1 Easy

(a) $\varphi: L \to L$ is a homomorphism of fields, a bijection, and $\varphi(a) = a$ for all $a \in K$. 3

(b)(i) The Galois group $\operatorname{Gal}(L/K)$ is the set of K-automorphisms of L with composition as the group operation. 2

(ii) A field extension L/K is Galois if $[L:K] = |\operatorname{Gal}(L/K)|$. 2

(c)(i) There is only one element, the identity.

For φ any automorphism, $\varphi(\sqrt[3]{2})$ must again be a cube root of unity. But $\mathbb{Q}(\sqrt[3]{2})$ is a subfield of \mathbb{R} and so $\varphi(\sqrt[3]{2}) = \sqrt[3]{2}$. **3**

(c)(ii) There are two elements, the identity and the map

$$\varphi(a+b\omega) = a+b\omega^2.$$

This is (a restriction of) complex conjugation so is a field automorphism.

These are the only possibilities because any φ must leave each rational fixed and the only possibilities for $\varphi(\omega)$ are ω and the other nonrational cube root, ω^2 . **3**

(d) $\mathbb{Q}(\sqrt[3]{2}, \omega)$. **3**

(e)(i) Try
$$\gamma = \sqrt{3} + \sqrt{7}$$
. Clearly $\mathbb{Q}(\gamma) \subseteq \mathbb{Q}(\sqrt{3}, \sqrt{7})$. Now
 $\gamma^3 = 3\sqrt{3} + 3 \times 3\sqrt{7} + 3 \times 7\sqrt{3} + 7\sqrt{7} = 24\sqrt{3} + 16\sqrt{7} = 16\gamma + 8\sqrt{3}$

 \mathbf{SO}

$$\sqrt{3} = \frac{1}{8}(\gamma^3 - 16\gamma) \in \mathbb{Q}(\gamma).$$

Similarly $24\sqrt{3} + 16\sqrt{7} = 24\gamma - 8\sqrt{7}$ so

$$\sqrt{7} = -\frac{1}{8}(\gamma^3 - 24\gamma) \in \mathbb{Q}(\gamma).$$

So $\mathbb{Q}(\sqrt{3},\sqrt{7}) \subseteq \mathbb{Q}(\gamma)$. 4

(e)(ii) $x^4 - 20x^2 + 16$. **3**

(f) G is *soluble* if there is a finite chain

$$G = G_0 \geqslant G_1 \geqslant \cdots \geqslant G_n = \{1\}$$

such that each G_{i+1} is normal in G_i 1 and each quotient is abelian. 1

2(a) Bookwork. Easy

$$\lambda_n(x) = \prod_{\text{primitive nth roots of unity}} (x - \zeta).$$
 3

(b) Unseen. Let ζ be any primitive 15th root of unity. Then ζ^5 will be a cube root of unity. But it will not be 1 since, if it were, ζ would not be primitive as a 15th root.

So ζ^5 must be a primitive cube root of unity and therefore satisfies $x^2 + x + 1 = 0$. That is, $\zeta^{10} + \zeta^5 + 1 = 0$. 3

(c) Unseen. Easy. 3

(d) Unseen. The integers $1 \leq k \leq 15$ which are coprime to 15 are 1, 2, 4, 7, 8, 11, 13, 14. There are eight such integers, so $\lambda_{15}(x)$ has degree eight. By (a), $\lambda_{15}(x)$ divides $x^{10}+x^5+1$. The factor $x^2 + x + 1$ in (b) is $\lambda_3(x)$. So the remaining factor must be the product of $(x - \zeta)$ for all primitive 15th roots of unity ζ . **3**

3. Bookwork.

(a) TPE: Let $K \subseteq L$ be a field extension. Then $L = K(\gamma)$ for some element $\gamma \in L$. 2

(b) APR: Let $K \subseteq L$ be a field extension, and let $\alpha \in L$ be algebraic over K 1 with minimal polynomial $f(x) \in K[x]$ over K 1. If $\theta \in \text{Gal}(L/K)$, then $\theta(\alpha)$ is also a root of f(x). 2

(c) By the TPE, there exists an $\alpha \in L$ such that $L = K(\alpha)$. Let f(x) denote the minimal polynomial of α over K. Then

- [L:K] is equal to the degree of f, $|\mathbf{1}|$ and
- $|\operatorname{Gal}(L/K)|$ is equal to the number of distinct roots of f in L. 1

So [L:K] = |Gal(L/K)| implies that the number of roots of f in L is equal to the degree of f; that is, f factorises over L into distinct linear factors. Thus L is the splitting field of f(x) over K. 2

(d) L is the splitting field of some polynomial $f(x) \in K[x]$ by (c). Since $K \subseteq M$ we have $f(x) \in M[x]$. Now L splits f(x) and is generated over K by the roots, so it is also generated over M by the roots. Thus L is the splitting field for f(x) over M, and is therefore Galois. 4

(e) By the TPE there is $\alpha \in M$ such that $M = K(\alpha)$ and M is the splitting field for the irreducible polynomial $m_{\alpha}(x)$. 2 Now φ must map α to another root of $m_{\alpha}(x)$ by the APR but this root, β say, is also in M, because M splits $m_{\alpha}(x)$. It then follows that $\varphi(M) \subseteq M$. 2 Similarly $\varphi^{-1}(M) \subseteq M$, so $\varphi(M) = M$. 1

(f) Bookwork, Hard Take $\varphi \in \text{Gal}(L/K)$ and $\theta \in \text{Gal}(L/M)$. Since M/K is Galois, $\varphi(M) = M$ by (e). Thus $\varphi(\theta(\varphi^{-1}(m))) = \varphi(\theta(m'))$ where $m' = \varphi^{-1}(m) \in M$ and so

$$\varphi(\theta(\varphi^{-1}(m))) = \varphi(\theta(m')) = \varphi(m') = m.$$

That is, $\varphi \circ \theta \circ \varphi^{-1}$ fixes every element of M. So $\varphi \circ \theta \circ \varphi^{-1} \in \operatorname{Gal}(L/M)$, and therefore $\operatorname{Gal}(L/M)$ is normal in $\operatorname{Gal}(L/K)$.

