Q1 (i)(a) Bookwork
Suppose $(*)$ has a repeated root. Then the LHS factorizes as

$$
t^{3}+p t+q=(t-u)^{2}(t-v) \quad 1
$$

where $u, v \in \mathbb{R}$ (possibly equal). Expanding out we have

$$
2 u+v=0, \quad 2 u v+u^{2}=p, \quad-u^{2} v=q
$$

Eliminating v, this gives

$$
p=-3 u^{2}, \quad q=2 u^{3} . \quad 1
$$

To eliminate u, cube the first equation and square the second. We obtain

$$
4 p^{3}+27 q^{2}=0 . \quad 1
$$

So if $(*)$ has repeated roots, the quantity $4 p^{3}+27 q^{2}$ is zero.
(b) Unseen Suppose $(*)$ has one real and two complex, non-real, roots. Then it factorizes as

$$
t^{3}+p t+q=(t-u)\left(t^{2}+b t+c\right)
$$

where $b^{2}-4 c<0$. Expanding out we get

$$
b-u=0, \quad c-b u=p, \quad-c u=q, \quad 1
$$

so

$$
4 p^{3}+27 q^{2}=4\left(c-b^{2}\right)+27 b^{2} c^{2}=4 c^{3}+15 b^{2} c^{2}+12 b^{4} c-4 b^{6} . \quad 1
$$

This is the negative of

$$
4 b^{6}-12 b^{4} c-15 b^{2} c^{2}-4 c^{3}=\left(b^{2}-4 c\right)\left(4 b^{4}+4 b^{2} c+c^{2}\right)
$$

Now $4 b^{4}+4 b^{2} c+c^{2} \geqslant 0$ and can only be zero if $b=c=0$ and therefore $p=q=0$, contradicting the assumption of non-real roots. 1
Since $b^{2}-4 c<0$ we get $4 p^{3}+27 q^{2}>0$.
(ii) Bookwork

The characteristic of a field K is the least positive integer n such that $n 1=0 . \boxed{1}$ If no such n exists then K has characteristic zero. 1
A homomorphism of fields is a map $\varphi: K \rightarrow L$ such that $\varphi\left(0_{K}\right)=0_{L}, \varphi\left(1_{K}\right)=1_{L}, 1$ $\varphi(a+b)=\varphi(a)+\varphi(b)$ and $\varphi(a b)=\varphi(a) \varphi(b)$ for all $a, b \in K .1$
The degree of a homomorphism $\varphi: K \rightarrow L$ is the dimension of the vector space L over $\varphi(K)$. 1, any equivalent formulation acceptable

An automorphism of fields is a homomorphism $\varphi: K \rightarrow L$ which is a bijection. 1
An ideal in a ring R is a subset I which contains the zero element, is closed under addition, and is such that if $a \in R$ and $b \in I$ then $a b \in I$. 3
(iii) Bookwork
(a) Take $a \in K$ with $a \neq 0$. Then a^{-1} exists and $a a^{-1}=1_{K}$. So $\varphi(a) \varphi\left(a^{-1}\right)=\varphi\left(1_{K}\right)=$ 1_{L}. In particular $\varphi(a) \neq 0_{L}$. 2
(b) If $n \in \mathbb{N}$ and $n 1_{K} \neq 0_{K}$ then $\varphi\left(n 1_{K}\right) \neq 0_{L}$, by (a). $\mathbf{1}$ And

$$
\varphi\left(n 1_{K}\right)=\varphi\left(1_{K}+\cdots+1_{K}\right)(n \text { times })=1_{L}+\cdots+1_{L}=n 1_{L}
$$

so $n 1_{L} \neq 0_{L} .1$ Likewise $n 1_{K}=0_{K}$ implies that $n 1_{L}=0_{L}$. So, for $n \in \mathbb{N}$,

$$
n 1_{K} \neq 0_{K} \text { if and only if } n 1_{L} \neq 0_{L}
$$

It follows that K has characteristic 0 if and only if L has characteristic 0 .
If K has characteristic p then $p 1_{K}=0_{K}$ but $n 1_{K} \neq 0_{K}$ for $n=1, \ldots, p-1$. So $p 1_{L}=0_{L}$ but $n 1_{L} \neq 0_{L}$ for $n=1, \ldots, p-1$. 1 Therefore L has characteristic p. The converse is similar. 1

