These solutions are designed for the checker and the external. They will be amplified before any distribution to students in future years.

1 (i) Standard type, unfamiliar case Writing x = u + v we have

$$(u+v)^3 - 3(u+v) + 4 = 0,$$
(1)

or

$$u^{3} + v^{3} + 3uv(u+v) - 3(u+v) + 4 = 0.$$

Collecting terms in u + v and those without, a solution to the following will give a solution to (??):

$$u^3 + v^3 + 4 = 0, \qquad 3uv - 3 = 0.$$
 4

Substitute $v = \frac{1}{u}$ into the first equation, to get

$$u^{3} + \frac{1}{u^{3}} + 4 = 0$$
 and thus $u^{6} + 4u^{3} + 1 = 0$.

So $u^3 = \frac{1}{2}(-4 \pm 2\sqrt{3}) = -2 \pm \sqrt{3}$. Choose the negative root. **3** Write $\alpha = \sqrt[3]{-2 - \sqrt{3}}$ for the (negative) real cube root of $-2 - \sqrt{3}$. Taking $u = \alpha$ we get $x = u + \frac{1}{u} = \alpha + \frac{1}{\alpha} \in \mathbb{R}$. Taking $u = \omega \alpha$ we get $x = \omega \alpha + \frac{\omega^2}{\alpha}$. Taking $u = \omega^2 \alpha$ we get $x = \omega^2 \alpha + \frac{\omega}{\alpha}$.

3 for correct solutions, 3 for awareness of pattern and identifying real root

(ii) Variation on bookwork, easy

Case p = 2, q = 3. 3 Marks still awarded if only general case is done (correctly). Clearly $\sqrt{p} + \sqrt{q} \in \mathbb{Q}(\sqrt{p}, \sqrt{q})$ so $\mathbb{Q}(\sqrt{p} + \sqrt{q}) \subseteq \mathbb{Q}(\sqrt{p}, \sqrt{q})$. 1 Write $\alpha = \sqrt{p} + \sqrt{q}$. Then

$$\alpha^3 = (p+3q)\sqrt{p} + (3p+q)\sqrt{q}$$

SO

$$\alpha^3 - (p+3q)\alpha = 2(p-q)\sqrt{q}.$$

Dividing through by 2(p-q) we have $\sqrt{q} \in \mathbb{Q}(\alpha).$ 3 Likewise

$$\alpha^3 - (3p+q)\alpha = 2(q-p)\sqrt{p}$$

and dividing through by 2(q-p) we have $\sqrt{p} \in \mathbb{Q}(\alpha)$.

So $\mathbb{Q}(\sqrt{p},\sqrt{q}) \subseteq \mathbb{Q}(\sqrt{p}+\sqrt{q})$ and this completes the proof.

For the minimal polynomial, we first find $\alpha^2 = p + q + 2\sqrt{pq}$ as above and from this,

$$(\alpha^2 - (p+q))^2 = 4pq.$$
 (2)

Simplifying, α is a root of

$$x^{4} - 2(p+q)x^{2} + (p-q)^{2} = 0.$$
 2

To obtain the other roots, note that (??) is also the square of (replacing α by x)

$$x^2 - (p+q) = -2\sqrt{pq},$$

and this has roots $\pm(\sqrt{p}-\sqrt{q}).$ So the roots of $x^4-2(p+q)x^2+(p-q)^2=0$ are

$$\sqrt{p} + \sqrt{q}, \quad -\sqrt{p} - \sqrt{q}, \quad \sqrt{p} - \sqrt{q}, \quad -\sqrt{p} + \sqrt{q}.$$
 2

2(i) Standard types; (b) and (c) fairly difficult

(a) The roots of $x^4 + 1$ are the primitive 8th roots of unity:

$$\frac{1+i}{\sqrt{2}}, \quad \frac{1-i}{\sqrt{2}}, \quad \frac{-1+i}{\sqrt{2}}, \quad \frac{-1-i}{\sqrt{2}}.$$
 1

So the splitting field is $\mathbb{Q}(\frac{\pm 1 \pm i}{\sqrt{2}})$. 1

Now $\sqrt{2} = \frac{1+i}{\sqrt{2}} + \frac{1-i}{\sqrt{2}}$, so $\mathbb{Q}(\frac{\pm 1\pm i}{\sqrt{2}}) = \mathbb{Q}(i, \sqrt{2})$. Lastly, $[\mathbb{Q}(i, \sqrt{2}) : \mathbb{Q}] = 4$. 1

(b) Note that $x^6 + 1$ divides $x^{12} - 1$, so its roots are necessarily 12th roots of unity. The roots of $x^6 + 1$ are the 6th roots of -1, namely

$$e^{\frac{\pi i}{6}}, e^{\frac{3\pi i}{6}} = i, e^{\frac{5\pi i}{6}}, e^{\frac{7\pi i}{6}}, e^{\frac{9\pi i}{6}} = -i, e^{\frac{11\pi i}{6}}.$$
 2

Stated briefly, these are $\pm i$ and $\frac{\pm\sqrt{3}\pm i}{2}$.

