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Q1 (i)(a) Bookwork Putting u = 3
√
y + 3
√
z in (∗) we get

u3 = y + 3 3
√
y2z + 3 3

√
yz2 + z = y + z + 3 3

√
yz( 3
√
y + 3
√
z) = y + z + 3u 3

√
yz 2

so u3 − 3u 3
√
yz − (y + z) = 0. Comparing this with (∗) we must have

p = −3 3
√
yz, q = −(y + z). 2

(b) We now solve these for z. Put y = −(q + z) into the first equation. We get

3 3
√
z 3
√
(z + q) = p. 2

Cubing gives 27z(z + q) = p3. This rearranges to 27z2 + 27qz − p3 = 0. 1

(c) We have converted the solution of the cubic into the solution of a quadratic. Solving
in the usual way, we have

−q
2
±
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p3

27
+
q2

4
. 1

Since u = 3
√
y + 3
√
z and y + z = −q we have

u =
3

√
−q
2
+

√
p3

27
+
q2

4
+

3

√
−q
2
−
√
p3

27
+
q2

4
. 2

(ii) Bookwork

Suppose that x is a nonzero element of M ; we need to show that x has an inverse in M .
1

Write d = dimK(M); this dimension is finite because M is a vector subspace of L. The
elements 1, x, x2, . . . , xd are d + 1 in number, so must be linearly dependent. That is,
there are a0, a1, . . . ad ∈ K, not all zero, such that

a0 + a1x+ a2x
2 + · · ·+ adx

d = 0. 2

So I(x,K) 6= 0, and there is therefore an irreducible monic polynomial q(t) = min(x,K)(t) =∑D
i=0 bit

i say, with q(x) = 0. 1

We claim that q(0) 6= 0. Indeed, if q(0) were zero then t would be a nonconstant monic
factor of the irreducible polynomial q(t), and this would mean that t would have to equal
q(t), so the equation q(x) = 0 would give x = 0, contradicting our assumption that x is
nonzero. 2

Thus, the constant term b0 = q(0) is nonzero, and thus invertible in K. We now put
y = −

∑D
i=1 b

−1
0 bix

i−1 ∈ M . 1 The equation
∑D

i=0 bix
i = 0 can then be rearranged to

give xy = 1, 1 so y is the required inverse to x in M .
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(iii) Unassigned exercise Suppose that σ(i) = i. Transitivity means that for any j ∈ N we
can choose τ ∈ A with τ(i) = j. 1 As A is commutative we then have

σ(j) = σ(τ(i)) = τ(σ(i)) = τ(i) = j. 1

As j was arbitrary, this means that σ is the identity. 1

Next, as A is transitive we can choose σi ∈ A (for i = 1, . . . , N) such that σi(1) = i.
1 Now let τ be any element of A. Put i = τ(1), and note that τ−1σi sends 1 to 1.
1 By the first paragraph, this means that τ−1σi = 1, so τ = σi. 1 This means that
A = {σ1, . . . , σn}, and these elements are all different.

In particular |A| = n. 1
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Q2 (i) Bookwork The requirement that ϕ ◦ π = ϕ forces us to define ϕ : R/I → S by
ϕ(a+ I) = ϕ(a). 1 So if ϕ is a morphism, it is the unique such morphism. 1

To show that this is well-defined, suppose that a + I = b + I. Then a − b ∈ I and so
ϕ(a− b) = 0. Therefore ϕ(a) = ϕ(b). 2

To show that ϕ is a morphism:

ϕ((a+ I) + (b+ I)) = ϕ((a+ b) + I) = ϕ(a+ b) = ϕ(a) + ϕ(b) = ϕ(a+ I) + ϕ(b+ I),

ϕ((a+ I)(b+ I)) = ϕ(ab+ I) = ϕ(ab) = ϕ(a)ϕ(b) = ϕ(a+ I)ϕ(b+ I),

ϕ(1R + I) = ϕ(1R) = 1S. 3

Now assume that ϕ is surjective. Then ϕ is surjective because every s ∈ S is ϕ(a) =
ϕ(a+ I) for some a ∈ R. 1

Now assume that ker(ϕ) = I. Suppose that ϕ(a + I) = 0. Then ϕ(a) = 0 so a ∈ I and
therefore a+ I = 0 + I. 2

(ii)(a) Bookwork

EK(L,M) = {θ : L→M | θ|K = idK}. 1

(b) Bookwork Let d be the degree of q, or equivalently the degree of the homomorphism
ϕ. 1 Let R be the set of roots of (ψ̃q)(t) in M .

