§ 10 Some extensions of small degree

Proposition 10.1 Let K be a field and let L be an extension of K of degree two.
(a) There is an element $\alpha \in L \backslash K$ such that $L=K(\alpha)$ and $\alpha^{2} \in K$.
(b) The element α has the following uniqueness property: if $L=K(\beta)$ for some other element $\beta \in L \backslash K$ with $\beta^{2} \in K$, then $\beta=q \alpha$ for some $q \in K$.
(c) There is an automorphism $\sigma: L \rightarrow L$ that acts as the identity on K and satisfies $\sigma(\alpha)=-\alpha$.
(d) We have $\sigma^{2}=1$ and $\operatorname{Gal}(L / K)=\{1, \sigma\} \simeq C_{2}$.

Proof: First choose any element $\lambda \in L \backslash K$. We claim that 1 and λ are linearly independent over K. To see this, consider a linear relation $a .1+b \lambda=0$ with $a, b \in K$. If $b \neq 0$ we can rearrange to get $\lambda=-a b^{-1} \in K$, contrary to assumption. We therefore have $b=0$ so the original relation reduces to $a=0$ as required. As $\operatorname{dim}_{K}(L)=2$ this means that $\{1, \lambda\}$ is a basis for L over K.
We can therefore write $-\lambda^{2}$ in terms of this basis, say as $-\lambda^{2}=b \lambda+c$, or equivalently $\lambda^{2}+b \lambda+c=0$. Next put $\alpha=\lambda+b / 2 \in L$. We find that $\alpha^{2}=\lambda^{2}+b \lambda+b^{2} / 4=-c+b^{2} / 4 \in K$. By the same logic as for λ we also see that $\{1, \alpha\}$ is a basis for L and so $L=K(\alpha)$, which proves (a).
Now suppose we have another element $\beta \in L \backslash K$ with $\beta^{2} \in K$. We can write $\beta=x+y \alpha$ for some $x, y \in K$. As $\beta \notin K$ we have $y \neq 0$. This gives

$$
\beta^{2}=\left(x^{2}+y^{2} a\right)+2 x y \alpha,
$$

which is assumed to lie in K, so we must have $2 x y=0$. As $y \neq 0$ this gives $x=0$ and thus $\beta=y \alpha$, proving (b).
Next, as $\{1, \alpha\}$ is a basis, we can define a K-linear map $\sigma: L \rightarrow L$ by

$$
\sigma(x+y \alpha)=x-y \alpha
$$

for any $x, y \in K$. This satisfies $\sigma(\sigma(x+y \alpha))=\sigma(x-y \alpha)=x+y \alpha$, so $\sigma^{2}=\mathrm{id}$. It also has $\sigma(0)=0$ and $\sigma(1)=1$. Now consider elements $\mu=u+v \alpha$ and $\nu=x+y \alpha$ in L. We have

$$
\begin{aligned}
\mu \nu & =(u x+v y a)+(v x+u y) \alpha \\
\sigma(\mu \nu) & =(u x+v y a)-(v x+u y) \alpha \\
\sigma(\mu) \sigma(\nu) & =(u-v \alpha)(x-y \alpha)=(u x+v y a)-(v x+u y) \alpha=\sigma(\mu \nu)
\end{aligned}
$$

so σ is a field automorphism.

Now let τ be any other automorphism of L with $\left.\tau\right|_{K}=\mathrm{id}$. Write $a=\alpha^{2} \in K$. We can apply τ to the equation $\alpha^{2}-a=0$ to get $\tau(\alpha)^{2}-a=0$, or in other words $\tau(\alpha)^{2}-\alpha^{2}=0$, or in other words $(\tau(\alpha)-\alpha)(\tau(\alpha)+\alpha)=0$, so either $\tau(\alpha)=\alpha$ or $\tau(\alpha)=-\alpha$. In the first case we have $\tau=\mathrm{id}$, and in the second case we have $\tau=\sigma$. It follows that $\operatorname{Gal}(L / K)=\{\mathrm{id}, \sigma\}$ as claimed.

