Q1 (i)(a) Bookwork

Suppose (*) has a repeated root. Then the LHS factorizes as

$$t^{3} + pt + q = (t - u)^{2}(t - v)$$
 1

where $u, v \in \mathbb{R}$ (possibly equal). Expanding out we have

$$2u + v = 0,$$
 $2uv + u^2 = p,$ $-u^2v = q.$

Eliminating v, this gives

$$p = -3u^2, \qquad q = 2u^3. \qquad 1$$

To eliminate u, cube the first equation and square the second. We obtain

$$4p^3 + 27q^2 = 0. \qquad 1$$

So if (*) has repeated roots, the quantity $4p^3 + 27q^2$ is zero.

(b) Unseen Suppose (*) has one real and two complex, non-real, roots. Then it factorizes as

$$t^{3} + pt + q = (t - u)(t^{2} + bt + c)$$
 1

where $b^2 - 4c < 0$. Expanding out we get

$$b - u = 0, \quad c - bu = p, \quad -cu = q,$$
 1

 \mathbf{SO}

$$4p^3 + 27q^2 = 4(c-b^2) + 27b^2c^2 = 4c^3 + 15b^2c^2 + 12b^4c - 4b^6.$$

This is the negative of

$$4b^{6} - 12b^{4}c - 15b^{2}c^{2} - 4c^{3} = (b^{2} - 4c)(4b^{4} + 4b^{2}c + c^{2}).$$
 2

Now $4b^4 + 4b^2c + c^2 \ge 0$ and can only be zero if b = c = 0 and therefore p = q = 0, contradicting the assumption of non-real roots. **1**

Since $b^2 - 4c < 0$ we get $4p^3 + 27q^2 > 0$.

(ii) Bookwork

The characteristic of a field K is the least positive integer n such that n1 = 0. 1 If no such n exists then K has characteristic zero. 1

A homomorphism of fields is a map $\varphi \colon K \to L$ such that $\varphi(0_K) = 0_L$, $\varphi(1_K) = 1_L$, **1** $\varphi(a+b) = \varphi(a) + \varphi(b)$ and $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in K$. **1**

The degree of a homomorphism $\varphi \colon K \to L$ is the dimension of the vector space L over $\varphi(K)$. **1, any equivalent formulation acceptable**

An automorphism of fields is a homomorphism $\varphi \colon K \to L$ which is a bijection. 1

An ideal in a ring R is a subset I which contains the zero element, is closed under addition, and is such that if $a \in R$ and $b \in I$ then $ab \in I$. **3**

(iii) Bookwork

(a) Take $a \in K$ with $a \neq 0$. Then a^{-1} exists and $aa^{-1} = 1_K$. So $\varphi(a)\varphi(a^{-1}) = \varphi(1_K) = 1_L$. In particular $\varphi(a) \neq 0_L$. 2

(b) If $n \in \mathbb{N}$ and $n1_K \neq 0_K$ then $\varphi(n1_K) \neq 0_L$, by (a). 1 And

$$\varphi(n1_K) = \varphi(1_K + \dots + 1_K) \ (n \text{ times}) = 1_L + \dots + 1_L = n1_L$$

so $n1_L \neq 0_L$. 1 Likewise $n1_K = 0_K$ implies that $n1_L = 0_L$. So, for $n \in \mathbb{N}$,

 $n1_K \neq 0_K$ if and only if $n1_L \neq 0_L$. 1

It follows that K has characteristic 0 if and only if L has characteristic 0.

If K has characteristic p then $p1_K = 0_K$ but $n1_K \neq 0_K$ for $n = 1, \ldots, p - 1$. So $p1_L = 0_L$ but $n1_L \neq 0_L$ for $n = 1, \ldots, p - 1$. 1 Therefore L has characteristic p. The converse is similar. 1

2(a) Bookwork

A polynomial is primitive if there is no prime p which divides all its coefficients. Denote by π_p the canonical ring homomorphism $\mathbb{Z}[x] \to \mathbb{F}_p[x]$. Then $q(x) \in \mathbb{Z}[x]$ is primitive if and only if $\pi_p(f(x)) \neq 0$ for all primes p. **2**