It follows that the splitting field is $\mathbb{Q}(\pm i, \frac{\pm\sqrt{3}\pm i}{2}) = \mathbb{Q}(i, \sqrt{3})$. 2

As in (a), $[\mathbb{Q}(i,\sqrt{3}):\mathbb{Q}] = 4.$ 1

(c) Note that $x^9 - 1 = (x^3 - 1)(x^6 + x^3 + 1)$, so the roots of $x^6 + x^3 + 1$ are the primitive 9th roots of unity. 1

If ζ is a primitive 9th root of unity, all other primitive 9th roots of unity are powers of ζ , so that the splitting field is just $\mathbb{Q}(\zeta)$. **1**

Its degree over \mathbb{Q} is just the degree of the minimal polynomial of ζ .

Now $x^6 + x^3 + 1$ itself is irreducible by shifted Eisenstein with p = 3). **3** So $[\mathbb{Q}(\zeta) : \mathbb{Q}] = 6$. **1**

Any correct method acceptable.

(ii) Bookwork

Take S_n as acting on the set $P = \{1, \ldots, n\}$.

Define a relation \sim on P by $i \sim j$ if and only if i = j or $(i \ j) \in G$.

This \sim is clearly reflexive and symmetric. **1** Further, if $i \sim j$ and $j \sim k$, then either i = j, i = k or j = k (in which case it is easy to see that $i \sim k$) or $(i \ k) = (i \ j)(j \ k)(i \ j) \in G$. So \sim is an equivalence relation. **2**

If $a \in P$, denote its equivalence class by \overline{a} . Let $b \in P$. As G is transitive, there exists $\theta \in G$ with $\theta(a) = b$. 1

Let $c \in \overline{a}$. Either c = a or $(a \ c) \in G$. Consider $\theta(c)$. Either $\theta(c) = \theta(a)$ or $(\theta(a) \ \theta(c)) = \theta(a \ c)\theta^{-1} \in G$. 1

In either case, $\theta(c) \sim b$. It follows that θ gives a bijection from the equivalence class of a to the equivalence class of b. **1** So $|\overline{a}| = |\overline{b}|$. But P is partitioned into equivalence classes, and |S| = n is prime, so either all classes have 1 element each, or there is only one class with n elements. **1** The first case is ruled out because G contains a transposition. **1** Thus all transpositions $(i \ j)$ lie in G. But S_n is generated by the transpositions. **1**

Q3(i) Standard type

(a) ξ is a primitive 11th root of 1 so $\sum_{k=0}^{10} \xi^k = 0$. Dividing through by ξ^5 we get

$$\xi^{-1} + \xi^{-2} + \xi^{-3} + \xi^{-4} + \xi^{-5} + \xi^{5} + \xi^{4} + \xi^{3} + \xi^{2} + \xi + 1 = 0.$$

Calculating powers of $\beta = \xi + \xi^{-1}$, we get $\beta^2 = \xi^2 + 2 + \xi^{-2}$ and $\beta^3 = \xi^3 + 3\xi + 3\xi^{-1} + \xi^{-3}$ and so on. Combining these, we deduce that

$$\beta^5 + \beta^4 - 4\beta^3 - 3\beta^2 + 3\beta + 1 = 0.$$

(b)

$$\begin{split} \gamma^2 &= \xi^2 + \xi^8 + \xi^7 + \xi^{10} + \xi^6 + \cdots \\ & \cdots + 2(\xi^5 + \xi^{10} + \xi^6 + \xi^4 + \xi^2 + \xi^9 + \xi^7 + \xi^3 + \xi + \xi^8) \\ &= (-1 - \xi - \xi^3 - \xi^4 - \xi^5 - \xi^9) + 2(-1) \\ &= -3 - \gamma \end{split}$$

so that $\gamma^2 + \gamma + 3 = 0$. Since γ is a root of $x^2 + x + 3 = 0$, $\gamma = \frac{-1 \pm \sqrt{-11}}{2}$. Also, $\gamma \in \mathbb{Q}(\xi)$. We conclude that $\sqrt{-11} \in \mathbb{Q}(\xi)$, and thus that $\mathbb{Q}(\sqrt{-11}) \subseteq \mathbb{Q}(\xi)$. 1

(c) **Theorem:** If ξ is a primitive *n*th root of unity, then

 $\operatorname{Gal}(\mathbb{Q}(\xi)/\mathbb{Q}) \cong U(\mathbb{Z}_n),$

the multiplicative group of integers modulo n and prime to n. 2

Theorem: For n a prime, $U(\mathbb{Z}_n)$ is the cyclic group of order n-1.

