Q1 (i)(a) Bookwork Putting $u=\sqrt[3]{y}+\sqrt[3]{z}$ in (*) we get

$$
u^{3}=y+3 \sqrt[3]{y^{2} z}+3 \sqrt[3]{y z^{2}}+z=y+z+3 \sqrt[3]{y z}(\sqrt[3]{y}+\sqrt[3]{z})=y+z+3 u \sqrt[3]{y z}
$$

so $u^{3}-3 u \sqrt[3]{y z}-(y+z)=0$. Comparing this with $(*)$ we must have

$$
p=-3 \sqrt[3]{y z}, \quad q=-(y+z) . \quad 2
$$

(b) We now solve these for z. Put $y=-(q+z)$ into the first equation. We get

$$
3 \sqrt[3]{z} \sqrt[3]{(z+q)}=p
$$

Cubing gives $27 z(z+q)=p^{3}$. This rearranges to $27 z^{2}+27 q z-p^{3}=0.1$
(c) We have converted the solution of the cubic into the solution of a quadratic. Solving in the usual way, we have

$$
\begin{equation*}
-\frac{q}{2} \pm \sqrt{\frac{p^{3}}{27}+\frac{q^{2}}{4}} . \tag{1}
\end{equation*}
$$

Since $u=\sqrt[3]{y}+\sqrt[3]{z}$ and $y+z=-q$ we have

$$
\begin{equation*}
u=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{p^{3}}{27}+\frac{q^{2}}{4}}}+\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{p^{3}}{27}+\frac{q^{2}}{4}}} \tag{2}
\end{equation*}
$$

(ii) Bookwork

Suppose that x is a nonzero element of M; we need to show that x has an inverse in M. 1

Write $d=\operatorname{dim}_{K}(M)$; this dimension is finite because M is a vector subspace of L. The elements $1, x, x^{2}, \ldots, x^{d}$ are $d+1$ in number, so must be linearly dependent. That is, there are $a_{0}, a_{1}, \ldots a_{d} \in K$, not all zero, such that

$$
a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{d} x^{d}=0
$$

So $I(x, K) \neq 0$, and there is therefore an irreducible monic polynomial $q(t)=\min (x, K)(t)=$ $\sum_{i=0}^{D} b_{i} t^{i}$ say, with $q(x)=0.1$
We claim that $q(0) \neq 0$. Indeed, if $q(0)$ were zero then t would be a nonconstant monic factor of the irreducible polynomial $q(t)$, and this would mean that t would have to equal $q(t)$, so the equation $q(x)=0$ would give $x=0$, contradicting our assumption that x is nonzero. 2
Thus, the constant term $b_{0}=q(0)$ is nonzero, and thus invertible in K. We now put $y=-\sum_{i=1}^{D} b_{0}^{-1} b_{i} x^{i-1} \in M .1$ The equation $\sum_{i=0}^{D} b_{i} x^{i}=0$ can then be rearranged to give $x y=1,1$ so y is the required inverse to x in M.
(iii) Unassigned exercise Suppose that $\sigma(i)=i$. Transitivity means that for any $j \in N$ we can choose $\tau \in A$ with $\tau(i)=j$. 1 As A is commutative we then have

$$
\sigma(j)=\sigma(\tau(i))=\tau(\sigma(i))=\tau(i)=j . \quad 1
$$

As j was arbitrary, this means that σ is the identity. 1
Next, as A is transitive we can choose $\sigma_{i} \in A$ (for $\left.i=1, \ldots, N\right)$ such that $\sigma_{i}(1)=i$. 1 Now let τ be any element of A. Put $i=\tau(1)$, and note that $\tau^{-1} \sigma_{i}$ sends 1 to 1 . 1 By the first paragraph, this means that $\tau^{-1} \sigma_{i}=1$, so $\tau=\sigma_{i}$. 1 This means that $A=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$, and these elements are all different.
In particular $|A|=n .1$

Q2 (i) Bookwork The requirement that $\bar{\varphi} \circ \pi=\varphi$ forces us to define $\bar{\varphi}: R / I \rightarrow S$ by $\bar{\varphi}(a+I)=\varphi(a) .1$ So if $\bar{\varphi}$ is a morphism, it is the unique such morphism. 1