2(a) Bookwork

A polynomial is primitive if there is no prime p which divides all its coefficients. Denote by π_{p} the canonical ring homomorphism $\mathbb{Z}[x] \rightarrow \mathbb{F}_{p}[x]$. Then $q(x) \in \mathbb{Z}[x]$ is primitive if and only if $\pi_{p}(f(x)) \neq 0$ for all primes p. 2
Consider a prime p. By the assumption we have $\pi_{p}(f(x)) \neq 0$ and $\pi_{p}(g(x)) \neq 0$. Since \mathbb{F}_{p} is a field, we have $\pi_{p}(f(x)) \pi_{p}(g(x)) \neq 0.1$ Now $\pi_{p}(f(x) g(x))=\pi_{p}(f(x)) \pi_{p}(g(x))$, so $\pi_{p}(f(x) g(x)) \neq 0.1$
As this holds for all p it follows that $f(x) g(x)$ is primitive, as claimed. 1
(b) Bookwork

Let u be the least common multiple of the denominators of the coefficients of f, or equivalently the smallest positive integer such that the polynomial $\bar{f}(x)=u f(x)$ lies in $\mathbb{Z}[x] . \quad 1$ We claim that $\bar{f}(x)$ is primitive.
Indeed, if it were not primitive, there would be a prime p that divides all the coefficients of $\bar{f}(x)$, and then $\frac{1}{p} u f(x)$ would also be in $\mathbb{Z}[x]$, contradicting the definition of u. So $\bar{f}(x)$ must be primitive after all. 2
Similarly, we can find an integer $v>0$ such that the polynomial $\bar{g}(x)=v g(x)$ is integral and primitive.
Now put $\bar{q}(x)=\bar{f}(x) \bar{g}(x)$, and note from (a) that $\bar{q}(x)$ is primitive. 1
On the other hand, we have $\bar{q}(x)=u v f(x) g(x)=u v q(x)$, with $u v \in \mathbb{N}$ and $q(x) \in \mathbb{Z}[x]$. It follows that any prime dividing $u v$ divides all the coefficients of $\bar{q}(x)$, which is impossible because $\bar{q}(x)$ is primitive. 2
It follows that there cannot be any primes dividing $u v$, so we must have $u=v=1$. Thus $f(x)=\bar{f}(x) \in \mathbb{Z}[x]$ and $g(x)=\bar{g}(x) \in \mathbb{Z}[x]$ as claimed. 1
(c) Standard type

The only quadratics over \mathbb{F}_{2} are $x^{2}, x^{2}+1, x^{2}+x$ and $x^{2}+x+1.2$
Of these we have that $x^{2}, x^{2}+1=(x+1)^{2}$ and $x^{2}+x=x(x+1)$ are not irreducible. 1 $p(x):=x^{2}+x+1$ has $p(0)=1$ and $p(1)=1$ so is irreducible over $F_{2} .1$
(d) Standard type

First, in \mathbb{F}_{2} we have $f(0)=1$ and $f(1)=1$, so $f(x)$ has no roots, so it has no factors of degree one. 1 Thus, the only way it could factorise would be as an irreducible quadratic times an irreducible cubic. 1
By long division over \mathbb{F}_{2} we get

$$
f(x)=\left(x^{3}+x^{2}\right)\left(x^{2}+x+1\right)+1,
$$

so $f(x)$ is not divisible by $x^{2}+x+1$. It is therefore irreducible as claimed. 1
Now suppose there is a factorisation $f(x)=g(x) h(x)$ in $\mathbb{Q}[x]$, where $g(x)$ and $h(x)$ are monic. Then from (b) it follows that $g(x), h(x) \in \mathbb{Z}[x]$, so we can reduce everything modulo 2. 1

