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These solutions are designed for the checker and the external.
They will be amplified before any distribution to students in future years.

1 (i) Standard type, unfamiliar case Writing x = u+ v we have

(u+ v)3 − 3(u+ v) + 4 = 0, (1)

or
u3 + v3 + 3uv(u+ v)− 3(u+ v) + 4 = 0.

Collecting terms in u+ v and those without, a solution to the following will give a solution to
(??):

u3 + v3 + 4 = 0, 3uv − 3 = 0. 4

Substitute v = 1
u
into the first equation, to get

u3 +
1

u3
+ 4 = 0 and thus u6 + 4u3 + 1 = 0.

So u3 = 1
2
(−4± 2

√
3) = −2±

√
3. Choose the negative root. 3

Write α =
3
√
−2−

√
3 for the (negative) real cube root of −2−

√
3.

Taking u = α we get x = u+ 1
u
= α + 1

α
∈ R.

Taking u = ωα we get x = ωα + ω2

α
.

Taking u = ω2α we get x = ω2α + ω
α
.

3 for correct solutions, 3 for awareness of pattern and identifying real root
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(ii) Variation on bookwork, easy

Case p = 2, q = 3. 3 Marks still awarded if only general case is done (correctly).

Clearly
√
p+
√
q ∈ Q(

√
p,
√
q) so Q(

√
p+
√
q) ⊆ Q(

√
p,
√
q). 1

Write α =
√
p+
√
q. Then

α3 = (p+ 3q)
√
p+ (3p+ q)

√
q

so
α3 − (p+ 3q)α = 2(p− q)√q.

Dividing through by 2(p− q) we have
√
q ∈ Q(α). 3

Likewise
α3 − (3p+ q)α = 2(q − p)√p

and dividing through by 2(q − p) we have
√
p ∈ Q(α). 1

So Q(
√
p,
√
q) ⊆ Q(

√
p+
√
q) and this completes the proof.

For the minimal polynomial, we first find α2 = p+ q + 2
√
pq as above and from this,

(α2 − (p+ q))2 = 4pq. (2)

Simplifying, α is a root of

x4 − 2(p+ q)x2 + (p− q)2 = 0. 2

To obtain the other roots, note that (??) is also the square of (replacing α by x)

x2 − (p+ q) = −2√pq,

and this has roots ±(√p−√q).
So the roots of x4 − 2(p+ q)x2 + (p− q)2 = 0 are

√
p+
√
q, −√p−√q, √

p−√q, −√p+√q. 2
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2(i) Standard types; (b) and (c) fairly difficult

(a) The roots of x4 + 1 are the primitive 8th roots of unity:

1 + i√
2
,

1− i√
2
,
−1 + i√

2
,
−1− i√

2
. 1

So the splitting field is Q(±1±i√
2
). 1

Now
√
2 = 1+i√

2
+ 1−i√

2
, so Q(±1±i√

2
) = Q(i,

√
2). 1

Lastly, [Q(i,
√
2) : Q] = 4. 1

(b) Note that x6 + 1 divides x12 − 1, so its roots are necessarily 12th roots of unity. The
roots of x6 + 1 are the 6th roots of −1, namely

e
πi
6 , e

3πi
6 = i, e

5πi
6 , e

7πi
6 , e

9πi
6 = −i, e

11πi
6 . 2

Stated briefly, these are ±i and ±
√
3±i
2

.

It follows that the splitting field is Q(±i, ±
√
3±i
2

) = Q(i,
√
3). 2

As in (a), [Q(i,
√
3) : Q] = 4. 1

(c) Note that x9 − 1 = (x3 − 1)(x6 + x3 + 1), so the roots of x6 + x3 + 1 are the primitive
9th roots of unity. 1

If ζ is a primitive 9th root of unity, all other primitive 9th roots of unity are powers of ζ, so
that the splitting field is just Q(ζ). 1

Its degree over Q is just the degree of the minimal polynomial of ζ.

Now x6 + x3 + 1 itself is irreducible by shifted Eisenstein with p = 3). 3

So [Q(ζ) : Q] = 6. 1

Any correct method acceptable.
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(ii) Bookwork

Take Sn as acting on the set P = {1, . . . , n}.
Define a relation ∼ on P by i ∼ j if and only if i = j or (i j) ∈ G. 1

This ∼ is clearly reflexive and symmetric. 1 Further, if i ∼ j and j ∼ k, then either i = j,
i = k or j = k (in which case it is easy to see that i ∼ k) or (i k) = (i j)(j k)(i j) ∈ G. So
∼ is an equivalence relation. 2

If a ∈ P , denote its equivalence class by a. Let b ∈ P . As G is transitive, there exists θ ∈ G
with θ(a) = b. 1

Let c ∈ a. Either c = a or (a c) ∈ G. Consider θ(c). Either θ(c) = θ(a) or (θ(a) θ(c)) =
θ(a c)θ−1 ∈ G. 1

In either case, θ(c) ∼ b. It follows that θ gives a bijection from the equivalence class of a
to the equivalence class of b. 1 So |a| = |b|. But P is partitioned into equivalence classes,
and |S| = n is prime, so either all classes have 1 element each, or there is only one class with
n elements. 1 The first case is ruled out because G contains a transposition. 1 Thus all
transpositions (i j) lie in G. But Sn is generated by the transpositions. 1
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Q3(i) Standard type

(a) ξ is a primitive 11th root of 1 so
∑10

k=0 ξ
k = 0. Dividing through by ξ5 we get

ξ−1 + ξ−2 + ξ−3 + ξ−4 + ξ−5 + ξ5 + ξ4 + ξ3 + ξ2 + ξ + 1 = 0.

