These solutions are designed for the checker and the external.
They will be amplified before any distribution to students in future years.

1 (i) Standard type, unfamiliar case Writing $x=u+v$ we have

$$
\begin{equation*}
(u+v)^{3}-3(u+v)+4=0 \tag{1}
\end{equation*}
$$

or

$$
u^{3}+v^{3}+3 u v(u+v)-3(u+v)+4=0 .
$$

Collecting terms in $u+v$ and those without, a solution to the following will give a solution to (??):

$$
u^{3}+v^{3}+4=0, \quad 3 u v-3=0 . \quad 4
$$

Substitute $v=\frac{1}{u}$ into the first equation, to get

$$
u^{3}+\frac{1}{u^{3}}+4=0 \text { and thus } u^{6}+4 u^{3}+1=0 .
$$

So $u^{3}=\frac{1}{2}(-4 \pm 2 \sqrt{3})=-2 \pm \sqrt{3}$. Choose the negative root. 3
Write $\alpha=\sqrt[3]{-2-\sqrt{3}}$ for the (negative) real cube root of $-2-\sqrt{3}$.
Taking $u=\alpha$ we get $x=u+\frac{1}{u}=\alpha+\frac{1}{\alpha} \in \mathbb{R}$.
Taking $u=\omega \alpha$ we get $x=\omega \alpha+\frac{\omega^{2}}{\alpha}$.
Taking $u=\omega^{2} \alpha$ we get $x=\omega^{2} \alpha+\frac{\omega}{\alpha}$.

[^0](ii) Variation on bookwork, easy

Case $p=2, q=3$. 3 Marks still awarded if only general case is done (correctly).
Clearly $\sqrt{p}+\sqrt{q} \in \mathbb{Q}(\sqrt{p}, \sqrt{q})$ so $\mathbb{Q}(\sqrt{p}+\sqrt{q}) \subseteq \mathbb{Q}(\sqrt{p}, \sqrt{q})$. 1
Write $\alpha=\sqrt{p}+\sqrt{q}$. Then

$$
\alpha^{3}=(p+3 q) \sqrt{p}+(3 p+q) \sqrt{q}
$$

so

$$
\alpha^{3}-(p+3 q) \alpha=2(p-q) \sqrt{q} .
$$

Dividing through by $2(p-q)$ we have $\sqrt{q} \in \mathbb{Q}(\alpha) .3$
Likewise

$$
\alpha^{3}-(3 p+q) \alpha=2(q-p) \sqrt{p}
$$

and dividing through by $2(q-p)$ we have $\sqrt{p} \in \mathbb{Q}(\alpha)$. 1
So $\mathbb{Q}(\sqrt{p}, \sqrt{q}) \subseteq \mathbb{Q}(\sqrt{p}+\sqrt{q})$ and this completes the proof.
For the minimal polynomial, we first find $\alpha^{2}=p+q+2 \sqrt{p q}$ as above and from this,

$$
\begin{equation*}
\left(\alpha^{2}-(p+q)\right)^{2}=4 p q \tag{2}
\end{equation*}
$$

Simplifying, $\alpha$ is a root of

$$
x^{4}-2(p+q) x^{2}+(p-q)^{2}=0
$$

To obtain the other roots, note that (??) is also the square of (replacing $\alpha$ by $x$ )

$$
x^{2}-(p+q)=-2 \sqrt{p q}
$$

and this has roots $\pm(\sqrt{p}-\sqrt{q})$.
So the roots of $x^{4}-2(p+q) x^{2}+(p-q)^{2}=0$ are

$$
\sqrt{p}+\sqrt{q}, \quad-\sqrt{p}-\sqrt{q}, \quad \sqrt{p}-\sqrt{q}, \quad-\sqrt{p}+\sqrt{q} .
$$