Consider a prime p. By the assumption we have $\pi_p(f(x)) \neq 0$ and $\pi_p(g(x)) \neq 0$. Since \mathbb{F}_p is a field, we have $\pi_p(f(x))\pi_p(g(x)) \neq 0$. 1 Now $\pi_p(f(x)g(x)) = \pi_p(f(x))\pi_p(g(x))$, so $\pi_p(f(x)g(x)) \neq 0$. 1

As this holds for all p it follows that f(x)g(x) is primitive, as claimed. 1

(b) Bookwork

Let u be the least common multiple of the denominators of the coefficients of f, or equivalently the smallest positive integer such that the polynomial $\overline{f}(x) = uf(x)$ lies in $\mathbb{Z}[x]$. 1 We claim that $\overline{f}(x)$ is primitive.

Indeed, if it were not primitive, there would be a prime p that divides all the coefficients of $\overline{f}(x)$, and then $\frac{1}{p}uf(x)$ would also be in $\mathbb{Z}[x]$, contradicting the definition of u. So $\overline{f}(x)$ must be primitive after all. **2**

Similarly, we can find an integer v > 0 such that the polynomial $\overline{g}(x) = vg(x)$ is integral and primitive.

Now put $\overline{q}(x) = \overline{f}(x)\overline{g}(x)$, and note from (a) that $\overline{q}(x)$ is primitive. 1

On the other hand, we have $\overline{q}(x) = uvf(x)g(x) = uvq(x)$, with $uv \in \mathbb{N}$ and $q(x) \in \mathbb{Z}[x]$. It follows that any prime dividing uv divides all the coefficients of $\overline{q}(x)$, which is impossible because $\overline{q}(x)$ is primitive. 2

It follows that there cannot be any primes dividing uv, so we must have u = v = 1. Thus $f(x) = \overline{f}(x) \in \mathbb{Z}[x]$ and $g(x) = \overline{g}(x) \in \mathbb{Z}[x]$ as claimed. **1**

(c) Standard type

The only quadratics over \mathbb{F}_2 are x^2 , $x^2 + 1$, $x^2 + x$ and $x^2 + x + 1$. **2** Of these we have that x^2 , $x^2 + 1 = (x+1)^2$ and $x^2 + x = x(x+1)$ are not irreducible. **1** $p(x) := x^2 + x + 1$ has p(0) = 1 and p(1) = 1 so is irreducible over F_2 . **1**

(d) Standard type

First, in \mathbb{F}_2 we have f(0) = 1 and f(1) = 1, so f(x) has no roots, so it has no factors of degree one. 1 Thus, the only way it could factorise would be as an irreducible quadratic times an irreducible cubic. 1

By long division over \mathbb{F}_2 we get

$$f(x) = (x^3 + x^2)(x^2 + x + 1) + 1,$$
 2

so f(x) is not divisible by $x^2 + x + 1$. It is therefore irreducible as claimed. 1

Now suppose there is a factorisation f(x) = g(x)h(x) in $\mathbb{Q}[x]$, where g(x) and h(x) are monic. Then from (b) it follows that $g(x), h(x) \in \mathbb{Z}[x]$, so we can reduce everything modulo 2. **1**

We then have $\overline{f}(x) = \overline{g}(x)\overline{h}(x)$ in $\mathbb{F}_2[x]$, but $\overline{f}(x)$ is irreducible, so one of the factors must be equal to one, say $\overline{g}(x) = 1$. 1 As g(x) is monic, the only way we can have $\overline{g}(x) = 1$ is if g(x) = 1. 1 We deduce that f(x) is irreducible in $\mathbb{Q}[x]$, as claimed. 1

3 Bookwork

(a) We argue by induction on n.

If n = 1 then we have $b_1\theta_1(a) = 0$ for all $a \in L$, and we can take a = 1 to see that $b_1 = 0$; this starts the induction. 1

Now suppose the result true for some specific n > 1. **1** Fix some $t \in L$, and put $c_i = b_i(\theta_i(t) - \theta_n(t))$, **1** so $c_n = 0$.

We claim that $\sum_{i=1}^{n-1} c_i \theta_i(a) = 0$ for all $a \in L$.