Proposition 10.2 Let p and q be distinct prime numbers, put

$$
B=\{1, \sqrt{p}, \sqrt{q}, \sqrt{p q}\} \subset \mathbb{R}
$$

and let L be the span of B over \mathbb{Q}.
(a) The set B is linearly independent over \mathbb{Q}, so is a basis for L, and $[L: \mathbb{Q}]=4$.
(b) L is a splitting field for the polynomial $\left(t^{2}-p\right)\left(t^{2}-q\right) \in \mathbb{Q}[t]$.
(c) There are automorphisms σ and τ of L given by

$$
\begin{aligned}
& \sigma(w+x \sqrt{p}+y \sqrt{q}+z \sqrt{p q})=w-x \sqrt{p}+y \sqrt{q}-z \sqrt{p q} \\
& \tau(w+x \sqrt{p}+y \sqrt{q}+z \sqrt{p q})=w+x \sqrt{p}-y \sqrt{q}-z \sqrt{p q} .
\end{aligned}
$$

(d) We have $\sigma^{2}=\tau^{2}=1$ and $\sigma \tau=\tau \sigma$, and $\operatorname{Gal}(L / \mathbb{Q})=\{1, \sigma, \tau, \sigma \tau\} \simeq$ $C_{2} \times C_{2}$.

Proof: For part (a), consider a nontrivial linear relation $w+x \sqrt{p}+y \sqrt{q}+z \sqrt{p q}=$ 0 . Here $w, x, y, z \in \mathbb{Q}$, but after multiplying through by a suitable integer we can clear the denominators and so assume that $w, x, y, z \in \mathbb{Z}$. We can then divide through by any common factor and thus assume that $\operatorname{gcd}(w, x, y, z)=1$. Now rearrange the relation as $w+x \sqrt{p}=-(y+z \sqrt{p}) \sqrt{q}$ and square both sides to get

$$
\left(w^{2}+p x^{2}\right)+2 w x \sqrt{p}=\left(y^{2}+p z^{2}\right) q+2 y z q \sqrt{p} .
$$

We know that 1 and \sqrt{p} are linearly independent over \mathbb{Q}, so we conclude that

$$
\begin{aligned}
w x & =y z q \\
w^{2}+p x^{2} & =\left(y^{2}+p z^{2}\right) q .
\end{aligned}
$$

From the first of these we see that either w or x is divisible by q. In either case we can feed this fact into the second equation to see that w^{2} and x^{2} are both divisible by q, so w and x are both divisible by q, say $w=q w^{\prime}$ and $x=q x^{\prime}$. We can substitute these in the previous equations and cancel common factors to get

$$
\begin{aligned}
y z & =w^{\prime} x^{\prime} q \\
y^{2}+p z^{2} & =\left(w^{\prime 2}+p x^{\prime 2}\right) q
\end{aligned}
$$

The same logic now tells us that y and z are both divisible by q, contradicting the assumption that $\operatorname{gcd}(w, x, y, z)=1$. It follows that there can be no such linear relation, which proves (a).

For (b), the main point to check is that L is actually a subfield of \mathbb{R}. To see this, write $e_{0}=1, e_{1}=\sqrt{p}, e_{2}=\sqrt{q}$ and $e_{3}=\sqrt{p q}$. By a straightforward check of the 16 possible cases, we see that $e_{i} e_{j}$ is always a rational multiple of e_{k} for some k (for example $e_{1} e_{3}=p e_{2}$). In particular, we have $e_{i} e_{j} \in L$. Now suppose we have two elements $x, y \in L$, say $x=\sum_{i=0}^{3} x_{i} e_{i}$ and $y=\sum_{j=0}^{3} y_{j} e_{j}$. Then $x y=\sum_{i, j} x_{i} y_{j} e_{i} e_{j}$ with $x_{i} y_{j} \in \mathbb{Q}$ and $e_{i} e_{j} \in L$, and L is a vector space over \mathbb{Q}, so $x y \in L$. We therefore see that L is a subring of \mathbb{R}. As L is finite-dimensional it follows that L is a subfield of \mathbb{R}. It is clearly generated by the roots of the polynomial

$$
f(t)=\left(t^{2}-p\right)\left(t^{2}-q\right)=(t-\sqrt{p})(t+\sqrt{p})(t-\sqrt{q})(t+\sqrt{q}),
$$

so it is a splitting field for $f(t)$.
Next, we can regard L as a degree two extension of $\mathbb{Q}(\sqrt{q})$ obtained by adjoining a square root of p. Proposition 10.1 therefore gives us an automorphism σ of L that acts as the identity on $\mathbb{Q}(\sqrt{q})$, and this is clearly described by the formula stated above. Similarly, we obtain the automorphism τ by regarding L as $\mathbb{Q}(\sqrt{p})(\sqrt{q})$ rather than $\mathbb{Q}(\sqrt{q})(\sqrt{p})$. This proves (c).