We then have $\bar{f}(x)=\bar{g}(x) \bar{h}(x)$ in $\mathbb{F}_{2}[x]$, but $\bar{f}(x)$ is irreducible, so one of the factors must be equal to one, say $\bar{g}(x)=1$. 1 As $g(x)$ is monic, the only way we can have $\bar{g}(x)=1$ is if $g(x)=1$. 1 We deduce that $f(x)$ is irreducible in $\mathbb{Q}[x]$, as claimed. 1

3 Bookwork

(a) We argue by induction on n.

If $n=1$ then we have $b_{1} \theta_{1}(a)=0$ for all $a \in L$, and we can take $a=1$ to see that $b_{1}=0$; this starts the induction. 1
Now suppose the result true for some specific $n>1$. 1 Fix some $t \in L$, and put $c_{i}=b_{i}\left(\theta_{i}(t)-\theta_{n}(t)\right), 1$ so $c_{n}=0$.
We claim that $\sum_{i=1}^{n-1} c_{i} \theta_{i}(a)=0$ for all $a \in L$.
Indeed, the relation $\sum_{i=1}^{n} b_{i} \theta_{i}(a)=0$ is valid for all $a \in L$, so it works for $t a$ in place of a, which gives $\sum_{i=1}^{n} b_{i} \theta_{i}(t) \theta_{i}(a)=0.1$
On the other hand, we can just multiply the relation $\sum_{i=1}^{n} b_{i} \theta_{i}(a)=0$ by $\theta_{n}(t)$ to get $\sum_{i=1}^{n} b_{i} \theta_{n}(t) \theta_{i}(a)=0,1$ and then subtract this from the previous relation to get $\sum_{i=1}^{n-1} c_{i} \theta_{i}(a)=0$ as claimed. 1
We deduce from the induction hypothesis that $c_{1}=\cdots=c_{n-1}=0$, so $b_{i}\left(\theta_{i}(t)-\theta_{n}(t)\right)=0$ for all $i<n$ (and all $t \in L$, because t was arbitrary). 1
By assumption the homomorphisms θ_{i} are all different, so for each $i<n$ we can choose $t_{i} \in L$ with $\theta_{i}\left(t_{i}\right) \neq \theta_{n}\left(t_{i}\right)$. We can then take $t=t_{i}$ in the relation $b_{i}\left(\theta_{i}(t)-\theta_{n}(t)\right)=0$ to get $b_{i}=0.1$
This shows that $b_{1}=\cdots=b_{n-1}=0$, so the relation $\sum_{i=1}^{n} b_{i} \theta_{i}(a)$ reduces to $b_{n} \theta_{n}(a)=0$ for all a. 1
Now take $a=1$ to see that $b_{n}=0$ as well. This completes the induction. 1
(b)

Write $m=\operatorname{deg}(\varphi)$ and let e_{1}, \cdots, e_{m} be a basis for L over $\varphi(K) .1$
Let $\theta_{1}, \ldots, \theta_{n}$ be the distinct elements of $E(\varphi, \psi)$.
Define $v_{1}, \ldots, v_{n} \in M^{m}$ by

$$
v_{i}=\left(\theta_{i}\left(e_{1}\right), \ldots, \theta_{i}\left(e_{m}\right)\right) .
$$