To show that this is well-defined, suppose that $a+I=b+I$. Then $a-b \in I$ and so $\varphi(a-b)=0$. Therefore $\varphi(a)=\varphi(b) .2$
To show that $\bar{\varphi}$ is a morphism:

$$
\begin{gathered}
\bar{\varphi}((a+I)+(b+I))=\bar{\varphi}((a+b)+I)=\varphi(a+b)=\varphi(a)+\varphi(b)=\bar{\varphi}(a+I)+\bar{\varphi}(b+I) \\
\bar{\varphi}((a+I)(b+I))=\bar{\varphi}(a b+I)=\varphi(a b)=\varphi(a) \varphi(b)=\bar{\varphi}(a+I) \bar{\varphi}(b+I) \\
\bar{\varphi}\left(1_{R}+I\right)=\varphi\left(1_{R}\right)=1_{S} .
\end{gathered}
$$

Now assume that φ is surjective. Then $\bar{\varphi}$ is surjective because every $s \in S$ is $\varphi(a)=$ $\bar{\varphi}(a+I)$ for some $a \in R .1$
Now assume that $\operatorname{ker}(\varphi)=I$. Suppose that $\bar{\varphi}(a+I)=0$. Then $\varphi(a)=0$ so $a \in I$ and therefore $a+I=0+I$. 2
(ii)(a) Bookwork

$$
\begin{equation*}
E_{K}(L, M)=\left\{\theta: L \rightarrow M|\theta|_{K}=\operatorname{id}_{K}\right\} \tag{1}
\end{equation*}
$$

(b) Bookwork Let d be the degree of q, or equivalently the degree of the homomorphism ب. 1 Let R be the set of roots of $(\tilde{\psi} q)(t)$ in M.
We can write $q(t)$ in the form $q(t)=a_{0}+a_{1} t+\cdots+a_{d} t^{d}$, where $a_{d}=1$ since $q(t)$ is monic. By definition we have $(\widetilde{\varphi} q)(\alpha)=0$, or equivalently $\sum_{i} \varphi\left(a_{i}\right) \alpha^{i}=0$. 1 Suppose that $\theta \in E(\varphi, \psi)$, so $\theta \varphi=\psi: K \rightarrow M$. We can then apply θ to the above equation to get

$$
(\tilde{\psi} q)(\theta(\alpha))=\sum_{i} \psi\left(a_{i}\right) \theta(\alpha)^{i}=\theta\left(\sum_{i} a_{i} \alpha^{i}\right)=\theta(0)=0,
$$

so $\theta(\alpha) \in R 2$. This defines a map $P E(\varphi, \psi) \rightarrow R$ by $P(\theta)=\theta(\alpha) .1$
Now suppose we have two elements $\theta_{0}, \theta_{1} \in E(\varphi, \psi)$ with $P\left(\theta_{0}\right)=P\left(\theta_{1}\right)$, so $\theta_{0}(\alpha)=$ $\theta_{1}(\alpha)=\beta$ say. It follows from the result provided that every element $\sigma \in L$ can be written in the form $\sigma=\sum_{j=0}^{d-1} \varphi\left(b_{j}\right) \alpha^{j}$, for some elements $b_{j} \in K .1$ Using $\theta_{i}(\varphi(b))=\psi(b)$ and $\theta_{i}(\alpha)=\beta$ we deduce that $\theta_{0}(\sigma)=\sum_{j} \psi\left(b_{j}\right) \beta^{j}=\theta_{1}(\sigma)$. As σ was arbitrary this means that $\theta_{0}=\theta_{1}$, so we see that P is injective. $\mathbf{2}$
Finally, consider a general element $\beta \in R$, so β is a root of $(\widetilde{\psi} q)(t)$. We can then define a homomorphism $\lambda K[t] \rightarrow M$ by $\lambda(f(t))=(\widetilde{\psi} f)(\beta)$, or more explicitly

$$
\begin{equation*}
\lambda\left(\sum_{i} b_{i} t^{i}\right)=\sum_{i} \psi\left(b_{i}\right) \beta^{i} \tag{1}
\end{equation*}
$$

We then have $\lambda(q(t))=0$, so $\lambda(K[t] \cdot q(t))=0$. 1 There is therefore a homomorphism

$$
\bar{\lambda}: K[t] /(K[t] \cdot q(t)) \rightarrow M, \quad 1
$$

which we can compose with the inverse of the isomorphism $\bar{\chi}: K[t] /(K[t] \cdot q(t)) \rightarrow L$ to get a homomorphism $\theta=\bar{\lambda} \circ \bar{\chi}^{-1}: L \rightarrow M$ which clearly satisfies $P(\theta)=\beta .2$ This means that P is also surjective, so it is a bijection. 1

