Q1 (i)(a) Bookwork Putting  $u = \sqrt[3]{y} + \sqrt[3]{z}$  in (\*) we get

$$u^{3} = y + 3\sqrt[3]{y^{2}z} + 3\sqrt[3]{yz^{2}} + z = y + z + 3\sqrt[3]{yz}(\sqrt[3]{y} + \sqrt[3]{z}) = y + z + 3u\sqrt[3]{yz}$$
2

so  $u^3 - 3u\sqrt[3]{yz} - (y+z) = 0$ . Comparing this with (\*) we must have

$$p = -3\sqrt[3]{yz}, \qquad q = -(y+z).$$
 2

# (b) We now solve these for z. Put y = -(q + z) into the first equation. We get

$$3\sqrt[3]{z}\sqrt[3]{(z+q)} = p.$$
 2

Cubing gives  $27z(z+q) = p^3$ . This rearranges to  $27z^2 + 27qz - p^3 = 0$ . 1

(c) We have converted the solution of the cubic into the solution of a quadratic. Solving in the usual way, we have

$$-\frac{q}{2} \pm \sqrt{\frac{p^3}{27} + \frac{q^2}{4}}.$$
 1

Since  $u = \sqrt[3]{y} + \sqrt[3]{z}$  and y + z = -q we have

$$u = \sqrt[3]{-\frac{q}{2} + \sqrt{\frac{p^3}{27} + \frac{q^2}{4}}} + \sqrt[3]{-\frac{q}{2} - \sqrt{\frac{p^3}{27} + \frac{q^2}{4}}}.$$
 2

# (ii) Bookwork

Suppose that x is a nonzero element of M; we need to show that x has an inverse in M.

Write  $d = \dim_K(M)$ ; this dimension is finite because M is a vector subspace of L. The elements  $1, x, x^2, \ldots, x^d$  are d + 1 in number, so must be linearly dependent. That is, there are  $a_0, a_1, \ldots, a_d \in K$ , not all zero, such that

$$a_0 + a_1 x + a_2 x^2 + \dots + a_d x^d = 0.$$
 2

So  $I(x, K) \neq 0$ , and there is therefore an irreducible monic polynomial  $q(t) = \min(x, K)(t) = \sum_{i=0}^{D} b_i t^i$  say, with q(x) = 0. **1** 

We claim that  $q(0) \neq 0$ . Indeed, if q(0) were zero then t would be a nonconstant monic factor of the irreducible polynomial q(t), and this would mean that t would have to equal q(t), so the equation q(x) = 0 would give x = 0, contradicting our assumption that x is nonzero. 2

Thus, the constant term  $b_0 = q(0)$  is nonzero, and thus invertible in K. We now put  $y = -\sum_{i=1}^{D} b_0^{-1} b_i x^{i-1} \in M$ . 1 The equation  $\sum_{i=0}^{D} b_i x^i = 0$  can then be rearranged to give xy = 1, 1 so y is the required inverse to x in M.

(iii) Unassigned exercise Suppose that  $\sigma(i) = i$ . Transitivity means that for any  $j \in N$  we can choose  $\tau \in A$  with  $\tau(i) = j$ . 1 As A is commutative we then have

$$\sigma(j) = \sigma(\tau(i)) = \tau(\sigma(i)) = \tau(i) = j.$$
 1

As j was arbitrary, this means that  $\sigma$  is the identity. 1

Next, as A is transitive we can choose  $\sigma_i \in A$  (for i = 1, ..., N) such that  $\sigma_i(1) = i$ . **1** Now let  $\tau$  be any element of A. Put  $i = \tau(1)$ , and note that  $\tau^{-1}\sigma_i$  sends 1 to 1. **1** By the first paragraph, this means that  $\tau^{-1}\sigma_i = 1$ , so  $\tau = \sigma_i$ . **1** This means that  $A = \{\sigma_1, \ldots, \sigma_n\}$ , and these elements are all different.

