MAS 442 Galois Theory, 2014-15 examination solutions 1

Q1 (i)(a) Bookwork Putting u = &y + /= in (x) we get

W=y 432+ 33yt =y + 2+ 3y (Yy + 2) =y + 2+ 3udyz

so u® — 3uyyz — (y + 2) = 0. Comparing this with (x) we must have
p=-3Yyz  a=—-(y+a2).
(b) We now solve these for z. Put y = —(q + z) into the first equation. We get

3V2V/ (2 +4q) = p.

Cubing gives 27z(z + q) = p®. This rearranges to 272% + 27¢z — p* = 0.

(c) We have converted the solution of the cubic into the solution of a quadratic. Solving
in the usual way, we have

3 2
S

2 27

Since u = y/y + /7 and y + z = —q we have

T PP s q P ¢
Y S § A Gy . Y P
" \/2+ 27+4+\/2 27 T

(ii) Bookwork

Suppose that x is a nonzero element of M; we need to show that x has an inverse in M.

Write d = dimg (M); this dimension is finite because M is a vector subspace of L. The
elements 1,z,22,...,2% are d + 1 in number, so must be linearly dependent. That is,

there are ag,ay,...aq € K, not all zero, such that
ao—l—a1:l?+a2x2+---+ad93d20.

So I(z, K) # 0, and there is therefore an irreducible monic polynomial ¢(t) = min(z, K)(t) =
P, bit! say, with g(z) = 0.

We claim that ¢(0) # 0. Indeed, if ¢(0) were zero then ¢ would be a nonconstant monic
factor of the irreducible polynomial ¢(¢), and this would mean that ¢ would have to equal
q(t), so the equation ¢(x) = 0 would give x = 0, contradicting our assumption that z is
nonzero. |2

Thus, the constant term by = ¢(0) is nonzero, and thus invertible in K. We now put
y =2 bl € M. The equation >>7 bz’ = 0 can then be rearranged to
give xy =1, so y is the required inverse to z in M.
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(iii) Unassigned exercise Suppose that o (i) = i. Transitivity means that for any j € N we
can choose 7 € A with 7(i) = j. As A is commutative we then have

0(j) = o(7(i)) = 7(0(i)) = 7(i) = J.

As j was arbitrary, this means that o is the identity.

Next, as A is transitive we can choose 0; € A (for i« = 1,..., N) such that o;(1) = i.
Now let 7 be any element of A. Put ¢« = 7(1), and note that 7—'o; sends 1 to 1.
By the first paragraph, this means that 77'o; = 1, so 7 = o;. This means that
A ={o1,...,0,}, and these elements are all different.

In particular |[A] = n.
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Q2 (i) Bookwork The requirement that @ o m = ¢ forces us to define : R/I — S by
Pla+ 1) = p(a). So if P is a morphism, it is the unique such morphism.

To show that this is well-defined, suppose that a + 1 = b+ I. Then a — b € I and so
o(a —b) = 0. Therefore p(a) = p(b).

To show that P is a morphism:

Plla+ 1)+ (b+1) =2((a+b)+ 1) = pla+b) = pla) + ¢(b) = Pla+ 1) +P(b+ 1),
P((a+1)(b+1)) =p(ab+ 1) = p(ab) = p(a)p(b) = pla + 1)p(b + 1),
P(lr+1) = ¢(1g) = 1s.

Now assume that ¢ is surjective. Then @ is surjective because every s € S is p(a) =
@(a + I) for some a € R.

Now assume that ker(yp) = I. Suppose that @(a + I) = 0. Then ¢(a) = 0 so a € I and
therefore a +1 =0+ I.

(i) (a) Bookwork
Ex(L,M)={0: L - M | 0|x =idg}.

(b) Bookwork Let d be the degree OE q, or equivalently the degree of the homomorphism
@. | 1| Let R be the set of roots of (¢q)(t) in M.

We can write q(t) in the form ¢(t) = ag + a1t + - -+ + aqt?, where aq = 1 since q(t) is
monic. By definition we have ($¢)(«) = 0, or equivalently Y . p(a;)a’ = 0. Suppose
that 8 € E(p,), so 0p =1: K — M. We can then apply 6 to the above equation to
get

(¥q)(0(a)) = Zwa»e(a)i = 9<Zaiai> =0(0) =0,

so #(a) € R|2] This defines a map P E(p,1) — R by P(#) = 6().