Now let θ be an arbitrary automorphism of L (which automatically acts as the identity on $\mathbb{Q})$. We must then have $\theta(\sqrt{p})^{2}=\theta\left(\sqrt{p}^{2}\right)=\theta(p)=p$, so $\theta(\sqrt{p})=$ $\pm \sqrt{p}$. Similarly we have $\theta(\sqrt{q})= \pm \sqrt{q}$, and it follows by inspection that there is a unique automorphism $\varphi \in\{1, \sigma, \tau, \sigma \tau\}$ that has the same effect on \sqrt{p} and \sqrt{q} as θ. This means that the automorphism $\psi=\varphi^{-1} \theta$ has $\psi(\sqrt{p})=\sqrt{p}$ and $\psi(\sqrt{q})=\sqrt{q}$, and therefore also $\psi(\sqrt{p q})=\psi(\sqrt{p}) \psi(\sqrt{q})=\sqrt{p q}$. As B is a basis for L over \mathbb{Q} and ψ acts as the identity on B, we see that $\psi=$ id, and so $\theta=\varphi$. This proves (d).

We next consider two different cubic equations for which the answers work out quite neatly. In a later section we will see that general cubics are conceptually not too different, although the formulae are typically less tidy.

Example 10.3 We will construct and study a splitting field for the polynomial $f(x)=x^{3}-3 x-3 \in \mathbb{Q}[x]$. This is an Eisenstein polynomial for the prime 3, so it is irreducible over \mathbb{Q}. We start by noting that $(3+\sqrt{5}) / 2$ is a positive real number, with inverse $(3-\sqrt{5}) / 2$. We let β denote the real cube root of $(3+\sqrt{5}) / 2$, so that β^{-1} is the real cube root of $(3-\sqrt{5}) / 2$. Then put $\omega=(\sqrt{-3}-1) / 2 \in \mathbb{C}$, so $\omega^{3}=1$ and $\omega^{2}+\omega+1=0$. Finally, put $\alpha_{i}=\omega^{i} \beta+1 /\left(\omega^{i} \beta\right)$ for $i=0,1,2$.

We claim that these are roots of $f(x)$. Indeed, we have

$$
\begin{aligned}
\alpha_{i}^{3} & =\left(\omega^{i} \beta\right)^{3}+3\left(\omega^{i} \beta\right)^{2} /\left(\omega^{i} \beta\right)+3 \omega^{i} \beta /\left(\omega^{i} \beta\right)^{2}+1 /\left(\omega^{i} \beta\right)^{3} \\
& =\beta^{3}+\beta^{-3}+3\left(\omega^{i} \beta+\omega^{-i} \beta^{-1}\right) \\
& =(3+\sqrt{5}) / 2+(3-\sqrt{5}) / 2+3 \alpha_{i}=3+3 \alpha_{i},
\end{aligned}
$$

which rearranges to give $f\left(\alpha_{i}\right)=0$ as claimed. We also note that α_{0} is real, whereas α_{1} and α_{2} are non-real and are complex conjugates of each other. It follows that we have three distinct roots of $f(x)$, and thus that $f(x)=(x-$ $\left.\alpha_{0}\right)\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)$, so the splitting field is generated by α_{0}, α_{1} and α_{2}. We write L for this splitting field.

Next, note that $\bar{\omega}$ (the complex conjugate of ω) is ω^{-1}, and so $\overline{\alpha_{1}}=\alpha_{2}$ and $\overline{\alpha_{2}}=$ α_{1}, whereas $\overline{\alpha_{0}}=\alpha_{0}$ because α_{0} is real. This means that conjugation permutes the roots α_{i} and so preserves L. We thus have an automorphism $\sigma: L \rightarrow L$ given by $\sigma(a)=\bar{a}$ for all $a \in L$.