In particular |A| = n. 1

Q2 (i) Bookwork The requirement that  $\overline{\varphi} \circ \pi = \varphi$  forces us to define  $\overline{\varphi} \colon R/I \to S$  by  $\overline{\varphi}(a+I) = \varphi(a)$ . 1 So if  $\overline{\varphi}$  is a morphism, it is the unique such morphism. 1

To show that this is well-defined, suppose that a + I = b + I. Then  $a - b \in I$  and so  $\varphi(a - b) = 0$ . Therefore  $\varphi(a) = \varphi(b)$ . **2** 

To show that  $\overline{\varphi}$  is a morphism:

$$\overline{\varphi}((a+I)+(b+I)) = \overline{\varphi}((a+b)+I) = \varphi(a+b) = \varphi(a) + \varphi(b) = \overline{\varphi}(a+I) + \overline{\varphi}(b+I),$$
  

$$\overline{\varphi}((a+I)(b+I)) = \overline{\varphi}(ab+I) = \varphi(ab) = \varphi(a)\varphi(b) = \overline{\varphi}(a+I)\overline{\varphi}(b+I),$$
  

$$\overline{\varphi}(1_R+I) = \varphi(1_R) = 1_S.$$
3

Now assume that  $\varphi$  is surjective. Then  $\overline{\varphi}$  is surjective because every  $s \in S$  is  $\varphi(a) = \overline{\varphi}(a+I)$  for some  $a \in R$ . **1** 

Now assume that  $\ker(\varphi) = I$ . Suppose that  $\overline{\varphi}(a+I) = 0$ . Then  $\varphi(a) = 0$  so  $a \in I$  and therefore a + I = 0 + I. 2

(ii)(a) Bookwork

$$E_K(L,M) = \{\theta \colon L \to M \mid \theta|_K = \mathrm{id}_K\}.$$
 1

(b) Bookwork Let d be the degree of q, or equivalently the degree of the homomorphism  $\varphi$ . 1 Let R be the set of roots of  $(\tilde{\psi}q)(t)$  in M.

We can write q(t) in the form  $q(t) = a_0 + a_1 t + \cdots + a_d t^d$ , where  $a_d = 1$  since q(t) is monic. By definition we have  $(\tilde{\varphi}q)(\alpha) = 0$ , or equivalently  $\sum_i \varphi(a_i)\alpha^i = 0$ . 1 Suppose that  $\theta \in E(\varphi, \psi)$ , so  $\theta \varphi = \psi \colon K \to M$ . We can then apply  $\theta$  to the above equation to get

$$(\widetilde{\psi}q)(\theta(\alpha)) = \sum_{i} \psi(a_i)\theta(\alpha)^i = \theta(\sum_{i} a_i \alpha^i) = \theta(0) = 0,$$

so  $\theta(\alpha) \in R$  **2**. This defines a map  $P E(\varphi, \psi) \to R$  by  $P(\theta) = \theta(\alpha)$ . **1** 

Now suppose we have two elements  $\theta_0, \theta_1 \in E(\varphi, \psi)$  with  $P(\theta_0) = P(\theta_1)$ , so  $\theta_0(\alpha) = \theta_1(\alpha) = \beta$  say. It follows from the result provided that every element  $\sigma \in L$  can be written in the form  $\sigma = \sum_{j=0}^{d-1} \varphi(b_j) \alpha^j$ , for some elements  $b_j \in K$ . **1** Using  $\theta_i(\varphi(b)) = \psi(b)$  and  $\theta_i(\alpha) = \beta$  we deduce that  $\theta_0(\sigma) = \sum_j \psi(b_j) \beta^j = \theta_1(\sigma)$ . As  $\sigma$  was arbitrary this means that  $\theta_0 = \theta_1$ , so we see that P is injective. **2** 

Finally, consider a general element  $\beta \in R$ , so  $\beta$  is a root of  $(\widetilde{\psi}q)(t)$ . We can then define a homomorphism  $\lambda K[t] \to M$  by  $\lambda(f(t)) = (\widetilde{\psi}f)(\beta)$ , or more explicitly

$$\lambda(\sum_{i} b_{i} t^{i}) = \sum_{i} \psi(b_{i})\beta^{i}.$$
 1

We then have  $\lambda(q(t)) = 0$ , so  $\lambda(K[t].q(t)) = 0$ . 1 There is therefore a homomorphism

$$\overline{\lambda} \colon K[t]/(K[t].q(t)) \to M, \qquad \mathbf{1}$$

which we can compose with the inverse of the isomorphism  $\overline{\chi}$ :  $K[t]/(K[t].q(t)) \to L$  to get a homomorphism  $\theta = \overline{\lambda} \circ \overline{\chi}^{-1}$ :  $L \to M$  which clearly satisfies  $P(\theta) = \beta$ . 2 This means that P is also surjective, so it is a bijection. 1

**3(a)** Bookwork Any one of:

- For every field L and homomorphism  $\varphi K \to L$ , we have either  $|E(\varphi, \psi)| = 0$  or  $|E(\varphi, \psi)| = \deg(\varphi)$ .
- $|G(\psi)| = \deg(\psi).$
- $\psi$  is a proper splitting extension for some polynomial  $f(t) \in K[t]$ .

