1 (a)
Since $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ are the roots, we have

$$
\begin{equation*}
f(X)=\left(X-\alpha_{1}\right)\left(X-\alpha_{2}\right)\left(X-\alpha_{3}\right)\left(X-\alpha_{4}\right) \tag{1}
\end{equation*}
$$

Expanding out and collecting terms, the coefficient of X^{3} is $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}$. Equating the coefficients we have the result.
(b)

$$
\beta+\gamma+\delta=3 \alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}=2 \alpha_{1}+\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)=2 \alpha_{1}
$$

using (a).

$$
\beta-\gamma-\delta=\alpha_{2}-\alpha_{3}-\alpha_{1}-\alpha_{4}=2 \alpha_{1}-\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)=2 \alpha_{2}
$$

using (a).
Others similar.
(c)

Using (a) repeatedly,

$$
\begin{aligned}
& \beta^{2}=\left(\alpha_{1}+\alpha_{2}\right)^{2}=-\left(\alpha_{1}+\alpha_{2}\right)\left(\alpha_{3}+\alpha_{4}\right)=-\left(\alpha_{1} \alpha_{3}+\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{3}+\alpha_{2} \alpha_{4}\right), \\
& \gamma^{2}=\left(\alpha_{1}+\alpha_{3}\right)^{2}=-\left(\alpha_{1}+\alpha_{3}\right)\left(\alpha_{2}+\alpha_{4}\right)=-\left(\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{3}+\alpha_{3} \alpha_{4}\right), \\
& \delta^{2}=\left(\alpha_{1}+\alpha_{4}\right)^{2}=-\left(\alpha_{1}+\alpha_{4}\right)\left(\alpha_{2}+\alpha_{3}\right)=-\left(\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{4}+\alpha_{3} \alpha_{4}\right) .
\end{aligned}
$$

Adding we get

$$
\beta^{2}+\gamma^{2}+\delta^{2}=-2\left(\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{3}+\alpha_{2} \alpha_{4}+\alpha_{3} \alpha_{4}\right)
$$

Expanding out (1), the coefficient p of X^{2} is $\left(\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{3}+\alpha_{2} \alpha_{4}+\alpha_{3} \alpha_{4}\right)$.
Others similar.
(d)

$$
\left(Y-\beta^{2}\right)\left(Y-\gamma^{2}\right)\left(Y-\delta^{2}\right)=Y^{3}-\left(\beta^{2}+\gamma^{2}+\delta^{2}\right) Y^{2}+\left(\beta^{2} \gamma^{2}+\beta^{2} \delta^{2}+\gamma^{2} \delta^{2}\right) Y-\beta^{2} \gamma^{2} \delta^{2}
$$

So, using (c), this is

$$
Y^{3}+2 p Y^{2}+\left(p^{2}-4 r\right) Y-q^{2}
$$

(e)

Write r_{1}, r_{2}, r_{3} for the roots of the cubic in (d).
Choose square roots of r_{1} and r_{2} and write $\beta=\sqrt{r_{1}}$ and $\gamma=\sqrt{r_{2}}$.
Then $\delta=-\frac{q}{\beta \gamma}$. (If β or γ is zero then $Y=0$ is a solution and the cubic reduces to a quadratic.)
Now determine $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ from (b).
(f)

We have $p=2, q=4, r=2$ so the resolvent cubic is

$$
Y^{3}+4 Y^{2}-4 Y-16=(Y-2)\left(Y^{2}+6 Y+8\right)=(Y-2)(Y+2)(Y+4)
$$

The roots are $2,-2,-4$.
Take $\beta^{2}=2, \gamma^{2}=-4, \delta^{2}=-2$ and

$$
\beta=\sqrt{2}, \quad \gamma=2 i, \quad \delta=i \sqrt{2}
$$

Then

$$
\begin{array}{cl}
\alpha_{1}=\frac{1}{2}(\sqrt{2}+i(2+\sqrt{2})), & \alpha_{2}=\frac{1}{2}(\sqrt{2}-i(2+\sqrt{2})), \\
\alpha_{3}=\frac{1}{2}(-\sqrt{2}+i(2-\sqrt{2})), & \alpha_{4}=\frac{1}{2}(-\sqrt{2}-i(2-\sqrt{2})) .
\end{array}
$$