2(i) Standard types; (b) and (c) fairly difficult
(a) The roots of $x^{4}+1$ are the primitive 8 th roots of unity:

$$
\frac{1+i}{\sqrt{2}}, \quad \frac{1-i}{\sqrt{2}}, \quad \frac{-1+i}{\sqrt{2}}, \quad \frac{-1-i}{\sqrt{2}}, \quad 1
$$

So the splitting field is $\mathbb{Q}\left(\frac{ \pm 1 \pm i}{\sqrt{2}}\right)$. 1
Now $\sqrt{2}=\frac{1+i}{\sqrt{2}}+\frac{1-i}{\sqrt{2}}$, so $\mathbb{Q}\left(\frac{ \pm 1 \pm i}{\sqrt{2}}\right)=\mathbb{Q}(i, \sqrt{2}) .1$
Lastly, $[\mathbb{Q}(i, \sqrt{2}): \mathbb{Q}]=4.1$
(b) Note that $x^{6}+1$ divides $x^{12}-1$, so its roots are necessarily 12 th roots of unity. The roots of $x^{6}+1$ are the 6 th roots of -1 , namely

$$
e^{\frac{\pi i}{6}}, \quad e^{\frac{3 \pi i}{6}}=i, \quad e^{\frac{5 \pi i}{6}}, \quad e^{\frac{7 \pi i}{6}}, \quad e^{\frac{9 \pi i}{6}}=-i, \quad e^{\frac{11 \pi i}{6}} . \quad 2
$$

Stated briefly, these are $\pm i$ and $\frac{ \pm \sqrt{3} \pm i}{2}$.
It follows that the splitting field is $\mathbb{Q}\left( \pm i, \frac{ \pm \sqrt{3} \pm i}{2}\right)=\mathbb{Q}(i, \sqrt{3}) .2$
As in $(\mathrm{a}),[\mathbb{Q}(i, \sqrt{3}): \mathbb{Q}]=4.1$
(c) Note that $x^{9}-1=\left(x^{3}-1\right)\left(x^{6}+x^{3}+1\right)$, so the roots of $x^{6}+x^{3}+1$ are the primitive 9 th roots of unity. 1

If $\zeta$ is a primitive 9 th root of unity, all other primitive 9 th roots of unity are powers of $\zeta$, so that the splitting field is just $\mathbb{Q}(\zeta) .1$
Its degree over $\mathbb{Q}$ is just the degree of the minimal polynomial of $\zeta$.
Now $x^{6}+x^{3}+1$ itself is irreducible by shifted Eisenstein with $p=3$ ). 3
So $[\mathbb{Q}(\zeta): \mathbb{Q}]=6.1$

## Any correct method acceptable.

(ii) Bookwork

Take $S_{n}$ as acting on the set $P=\{1, \ldots, n\}$.
Define a relation $\sim$ on $P$ by $i \sim j$ if and only if $i=j$ or $(i j) \in G .1$
This $\sim$ is clearly reflexive and symmetric. 1 Further, if $i \sim j$ and $j \sim k$, then either $i=j$, $i=k$ or $j=k$ (in which case it is easy to see that $i \sim k$ ) or $(i k)=(i j)(j k)(i j) \in G$. So $\sim$ is an equivalence relation. 2

If $a \in P$, denote its equivalence class by $\bar{a}$. Let $b \in P$. As $G$ is transitive, there exists $\theta \in G$ with $\theta(a)=b .1$
Let $c \in \bar{a}$. Either $c=a$ or $(a c) \in G$. Consider $\theta(c)$. Either $\theta(c)=\theta(a)$ or $(\theta(a) \theta(c))=$ $\theta(a c) \theta^{-1} \in G .1$
In either case, $\theta(c) \sim b$. It follows that $\theta$ gives a bijection from the equivalence class of $a$ to the equivalence class of $b$. 1 So $|\bar{a}|=|\bar{b}|$. But $P$ is partitioned into equivalence classes, and $|S|=n$ is prime, so either all classes have 1 element each, or there is only one class with $n$ elements. 1 The first case is ruled out because $G$ contains a transposition. 1 Thus all transpositions $(i j)$ lie in $G$. But $S_{n}$ is generated by the transpositions. 1