We claim that these n vectors are linearly independent over M.
To see this, consider a linear relation $b_{1} v_{1}+\cdots+b_{n} v_{n}=0$ with $b_{1}, \ldots, b_{n} \in M .1$ So $\sum_{i=1}^{n} b_{i} \theta_{i}\left(e_{j}\right)=0$ for all j.
Now consider an arbitrary element $a \in L$. As the elements e_{j} give a basis for L over $\varphi(K)$, we can write $a=\sum_{j=1}^{m} \varphi\left(x_{j}\right) e_{j}$ for some $x_{1}, \ldots, x_{m} \in K .1$ We can then apply θ_{i} to this. Since $\theta_{i} \varphi=\psi$, we get

$$
\begin{equation*}
\theta_{i}(a)=\sum_{j=1}^{m} \psi\left(x_{j}\right) \theta_{i}\left(e_{j}\right) \tag{2}
\end{equation*}
$$

It follows that

$$
\sum_{i=1}^{n} b_{i} \theta_{i}(a)=\sum_{i=1}^{n} \sum_{j=1}^{m} b_{i} \psi\left(x_{j}\right) \theta_{i}\left(e_{j}\right)=\sum_{j=1}^{m}\left(\psi\left(x_{j}\right) \sum_{i=1}^{n} b_{i} \theta_{i}\left(e_{j}\right)\right)=0.1
$$

By (a) we have $b_{1}=\cdots=b_{n}=0.1$ We deduce that the vectors v_{1}, \ldots, v_{n} in M^{m} are linearly independent 1 . The length of any linearly independent list is at most the dimension of the containing space, so we have $n \leqslant m$; that is, $|E(\varphi, \psi)| \leqslant \operatorname{deg}(\varphi)$.

(c)

Let N / K be a field extension of finite degree. We say that N is normal over K if for every monic irreducible polynomial $f(x) \in K[x]$, either f has no roots in N or f splits properly over $N 3$.
Equivalently: for any other extension L / K, either $E_{K}(L, N)=\emptyset$ or $\left|E_{K}(L, N)\right|=[L: K]$ (where $E_{K}(L, N)=\left\{\varphi: L \rightarrow N|\varphi|_{K}=1\right\}$). 2
Alternatively, it is equivalent to say that $|G(N / K)|=[N: K] .(2$ also for this answer $)$

4(a) Standard type.
The set

$$
B=\{1, \sqrt{2}, \sqrt{3}, \sqrt{7}, \sqrt{6}, \sqrt{14}, \sqrt{21}, \sqrt{42}\}
$$

is a basis for L over \mathbb{Q}. 3
(b) Standard type.

We can define automorphisms $\varphi, \psi, \omega \in G(L / \mathbb{Q})$ by

$$
\begin{array}{lll}
\varphi(\sqrt{2})=-\sqrt{2} & \varphi(\sqrt{3})=\sqrt{3} & \varphi(\sqrt{7})=\sqrt{7} \\
\psi(\sqrt{2})=\sqrt{2} & \psi(\sqrt{3})=-\sqrt{3} & \psi(\sqrt{7})=\sqrt{7} \\
\omega(\sqrt{2})=\sqrt{2} & \omega(\sqrt{3})=\sqrt{3} & \omega(\sqrt{7})=-\sqrt{7}
\end{array}
$$

More explicitly, we have

$$
\begin{aligned}
\varphi(a+b \sqrt{2}+c \sqrt{3}+d \sqrt{7}+e \sqrt{6} & +f \sqrt{14}+g \sqrt{21}+h \sqrt{42})= \\
a & -b \sqrt{2}+c \sqrt{3}+d \sqrt{7}-e \sqrt{6}-f \sqrt{14}+g \sqrt{21}-h \sqrt{42}
\end{aligned}
$$

and so on. These automorphisms commute with each other and satisfy $\varphi^{2}=\psi^{2}=\omega^{2}=1$. The full group is

$$
G(L / \mathbb{Q})=\{1, \varphi, \psi, \omega, \varphi \psi, \varphi \omega, \psi \omega, \varphi \psi \omega\} \cong C_{2} \times C_{2} \times C_{2}
$$