Indeed, the relation $\sum_{i=1}^{n} b_i \theta_i(a) = 0$ is valid for all $a \in L$, so it works for ta in place of a, which gives $\sum_{i=1}^{n} b_i \theta_i(t) \theta_i(a) = 0$. **1**

On the other hand, we can just multiply the relation $\sum_{i=1}^{n} b_i \theta_i(a) = 0$ by $\theta_n(t)$ to get $\sum_{i=1}^{n} b_i \theta_n(t) \theta_i(a) = 0$, **1** and then subtract this from the previous relation to get $\sum_{i=1}^{n-1} c_i \theta_i(a) = 0$ as claimed. **1**

We deduce from the induction hypothesis that $c_1 = \cdots = c_{n-1} = 0$, so $b_i(\theta_i(t) - \theta_n(t)) = 0$ for all i < n (and all $t \in L$, because t was arbitrary). **1**

By assumption the homomorphisms θ_i are all different, so for each i < n we can choose $t_i \in L$ with $\theta_i(t_i) \neq \theta_n(t_i)$. We can then take $t = t_i$ in the relation $b_i(\theta_i(t) - \theta_n(t)) = 0$ to get $b_i = 0$. 1

This shows that $b_1 = \cdots = b_{n-1} = 0$, so the relation $\sum_{i=1}^n b_i \theta_i(a)$ reduces to $b_n \theta_n(a) = 0$ for all a.

Now take a = 1 to see that $b_n = 0$ as well. This completes the induction. 1

(b)

Write $m = \deg(\varphi)$ and let e_1, \dots, e_m be a basis for L over $\varphi(K)$. **1** Let $\theta_1, \dots, \theta_n$ be the distinct elements of $E(\varphi, \psi)$. Define $v_1, \dots, v_n \in M^m$ by

$$v_i = (\theta_i(e_1), \dots, \theta_i(e_m)).$$
 1

We claim that these n vectors are linearly independent over M.

To see this, consider a linear relation $b_1v_1 + \cdots + b_nv_n = 0$ with $b_1, \ldots, b_n \in M$. **1** So $\sum_{i=1}^n b_i \theta_i(e_j) = 0$ for all j.

Now consider an arbitrary element $a \in L$. As the elements e_j give a basis for L over $\varphi(K)$, we can write $a = \sum_{j=1}^{m} \varphi(x_j) e_j$ for some $x_1, \ldots, x_m \in K$. **1** We can then apply θ_i to this. Since $\theta_i \varphi = \psi$, we get

$$\theta_i(a) = \sum_{j=1}^m \psi(x_j)\theta_i(e_j).$$
 2

It follows that

$$\sum_{i=1}^{n} b_i \theta_i(a) = \sum_{i=1}^{n} \sum_{j=1}^{m} b_i \psi(x_j) \theta_i(e_j) = \sum_{j=1}^{m} \left(\psi(x_j) \sum_{i=1}^{n} b_i \theta_i(e_j) \right) = 0.$$

By (a) we have $b_1 = \cdots = b_n = 0$. **1** We deduce that the vectors v_1, \ldots, v_n in M^m are linearly independent **1**. The length of any linearly independent list is at most the dimension of the containing space, so we have $n \leq m$ **1**; that is, $|E(\varphi, \psi)| \leq \deg(\varphi)$.

(c)

Let N/K be a field extension of finite degree. We say that N is normal over K if for every monic irreducible polynomial $f(x) \in K[x]$, either f has no roots in N or f splits properly over N 3.

Equivalently: for any other extension L/K, either $E_K(L, N) = \emptyset$ or $|E_K(L, N)| = [L : K]$ (where $E_K(L, N) = \{\varphi \colon L \to N \mid \varphi|_K = 1\}$). 2

Alternatively, it is equivalent to say that |G(N/K)| = [N : K]. (2 also for this answer)

4(a) Standard type.

The set

$$B = \{1, \sqrt{2}, \sqrt{3}, \sqrt{7}, \sqrt{6}, \sqrt{14}, \sqrt{21}, \sqrt{42}\}$$

is a basis for L over \mathbb{Q} . **3**

(b) Standard type.