Q2 (a), (b)

First, $\alpha^{2}=4+\sqrt{7}$ and then $\left(\alpha^{2}-4\right)^{2}=7$ so α is a root of $x^{4}-8 x^{2}+9$.
Now $(x+1)^{4}-8(x+1)^{2}+9=x^{4}+4 x^{3}-2 x^{2}-12 x+2$ so by shifted Eisenstein at 2 , we have that $x^{4}-8 x^{2}+9$ is irreducible.
Thus the minimal polynomial is $x^{4}-8 x^{2}+9$.
Regarding $x^{4}-8 x^{2}+9=0$ as a quadratic in x^{2}, the roots are $\pm \alpha$ and $\pm \beta$.
(c)
$\alpha \beta=\sqrt{16-7}=3($ not -3 since $\alpha, \beta>0)$.
So $\beta=\frac{3}{\alpha} \in \mathbb{Q}(\alpha)=L$.
Hence L is a splitting field for $x^{4}-8 x^{2}+9$ and is therefore Galois.
Degree is $4=$ degree of minimal polynomial.
(d)

Automorphisms permute roots, so the elements of the Galois group are as follows.

	id	φ	ψ	θ
α	α	β	$-\alpha$	$-\beta$
β	β	α	$-\beta$	$-\alpha$

The action of φ, ψ, θ on $-\alpha$ and $-\beta$ is determined, since φ, ψ, θ are field automorphisms.
Note that applying each of φ, ψ, θ to $\alpha \beta$ must result in $3 \in \mathbb{Q}$.
Each element of the Galois group has order 2, so the group must be isomorphic to $C_{2} \times C_{2}$.
(e)

	id	φ	ψ	θ
α^{2}	α^{2}	β^{2}	α^{2}	β^{2}
$\alpha+\beta$	$\alpha+\beta$	$\alpha+\beta$	$-\alpha-\beta$	$-\alpha-\beta$
$\alpha-\beta$	$\alpha-\beta$	$\beta-\alpha$	$\beta-\alpha$	$\alpha-\beta$

The subgroup which preserves each element of $\mathbb{Q}\left(\alpha^{2}\right)$ is $\{\mathrm{id}, \psi\}$.
The subgroup which preserves each element of $\mathbb{Q}(\alpha+\beta)$ is $\{\mathrm{id}, \varphi\}$.
The subgroup which preserves each element of $\mathbb{Q}(\alpha-\beta)$ is $\{\mathrm{id}, \theta\}$.
(f)

The Galois group $C_{2} \times C_{2}$ has exactly five subgroups, namely the three identified in (e) plus the trivial subgroup and $C_{2} \times C_{2}$ itself.
The subfield lattice is therefore

Q3(i)
(a)

Note that $\alpha^{2}+4=3 \sqrt{2}=\sqrt{18}$, and squaring again shows that $\alpha^{4}+8 \alpha^{2}+16=18$, as required.
Thus α is a root. Further, as f is a polynomial in $x^{2},-\alpha$ must also be a root.
Write $\pm \beta$ for the other roots. Because the product of all the roots is -2 , it follows that $\pm \beta= \pm \frac{i \sqrt{2}}{\alpha}$, as required.
(b) The extension is Galois (since it is a splitting field) and is of degree 8. So the Galois group has order 8.
Any automorphism is uniquely determined by its action on α and $i \sqrt{2}$.
α must be mapped to another root of $f(x)$, by APR.
$i \sqrt{2}$ must be mapped to another root of $x^{2}+2$, its minimal polynomial; that is, to $\pm i \sqrt{2}$.