We also claim that there is an automorphism ρ of L with $\rho\left(\alpha_{0}\right)=\alpha_{1}$ and $\rho\left(\alpha_{1}\right)=$ α_{2} and $\rho\left(\alpha_{2}\right)=\alpha_{0}$. Indeed, Proposition 9.2 tells us that there is an automorphism λ such that $\lambda\left(\alpha_{0}\right)=\alpha_{1}$. We know that λ permutes the set $R=\left\{\alpha_{0}, \alpha_{1}, \alpha_{2}\right\}$ of roots of $f(x)$, so it must either be the three-cycle $\left(\alpha_{0} \alpha_{1} \alpha_{2}\right)$ or the transposition $\left(\alpha_{0} \alpha_{1}\right)$. In the first case, we can just take $\rho=\lambda$; in the second, we can take $\rho=\lambda \sigma$. It is now easy to check that the set $\left\{1, \rho, \rho^{2}, \sigma, \rho \sigma, \rho^{2} \sigma\right\}$ gives all six permutations of R. It follows that the $\operatorname{Galois} \operatorname{group} \operatorname{Gal}(L / \mathbb{Q})$ is \S_{3}.

Example 10.4 Consider the polynomial $f(x)=x^{3}+x^{2}-2 x-1$. We first claim that this is irreducible over \mathbb{Q}. Indeed, if it were reducible we would have $f(x)=$ $g(x) h(x)$ for some monic polynomials $g(x), h(x) \in \mathbb{Q}[x]$ with $\operatorname{deg}(g(x))=1$ and $\operatorname{deg}(h(x))=2$. Gauss' Lemma would then tell us that $g(x), h(x) \in \mathbb{Z}[x]$. This would mean that $g(x)=x-a$ for some $a \in \mathbb{Z}$, and thus $f(a)=0$. However, we have $f(2 m)=2\left(4 m^{3}+2 m^{2}-m\right)-1$ and $f(2 m+1)=2\left(4 m^{3}+8 m^{2}+3 m\right)-1$ so $f(a)$ is odd for all $a \in \mathbb{Z}$, which is a contradiction.

We now exhibit the roots of $f(x)$. Write

$$
\begin{aligned}
\zeta & =\exp (2 \pi i / 7)=\cos (2 \pi / 7)+i \sin (2 \pi / 7) \\
\alpha & =\zeta+\zeta^{-1}=2 \cos (2 \pi / 7) \\
\beta & =\zeta^{2}+\zeta^{-2}=2 \cos (4 \pi / 7) \\
\gamma & =\zeta^{4}+\zeta^{-4}=2 \cos (8 \pi / 7)
\end{aligned}
$$

(Remember that $\zeta^{4}=\zeta^{-3}$.) We claim that α, β and γ are roots of $f(x)$. First
calculate $f(\alpha)$. We have:

$$
\begin{aligned}
\alpha^{3} & =\zeta^{-3}+3 \zeta^{-1}+3 \zeta+\zeta^{3} \\
\alpha^{2} & =\zeta^{-2}+2+\zeta^{2} \\
-2 \alpha & =-2 \zeta^{-1}-2 \zeta \\
-1 & =-1
\end{aligned}
$$

If we add together the left hand sides we get $f(\alpha)$, and if we add together the right hand sides we get $\sum_{i=-3}^{3} \zeta^{i}$.
Now remember that $\zeta^{7}=1$ and $\zeta \neq 1$, so

$$
1+\zeta+\zeta^{2}+\zeta^{3}+\zeta^{4}+\zeta^{5}+\zeta^{6}=0
$$

Dividing by ζ^{3} we get $\sum_{i=-3}^{3} \zeta^{i}=0$, so $f(\alpha)=0$.
By a modification of this calculation we also have $f(\beta)=f(\gamma)=0$.
We now have three distinct roots for the cubic polynomial $f(x)$, so we have

$$
f(x)=(x-\alpha)(x-\beta)(x-\gamma)
$$

We now claim that

$$
\begin{equation*}
\mathbb{Q}(\alpha)=\mathbb{Q}(\beta)=\mathbb{Q}(\gamma)=\mathbb{Q}(\alpha, \beta, \gamma) \tag{1}
\end{equation*}
$$