### (b) Bookwork

**Theorem:** Let M be a normal 1 extension of K, with Galois group G = G(M/K).

(a) For any subgroup  $H \leq G$ , the set

$$L = M^{H} = \{a \in M \mid \sigma(a) = a \text{ for all } \sigma \in H\}$$

is a subfield of M containing K, and M is normal over L with G(M/L) = H. 2

- (b) For any subfield  $L \subseteq M$  containing K, the Galois group H = G(M/L) is a subgroup of G and we have  $M^H = L$ . 2
- (c) If L and H are as above, then L is a normal extension of K if and only if H is a normal subgroup of G, and if so, then G(L/K) = G/H. 2

## (c) Unseen, standard type

Since  $G(L/\mathbb{Q})$  is isomorphic to  $C_2 \times C_2$ , there are elements  $\rho$  and  $\sigma$  such that  $\rho^2 = \sigma^2 = 1$ and  $\rho\sigma = \sigma\rho$  and then

$$G := G(L/K) = \{1, \rho, \sigma, \rho\sigma\}.$$
 1

Each element of order 2 in G defines a subgroup of G; write

$$A = \{1, \rho\}, \qquad B = \{1, \sigma\}, \qquad C = \{1, \rho\sigma\}.$$
 1

Define subfields of L by

$$M = L^A, \qquad N = L^B, \qquad P = L^C. \qquad 1$$

Then A, B and C are the only proper nontrivial subgroups of G, so by (b) M, N and P are the only fields strictly between  $\mathbb{Q}$  and L. **1** As G is abelian, all subgroups are normal, so M, N and P are normal over  $\mathbb{Q}$ , **1** with Galois groups G/A, G/B and G/C respectively. Each of these has order 2.

As  $\sigma \notin A$ , we see that  $\sigma$  acts nontrivially on M, so we can choose  $\mu \in M$  with  $\sigma(\mu) \neq \mu$  **1**. It follows that the element  $\alpha = \mu - \sigma(\mu)$  is nonzero, and it satisfies  $\sigma(\alpha) = -\alpha$  **1**. It follows that  $\alpha \notin \mathbb{Q}$ , and  $[M : \mathbb{Q}] = |G/A| = 2$ , so 1 and  $\alpha$  must give a basis for M over  $\mathbb{Q}$ , so  $M = \mathbb{Q}(\alpha)$ . **1** 

We also have  $\sigma(\alpha^2) = \alpha^2$ , and so  $\alpha^2 \in M^{G/A} = \mathbb{Q}$ . Similarly, there is an element  $\beta \in N$  such that  $\{1, \beta\}$  is a basis for N over  $\mathbb{Q}$ , and  $\rho(\beta) = -\beta$ , and  $\beta^2 \in \mathbb{Q}$ . Note that  $\rho(\alpha) = \alpha$ 

3

(as  $\alpha \in M$ ) and  $\sigma(\beta) = \beta$  (as  $\beta \in N$ ). It follows that  $\rho(\sigma(\alpha\beta)) = (-\alpha)(-\beta) = \alpha\beta$ , so  $\alpha\beta \in P$ . 1

We next claim that  $\{1, \alpha, \beta, \alpha\beta\}$  is linearly independent over  $\mathbb{Q}$ . Suppose that

$$w + x\alpha + y\beta + z\alpha\beta = 0$$

for some  $w, x, y, z \in \mathbb{Q}$ . Applying  $\sigma$  we get

$$w - x\alpha + y\beta - z\alpha\beta = 0.$$

Applying  $\rho$  we get

$$w + x\alpha - y\beta - z\alpha\beta = 0.$$

Applying  $\sigma \rho$  we get

$$w - x\alpha - y\beta + z\alpha\beta = 0.$$
 2

Adding the first equation to each of the others in turn we get

 $2w + 2y\beta = 0, \qquad 2w + 2x\alpha = 0, \qquad 2w + 2z\alpha\beta = 0.$ 

Can cancel 2s since we are over  $\mathbb{Q}$ . So  $y\beta = -w \in \mathbb{Q}$  and therefore y = 0. Similarly x = 0 and z = 0. Finally w = 0. 1

Now since L is normal 1,  $\dim_{\mathbb{Q}}(L) = |G| = 4$ , so  $\{1, \alpha, \beta, \alpha\beta\}$  is a basis.