(c) Close to standard type.
H_{i} is the set of automorphisms $\theta \in G(L / \mathbb{Q})$ satisfying $\left.\theta\right|_{K_{i}}=1$. For example, this means that H_{1} is the group of those $\theta \in G(L / K)$ for which $\theta(\sqrt{14})=\sqrt{14}$, or equivalently $\theta(\sqrt{2}) \theta(\sqrt{7})=\sqrt{2} \sqrt{7}$. This gives the list

$$
\begin{equation*}
H_{1}=\{1, \varphi \omega, \psi, \varphi \psi \omega\} . \tag{2}
\end{equation*}
$$

Similarly, we have

$$
\begin{aligned}
H_{2} & =\{1, \varphi \psi \omega\} \\
H_{4} & =\{1, \varphi \psi, \varphi \omega, \psi \omega\} .
\end{aligned}
$$

For H_{3}, we note that any $\theta \in G(L / \mathbb{Q})$ has $\theta(\sqrt{2}+\sqrt{7})= \pm \sqrt{2} \pm \sqrt{7}$. As $\sqrt{2}$ and $\sqrt{7}$ are linearly independent over \mathbb{Q}, we see that $\theta(\sqrt{2}+\sqrt{7})$ can only be equal to $\sqrt{2}+\sqrt{7}$ if $\theta(\sqrt{2})=\sqrt{2}$ and $\theta(\sqrt{7})=\sqrt{7} \sqrt{1}$, which means that θ cannot involve φ or ω. 1 We conclude that

$$
H_{3}=\{1, \psi\} . \quad 1
$$

(d) Unseen

As the Galois correspondence is an order-reversing bijection, we have $K_{1} \leqslant K_{3}$ iff $H_{1} \geqslant$ H_{3}, which is true by part (c) $\mathbf{2}$. More explicitly, we have

$$
\sqrt{14}=\frac{1}{2}(\sqrt{2}+\sqrt{7})^{2}-\frac{9}{2}
$$

so $\sqrt{14} \in \mathbb{Q}(\sqrt{2}+\sqrt{7})$, so $K_{1}=\mathbb{Q}(\sqrt{14}) \leqslant \mathbb{Q}(\sqrt{2}+\sqrt{7})=K_{3} .2$
(e) Unseen

If a field M (with $\mathbb{Q}<M<L$) corresponds to a subgroup $H \leqslant G(L / \mathbb{Q})$, we have

$$
|H|=[L: M]=[L: \mathbb{Q}] /[M: \mathbb{Q}]=8 /[M: \mathbb{Q}] .
$$

Thus, the intermediate fields with $[M: \mathbb{Q}]=4$ are in bijective correspondence with subgroups of order 2 in $G(L / \mathbb{Q}) 2$.
There are 7 non-identity elements $\theta \in G(L / K) \boxed{1}$, and each of these satisfies $\theta^{2}=1$ so it gives a subgroup $\{1, \theta\}$ of order 2 , and this gives all such subgroups. 1 Thus, there are 7 intermediate fields of degree 4 over \mathbb{Q}.

5 Standard type

(a) Use Eisenstein's criterion:

Let p be a prime number. Suppose that $q(x)=a_{0}+a_{1} x+\cdots+a_{d-1} x^{d-1}+x^{d}$ is such that

- All the coefficients a_{0}, \ldots, a_{d-1} are integers, and are divisible by $p .1$
- a_{0} is not divisible by p^{2}. 1