We can define automorphisms $\varphi, \psi, \omega \in G(L/\mathbb{Q})$ by

$$\begin{aligned} \varphi(\sqrt{2}) &= -\sqrt{2} & \varphi(\sqrt{3}) &= \sqrt{3} & \varphi(\sqrt{7}) &= \sqrt{7} \\ \psi(\sqrt{2}) &= \sqrt{2} & \psi(\sqrt{3}) &= -\sqrt{3} & \psi(\sqrt{7}) &= \sqrt{7} \\ \omega(\sqrt{2}) &= \sqrt{2} & \omega(\sqrt{3}) &= \sqrt{3} & \omega(\sqrt{7}) &= -\sqrt{7}. \end{aligned}$$

More explicitly, we have

$$\varphi(a+b\sqrt{2}+c\sqrt{3}+d\sqrt{7}+e\sqrt{6}+f\sqrt{14}+g\sqrt{21}+h\sqrt{42}) = a-b\sqrt{2}+c\sqrt{3}+d\sqrt{7}-e\sqrt{6}-f\sqrt{14}+g\sqrt{21}-h\sqrt{42}$$

and so on. These automorphisms commute with each other and satisfy $\varphi^2 = \psi^2 = \omega^2 = 1$. The full group is

 $G(L/\mathbb{Q}) = \{1, \varphi, \psi, \omega, \varphi\psi, \varphi\omega, \psi\omega, \varphi\psi\omega\} \cong C_2 \times C_2 \times C_2.$ **3**

(c) Close to standard type.

 H_i is the set of automorphisms $\theta \in G(L/\mathbb{Q})$ satisfying $\theta|_{K_i} = 1$. For example, this means that H_1 is the group of those $\theta \in G(L/K)$ for which $\theta(\sqrt{14}) = \sqrt{14}$, or equivalently $\theta(\sqrt{2})\theta(\sqrt{7}) = \sqrt{2}\sqrt{7}$. This gives the list

$$H_1 = \{1, \varphi \omega, \psi, \varphi \psi \omega\}.$$

Similarly, we have

$$H_{2} = \{1, \varphi \psi \omega\}$$

$$H_{4} = \{1, \varphi \psi, \varphi \omega, \psi \omega\}.$$
1

For H_3 , we note that any $\theta \in G(L/\mathbb{Q})$ has $\theta(\sqrt{2} + \sqrt{7}) = \pm\sqrt{2} \pm \sqrt{7}$. As $\sqrt{2}$ and $\sqrt{7}$ are linearly independent over \mathbb{Q} , we see that $\theta(\sqrt{2} + \sqrt{7})$ can only be equal to $\sqrt{2} + \sqrt{7}$ if $\theta(\sqrt{2}) = \sqrt{2}$ and $\theta(\sqrt{7}) = \sqrt{7}$ 1, which means that θ cannot involve φ or ω . 1 We conclude that

$$H_3 = \{1, \psi\}.$$
 1

(d) Unseen

As the Galois correspondence is an order-reversing bijection, we have $K_1 \leq K_3$ iff $H_1 \geq H_3$, which is true by part (c) **2**. More explicitly, we have

$$\sqrt{14} = \frac{1}{2} \left(\sqrt{2} + \sqrt{7}\right)^2 - \frac{9}{2},$$

so $\sqrt{14} \in \mathbb{Q}(\sqrt{2} + \sqrt{7})$, so $K_1 = \mathbb{Q}(\sqrt{14}) \leq \mathbb{Q}(\sqrt{2} + \sqrt{7}) = K_3$. 2

(e) Unseen

If a field M (with $\mathbb{Q} < M < L$) corresponds to a subgroup $H \leq G(L/\mathbb{Q})$, we have

$$|H| = [L:M] = [L:\mathbb{Q}]/[M:\mathbb{Q}] = 8/[M:\mathbb{Q}].$$
 1

Thus, the intermediate fields with $[M : \mathbb{Q}] = 4$ are in bijective correspondence with subgroups of order 2 in $G(L/\mathbb{Q})$ 2.

There are 7 non-identity elements $\theta \in G(L/K)$ **1**, and each of these satisfies $\theta^2 = 1$ so it gives a subgroup $\{1, \theta\}$ of order 2, and this gives all such subgroups. **1** Thus, there are 7 intermediate fields of degree 4 over \mathbb{Q} .

