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1 Easy
(a) ¢: L — L is a homomorphism of fields, a bijection, and ¢(a) = a for all a € K.

(b)(i) The Galois group Gal(L/K) is the set of K-automorphisms of L with composition
as the group operation.

(ii) A field extension L/K is Galois if [L : K] = |Gal(L/K)|.

(c)(i) There is only one element, the identity.
For ¢ any automorphism, ¢(+/2) must again be a cube root of unity. But Q(¥/2) is a

subfield of R and so go(\:’/ﬁ) = /2.

(c)(ii) There are two elements, the identity and the map
o(a + bw) = a + bw?.

This is (a restriction of) complex conjugation so is a field automorphism.

These are the only possibilities because any ¢ must leave each rational fixed and the only
possibilities for p(w) are w and the other nonrational cube root, w?.

(d) Q(V2,w).

(e)(i) Try v = V3 + V7. Clearly Q(7) C Q(v/3, V7). Now
v =3vV3+3x3VT+3xTV3+T7V7 =24V3 + 16V7 = 167 + 8V3

SO

V3 =1(7"-16v) € Q).
Similarly 24v/3 + 161/7 = 24y — 8/7 so

VT =-1(7* - 247) € Q(v).
So Q(V3,v7) € Q()-
(e)(ii) z* — 202 + 16.
(f) G is soluble if there is a finite chain

G=Gy>2G > >G,={1}

such that each G,y is normal in G| and each quotient is abelian.
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2(a) Bookwork. Easy

M) = 11 (&= ).

primitive nth roots of unity

(b) Unseen. Let ¢ be any primitive 15th root of unity. Then ¢> will be a cube root of
unity. But it will not be 1 since, if it were, ( would not be primitive as a 15th root.

So ¢° must be a primitive cube root of unity and therefore satisfies 2% +x + 1 = 0. That

is, (' + ¢ +1=0.
(c) Unseen. Easy.

(d) Unseen. The integers 1 < k < 15 which are coprime to 15 are 1,2,4,7,8,11, 13, 14.
There are eight such integers, so A15(z) has degree eight. By (a), A\15() divides 1% +2°+1.
The factor 22 + x + 1 in (b) is A3(z). So the remaining factor must be the product of
(x — ) for all primitive 15th roots of unity (.
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3. Bookwork.
(a) TPE: Let K C L be a field extension. Then L = K (v) for some element v € L.

(b) APR: Let K C L be a field extension, and let @ € L be algebraic over K with
minimal polynomial f(z) € K[z] over K [1]. If # € Gal(L/K), then #(a) is also a root of

f().
(c) By the TPE, there exists an « € L such that L = K(«). Let f(z) denote the minimal
polynomial of o over K. Then

e [L: K] is equal to the degree of f,|1|and

e |Gal(L/K)| is equal to the number of distinct roots of f in L.

So [L : K] = |Gal(L/K)| implies that the number of roots of f in L is equal to the degree
of f; that is, f factorises over L into distinct linear factors. Thus L is the splitting field

of f(z) over K.
(d) L is the splitting field of some polynomial f(z) € K[z] by (c¢). Since K C M we
have f(z) € M[z]. Now L splits f(z) and is generated over K by the roots, so it is also
generated over M by the roots. Thus L is the splitting field for f(z) over M, and is
therefore Galois.

(e) By the TPE there is @« € M such that M = K(«a) and M is the splitting field for
the irreducible polynomial m, (). Now ¢ must map « to another root of m,(z) by
the APR but this root, g say, is also in M, because M splits m,(x). It then follows that

©(M) C M. Similarly ¢~ (M) C M, so p(M) = M.
(f) Bookwork, Hard Take ¢ € Gal(L/K) and 6 € Gal(L/M). Since M/K is Galois,
©(M) = M by (e). Thus p(0(p"1(m))) = ¢(8(m’)) where m’ = ¢! (m) € M and so

PO~ (m))) = (0(m)) = p(m') = m.

That is, ¢ 0 6 o ™! fixes every element of M. So ¢ oo ¢~ € Gal(L/M), and therefore
Gal(L/M) is normal in Gal(L/K).

Now define a map
®: Gal(L/K) — Gal(M/K) 0+ 0|y.

Since (M) = M, we have 0|y € Gal(M/K), as required. The map P is easily seen to
be a group homomorphism, and its kernel consists of all 6 such that 6|y (m) = m for all
m € M, sois Gal(L/M). | 3| Then the first isomorphism theorem for groups gives:

Gal(L/K)
Gal(L/M)

12

Im® C Gal(M/K).

Now the order of the quotient group is

Gal(L/K)|  [L:K]
Gal(L/M)| — [L: M]
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since L/K and L/M are Galois, |2 | and

[L: K]

L] - M : K] = |Gal(M/K)|.

Therefore Im ® = Gal(M/K).

FIT: If o: G — H is a group homomorphism then there is a unique group isomorphism
@: G/ker(p) — Im () such that p(g) = p(gker(p)) for all g € G.

Degree Theorem: If K C M C L are field extensions, then [L : K] = [L: M][M : K].
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4. Standard type.

(a) ¢ is a primitive 7th root of unity and 7 is prime, so
1++8+8+¢+8+¢¢=0.

Next, we have

B+
52:€2+2€7+£12
:2+§2+€5

53 — 53 T 3&-8 + 3513 4 518
=36 +& +¢"+ 3¢,
SO
B+ -2—1=1+6+E+8++8+¢5 =0,
so 2® + 2% — 2 — 1 is the required cubic polynomial for 3.
(b) Similarly, we have
7=+ +¢h?
=&+ +E+28+ 0+
=L+ 428 + ¢+ 280 + 268
Y4y +2=242+2+26 + 264 +28° +26° =0,
so 22 + x + 2 is the required quadratic polynomial for .
(c) Using the quadratic formula we deduce that

(—1+vV=7)/2 so V=T==%(1+27)€Q(y).

v

(d) The elements of G(Q(£)/Q) are the automorphisms ¢, given by & + &* where
0<k<T. Since 7 is prime, k£ and 7 are coprime for all such k. Thus, we have

G(Q(&)/Q) = {901 = id?@% ©3, P4, 9057@6}'

(e) The powers of 3 mod 7 are 1,3,2,6,4 and 5, so the powers of @3 are ¢1, 3, V2, ©s, P4
and 5. Thus, the group G(Q(£)/Q) is cyclic of order 6, | 1| generated by 6 = .

Any finite cyclic group has precisely one subgroup of each order dividing the group order.
Thus, the subgroups are

Cy = {1}
CQ = {1793}
Cs = {1,607, 0%}

Cs={1,0,6%,0°,6*,0°} = G(Q(¢)/Q). [2]



MAS 442/6310 Galois Theory, 2015-16 examination solutions

The lattices of subgroups and subfields are as follows:

4 for subgroups, 3 for subfields