Q3(i) Standard type
(a) $\xi$ is a primitive 11 th root of 1 so $\sum_{k=0}^{10} \xi^{k}=0$. Dividing through by $\xi^{5}$ we get

$$
\xi^{-1}+\xi^{-2}+\xi^{-3}+\xi^{-4}+\xi^{-5}+\xi^{5}+\xi^{4}+\xi^{3}+\xi^{2}+\xi+1=0
$$

Calculating powers of $\beta=\xi+\xi^{-1}$, we get $\beta^{2}=\xi^{2}+2+\xi^{-2}$ and $\beta^{3}=\xi^{3}+3 \xi+3 \xi^{-1}+\xi^{-3}$ and so on. Combining these, we deduce that

$$
\beta^{5}+\beta^{4}-4 \beta^{3}-3 \beta^{2}+3 \beta+1=0
$$

(b)

$$
\begin{aligned}
\gamma^{2}= & \xi^{2}+\xi^{8}+\xi^{7}+\xi^{10}+\xi^{6}+\cdots \\
& \cdots+2\left(\xi^{5}+\xi^{10}+\xi^{6}+\xi^{4}+\xi^{2}+\xi^{9}+\xi^{7}+\xi^{3}+\xi+\xi^{8}\right) \\
= & \left(-1-\xi-\xi^{3}-\xi^{4}-\xi^{5}-\xi^{9}\right)+2(-1) \\
= & -3-\gamma \quad 3
\end{aligned}
$$

so that $\gamma^{2}+\gamma+3=0$. Since $\gamma$ is a root of $x^{2}+x+3=0, \gamma=\frac{-1 \pm \sqrt{-11}}{2}$. Also, $\gamma \in \mathbb{Q}(\xi)$. We conclude that $\sqrt{-11} \in \mathbb{Q}(\xi)$, and thus that $\mathbb{Q}(\sqrt{-11}) \subseteq \mathbb{Q}(\xi)$. 1
(c) Theorem: If $\xi$ is a primitive $n$th root of unity, then

$$
\operatorname{Gal}(\mathbb{Q}(\xi) / \mathbb{Q}) \cong U\left(\mathbb{Z}_{n}\right)
$$

the multiplicative group of integers modulo $n$ and prime to $n .2$
Theorem: For $n$ a prime, $U\left(\mathbb{Z}_{n}\right)$ is the cyclic group of order $n-1.1$
(d) For example, take $\theta$ to be $\xi \mapsto \xi^{2}$. 1

Since $\operatorname{Gal}(\mathbb{Q}(\xi) / \mathbb{Q})$ is cyclic, we can then write $\operatorname{Gal}(\mathbb{Q}(\xi) / \mathbb{Q})=\left\{1, \theta, \ldots, \theta^{9}\right\}$.
The subgroups of a cyclic group are cyclic and for $C_{10}$, have orders $1,2,5$ and 10.1
For order 2 the subgroup is $\left\{1, \theta^{5}\right\}$. 1
For order 5 the subgroup is $\left\{1, \theta^{2}, \theta^{4}, \theta^{6}, \theta^{8}\right\}$.
(ii) Standard type
(a) As $\beta=\xi+\frac{1}{\xi}$, it follows that $\beta \xi=\xi^{2}+1$, so that