5 Standard type

(a) Use Eisenstein's criterion:

Let p be a prime number. Suppose that $q(x) = a_0 + a_1x + \cdots + a_{d-1}x^{d-1} + x^d$ is such that

- All the coefficients a_0, \ldots, a_{d-1} are integers, and are divisible by p. 1
- a_0 is not divisible by p^2 . 1

Then q(x) is irreducible over \mathbb{Q} . 1

For the given polynomial, $f(x) = x^4 \pmod{2}$ and $f(0) \neq 0 \pmod{4}$ so Eisenstein's criterion applies and f(x) is irreducible. 2

(b) Note that $\alpha^2 + 4 = 3\sqrt{2} = \sqrt{18}$, and squaring again shows that $\alpha^4 + 8\alpha^2 + 16 = 18$, so $f(\alpha) = 0$. 1

As f(x) only involves even powers of x we have f(-x) = f(x) and so $f(-\alpha) = 0$. 1

Now put $\beta = \sqrt{-3\sqrt{2}-4}$; the same argument shows that $f(\pm\beta) = 0$. We also have $(\alpha\beta)^2 = (3\sqrt{2}-4)(-3\sqrt{2}-4) = -2$, so $\beta = \pm\sqrt{-2}/\alpha$. **3** It follows that the roots of f(x) are as described, so the splitting field is $\mathbb{Q}(\alpha,\beta)\mathbf{1} = \mathbb{Q}(\alpha,\alpha\beta) = \mathbb{Q}(\alpha,\sqrt{-2}) = M$ as claimed. **1**

Use of quadratic formula gets same marks

(c) We have $3\sqrt{2} - 4 \simeq 0.24 > 0$ so α is real, so $\mathbb{Q}(\alpha) \subseteq M \cap \mathbb{R}$. **1** As f(x) is irreducible, it must be the minimal polynomial for α , **1** and so $[\mathbb{Q}(\alpha) : \mathbb{Q}] = \deg(f(x)) = 4$. **1** As $\mathbb{Q}(\alpha) \subseteq \mathbb{R}$ and $\sqrt{-2}$ is purely imaginary we see that $1, \sqrt{-2}$ is a basis for M over $\mathbb{Q}(\alpha)$, **1** so $M \cap \mathbb{R} = \mathbb{Q}(\alpha)$ and $[M : \mathbb{Q}] = [M : \mathbb{Q}(\alpha)][\mathbb{Q}(\alpha) : \mathbb{Q}] = 2 \times 4 = 8$. **1**

(d) First let $\psi: M \to M$ be given by complex conjugation, so $\psi(\sqrt{-2}) = -\sqrt{-2}$ and $\psi(\alpha) = \alpha$. It is clear that $\psi^2 = 1$.

Next, the Galois group of the splitting field of an irreducible polynomial always acts transitively on the roots, so we can find $\sigma \in G(M/\mathbb{Q})$ with $\sigma(\alpha) = \sqrt{-2}/\alpha$. 1

Now σ must permute the roots of $x^2 + 2$, so $\sigma(\sqrt{-2}) = \pm \sqrt{-2}$. **1** If the sign is positive we put $\varphi = \sigma \psi$, otherwise we put $\varphi = \sigma$. In either case we then have $\varphi(\alpha) = \sqrt{-2}/\alpha = \beta$ and $\varphi(\sqrt{-2}) = -\sqrt{-2}$. **1** This means that

$$\varphi^2(\alpha) = \varphi(\sqrt{-2}/\alpha) = \varphi(\sqrt{-2})/\varphi(\alpha) = -\sqrt{-2}/(\sqrt{-2}/\alpha) = -\alpha$$

and $\varphi^2(\sqrt{-2}) = \sqrt{-2}$. It follows in turn that $\varphi^4 = 1$. 1

We now have various different automorphisms, whose effect we can tabulate as follows:

	1	φ	φ^2	$arphi^3$	ψ	$arphi\psi$	$arphi^2\psi$	$arphi^3\psi$	
α	α	β	$-\alpha$	$-\beta$	α	β	$-\alpha$	$-\beta$	9
β	β	$-\alpha$	$-\beta$	α	$-\beta$	α	β	$-\alpha$	4
$\sqrt{-2}$	$\sqrt{-2}$	$-\sqrt{-2}$	$\sqrt{-2}$	$-\sqrt{-2}$	$-\sqrt{-2}$	$\sqrt{-2}$	$-\sqrt{-2}$	$\sqrt{-2}$.	

We see that the eight automorphisms listed are all different, but $|G(M/\mathbb{Q})| = [M : \mathbb{Q}] = 8$, so we have found all the automorphisms. **1**