### 4 Unseen, standard type

(a) The roots of f(t) are  $\pm \alpha$  and  $\pm i\alpha$  2. Thus  $\mathbb{Q}(\alpha, i) \subseteq L$ . Also f(t) splits in L and the splitting is proper. 2 Since L is a proper splitting field for a polynomial, it is normal. 1

(b) In general for field extensions  $K \subseteq M \subseteq L$  of finite degree, **1** 

$$[L:M][M:K] = [L:K].$$
 (\*) 1

Write  $M = \mathbb{Q}(\alpha)$ . To find  $[M : \mathbb{Q}]$  note first that f(t) is irreducible by Eisenstein's Criterion **1** (statement not required). Hence it is the minimal polynomial of  $\alpha$  over  $\mathbb{Q}$  **1** and so  $[M : \mathbb{Q}] = 4$ . **1** 

Now consider  $[\mathbb{Q}(i,\alpha) : \mathbb{Q}(\alpha)]$ . The minimal polynomial of i over  $\mathbb{Q}(\alpha)$  is  $g(t) = t^2 + 1$  since g(i) = 0 but  $i \notin \mathbb{Q}(\alpha)$ . 1 So  $[\mathbb{Q}(i,\alpha) : \mathbb{Q}(\alpha)] = 2$ .

By (\*) we have  $[L : \mathbb{Q}] = 8$ . **1** 

(c) A basis for L over  $\mathbb{Q}$  is  $1, \alpha, \alpha^2, \alpha^3, i, i\alpha, i\alpha^2, i\alpha^3$ . **1** From the given values and the fact that  $\sigma \in G(L/\mathbb{Q})$  we have that  $\sigma$  acts on the basis elements by

| 1 | $\alpha$  | $\alpha^2$  | $\alpha^3$   | i | $i\alpha$ | $i\alpha^2$  | $i\alpha^3$ | 1 |
|---|-----------|-------------|--------------|---|-----------|--------------|-------------|---|
| 1 | $i\alpha$ | $-\alpha^2$ | $-i\alpha^3$ | i | $-\alpha$ | $-i\alpha^2$ | $\alpha^3$  |   |

There is a unique such linear map with these values. It remains to check that it is a homomorphism of fields. We check a nontrivial case. For example:

$$\sigma(\alpha)\sigma(\alpha^3) = (i\alpha)(-i\alpha^3) = \alpha^4 = 2 = \sigma(2) = \sigma(\alpha\alpha^3).$$

An element of  $G(L/\mathbb{Q})$  is determined by its values on  $\alpha$  and i. 1 For powers of  $\sigma$  we have

|            | α          | i |   |
|------------|------------|---|---|
| $\sigma$   | $i\alpha$  | i |   |
| $\sigma^2$ | $-\alpha$  | i | 2 |
| $\sigma^3$ | $-i\alpha$ | i |   |
| $\sigma^4$ | α          | i |   |

For powers of  $\tau$  we have

|         | $\alpha$ | i  |   |
|---------|----------|----|---|
| au      | $\alpha$ | -i | 1 |
| $	au^2$ | α        | i  |   |

Next,

|   | id       | $\sigma$  | $\sigma^2$ | $\sigma^3$ | au       | $\sigma \tau$ | $\sigma^2 \tau$ | $\sigma^3 \tau$ |   |
|---|----------|-----------|------------|------------|----------|---------------|-----------------|-----------------|---|
| α | $\alpha$ | $i\alpha$ | $-\alpha$  | $-i\alpha$ | $\alpha$ | $i\alpha$     | $-\alpha$       | $-i\alpha$      | 2 |
| i | i        | i         | i          | i          | -i       | -i            | -i              | -i              |   |

These are all distinct, so are the eight elements of  $G(L/\mathbb{Q})$ . 1

(d) Calculate  $\tau \sigma$ . We find that

$$\tau\sigma(\alpha) = \tau(i\alpha) = \tau(i)\tau(\alpha) = -i\alpha, \qquad \tau\sigma(i) = \tau(i) = -i,$$

so  $\tau \sigma = \sigma^3 \tau$ . **2** Together with the facts that  $\sigma$  has order 4 and  $\tau$  has order 2, this shows that  $G(L/\mathbb{Q})$  is the dihedral group  $D_8$ . **1** 

# 5 Unseen, standard type

(a) Suppose f(t) is reducible over  $\mathbb{Q}$ . Then it has a linear factor t - a and by Gauss' Lemma 1,  $a \in \mathbb{Z}$ . However,  $f(t) \neq 0$  for  $t = 0, \pm 1, \pm 2$  by calculation. 1 For t > 2 we have f(t) > 0 and for t < -2 we have f(t) < 0. (Put t = 2 + u, etc.) 1 Therefore f(t) does not have a linear factor, and therefore is irreducible.