Now suppose we have two elements 6,0, € E(p,v) with P(6y) = P(6;), so Oy(a) =
01 () = (3 say. It follows from the result provided that every element o € L can be written
in the form o = Z?;é ©(bj)a?, for some elements b, € K. Using 0;(¢(b)) = 1(b) and
0i(o) = B we deduce that fy(0) = >_; Y(b;)B7 = 01(0). As ¢ was arbitrary this means
that 0y = 01, so we see that P is injective.

Finally, consider a general element € R, so § is a root of ({/;q)(t) We can then define a
homomorphism A K[t] — M by A(f(t)) = (¢ f)(8), or more explicitly

/\(Z bit') = Z W(b;) 5"

We then have A(q(t)) = 0, so A(K[t].q(t)) = 0. | 1] There is therefore a homomorphism
X K[1)/(K[f.q(t) — M,

which we can compose with the inverse of the isomorphism X: K[t]/(K[t].q(t)) — L to
get a homomorphism # = Aox ': L — M which clearly satisfies P(0) = 8. This
means that P is also surjective, so it is a bijection.
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3(a) Bookwork Any one of:

e For every field L and homomorphism ¢ K — L, we have either |E(p,v)| = 0 or
[E(p, ¢)| = deg(p).

o |G(¢)| = deg(v).
e ) is a proper splitting extension for some polynomial f(t) € K[t].

(b) Bookwork
Theorem: Let M be a normal | 1] extension of K, with Galois group G = G(M/K).

(a) For any subgroup H < G, the set
L=M"={aeM|o(a)=aforallocc H}
is a subfield of M containing K, and M is normal over L with G(M/L)

(b) For any subfield L C M containing K, the Galois group H = G(M /L) is a subgroup
of G and we have M¥ = L.

(¢) If L and H are as above, then L is a normal extension of K if and only if H is a
normal subgroup of G, and if so, then G(L/K) = G/H.

(c) Unseen, standard type

Since G(L/Q) is isomorphic to Cy x Cs, there are elements p and o such that p*> = 0% =1
and po = op and then

G:=G(L/K)={1l,p,0,pc}.

Each element of order 2 in G defines a subgroup of G; write

A={l1,p}, B={l,0}, C={1,po}
Define subfields of L by

M =1, N = L5, P=1L°.

Then A, B and C' are the only proper nontrivial subgroups of G, so by (b) M, N and
P are the only fields strictly between Q and L. As G is abelian, all subgroups are
normal, so M, N and P are normal over Q, with Galois groups G/A, G/B and G/C
respectively. Each of these has order 2.

As 0 € A, we see that o acts nontrivially on M, so we can choose y € M with o(u) # p
[1] Tt follows that the element o = y1 — o(p) is nonzero, and it satisfies o(a) = —a [1].
It follows that « ¢ Q, and [M : Q] = |G/A| =2, so 1 and o must give a basis for M over

Q50 M = Qo). [1
We also have o(a?) = o2, and so o? € M%4 = Q. Similarly, there is an element § € N
such that {1, 5} is a bas1s for N over Q, and p(3) = —f3, and 3? € Q. Note that p(a) =
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(as « € M) and o(p) = B (as B € N). It follows that p(c(af)) = (—a)(—5) = af, so
ap € P.

We next claim that {1, «, 8, af} is linearly independent over Q. Suppose that
w+rza+yB+ zaf =0

for some w, z,y, z € Q. Applying o we get
w—zxa+yp —zaf =0.

Applying p we get
w+za—ypB — zaf =0.

Applying op we get
w—za—ypB+ zaf = 0.
Adding the first equation to each of the others in turn we get
2w+ 2ypB =0, 2w+ 2zxa = 0, 2w+ 2zapf = 0.

Can cancel 2s since we are over Q. So y8 = —w € Q and therefore y = 0. Similarly z = 0
and z = 0. Finally w = 0.

Now since L is normal | 1], dimg(L) = |G| = 4, so {1,a, 3,8} is a basis.