Now define a map

$$\Phi: \operatorname{Gal}(L/K) \longrightarrow \operatorname{Gal}(M/K) \qquad \theta \mapsto \theta|_M.$$

Since $\theta(M) = M$, we have $\theta|_M \in \operatorname{Gal}(M/K)$, as required. The map Φ is easily seen to be a group homomorphism, and its kernel consists of all θ such that $\theta|_M(m) = m$ for all $m \in M$, so is $\operatorname{Gal}(L/M)$. **3** Then the first isomorphism theorem for groups gives:

$$\frac{\operatorname{Gal}(L/K)}{\operatorname{Gal}(L/M)} \cong \operatorname{Im} \Phi \subseteq \operatorname{Gal}(M/K).$$
 1

Now the order of the quotient group is

$$\frac{|\operatorname{Gal}(L/K)|}{|\operatorname{Gal}(L/M)|} = \frac{[L:K]}{[L:M]} \qquad 1$$

since L/K and L/M are Galois, **2** and

$$\frac{[L:K]}{[L:M]} = [M:K] = |\operatorname{Gal}(M/K)|.$$
 2

Therefore $\operatorname{Im} \Phi = \operatorname{Gal}(M/K)$. 1

FIT: If $\varphi \colon G \to H$ is a group homomorphism then there is a unique group isomorphism $\overline{\varphi} \colon G/\ker(\varphi) \to \operatorname{Im}(\varphi)$ such that $\varphi(g) = \overline{\varphi}(g \ker(\varphi))$ for all $g \in G$. **2**

Degree Theorem: If $K \subseteq M \subseteq L$ are field extensions, then [L:K] = [L:M][M:K].

4. Standard type.

(a) ξ is a primitive 7th root of unity and 7 is prime, so

$$1 + \xi + \xi^2 + \xi^3 + \xi^4 + \xi^5 + \xi^6 = 0.$$
 2

Next, we have

$$\beta = \xi + \xi^{6}$$

$$\beta^{2} = \xi^{2} + 2\xi^{7} + \xi^{12}$$

$$= 2 + \xi^{2} + \xi^{5}$$

$$\beta^{3} = \xi^{3} + 3\xi^{8} + 3\xi^{13} + \xi^{18}$$

$$= 3\xi + \xi^{3} + \xi^{4} + 3\xi^{6},$$

 \mathbf{SO}

$$\beta^3 + \beta^2 - 2\beta - 1 = 1 + \xi + \xi^2 + \xi^3 + \xi^4 + \xi^5 + \xi^6 = 0,$$

so $x^3 + x^2 - 2x - 1$ is the required cubic polynomial for β . **3**

(b) Similarly, we have

$$\gamma^{2} = (\xi + \xi^{2} + \xi^{4})^{2}$$

= $\xi^{2} + \xi^{4} + \xi^{8} + 2(\xi^{3} + \xi^{5} + \xi^{6})$
= $\xi + \xi^{2} + 2\xi^{3} + \xi^{4} + 2\xi^{5} + 2\xi^{6}$
 $\gamma^{2} + \gamma + 2 = 2 + 2\xi + 2\xi^{2} + 2\xi^{3} + 2\xi^{4} + 2\xi^{5} + 2\xi^{6} = 0,$

so $x^2 + x + 2$ is the required quadratic polynomial for γ . **3**

(c) Using the quadratic formula we deduce that

$$\gamma = (-1 \pm \sqrt{-7})/2$$
 so $\sqrt{-7} = \pm (1 + 2\gamma) \in \mathbb{Q}(\gamma)$. 2

(d) The elements of $G(\mathbb{Q}(\xi)/\mathbb{Q})$ are the automorphisms φ_k given by $\xi \mapsto \xi^k$, where 0 < k < 7. 1 Since 7 is prime, k and 7 are coprime for all such k. Thus, we have

 $G(\mathbb{Q}(\xi)/\mathbb{Q}) = \{\varphi_1 = \mathrm{id}, \varphi_2, \varphi_3, \varphi_4, \varphi_5, \varphi_6\}.$ 2

(e) The powers of 3 mod 7 are 1, 3, 2, 6, 4 and 5, so the powers of φ_3 are $\varphi_1, \varphi_3, \varphi_2, \varphi_6, \varphi_4$ and φ_5 . Thus, the group $G(\mathbb{Q}(\xi)/\mathbb{Q})$ is cyclic of order 6, **1** generated by $\theta = \varphi_3$. **2**

Any finite cyclic group has precisely one subgroup of each order dividing the group order. Thus, the subgroups are

$$C_{1} = \{1\}$$

$$C_{2} = \{1, \theta^{3}\}$$

$$C_{3} = \{1, \theta^{2}, \theta^{4}\}$$

$$C_{6} = \{1, \theta, \theta^{2}, \theta^{3}, \theta^{4}, \theta^{5}\} = G(\mathbb{Q}(\xi)/\mathbb{Q}).$$
2

The lattices of subgroups and subfields are as follows: