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1 (a)

Since α1, α2, α3, α4 are the roots, we have

f(X) = (X − α1)(X − α2)(X − α3)(X − α4). (1)

Expanding out and collecting terms, the coefficient of X3 is α1 +α2 +α3 +α4. Equating the
coefficients we have the result.

(b)
β + γ + δ = 3α1 + α2 + α3 + α4 = 2α1 + (α1 + α2 + α3 + α4) = 2α1,

using (a).

β − γ − δ = α2 − α3 − α1 − α4 = 2α1 − (α1 + α2 + α3 + α4) = 2α2,

using (a).

Others similar.

(c)

Using (a) repeatedly,

β2 = (α1 + α2)
2 = −(α1 + α2)(α3 + α4) = −(α1α3 + α1α4 + α2α3 + α2α4),

γ2 = (α1 + α3)
2 = −(α1 + α3)(α2 + α4) = −(α1α2 + α1α4 + α2α3 + α3α4),

δ2 = (α1 + α4)
2 = −(α1 + α4)(α2 + α3) = −(α1α2 + α1α3 + α2α4 + α3α4).

Adding we get

β2 + γ2 + δ2 = −2(α1α2 + α1α3 + α1α4 + α2α3 + α2α4 + α3α4).

Expanding out (1), the coefficient p of X2 is (α1α2 + α1α3 + α1α4 + α2α3 + α2α4 + α3α4).

Others similar.

(d)

(Y − β2)(Y − γ2)(Y − δ2) = Y 3 − (β2 + γ2 + δ2)Y 2 + (β2γ2 + β2δ2 + γ2δ2)Y − β2γ2δ2.

So, using (c), this is
Y 3 + 2pY 2 + (p2 − 4r)Y − q2.
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(e)

Write r1, r2, r3 for the roots of the cubic in (d).

Choose square roots of r1 and r2 and write β =
√
r1 and γ =

√
r2.

Then δ = − q
βγ
. (If β or γ is zero then Y = 0 is a solution and the cubic reduces to a

quadratic.)

Now determine α1, α2, α3, α4 from (b).

(f)

We have p = 2, q = 4, r = 2 so the resolvent cubic is

Y 3 + 4Y 2 − 4Y − 16 = (Y − 2)(Y 2 + 6Y + 8) = (Y − 2)(Y + 2)(Y + 4).

The roots are 2,−2,−4.
Take β2 = 2, γ2 = −4, δ2 = −2 and

β =
√
2, γ = 2i, δ = i

√
2.

Then

α1 =
1
2
(
√
2 + i(2 +

√
2)), α2 =

1
2
(
√
2− i(2 +

√
2)),

α3 =
1
2
(−
√
2 + i(2−

√
2)), α4 =

1
2
(−
√
2− i(2−

√
2)).
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Q2 (a), (b)

First, α2 = 4 +
√
7 and then (α2 − 4)2 = 7 so α is a root of x4 − 8x2 + 9.

Now (x+ 1)4 − 8(x+ 1)2 + 9 = x4 + 4x3 − 2x2 − 12x+ 2 so by shifted Eisenstein at 2, we
have that x4 − 8x2 + 9 is irreducible.

Thus the minimal polynomial is x4 − 8x2 + 9.

Regarding x4 − 8x2 + 9 = 0 as a quadratic in x2, the roots are ±α and ±β.

(c)

αβ =
√
16− 7 = 3 (not −3 since α, β > 0).

So β = 3
α
∈ Q(α) = L.

Hence L is a splitting field for x4 − 8x2 + 9 and is therefore Galois.

Degree is 4 = degree of minimal polynomial.

(d)

Automorphisms permute roots, so the elements of the Galois group are as follows.

id ϕ ψ θ
α α β −α −β
β β α −β −α

The action of ϕ, ψ, θ on −α and −β is determined, since ϕ, ψ, θ are field automorphisms.

Note that applying each of ϕ, ψ, θ to αβ must result in 3 ∈ Q.

Each element of the Galois group has order 2, so the group must be isomorphic to C2 ×C2.

(e)

id ϕ ψ θ

α2 α2 β2 α2 β2

α + β α + β α + β −α− β −α− β
α− β α− β β − α β − α α− β

The subgroup which preserves each element of Q(α2) is {id, ψ}.
The subgroup which preserves each element of Q(α + β) is {id, ϕ}.
The subgroup which preserves each element of Q(α− β) is {id, θ}.
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Q3(i)

(a)

Note that α2 + 4 = 3
√
2 =

√
18, and squaring again shows that α4 + 8α2 + 16 = 18, as

required.

Thus α is a root. Further, as f is a polynomial in x2, −α must also be a root.

Write ±β for the other roots. Because the product of all the roots is −2, it follows that
±β = ± i

√
2

α
, as required.

(b) The extension is Galois (since it is a splitting field) and is of degree 8. So the Galois group
has order 8.

Any automorphism is uniquely determined by its action on α and i
√
2.

α must be mapped to another root of f(x), by APR.

i
√
2 must be mapped to another root of x2 + 2, its minimal polynomial; that is, to ±i

√
2.

effect on α effect on i
√
2

α i
√
2

α −i
√
2

−α i
√
2

−α −i
√
2

i
√
2

α
i
√
2

i
√
2

α
−i
√
2

− i
√
2

α
i
√
2

− i
√
2

α
−i
√
2

This determines 8 possibilities and so is the complete list of elments of Gal(L/Q).

(c) Let ϕ be the automorphism sending α to i
√
2

α
and i

√
2 to −i

√
2.

Claim that ϕ has order 4.

ϕ2(α) = ϕ( i
√
2

α
) = ϕ(i

√
2)

ϕ(α)
= −i

√
2

i
√
2/α

= −α

ϕ2(i
√
2) = ϕ(−i

√
2) = −ϕ(i

√
2) = i

√
2

so ϕ2 fixes i
√
2 and sends α to −α.

Then ϕ4 = (ϕ2)2 is the identity. So ϕ has order 4.

Let ψ be any element of order 2 not equal to ϕ2, such as the automorphism sending α to α
and i

√
2 to −i

√
2.

The group generated by ϕ and ψ contains a subgroup of order 4, and so by Lagrange must
have order 4n for some n. It also contains ψ, so the order must be greater than 4, and
therefore must be 8. So Gal(M/Q) = 〈ϕ, ψ〉.
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(d) Note that

ψϕψ−1(α) = ψϕ(α) = ψ( i
√
2

α
) = ψ(i

√
2)

ψ(α)
= − i

√
2

α

ψϕψ−1(i
√
2) = ψϕ(−i

√
2) = ψ(i

√
2) = −i

√
2.

One easily sees that now ψϕψ−1 = ϕ−1.

It follows that the group is isomorphic to D4, the group of symmetries of a square.

Other choices are possible for ϕ and ψ in (c) and will mean that the detail of (d) is different;
however the argument will be very similar.
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Q4(i)

(a) A group G is soluble if there is a chain of subgroups

G = G0 > G1 > · · · > Gn = {1}

with each Gi+1 normal in Gi and Gi/Gi+1 abelian.

(b)
1 / C2 / V4 / A4 / S4

where V4 = {(1 2)(3 4), (1 3)(2 4), (1 4)(2 3), id}.
The first quotient is C2, cyclic so abelian.

For the second quotient, V4 has order 4 and C2 has order 2, so C2 has index 2 in V4 and is
therefore normal. And V4/C2 has order 2 so is cyclic and therefore abelian.

For the third quotient, recall that conjugation in Sn preserves the cycle structure. Since V4
contains every transposition pair in A4, every conjugate of an element of V4 is in V4. Therefore
V4 is normal in A4 (and in fact is normal in S4). And A4/V4 has order 12/4 = 3 so is cyclic
and therefore abelian.

For the final quotient, A4 has index 2 in S4 and is therefore a normal subgroup. And S4/A4

has order 24/12 = 2 so is cyclic and therefore abelian.
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(ii)

(a) First, transposition pairs (a b)(c d) where a, b, c, d are all distinct.

Next, 3-cycles (a b c) where a, b, c are all distinct.

Lastly, 5-cycles (a b c d e) where a, b, c, d, e are all distinct.

(b) Since g and g′ have the same cycle type, they are conjugate in S5; that is, there is a
y ∈ S5 such that ygy−1 = g′. If y ∈ A5 then there is nothing further to prove.

If y /∈ A5 then xy ∈ A5 since both x and y are odd. And

(yx)g(yx)−1 = y(xgx−1)y−1 = ygy−1 = g′.

So g and g′ are conjugate in A5.

(c) Consider any two transposition pairs, (a b)(c d) and (a′ b′)(c′ d′). The transposition (a b)
commutes with (a b)(c d), so, using (b), we get that (a b)(c d) and (a′ b′)(c′ d′) are conjugate
in A5.

Consider any two 3-cycles (a b c) and (a′ b′ c′). Take d and e such that a, b, c, d, e are all
distinct. Then (d e) commutes with (a b c) so by (b), (a b c) and (a′ b′ c′) are conjugate in A5.

(d) Suppose N contains a 3-cycle. Then since it is normal, N contains all 3-cycles, in
particular n = (1 2 3). Write g = (1 2)(3 4) ∈ A5. Then

gng−1n−1 = (1 3)(2 4).

But gng−1 ∈ N since N is normal, so (1 3)(2 4) ∈ N . By (c), N contains all transposition
pairs.

(e) Suppose N contains a transposition pair. Then since it is normal, it contains all transpo-
sition pairs. So with n = (1 2)(3 4) and n′ = (1 2)(3 5), we have

nn′ = (3 5 4) ∈ N

and since N is normal, it contain all 3-cycles.

(f) Suppose that N contains a 5-cycle. Relabel the symbols so that n = (1 2 3 4 5) ∈ N .

With g = (1 2 3) ∈ A5 we have
ngn−1g−1 = (1 4 2)

and ngn−1g−1 = n(gn−1g−1) ∈ N .
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(g) Since N is nontrivial it must contain a transposition pair or a 3-cycle or a 5-cycle.
By (d), (e) and the given information, it follows that N contains all transposition pairs and
all 3-cycles.

Now consider any element g of A5. It is a product of an even number of transpositions. Group
these in pairs, so that

g = t1t
′
1 t2t

′
2 . . . trt

′
r

for some r.

Now for each pair tit′i there are three possibilities.

If ti = t′i then the product is the identity and this pair can be removed.

If ti and t′i are disjoint then their product is a transposition pair and is therefore in N .

If ti and t′i are not disjoint then their product is a 3-cycle and is therefore in N .

So g is a product of elements of N and is therefore in N . This proves that N = A5.