effect on α	effect on $i \sqrt{2}$
α	$i \sqrt{2}$
α	$-i \sqrt{2}$
$-\alpha$	$i \sqrt{2}$
$-\alpha$	$-i \sqrt{2}$
$\frac{i \sqrt{2}}{\alpha}$	$i \sqrt{2}$
$\frac{i \sqrt{2}}{\alpha}$	$-i \sqrt{2}$
$-\frac{i \sqrt{2}}{\alpha}$	$i \sqrt{2}$
$-\frac{i \sqrt{2}}{\alpha}$	$-i \sqrt{2}$

This determines 8 possibilities and so is the complete list of elments of $\operatorname{Gal}(L / \mathbb{Q})$.
(c) Let φ be the automorphism sending α to $\frac{i \sqrt{2}}{\alpha}$ and $i \sqrt{2}$ to $-i \sqrt{2}$.

Claim that φ has order 4.

$$
\begin{aligned}
& \varphi^{2}(\alpha)=\varphi\left(\frac{i \sqrt{2}}{\alpha}\right)=\frac{\varphi(i \sqrt{2})}{\varphi(\alpha)}=\frac{-i \sqrt{2}}{i \sqrt{2} / \alpha}=-\alpha \\
& \varphi^{2}(i \sqrt{2})=\varphi(-i \sqrt{2})=-\varphi(i \sqrt{2})=i \sqrt{2}
\end{aligned}
$$

so φ^{2} fixes $i \sqrt{2}$ and sends α to $-\alpha$.
Then $\varphi^{4}=\left(\varphi^{2}\right)^{2}$ is the identity. So φ has order 4 .
Let ψ be any element of order 2 not equal to φ^{2}, such as the automorphism sending α to α and $i \sqrt{2}$ to $-i \sqrt{2}$.
The group generated by φ and ψ contains a subgroup of order 4 , and so by Lagrange must have order $4 n$ for some n. It also contains ψ, so the order must be greater than 4 , and therefore must be 8 . So $\operatorname{Gal}(M / \mathbb{Q})=\langle\varphi, \psi\rangle$.
(d) Note that

$$
\begin{aligned}
& \psi \varphi \psi^{-1}(\alpha)=\psi \varphi(\alpha)=\psi\left(\frac{i \sqrt{2}}{\alpha}\right)=\frac{\psi(i \sqrt{2})}{\psi(\alpha)}=-\frac{i \sqrt{2}}{\alpha} \\
& \psi \varphi \psi^{-1}(i \sqrt{2})=\psi \varphi(-i \sqrt{2})=\psi(i \sqrt{2})=-i \sqrt{2}
\end{aligned}
$$

One easily sees that now $\psi \varphi \psi^{-1}=\varphi^{-1}$.
It follows that the group is isomorphic to D_{4}, the group of symmetries of a square.
Other choices are possible for φ and ψ in (c) and will mean that the detail of (d) is different; however the argument will be very similar.

Q4(i)

(a) A group G is soluble if there is a chain of subgroups

$$
G=G_{0}>G_{1}>\cdots>G_{n}=\{1\}
$$

with each G_{i+1} normal in G_{i} and G_{i} / G_{i+1} abelian.
(b)

$$
1 \triangleleft C_{2} \triangleleft V_{4} \triangleleft A_{4} \triangleleft S_{4}
$$

where $V_{4}=\{(12)(34),(13)(24),(14)(23)$, id $\}$.
The first quotient is C_{2}, cyclic so abelian.
For the second quotient, V_{4} has order 4 and C_{2} has order 2 , so C_{2} has index 2 in V_{4} and is therefore normal. And V_{4} / C_{2} has order 2 so is cyclic and therefore abelian.
For the third quotient, recall that conjugation in S_{n} preserves the cycle structure. Since V_{4} contains every transposition pair in A_{4}, every conjugate of an element of V_{4} is in V_{4}. Therefore V_{4} is normal in A_{4} (and in fact is normal in S_{4}). And A_{4} / V_{4} has order $12 / 4=3$ so is cyclic and therefore abelian.