We can write q(t) in the form q(t) = a0 + a1t + · · · + adt
d, where ad = 1 since q(t) is

monic. By definition we have (ϕ̃q)(α) = 0, or equivalently
∑

i ϕ(ai)α
i = 0. 1 Suppose

that θ ∈ E(ϕ, ψ), so θϕ = ψ : K → M . We can then apply θ to the above equation to
get

(ψ̃q)(θ(α)) =
∑
i

ψ(ai)θ(α)
i = θ(

∑
i

aiα
i) = θ(0) = 0,

so θ(α) ∈ R 2 . This defines a map P E(ϕ, ψ)→ R by P (θ) = θ(α). 1

Now suppose we have two elements θ0, θ1 ∈ E(ϕ, ψ) with P (θ0) = P (θ1), so θ0(α) =
θ1(α) = β say. It follows from the result provided that every element σ ∈ L can be written
in the form σ =

∑d−1
j=0 ϕ(bj)α

j, for some elements bj ∈ K. 1 Using θi(ϕ(b)) = ψ(b) and
θi(α) = β we deduce that θ0(σ) =

∑
j ψ(bj)β

j = θ1(σ). As σ was arbitrary this means
that θ0 = θ1, so we see that P is injective. 2

Finally, consider a general element β ∈ R, so β is a root of (ψ̃q)(t). We can then define a
homomorphism λ K[t]→M by λ(f(t)) = (ψ̃f)(β), or more explicitly

λ(
∑
i

bit
i) =

∑
i

ψ(bi)β
i. 1

We then have λ(q(t)) = 0, so λ(K[t].q(t)) = 0. 1 There is therefore a homomorphism

λ : K[t]/(K[t].q(t))→M, 1

which we can compose with the inverse of the isomorphism χ : K[t]/(K[t].q(t)) → L to
get a homomorphism θ = λ ◦ χ−1 : L → M which clearly satisfies P (θ) = β. 2 This
means that P is also surjective, so it is a bijection. 1
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3(a) Bookwork Any one of:

• For every field L and homomorphism ϕ K → L, we have either |E(ϕ, ψ)| = 0 or
|E(ϕ, ψ)| = deg(ϕ).

• |G(ψ)| = deg(ψ).

• ψ is a proper splitting extension for some polynomial f(t) ∈ K[t]. 3

(b) Bookwork

Theorem: Let M be a normal 1 extension of K, with Galois group G = G(M/K).

(a) For any subgroup H 6 G, the set

L =MH = {a ∈M | σ(a) = a for all σ ∈ H}

is a subfield of M containing K, and M is normal over L with G(M/L) = H. 2

(b) For any subfield L ⊆M containing K, the Galois group H = G(M/L) is a subgroup
of G and we have MH = L. 2

(c) If L and H are as above, then L is a normal extension of K if and only if H is a
normal subgroup of G, and if so, then G(L/K) = G/H. 2

(c) Unseen, standard type

Since G(L/Q) is isomorphic to C2×C2, there are elements ρ and σ such that ρ2 = σ2 = 1
and ρσ = σρ and then

G := G(L/K) = {1, ρ, σ, ρσ}. 1

Each element of order 2 in G defines a subgroup of G; write

A = {1, ρ}, B = {1, σ}, C = {1, ρσ}. 1

Define subfields of L by

M = LA, N = LB, P = LC . 1

Then A, B and C are the only proper nontrivial subgroups of G, so by (b) M , N and
P are the only fields strictly between Q and L. 1 As G is abelian, all subgroups are
normal, so M , N and P are normal over Q, 1 with Galois groups G/A, G/B and G/C
respectively. Each of these has order 2.

As σ 6∈ A, we see that σ acts nontrivially on M , so we can choose µ ∈ M with σ(µ) 6= µ
1 . It follows that the element α = µ − σ(µ) is nonzero, and it satisfies σ(α) = −α 1 .
It follows that α 6∈ Q, and [M : Q] = |G/A| = 2, so 1 and α must give a basis for M over
Q, so M = Q(α). 1

We also have σ(α2) = α2, and so α2 ∈ MG/A = Q. Similarly, there is an element β ∈ N
such that {1, β} is a basis for N over Q, and ρ(β) = −β, and β2 ∈ Q. Note that ρ(α) = α
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(as α ∈ M) and σ(β) = β (as β ∈ N). It follows that ρ(σ(αβ)) = (−α)(−β) = αβ, so
αβ ∈ P . 1

We next claim that {1, α, β, αβ} is linearly independent over Q. Suppose that

w + xα + yβ + zαβ = 0

for some w, x, y, z ∈ Q. Applying σ we get

w − xα + yβ − zαβ = 0.

Applying ρ we get
w + xα− yβ − zαβ = 0.

Applying σρ we get
w − xα− yβ + zαβ = 0. 2

Adding the first equation to each of the others in turn we get

2w + 2yβ = 0, 2w + 2xα = 0, 2w + 2zαβ = 0.