Then $q(x)$ is irreducible over $\mathbb{Q} .1$
For the given polynomial, $f(x)=x^{4}(\bmod 2)$ and $f(0) \neq 0(\bmod 4)$ so Eisenstein's criterion applies and $f(x)$ is irreducible. 2
(b) Note that $\alpha^{2}+4=3 \sqrt{2}=\sqrt{18}$, and squaring again shows that $\alpha^{4}+8 \alpha^{2}+16=18$, so $f(\alpha)=0.1$
As $f(x)$ only involves even powers of x we have $f(-x)=f(x)$ and so $f(-\alpha)=0.1$
Now put $\beta=\sqrt{-3 \sqrt{2}-4}$; the same argument shows that $f(\pm \beta)=0$. We also have $(\alpha \beta)^{2}=(3 \sqrt{2}-4)(-3 \sqrt{2}-4)=-2$, so $\beta= \pm \sqrt{-2} / \alpha .3$ It follows that the roots of $f(x)$ are as described, so the splitting field is $\mathbb{Q}(\alpha, \beta) \mathbb{1}=\mathbb{Q}(\alpha, \alpha \beta)=\mathbb{Q}(\alpha, \sqrt{-2})=M$ as claimed. 1

Use of quadratic formula gets same marks

(c) We have $3 \sqrt{2}-4 \simeq 0.24>0$ so α is real, so $\mathbb{Q}(\alpha) \subseteq M \cap \mathbb{R}$. 1 As $f(x)$ is irreducible, it must be the minimal polynomial for $\alpha, \sqrt{1}$ and so $[\mathbb{Q}(\alpha): \mathbb{Q}]=\operatorname{deg}(f(x))=4 . \sqrt{1}$ As $\mathbb{Q}(\alpha) \subseteq \mathbb{R}$ and $\sqrt{-2}$ is purely imaginary we see that $1, \sqrt{-2}$ is a basis for M over $\mathbb{Q}(\alpha)$, 1 so $M \cap \mathbb{R}=\mathbb{Q}(\alpha)$ and $[M: \mathbb{Q}]=[M: \mathbb{Q}(\alpha)][\mathbb{Q}(\alpha): \mathbb{Q}]=2 \times 4=8$. 1
(d) First let $\psi: M \rightarrow M$ be given by complex conjugation, so $\psi(\sqrt{-2})=-\sqrt{-2}$ and $\psi(\alpha)=\alpha$. It is clear that $\psi^{2}=1.1$

Next, the Galois group of the splitting field of an irreducible polynomial always acts transitively on the roots, so we can find $\sigma \in G(M / \mathbb{Q})$ with $\sigma(\alpha)=\sqrt{-2} / \alpha .1$
Now σ must permute the roots of $x^{2}+2$, so $\sigma(\sqrt{-2})= \pm \sqrt{-2}$. 1 If the sign is positive we put $\varphi=\sigma \psi$, otherwise we put $\varphi=\sigma$. In either case we then have $\varphi(\alpha)=\sqrt{-2} / \alpha=\beta$ and $\varphi(\sqrt{-2})=-\sqrt{-2} .1$ This means that

$$
\varphi^{2}(\alpha)=\varphi(\sqrt{-2} / \alpha)=\varphi(\sqrt{-2}) / \varphi(\alpha)=-\sqrt{-2} /(\sqrt{-2} / \alpha)=-\alpha
$$

and $\varphi^{2}(\sqrt{-2})=\sqrt{-2}$. It follows in turn that $\varphi^{4}=1$. 1
We now have various different automorphisms, whose effect we can tabulate as follows:

	1	φ	φ^{2}	φ^{3}	ψ	$\varphi \psi$	$\varphi^{2} \psi$	$\varphi^{3} \psi$
α	α	β	$-\alpha$	$-\beta$	α	β	$-\alpha$	$-\beta$
β	β	$-\alpha$	$-\beta$	α	$-\beta$	α	β	$-\alpha$
$\sqrt{-2}$	$\sqrt{-2}$	$-\sqrt{-2}$	$\sqrt{-2}$	$-\sqrt{-2}$	$-\sqrt{-2}$	$\sqrt{-2}$	$-\sqrt{-2}$	$\sqrt{-2}$.

We see that the eight automorphisms listed are all different, but $|G(M / \mathbb{Q})|=[M: \mathbb{Q}]=8$, so we have found all the automorphisms. 1