For the final quotient, A_{4} has index 2 in S_{4} and is therefore a normal subgroup. And S_{4} / A_{4} has order $24 / 12=2$ so is cyclic and therefore abelian.
(ii)
(a) First, transposition pairs $(a b)(c d)$ where a, b, c, d are all distinct.

Next, 3-cycles ($a b c$) where a, b, c are all distinct.
Lastly, 5-cycles ($a b c d e$) where a, b, c, d, e are all distinct.
(b) Since g and g^{\prime} have the same cycle type, they are conjugate in S_{5}; that is, there is a $y \in S_{5}$ such that $y g y^{-1}=g^{\prime}$. If $y \in A_{5}$ then there is nothing further to prove.
If $y \notin A_{5}$ then $x y \in A_{5}$ since both x and y are odd. And

$$
(y x) g(y x)^{-1}=y\left(x g x^{-1}\right) y^{-1}=y g y^{-1}=g^{\prime} .
$$

So g and g^{\prime} are conjugate in A_{5}.
(c) Consider any two transposition pairs, $(a b)(c d)$ and $\left(a^{\prime} b^{\prime}\right)\left(c^{\prime} d^{\prime}\right)$. The transposition (ab) commutes with $(a b)(c d)$, so, using (b), we get that $(a b)(c d)$ and $\left(a^{\prime} b^{\prime}\right)\left(c^{\prime} d^{\prime}\right)$ are conjugate in A_{5}.
Consider any two 3-cycles $(a b c)$ and $\left(a^{\prime} b^{\prime} c^{\prime}\right)$. Take d and e such that a, b, c, d, e are all distinct. Then $(d e)$ commutes with $(a b c)$ so by (b), $(a b c)$ and ($\left.a^{\prime} b^{\prime} c^{\prime}\right)$ are conjugate in A_{5}.
(d) Suppose N contains a 3 -cycle. Then since it is normal, N contains all 3 -cycles, in particular $n=(123)$. Write $g=(12)(34) \in A_{5}$. Then

$$
g n g^{-1} n^{-1}=(13)(24)
$$

But gng $^{-1} \in N$ since N is normal, so (13)(24) $\in N$. By (c), N contains all transposition pairs.
(e) Suppose N contains a transposition pair. Then since it is normal, it contains all transposition pairs. So with $n=(12)(34)$ and $n^{\prime}=(12)(35)$, we have

$$
n n^{\prime}=(354) \in N
$$

and since N is normal, it contain all 3-cycles.
(f) Suppose that N contains a 5-cycle. Relabel the symbols so that $n=(12345) \in N$.

With $g=(123) \in A_{5}$ we have

$$
n g n^{-1} g^{-1}=(142)
$$

and $n g n^{-1} g^{-1}=n\left(g n^{-1} g^{-1}\right) \in N$.
(g) Since N is nontrivial it must contain a transposition pair or a 3-cycle or a 5-cycle.

By (d), (e) and the given information, it follows that N contains all transposition pairs and all 3-cycles.
Now consider any element g of A_{5}. It is a product of an even number of transpositions. Group these in pairs, so that

$$
g=t_{1} t_{1}^{\prime} t_{2} t_{2}^{\prime} \ldots t_{r} t_{r}^{\prime}
$$

for some r.
Now for each pair $t_{i} t_{i}^{\prime}$ there are three possibilities.
If $t_{i}=t_{i}^{\prime}$ then the product is the identity and this pair can be removed.
If t_{i} and t_{i}^{\prime} are disjoint then their product is a transposition pair and is therefore in N.
If t_{i} and t_{i}^{\prime} are not disjoint then their product is a 3 -cycle and is therefore in N.
So g is a product of elements of N and is therefore in N. This proves that $N=A_{5}$.