Can cancel 2s since we are over Q. So yβ = −w ∈ Q and therefore y = 0. Similarly x = 0
and z = 0. Finally w = 0. 1

Now since L is normal 1 , dimQ(L) = |G| = 4, so {1, α, β, αβ} is a basis.
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4 Unseen, standard type

(a) The roots of f(t) are ±α and ±iα 2 . Thus Q(α, i) ⊆ L. Also f(t) splits in L and
the splitting is proper. 2 Since L is a proper splitting field for a polynomial, it is normal.
1

(b) In general for field extensions K ⊆M ⊆ L of finite degree, 1

[L :M ][M : K] = [L : K]. (∗) 1

Write M = Q(α). To find [M : Q] note first that f(t) is irreducible by Eisenstein’s
Criterion 1 (statement not required) . Hence it is the minimal polynomial of α over
Q 1 and so [M : Q] = 4. 1

Now consider [Q(i, α) : Q(α)]. The minimal polynomial of i over Q(α) is g(t) = t2 + 1
since g(i) = 0 but i /∈ Q(α). 1 So [Q(i, α) : Q(α)] = 2.

By (∗) we have [L : Q] = 8. 1

(c) A basis for L over Q is 1, α, α2, α3, i, iα, iα2, iα3. 1 From the given values and the
fact that σ ∈ G(L/Q) we have that σ acts on the basis elements by

1 α α2 α3 i iα iα2 iα3

1 iα −α2 −iα3 i −α −iα2 α3 1

There is a unique such linear map with these values. It remains to check that it is a
homomorphism of fields. We check a nontrivial case. For example:

σ(α)σ(α3) = (iα)(−iα3) = α4 = 2 = σ(2) = σ(αα3). 1

An element of G(L/Q) is determined by its values on α and i. 1 For powers of σ we
have

α i
σ iα i
σ2 −α i
σ3 −iα i
σ4 α i

2

For powers of τ we have

α i
τ α −i
τ 2 α i

1

Next,

id σ σ2 σ3 τ στ σ2τ σ3τ
α α iα −α −iα α iα −α −iα
i i i i i −i −i −i −i

2
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These are all distinct, so are the eight elements of G(L/Q). 1

(d) Calculate τσ. We find that

τσ(α) = τ(iα) = τ(i)τ(α) = −iα, τσ(i) = τ(i) = −i,

so τσ = σ3τ . 2 Together with the facts that σ has order 4 and τ has order 2, this shows
that G(L/Q) is the dihedral group D8. 1
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5 Unseen, standard type

(a) Suppose f(t) is reducible over Q. Then it has a linear factor t − a and by Gauss’
Lemma 1 , a ∈ Z. However, f(t) 6= 0 for t = 0,±1,±2 by calculation. 1 For t > 2 we
have f(t) > 0 and for t < −2 we have f(t) < 0. (Put t = 2 + u, etc.) 1 Therefore f(t)
does not have a linear factor, and therefore is irreducible.

(b) α3 = ξ3 + 3ξ + 3ξ−1 + ξ−3 so

α3 − 3α = ξ3 + ξ−3 = eπi/3 + e−πi/3 = 2 cos π
3
= 1.

Likewise β3 = −ξ6 − 3ξ2 − 3ξ−2 − ξ−6 so

β3 − 3β = −ξ6 − ξ−6 = −e2πi/3 − e−2πi/3 = −2 cos 2π
3
= 1,

and γ3 = −ξ12 − 3ξ4 − 3ξ−4 − ξ−12 so

γ3 − 3γ = −ξ12 − ξ−12 = −e4πi/3 − e−4πi/3 = −2 cos 4π
3
= 1,

3 for method, 3 for accuracy

(c)
β2 = ξ4 + 2 + ξ−4 = −γ + 2. 1

Next, γ2 = ξ8 + 2 + ξ−8 and ξ9 = eπi = −1 so ξ8 = −ξ−1 and ξ−8 = −ξ. 1 So

γ2 = −ξ − ξ−1 + 2 = 2− α. 1

Likewise
α2 = ξ2 + 2 + ξ−2 = −β + 2. 1

Since f(t) is irreducible, the splitting field is Q(α, β, γ). 1

From β2 = 2− γ it follows that Q(γ) ⊆ Q(β)

And from γ2 = 2− α it follows that Q(α) ⊆ Q(γ).

Lastly, from α2 = 2− β it follows that Q(β) ⊆ Q(α).

So we have Q(α) ⊆ Q(γ) ⊆ Q(β) ⊆ Q(α) and therefore Q(α) = Q(γ) = Q(β) and
Q(α, β, γ) = Q(α). 3

(d) Since Q(α) is the proper splitting field for a polynomial it is a normal extension of
Q. 1 Hence there is σ ∈ G := G(Q(α)/Q) such that σ(α) = β. 2

It follows that σ(β) = σ(2−α2) = 2−β2 = γ. 1 Therefore σ cycles the roots α 7→ β 7→ γ

1 and the subgroup {id, σ, σ2} has order 3.

Since Q(α) is normal, |G| = [Q(α) : Q]. 1 Now {1, α, α2} is a basis for Q(α) over Q, so
[Q(α) : Q] = 3 1 . Hence G = {id, σ, σ2} and is the cyclic group of order 3. 1