3(a) Bookwork Any one of:

- For every field L and homomorphism $\varphi K \rightarrow L$, we have either $|E(\varphi, \psi)|=0$ or $|E(\varphi, \psi)|=\operatorname{deg}(\varphi)$.
- $|G(\psi)|=\operatorname{deg}(\psi)$.
- ψ is a proper splitting extension for some polynomial $f(t) \in K[t]$.

(b) Bookwork

Theorem: Let M be a normal 1 extension of K, with Galois group $G=G(M / K)$.
(a) For any subgroup $H \leqslant G$, the set

$$
L=M^{H}=\{a \in M \mid \sigma(a)=a \text { for all } \sigma \in H\}
$$

is a subfield of M containing K, and M is normal over L with $G(M / L)=H .2$
(b) For any subfield $L \subseteq M$ containing K, the Galois group $H=G(M / L)$ is a subgroup of G and we have $M^{H}=L ., 2$
(c) If L and H are as above, then L is a normal extension of K if and only if H is a normal subgroup of G, and if so, then $G(L / K)=G / H .2$
(c) Unseen, standard type

Since $G(L / \mathbb{Q})$ is isomorphic to $C_{2} \times C_{2}$, there are elements ρ and σ such that $\rho^{2}=\sigma^{2}=1$ and $\rho \sigma=\sigma \rho$ and then

$$
G:=G(L / K)=\{1, \rho, \sigma, \rho \sigma\} .
$$

Each element of order 2 in G defines a subgroup of G; write

$$
A=\{1, \rho\}, \quad B=\{1, \sigma\}, \quad C=\{1, \rho \sigma\} . \quad 1
$$

Define subfields of L by

$$
M=L^{A}, \quad N=L^{B}, \quad P=L^{C} . \quad 1
$$

Then A, B and C are the only proper nontrivial subgroups of G, so by (b) M, N and P are the only fields strictly between \mathbb{Q} and $L .1$ As G is abelian, all subgroups are normal, so M, N and P are normal over $\mathbb{Q}, 1$ with Galois groups $G / A, G / B$ and G / C respectively. Each of these has order 2.

As $\sigma \notin A$, we see that σ acts nontrivially on M, so we can choose $\mu \in M$ with $\sigma(\mu) \neq \mu$ 1. It follows that the element $\alpha=\mu-\sigma(\mu)$ is nonzero, and it satisfies $\sigma(\alpha)=-\alpha 1$. It follows that $\alpha \notin \mathbb{Q}$, and $[M: \mathbb{Q}]=|G / A|=2$, so 1 and α must give a basis for M over \mathbb{Q}, so $M=\mathbb{Q}(\alpha)$. 1
We also have $\sigma\left(\alpha^{2}\right)=\alpha^{2}$, and so $\alpha^{2} \in M^{G / A}=\mathbb{Q}$. Similarly, there is an element $\beta \in N$ such that $\{1, \beta\}$ is a basis for N over \mathbb{Q}, and $\rho(\beta)=-\beta$, and $\beta^{2} \in \mathbb{Q}$. Note that $\rho(\alpha)=\alpha$
(as $\alpha \in M$) and $\sigma(\beta)=\beta$ (as $\beta \in N$). It follows that $\rho(\sigma(\alpha \beta))=(-\alpha)(-\beta)=\alpha \beta$, so $\alpha \beta \in P .1$

We next claim that $\{1, \alpha, \beta, \alpha \beta\}$ is linearly independent over \mathbb{Q}. Suppose that

$$
w+x \alpha+y \beta+z \alpha \beta=0
$$

for some $w, x, y, z \in \mathbb{Q}$. Applying σ we get

$$
w-x \alpha+y \beta-z \alpha \beta=0 .
$$

Applying ρ we get

$$
w+x \alpha-y \beta-z \alpha \beta=0 .
$$

Applying $\sigma \rho$ we get

$$
w-x \alpha-y \beta+z \alpha \beta=0 .
$$

Adding the first equation to each of the others in turn we get

$$
2 w+2 y \beta=0, \quad 2 w+2 x \alpha=0, \quad 2 w+2 z \alpha \beta=0
$$

Can cancel 2 s since we are over \mathbb{Q}. So $y \beta=-w \in \mathbb{Q}$ and therefore $y=0$. Similarly $x=0$ and $z=0$. Finally $w=0.1$
Now since L is normal 1 , $\operatorname{dim}_{\mathbb{Q}}(L)=|G|=4$, so $\{1, \alpha, \beta, \alpha \beta\}$ is a basis.

