 and

√
7

are linearly independent over Q, we see that θ(
√
2 +
√
7) can only be equal to

√
2 +
√
7

if θ(
√
2) =

√
2 and θ(

√
7) =

√
7 1 , which means that θ cannot involve ϕ or ω. 1 We

conclude that
H3 = {1, ψ}. 1
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(d) Unseen

As the Galois correspondence is an order-reversing bijection, we have K1 6 K3 iff H1 >
H3, which is true by part (c) 2 . More explicitly, we have

√
14 = 1

2
(
√
2 +
√
7)2 − 9

2
,

so
√
14 ∈ Q(

√
2 +
√
7), so K1 = Q(

√
14) 6 Q(

√
2 +
√
7) = K3. 2

(e) Unseen

If a field M (with Q < M < L) corresponds to a subgroup H 6 G(L/Q), we have

|H| = [L :M ] = [L : Q]/[M : Q] = 8/[M : Q]. 1

Thus, the intermediate fields with [M : Q] = 4 are in bijective correspondence with
subgroups of order 2 in G(L/Q) 2 .

There are 7 non-identity elements θ ∈ G(L/K) 1 , and each of these satisfies θ2 = 1 so it
gives a subgroup {1, θ} of order 2, and this gives all such subgroups. 1 Thus, there are
7 intermediate fields of degree 4 over Q.
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5 Standard type

(a) Use Eisenstein’s criterion:

Let p be a prime number. Suppose that q(x) = a0+a1x+ · · ·+ad−1x
d−1+xd is such that

• All the coefficients a0, . . . , ad−1 are integers, and are divisible by p. 1

• a0 is not divisible by p2. 1

Then q(x) is irreducible over Q. 1

For the given polynomial, f(x) = x4 (mod 2) and f(0) 6= 0 (mod 4) so Eisenstein’s
criterion applies and f(x) is irreducible. 2

(b) Note that α2 + 4 = 3
√
2 =
√
18, and squaring again shows that α4 + 8α2 + 16 = 18,

so f(α) = 0. 1

As f(x) only involves even powers of x we have f(−x) = f(x) and so f(−α) = 0. 1

Now put β =
√
−3
√
2− 4; the same argument shows that f(±β) = 0. We also have

(αβ)2 = (3
√
2 − 4)(−3

√
2 − 4) = −2, so β = ±

√
−2/α. 3 It follows that the roots of

f(x) are as described, so the splitting field is Q(α, β) 1 = Q(α, αβ) = Q(α,
√
−2) = M

as claimed. 1

Use of quadratic formula gets same marks

(c) We have 3
√
2−4 ' 0.24 > 0 so α is real, so Q(α) ⊆M ∩R. 1 As f(x) is irreducible,

it must be the minimal polynomial for α, 1 and so [Q(α) : Q] = deg(f(x)) = 4. 1 As
Q(α) ⊆ R and

√
−2 is purely imaginary we see that 1,

√
−2 is a basis for M over Q(α),

1 so M ∩ R = Q(α) and [M : Q] = [M : Q(α)][Q(α) : Q] = 2× 4 = 8. 1

(d) First let ψ : M → M be given by complex conjugation, so ψ(
√
−2) = −

√
−2 and

ψ(α) = α. It is clear that ψ2 = 1. 1

Next, the Galois group of the splitting field of an irreducible polynomial always acts
transitively on the roots, so we can find σ ∈ G(M/Q) with σ(α) =

√
−2/α. 1

Now σ must permute the roots of x2 + 2, so σ(
√
−2) = ±

√
−2. 1 If the sign is positive

we put ϕ = σψ, otherwise we put ϕ = σ. In either case we then have ϕ(α) =
√
−2/α = β

and ϕ(
√
−2) = −

√
−2. 1 This means that

ϕ2(α) = ϕ(
√
−2/α) = ϕ(

√
−2)/ϕ(α) = −

√
−2/(

√
−2/α) = −α

and ϕ2(
√
−2) =

√
−2. It follows in turn that ϕ4 = 1. 1

We now have various different automorphisms, whose effect we can tabulate as follows:

1 ϕ ϕ2 ϕ3 ψ ϕψ ϕ2ψ ϕ3ψ

α α β −α −β α β −α −β

β β −α −β α −β α β −α
√
−2

√
−2 −

√
−2

√
−2 −

√
−2 −

√
−2

√
−2 −

√
−2

√
−2.

2
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We see that the eight automorphisms listed are all different, but |G(M/Q)| = [M : Q] = 8,
so we have found all the automorphisms. 1