(b) 
$$\alpha^3 = \xi^3 + 3\xi + 3\xi^{-1} + \xi^{-3}$$
 so  
 $\alpha^3 - 3\alpha = \xi^3 + \xi^{-3} = e^{\pi i/3} + e^{-\pi i/3} = 2\cos\frac{\pi}{3} = 1.$   
Likewise  $\beta^3 = -\xi^6 - 3\xi^2 - 3\xi^{-2} - \xi^{-6}$  so  
 $\beta^3 - 3\beta = -\xi^6 - \xi^{-6} = -e^{2\pi i/3} - e^{-2\pi i/3} = -2\cos\frac{2\pi}{3} = 1,$   
and  $\gamma^3 = -\xi^{12} - 3\xi^4 - 3\xi^{-4} - \xi^{-12}$  so  
 $\gamma^3 - 3\gamma = -\xi^{12} - \xi^{-12} = -e^{4\pi i/3} - e^{-4\pi i/3} = -2\cos\frac{4\pi}{3} = 1.$ 

3 for method, 3 for accuracy

(c)

$$\beta^2 = \xi^4 + 2 + \xi^{-4} = -\gamma + 2.$$
 1

Next,  $\gamma^2 = \xi^8 + 2 + \xi^{-8}$  and  $\xi^9 = e^{\pi i} = -1$  so  $\xi^8 = -\xi^{-1}$  and  $\xi^{-8} = -\xi$ . 1 So

$$\gamma^2 = -\xi - \xi^{-1} + 2 = 2 - \alpha.$$
 1

Likewise

$$\alpha^2 = \xi^2 + 2 + \xi^{-2} = -\beta + 2. \qquad 1$$

Since f(t) is irreducible, the splitting field is  $\mathbb{Q}(\alpha, \beta, \gamma)$ .

From  $\beta^2 = 2 - \gamma$  it follows that  $\mathbb{Q}(\gamma) \subseteq \mathbb{Q}(\beta)$ 

And from  $\gamma^2 = 2 - \alpha$  it follows that  $\mathbb{Q}(\alpha) \subseteq \mathbb{Q}(\gamma)$ .

Lastly, from  $\alpha^2 = 2 - \beta$  it follows that  $\mathbb{Q}(\beta) \subseteq \mathbb{Q}(\alpha)$ .

So we have  $\mathbb{Q}(\alpha) \subseteq \mathbb{Q}(\gamma) \subseteq \mathbb{Q}(\beta) \subseteq \mathbb{Q}(\alpha)$  and therefore  $\mathbb{Q}(\alpha) = \mathbb{Q}(\gamma) = \mathbb{Q}(\beta)$  and  $\mathbb{Q}(\alpha, \beta, \gamma) = \mathbb{Q}(\alpha)$ . **3** 

(d) Since  $\mathbb{Q}(\alpha)$  is the proper splitting field for a polynomial it is a normal extension of  $\mathbb{Q}$ . **1** Hence there is  $\sigma \in G := G(\mathbb{Q}(\alpha)/\mathbb{Q})$  such that  $\sigma(\alpha) = \beta$ . **2** 

It follows that  $\sigma(\beta) = \sigma(2 - \alpha^2) = 2 - \beta^2 = \gamma$ . **1** Therefore  $\sigma$  cycles the roots  $\alpha \mapsto \beta \mapsto \gamma$ **1** and the subgroup {id,  $\sigma, \sigma^2$ } has order 3.

Since  $\mathbb{Q}(\alpha)$  is normal,  $|G| = [\mathbb{Q}(\alpha) : \mathbb{Q}]$ . **1** Now  $\{1, \alpha, \alpha^2\}$  is a basis for  $\mathbb{Q}(\alpha)$  over  $\mathbb{Q}$ , so  $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 3$  **1**. Hence  $G = \{id, \sigma, \sigma^2\}$  and is the cyclic group of order 3. **1**