4 Unseen, standard type
(a) The roots of $f(t)$ are $\pm \alpha$ and $\pm i \alpha \boxed{2}$. Thus $\mathbb{Q}(\alpha, i) \subseteq L$. Also $f(t)$ splits in L and the splitting is proper. 2 Since L is a proper splitting field for a polynomial, it is normal. 1
(b) In general for field extensions $K \subseteq M \subseteq L$ of finite degree, 1

$$
\begin{equation*}
[L: M][M: K]=[L: K] \tag{*}
\end{equation*}
$$

Write $M=\mathbb{Q}(\alpha)$. To find $[M: \mathbb{Q}]$ note first that $f(t)$ is irreducible by Eisenstein's Criterion 1 (statement not required). Hence it is the minimal polynomial of α over $\mathbb{Q} 1$ and so $[M: \mathbb{Q}]=4.1$
Now consider $[\mathbb{Q}(i, \alpha): \mathbb{Q}(\alpha)]$. The minimal polynomial of i over $\mathbb{Q}(\alpha)$ is $g(t)=t^{2}+1$ since $g(i)=0$ but $i \notin \mathbb{Q}(\alpha)$. 1 So $[\mathbb{Q}(i, \alpha): \mathbb{Q}(\alpha)]=2$.
By $(*)$ we have $[L: \mathbb{Q}]=8.1$
(c) A basis for L over \mathbb{Q} is $1, \alpha, \alpha^{2}, \alpha^{3}, i, i \alpha, i \alpha^{2}, i \alpha^{3}$. 1 From the given values and the fact that $\sigma \in G(L / \mathbb{Q})$ we have that σ acts on the basis elements by

1	α	α^{2}	α^{3}	i	$i \alpha$	$i \alpha^{2}$	$i \alpha^{3}$
1	$i \alpha$	$-\alpha^{2}$	$-i \alpha^{3}$	i	$-\alpha$	$-i \alpha^{2}$	α^{3}

There is a unique such linear map with these values. It remains to check that it is a homomorphism of fields. We check a nontrivial case. For example:

$$
\sigma(\alpha) \sigma\left(\alpha^{3}\right)=(i \alpha)\left(-i \alpha^{3}\right)=\alpha^{4}=2=\sigma(2)=\sigma\left(\alpha \alpha^{3}\right)
$$

An element of $G(L / \mathbb{Q})$ is determined by its values on α and i. 1 For powers of σ we have

	α	i
σ	$i \alpha$	i
σ^{2}	$-\alpha$	i
σ^{3}	$-i \alpha$	i
σ^{4}	α	i

$$
2
$$

For powers of τ we have

$$
\begin{array}{|r|r|r|}
\hline & \alpha & i \tag{1}\\
\hline \tau & \alpha & -i \\
\hline \tau^{2} & \alpha & i \\
\hline
\end{array}
$$

Next,

	id	σ	σ^{2}	σ^{3}	τ	$\sigma \tau$	$\sigma^{2} \tau$	$\sigma^{3} \tau$
α	α	$i \alpha$	$-\alpha$	$-i \alpha$	α	$i \alpha$	$-\alpha$	$-i \alpha$
i	i	i	i	i	$-i$	$-i$	$-i$	$-i$

These are all distinct, so are the eight elements of $G(L / \mathbb{Q}) .1$
(d) Calculate $\tau \sigma$. We find that

$$
\tau \sigma(\alpha)=\tau(i \alpha)=\tau(i) \tau(\alpha)=-i \alpha, \quad \tau \sigma(i)=\tau(i)=-i
$$

so $\tau \sigma=\sigma^{3} \tau .2$ Together with the facts that σ has order 4 and τ has order 2, this shows that $G(L / \mathbb{Q})$ is the dihedral group $D_{8} .1$