$$
\xi^{2}-\beta \xi+1=0
$$

This is a quadratic equation with coefficients in $\mathbb{Q}(\beta)$. So the minimal polynomial for $\xi$ over $\mathbb{Q}(\beta)$ has degree at most 2 . 1
So $[\mathbb{Q}(\beta, \xi): \mathbb{Q}(\beta)] \leqslant 2$. Clearly $\mathbb{Q}(\beta, \xi)=\mathbb{Q}(\xi)$. 1
(b) As $\xi$ is a root of unity, it has modulus 1 . So $|\xi|^{2}=\xi \bar{\xi}=1$. Thus $\frac{1}{\xi}=\bar{\xi}$ and $\beta=\xi+\bar{\xi}$, the sum of a complex number and its conjugate. So $\beta \in \mathbb{R}, 2$ and $\mathbb{Q}(\beta) \subseteq \mathbb{R}$. But as $n \geqslant 3$, $\xi \notin \mathbb{R}, 1$ so that $\xi \notin \mathbb{Q}(\beta)$.
(c) Since $\xi \notin \mathbb{Q}(\beta)$, it follows that $[\mathbb{Q}(\xi): \mathbb{Q}(\beta)]>1$. 1

Combining this with the result of $(\mathrm{b})$, we get that $[\mathbb{Q}(\xi): \mathbb{Q}(\beta)]=2.1$ By the Tower of Fields result

$$
[\mathbb{Q}(\xi): \mathbb{Q}]=[\mathbb{Q}(\xi): \mathbb{Q}(\beta)] \cdot[\mathbb{Q}(\beta): \mathbb{Q}] .
$$

But $[\mathbb{Q}(\xi): \mathbb{Q}]=\varphi(n)$, so $[\mathbb{Q}(\beta): \mathbb{Q}]=\frac{1}{2} \varphi(n) .1$

4(i) Bookwork Let $L$ be a Galois extension of $K$, and let $G=\operatorname{Gal}(L / K)$. There is a bijection from

$$
\mathscr{S}:=\{\text { subgroups of } G\}
$$

to

$$
\mathscr{F}:=\{\text { intermediate fields } K \subseteq M \subseteq L\}
$$

given by $H \mapsto L^{H}$ with inverse $M \mapsto \operatorname{Gal}(L / M) .2$
Moreover, the correspondence is inclusion reversing, that is,

$$
H_{1} \supseteq H_{2} \Longleftrightarrow L^{H_{1}} \subseteq L^{H_{2}},
$$

and indexes equal degrees, that is,

$$
\frac{\left|H_{1}\right|}{\left|H_{2}\right|}=\left[L^{H_{2}}: L^{H_{1}}\right] . \quad 2
$$

Finally, normal subgroups of $G$ correspond to intermediate fields $K \subseteq M \subseteq L$ such that $M / K$ is Galois. 1

4(ii) Bookwork A group $G$ is soluble if it has a chain of subgroups

$$
G=G_{0}>G_{1}>\cdots>G_{n}=\{1\}
$$

with each $G_{i+1} \triangleleft G_{i}$ and each $G_{i} / G_{i+1}$ abelian. 3
4(iii)(a) Standard type; seen in different context
See next page for diagram: 4 for subgroups, 4 for inclusions
Notice that there is a chain of normal subgroups:

$$
G>\langle R\rangle>\left\{1, R^{2}\right\}>\{1\} .
$$

To check that $\langle R\rangle$ is normal in $G$, it is only necessary to observe that $F R^{k} F=(F R F)^{k}=R^{-k} .1$
Clearly $\left\{1, R^{2}\right\}$ is normal in $\langle R\rangle .1$
The quotients are all of order two, and are therefore abelian. So $G$ is soluble. 1
At most 2 marks if solubility is deduced from that of $S_{4}$
4(iii)(b) Slightly nonstandard
The subgroups that are not normal are

$$
\{1, F\}, \quad\{1, R F\}, \quad\left\{1, R^{2} F\right\}, \quad\left\{1, R^{3} F\right\} . \quad 2
$$

For the first, $R^{-1} F R=R^{3} F R=R^{3}(F R F) F=R^{2} F$ is not in the subgroup.
For the second, $F(R F) F=R^{3} F$ is not in the subgroup.
For the third, $F\left(R^{2} F\right) F=F R^{2}$ is not in the subgroup.
For the last, $F\left(R^{3} F\right) F=F R^{3}$ is not in the subgroup.
each. (Any correct method acceptable.)


[^0]:    3 for correct solutions, 3 for awareness of pattern and identifying real root

