SCHOOL OF MATHEMATICS AND STATISTICS

Spring Semester 2000-01 $\quad 2 \frac{1}{2}$ hours

Galois Theory

Answer Question 1 and three other questions. You are advised not to answer more than three of the questions 2 to 5: if you do, only your best three will be counted.

1 (i) Let L be a field. What is an automorphism of L ? If $K \subseteq L$ is a subfield of L, what does it mean for an automorphism of L to be a K-automorphism? (3 marks)
(ii) If $K \subseteq L$ is a field extension, define its Galois group, and say what it means, in terms of this group, for $K \subseteq L$ to be a Galois extension. Give an equivalent formulation involving splitting fields.
(3 marks)
(iii) Let $K=\mathbb{Q}(\sqrt{2})$ and $L=\mathbb{Q}(\sqrt{2}, \sqrt{5})$.
(a) Write down the K-automorphisms of L. Is the extension $K \subseteq L$ Galois? (3 marks)
(b) It is given that $\operatorname{Gal}(L / \mathbb{Q})$ has order four. Write down the effect of each of the four elements of the group on $\sqrt{2}$ and $\sqrt{5}$.
(c) Which of these four elements lie in $\operatorname{Gal}(L / K)$?
(1 mark)
(iv) Determine the degrees of the splitting fields over \mathbb{Q} of the following polynomials:
(a) $x^{4}-3$;
(b) $x^{4}+x^{2}+1$.
(v) Write down
(a) $|\operatorname{Gal}(\mathbb{Q}(\sqrt{2}) / \mathbb{Q})| ;$
(b) $\quad|\operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q})|$.
(vi) Suppose that $K \subseteq M \subseteq L$ are field extensions and that the extension $K \subseteq L$ is Galois. One of $K \subseteq M$ and $M \subseteq L$ is automatically also Galois. Which is it? Give a brief explanation for your answer.

2 Let $n \geq 1$ be an integer and let $\lambda_{n} \in \mathbb{C}[x]$ denote the nth cyclotomic polynomial. That is,

$$
\lambda_{n}=\prod(x-\zeta)
$$

where ζ runs over the distinct, primitive nth roots of unity.
(i) Show that

$$
x^{n}-1=\prod_{d \mid n} \lambda_{d} .
$$

(ii) Explicitly compute a polynomial in $\mathbb{Q}[x]$ of degree 6 with $e^{4 \pi i / 9}$ as a root. Show directly that your polynomial is irreducible over \mathbb{Q}, stating clearly any results that you use.
(8 marks)
(iii) Show that each cube root of a primitive 9 th root of unity is a primitive 27 th root of unity, and that all primitive 27 th roots of unity occur in this way. Deduce that $\lambda_{27}(x)=\lambda_{9}\left(x^{3}\right)$. Hence write down $\lambda_{27}(x)$.
(11 marks)
(iv) Verify the formula of (i) in the case $n=27$.

3 Let $f=x^{4}-2 x^{2}-6 \in \mathbb{Q}[x]$ and let M denote the splitting field of f over \mathbb{Q}. Let $\alpha=\sqrt{1+\sqrt{7}}$.
(i) Show that the roots of f are $\pm \alpha, \pm \frac{i \sqrt{6}}{\alpha}$, and deduce that $M=\mathbb{Q}(\alpha, i \sqrt{6})$.
(ii) It is given that $[M: \mathbb{Q}]=8$. Specify the elements of $\operatorname{Gal}(M / \mathbb{Q})$ by giving their effect on each of α and $i \sqrt{6}$, justifying your answer.
(8 marks)
(iii) Show that there exist automorphisms $\phi, \psi \in \operatorname{Gal}(M / \mathbb{Q})$ such that ϕ has order $4, \psi$ has order 2 , and $\operatorname{Gal}(M / \mathbb{Q})=\langle\phi, \psi\rangle$.
(5 marks)
(iv) Write $\psi \phi \psi^{-1}$ in the form $\phi^{i} \psi^{j}$. To which well-known group is $\operatorname{Gal}(M / \mathbb{Q})$ isomorphic?
(3 marks)
(v) Write $L=\mathbb{Q}\left(\alpha+\frac{i \sqrt{6}}{\alpha}\right)$. Using the Galois correspondence, find $[L: \mathbb{Q}]$.

4 Let $n>2$ be an integer and let ζ denote a primitive nth root of unity.
(i) Show that $\operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q}) \cong U\left(\mathbb{Z}_{n}\right)$, the group of units in \mathbb{Z}_{n}.
(ii) Write down $[\mathbb{Q}(\zeta): \mathbb{Q}]$.
(iii) Let $\beta=\zeta+\frac{1}{\zeta}$. Show that ζ satisfies a quadratic equation with coefficients in $\mathbb{Q}(\beta)$. Show also that $\mathbb{Q}(\beta) \subset \mathbb{R}$, and deduce that $\zeta \notin \mathbb{Q}(\beta)$.
(iv) What is $|\operatorname{Gal}(\mathbb{Q}(\beta) / \mathbb{Q})|$? Justify your answer.
(v) In the particular case $n=9$, deduce that $\operatorname{Gal}(\mathbb{Q}(\beta) / \mathbb{Q}) \cong C_{3}$.

Solve $x^{3}-3 x+1=0$ and write the three roots in the form $\zeta^{r}+\zeta^{-r}$ for certain integers r.

Show that, for all integers $r \geq 1$ there is a polynomial $P_{r}(x) \in \mathbb{Q}[x]$ such that $\zeta^{r}+\zeta^{-r}=P_{r}(\beta)$, and deduce that the splitting field of $x^{3}-3 x+1$ over \mathbb{Q} is $\mathbb{Q}(\beta)$.
(10 marks)

5 (i) Let p be a prime number. Let G be a transitive subgroup of S_{p} (i.e. for any $a, b \in\{1, \ldots, p\}$ there exists $\theta \in G$ with $\theta(a)=b)$ which contains a transposition. Prove that $G=S_{p}$.
(11 marks)
(ii) Show that the Galois group of $3 x^{7}-7 x^{6}-7 x^{3}+21 x^{2}-7$ over \mathbb{Q} is isomorphic to S_{7}.

End of Question Paper