5 Unseen, standard type
(a) Suppose $f(t)$ is reducible over \mathbb{Q}. Then it has a linear factor $t-a$ and by Gauss' Lemma 1, $a \in \mathbb{Z}$. However, $f(t) \neq 0$ for $t=0, \pm 1, \pm 2$ by calculation. 1 For $t>2$ we have $f(t)>0$ and for $t<-2$ we have $f(t)<0$. (Put $t=2+u$, etc.) 1 Therefore $f(t)$ does not have a linear factor, and therefore is irreducible.
(b) $\alpha^{3}=\xi^{3}+3 \xi+3 \xi^{-1}+\xi^{-3}$ so

$$
\alpha^{3}-3 \alpha=\xi^{3}+\xi^{-3}=e^{\pi i / 3}+e^{-\pi i / 3}=2 \cos \frac{\pi}{3}=1
$$

Likewise $\beta^{3}=-\xi^{6}-3 \xi^{2}-3 \xi^{-2}-\xi^{-6}$ so

$$
\beta^{3}-3 \beta=-\xi^{6}-\xi^{-6}=-e^{2 \pi i / 3}-e^{-2 \pi i / 3}=-2 \cos \frac{2 \pi}{3}=1
$$

and $\gamma^{3}=-\xi^{12}-3 \xi^{4}-3 \xi^{-4}-\xi^{-12}$ so

$$
\gamma^{3}-3 \gamma=-\xi^{12}-\xi^{-12}=-e^{4 \pi i / 3}-e^{-4 \pi i / 3}=-2 \cos \frac{4 \pi}{3}=1
$$

3 for method, 3 for accuracy
(c)

$$
\beta^{2}=\xi^{4}+2+\xi^{-4}=-\gamma+2 . \quad 1
$$

Next, $\gamma^{2}=\xi^{8}+2+\xi^{-8}$ and $\xi^{9}=e^{\pi i}=-1$ so $\xi^{8}=-\xi^{-1}$ and $\xi^{-8}=-\xi$. 1 So

$$
\gamma^{2}=-\xi-\xi^{-1}+2=2-\alpha
$$

Likewise

$$
\alpha^{2}=\xi^{2}+2+\xi^{-2}=-\beta+2 . \quad 1
$$

Since $f(t)$ is irreducible, the splitting field is $\mathbb{Q}(\alpha, \beta, \gamma) .1$
From $\beta^{2}=2-\gamma$ it follows that $\mathbb{Q}(\gamma) \subseteq \mathbb{Q}(\beta)$
And from $\gamma^{2}=2-\alpha$ it follows that $\mathbb{Q}(\alpha) \subseteq \mathbb{Q}(\gamma)$.
Lastly, from $\alpha^{2}=2-\beta$ it follows that $\mathbb{Q}(\beta) \subseteq \mathbb{Q}(\alpha)$.
So we have $\mathbb{Q}(\alpha) \subseteq \mathbb{Q}(\gamma) \subseteq \mathbb{Q}(\beta) \subseteq \mathbb{Q}(\alpha)$ and therefore $\mathbb{Q}(\alpha)=\mathbb{Q}(\gamma)=\mathbb{Q}(\beta)$ and $\mathbb{Q}(\alpha, \beta, \gamma)=\mathbb{Q}(\alpha) .3$
(d) Since $\mathbb{Q}(\alpha)$ is the proper splitting field for a polynomial it is a normal extension of \mathbb{Q}. 1 Hence there is $\sigma \in G:=G(\mathbb{Q}(\alpha) / \mathbb{Q})$ such that $\sigma(\alpha)=\beta$. 2
It follows that $\sigma(\beta)=\sigma\left(2-\alpha^{2}\right)=2-\beta^{2}=\gamma .1$ Therefore σ cycles the roots $\alpha \mapsto \beta \mapsto \gamma$ 1 and the subgroup $\left\{\mathrm{id}, \sigma, \sigma^{2}\right\}$ has order 3.
Since $\mathbb{Q}(\alpha)$ is normal, $|G|=[\mathbb{Q}(\alpha): \mathbb{Q}]$. 1 Now $\left\{1, \alpha, \alpha^{2}\right\}$ is a basis for $\mathbb{Q}(\alpha)$ over \mathbb{Q}, so $[\mathbb{Q}(\alpha): \mathbb{Q}]=3 \mathbb{1}$. Hence $G=\left\{\operatorname{id}, \sigma, \sigma^{2}\right\}$ and is the cyclic group of order 3. 1