{1} L

I

A/ JL \C Q(a) Q(B) Q(ap)
NN %

Q
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4 Unseen, standard type

(a) The roots of f(t) are +a and i |2]. Thus Q(a,i) € L. Also f(t) splits in L and
the splitting is proper. Since L is a proper splitting field for a polynomial, it is normal.

(b) In general for field extensions K C M C L of finite degree,

[L: MM : K]=[L:K]. (%)

Write M = Q(«). To find [M : Q] note first that f(t) is irreducible by Eisenstein’s
Criterion | 1 (statement not required)| Hence it is the minimal polynomial of a over

Q|1/and so [M : Q] = 4.
Now consider [Q(i, ) : Q(a)]. The minimal polynomial of i over Q(«) is g(t) = ¢ + 1
since g(i) = 0 but 7 ¢ Q(«). So [Q(i, ) : Q)] = 2.

By (%) we have [L : Q] = 8.

(c) A basis for L over Q is 1, a,a?, a3, i, ia, ia?, ia®. From the given values and the
fact that o € G(L/Q) we have that o acts on the basis elements by

2 3

1| « a ol |l i i ia? | ia?®
1lia| —a? | —iad | i | —a | —ia® | o

There is a unique such linear map with these values. It remains to check that it is a
homomorphism of fields. We check a nontrivial case. For example:

o(a)o(a?) = (ia)(—ic®) = a* = 2 = 0(2) = o(aa?).

An element of G(L/Q) is determined by its values on « and i. For powers of o we
have

o |1
o 1o | 1
o | —ali
o3 | —ia | i
ot a |1
For powers of 7 we have
«a 7
= o
?lal i
Next,
id o o° o’ T oT Oo°T Oo°T
a o o —a —io a o —o —ilQ
i1 ) ) Y S S —) —1
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These are all distinct, so are the eight elements of G(L/Q).
(d) Calculate 7o. We find that

To(a) = 7(ia) = 7(i)7(a) = —icv, To(i) = 7(i) = —i,

so 70 = 037T. Together with the facts that o has order 4 and 7 has order 2, this shows
that G(L/Q) is the dihedral group Ds.
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5 Unseen, standard type

(a) Suppose f(t) is reducible over Q. Then it has a linear factor ¢ — a and by Gauss’
Lemma , a € Z. However, f(t) # 0 for t = 0,£1,+2 by calculation. For t > 2 we
have f(t) > 0 and for ¢ < —2 we have f(t) < 0. (Put t = 2 + u, etc.) Therefore f(t)
does not have a linear factor, and therefore is irreducible.

(b) a® =& +36+3¢1+ €63 50
o —3a=+¢P =" e =2c08T = 1.
Likewise 3% = —£6 — 362 —3¢72 — ¢ % 50
B3 —38=—£0 — g0 = /3 _ o72m3 = _9 cos%7T =1,
and 3 = —€12 — 3¢ -3¢ — ¢ 2 50

N3 By = 12 gTI2 o Amif3 | —dmifs —2005%” —1,

‘3 for method, 3 for accuracy‘

(c)

B =g +2+¢t=—y+2
Next, 12 =€ +2+¢Pand & =e™ = —150 ¥ = —¢1and €8 = —¢. So

P=—t—tl42=2-0.
Likewise

A= 4+2+62=-p+2
Since f(t) is irreducible, the splitting field is Q(«, 3, 7).
From 32 = 2 — « it follows that Q(v) C Q(B)
And from 72 = 2 — « it follows that Q(a) C Q(v).
Lastly, from o? = 2 — 3 it follows that Q(3) C Q(«).

So we have Q(a) € Q(v) € Q(8) € Q(«) and therefore Q(a) = Q(v) = Q(B) and
Q(e, 8,7) = Q(a).

(d) Since Q(«v) is the proper splitting field for a polynomial it is a normal extension of

Q. |1 | Hence there is 0 € G := G(Q(a)/Q) such that o(a) = 5.

It follows that o(83) = 0(2—a?) = 2— 32 = 7. | 1| Therefore o cycles the roots o +— 3 5 7
and the subgroup {id, o, %} has order 3.

Since Q(«) is normal, |G| = [Q(«) : Q). Now {1, a,a?} is a basis for Q(a) over Q, so
[Q(a) : Q] = 3[1] Hence G = {id, 7,0?} and is the cyclic group of order 3.