(d) For example, take θ to be $\xi \mapsto \xi^2$. 1

Since $\operatorname{Gal}(\mathbb{Q}(\xi)/\mathbb{Q})$ is cyclic, we can then write $\operatorname{Gal}(\mathbb{Q}(\xi)/\mathbb{Q}) = \{1, \theta, \dots, \theta^9\}.$

The subgroups of a cyclic group are cyclic and for C_{10} , have orders 1, 2, 5 and 10. 1

For order 2 the subgroup is $\{1, \theta^5\}$. **1**

For order 5 the subgroup is $\{1, \theta^2, \theta^4, \theta^6, \theta^8\}$. 1

(ii) Standard type

(a) As $\beta = \xi + \frac{1}{\xi}$, it follows that $\beta \xi = \xi^2 + 1$, so that

 $\xi^2 - \beta \xi + 1 = 0.$

This is a quadratic equation with coefficients in $\mathbb{Q}(\beta)$. So the minimal polynomial for ξ over $\mathbb{Q}(\beta)$ has degree at most 2. **1**

So $[\mathbb{Q}(\beta,\xi):\mathbb{Q}(\beta)] \leq 2$. Clearly $\mathbb{Q}(\beta,\xi) = \mathbb{Q}(\xi)$. 1

(b) As ξ is a root of unity, it has modulus 1. So $|\xi|^2 = \xi \overline{\xi} = 1$. Thus $\frac{1}{\xi} = \overline{\xi}$ and $\beta = \xi + \overline{\xi}$, the sum of a complex number and its conjugate. So $\beta \in \mathbb{R}$, **2** and $\mathbb{Q}(\beta) \subseteq \mathbb{R}$. But as $n \ge 3$, $\xi \notin \mathbb{R}$, **1** so that $\xi \notin \mathbb{Q}(\beta)$.

(c) Since $\xi \notin \mathbb{Q}(\beta)$, it follows that $[\mathbb{Q}(\xi) : \mathbb{Q}(\beta)] > 1$. 1

Combining this with the result of (b), we get that $[\mathbb{Q}(\xi) : \mathbb{Q}(\beta)] = 2$. 1 By the Tower of Fields result

$$[\mathbb{Q}(\xi):\mathbb{Q}] = [\mathbb{Q}(\xi):\mathbb{Q}(\beta)].[\mathbb{Q}(\beta):\mathbb{Q}].$$

But $[\mathbb{Q}(\xi) : \mathbb{Q}] = \varphi(n)$, so $[\mathbb{Q}(\beta) : \mathbb{Q}] = \frac{1}{2}\varphi(n)$. 1

4(i) Bookwork Let L be a Galois extension of K, and let G = Gal(L/K). There is a bijection from

$$\mathscr{S} := \{ subgroups of G \}$$

to

$$\mathscr{F} := \{ \text{intermediate fields } K \subseteq M \subseteq L \}$$

given by $H \mapsto L^H$ with inverse $M \mapsto \operatorname{Gal}(L/M)$. 2

Moreover, the correspondence is inclusion reversing, that is,

$$H_1 \supseteq H_2 \iff L^{H_1} \subseteq L^{H_2}, \qquad \mathbf{1}$$

and indexes equal degrees, that is,

$$\frac{|H_1|}{|H_2|} = [L^{H_2} : L^{H_1}].$$
 2

Finally, normal subgroups of G correspond to intermediate fields $K \subseteq M \subseteq L$ such that M/K is Galois. 1

4(ii) Bookwork A group G is soluble if it has a chain of subgroups

$$G = G_0 > G_1 > \dots > G_n = \{1\}$$

with each $G_{i+1} \triangleleft G_i$ and each G_i/G_{i+1} abelian. 3

4(iii)(a) Standard type; seen in different context

See next page for diagram: 4 for subgroups, 4 for inclusions

Notice that there is a chain of normal subgroups:

$$G > \langle R \rangle > \{1, R^2\} > \{1\}.$$
 1

To check that $\langle R \rangle$ is normal in *G*, it is only necessary to observe that $FR^kF = (FRF)^k = R^{-k}$.

Clearly $\{1, R^2\}$ is normal in $\langle R \rangle$. **1**

The quotients are all of order two, and are therefore abelian. So G is soluble. 1

At most 2 marks if solubility is deduced from that of S_4

4(iii)(b) Slightly nonstandard

The subgroups that are not normal are

$$\{1, F\}, \{1, RF\}, \{1, R^2F\}, \{1, R^3F\}.$$
 2

For the first, $R^{-1}FR = R^3FR = R^3(FRF)F = R^2F$ is not in the subgroup.

For the second, $F(RF)F = R^3F$ is not in the subgroup.

For the third, $F(R^2F)F = FR^2$ is not in the subgroup.

For the last, $F(R^3F)F = FR^3$ is not in the subgroup.

 $\frac{1}{2}$ each. (Any correct method acceptable.)