Calculating powers of β = ξ + ξ−1, we get β2 = ξ2 + 2+ ξ−2 and β3 = ξ3 + 3ξ + 3ξ−1 + ξ−3

and so on. Combining these, we deduce that

β5 + β4 − 4β3 − 3β2 + 3β + 1 = 0. 4

(b)

γ2 = ξ2 + ξ8 + ξ7 + ξ10 + ξ6 + · · ·
· · ·+ 2(ξ5 + ξ10 + ξ6 + ξ4 + ξ2 + ξ9 + ξ7 + ξ3 + ξ + ξ8)

= (−1− ξ − ξ3 − ξ4 − ξ5 − ξ9) + 2(−1)
= −3− γ 3

so that γ2 + γ + 3 = 0. Since γ is a root of x2 + x+ 3 = 0, γ = −1±
√
−11

2
. Also, γ ∈ Q(ξ).

We conclude that
√
−11 ∈ Q(ξ), and thus that Q(

√
−11) ⊆ Q(ξ). 1

(c) Theorem: If ξ is a primitive nth root of unity, then

Gal(Q(ξ)/Q) ∼= U(Zn),

the multiplicative group of integers modulo n and prime to n. 2

Theorem: For n a prime, U(Zn) is the cyclic group of order n− 1. 1

(d) For example, take θ to be ξ 7→ ξ2. 1

Since Gal(Q(ξ)/Q) is cyclic, we can then write Gal(Q(ξ)/Q) = {1, θ, . . . , θ9}.
The subgroups of a cyclic group are cyclic and for C10, have orders 1, 2, 5 and 10. 1

For order 2 the subgroup is {1, θ5}. 1

For order 5 the subgroup is {1, θ2, θ4, θ6, θ8}. 1
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(ii) Standard type

(a) As β = ξ + 1
ξ
, it follows that βξ = ξ2 + 1, so that

ξ2 − βξ + 1 = 0.

This is a quadratic equation with coefficients in Q(β). So the minimal polynomial for ξ over
Q(β) has degree at most 2. 1

So [Q(β, ξ) : Q(β)] 6 2. Clearly Q(β, ξ) = Q(ξ). 1

(b) As ξ is a root of unity, it has modulus 1. So |ξ|2 = ξξ = 1. Thus 1
ξ
= ξ and β = ξ + ξ,

the sum of a complex number and its conjugate. So β ∈ R, 2 and Q(β) ⊆ R. But as n > 3,
ξ /∈ R, 1 so that ξ /∈ Q(β).

(c) Since ξ /∈ Q(β), it follows that [Q(ξ) : Q(β)] > 1. 1

Combining this with the result of (b), we get that [Q(ξ) : Q(β)] = 2. 1 By the Tower of
Fields result

[Q(ξ) : Q] = [Q(ξ) : Q(β)].[Q(β) : Q]. 2

But [Q(ξ) : Q] = ϕ(n), so [Q(β) : Q] = 1
2
ϕ(n). 1
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4(i) Bookwork Let L be a Galois extension of K, and let G = Gal(L/K). There is a bijection
from

S := {subgroups of G}
to

F := {intermediate fields K ⊆M ⊆ L}
given by H 7→ LH with inverse M 7→ Gal(L/M). 2

Moreover, the correspondence is inclusion reversing, that is,

H1 ⊇ H2 ⇐⇒ LH1 ⊆ LH2 , 1

and indexes equal degrees, that is,

|H1|
|H2|

= [LH2 : LH1 ]. 2

Finally, normal subgroups of G correspond to intermediate fields K ⊆M ⊆ L such thatM/K
is Galois. 1

4(ii) Bookwork A group G is soluble if it has a chain of subgroups

G = G0 > G1 > · · · > Gn = {1}

with each Gi+1 / Gi and each Gi/Gi+1 abelian. 3

4(iii)(a) Standard type; seen in different context

See next page for diagram: 4 for subgroups, 4 for inclusions

Notice that there is a chain of normal subgroups:

G > 〈R〉 > {1, R2} > {1}. 1

To check that 〈R〉 is normal in G, it is only necessary to observe
that FRkF = (FRF )k = R−k. 1

Clearly {1, R2} is normal in 〈R〉. 1

The quotients are all of order two, and are therefore abelian. So G is soluble. 1

At most 2 marks if solubility is deduced from that of S4

4(iii)(b) Slightly nonstandard

The subgroups that are not normal are

{1, F}, {1, RF}, {1, R2F}, {1, R3F}. 2

For the first, R−1FR = R3FR = R3(FRF )F = R2F is not in the subgroup.

For the second, F (RF )F = R3F is not in the subgroup.

For the third, F (R2F )F = FR2 is not in the subgroup.

For the last, F (R3F )F = FR3 is not in the subgroup.

1
2

each. (Any correct method acceptable.)