First, observe that

$$
\begin{aligned}
& \alpha^{2}-2=\left(\zeta^{-2}+2+\zeta^{2}\right)-2=\zeta^{-2}+\zeta^{2}=\beta \\
& \beta^{2}-2=\left(\zeta^{-4}+2+\zeta^{4}\right)-2=\zeta^{-4}+\zeta^{4}=\gamma \\
& \gamma^{2}-2=\left(\zeta^{-8}+2+\zeta^{8}\right)-2=\zeta^{-8}+\zeta^{8}=\zeta^{-1}+\zeta=\alpha
\end{aligned}
$$

The first of these shows that $\beta \in Q(\alpha)$, and so $\mathbb{Q}(\beta) \subseteq \mathbb{Q}(\alpha)$. From the other equations we see that $\mathbb{Q}(\gamma) \subseteq \mathbb{Q}(\beta)$ and $\mathbb{Q}(\alpha) \subseteq \mathbb{Q}(\gamma)$. Altogether we have $\mathbb{Q}(\alpha) \subseteq \mathbb{Q}(\gamma) \subseteq \mathbb{Q}(\beta) \subseteq \mathbb{Q}(\alpha)$, which implies (1).
So $\mathbb{Q}(\alpha)$ is a splitting field for $f(x)$.
Next, Proposition 9.2 tells us that there is an automorphism σ of $\mathbb{Q}(\alpha)$ with $\sigma(\alpha)=\beta$. Applying σ to $\beta=\alpha^{2}-2$ we get

$$
\sigma(\beta)=\sigma\left(\alpha^{2}-2\right)=\sigma(\alpha)^{2}-2=\beta^{2}-2=\gamma
$$

By a similar argument we have $\sigma(\gamma)=\gamma^{2}-2=\alpha$, so σ corresponds to the three-cycle $(\alpha \beta \gamma)$. We also know that $|\operatorname{Gal}(\mathbb{Q}(\alpha) / \mathbb{Q})|=[\mathbb{Q}(\alpha): \mathbb{Q}]=3$, and it follows that $\operatorname{Gal}(\mathbb{Q}(\alpha) / \mathbb{Q})=\left\{1, \sigma, \sigma^{2}\right\} \simeq C_{3}$.

Example 10.5 Consider the polynomial $f(x)=x^{4}-10 x^{2}+20$, which is irreducible over \mathbb{Q} by Eisenstein's criterion at the prime 5 . This is a quadratic function of x^{2}, so by the usual formula it vanishes when $x^{2}=(10 \pm \sqrt{100-4 \times 20}) / 2=$ $5 \pm \sqrt{5}$ (and both of these values are positive real numbers). The roots of $f(x)$ are therefore $\alpha, \beta,-\alpha$ and $-\beta$ where $\alpha=\sqrt{5+\sqrt{5}}$ and $\beta=\sqrt{5-\sqrt{5}}$. It is a special feature of this example that β can be expressed in terms of α. To see this, note that $\alpha^{2}=5+\sqrt{5}$ and so $\alpha^{4}=30+10 \sqrt{5}$. Then put $\beta^{\prime}=\frac{1}{2} \alpha^{3}-3 \alpha$ and note that

$$
\begin{aligned}
& \alpha \beta^{\prime}=\frac{1}{2} \alpha^{4}-3 \alpha^{2}=15+5 \sqrt{5}-15-3 \sqrt{5}=-2 \sqrt{5} \\
& \alpha \beta=\sqrt{(5+\sqrt{5})(5-\sqrt{5})}=\sqrt{5^{2}-\sqrt{5}^{2}}=\sqrt{25-5}=2 \sqrt{5}
\end{aligned}
$$

This shows that $\alpha \beta^{\prime}=-\alpha \beta$, so $\beta=-\beta^{\prime}=-\left(\frac{1}{2} \alpha^{3}-\alpha\right) \in \mathbb{Q}(\alpha)$. This shows that all roots of $f(x)$ lie in $\mathbb{Q}(\alpha)$, so $\mathbb{Q}(\alpha)$ is a splitting field for $f(x)$ over \mathbb{Q}. By Proposition 9.2 there is an automorphism σ of $\mathbb{Q}(\alpha)$ with $\sigma(\alpha)=\beta$. It follows that

$$
\sigma(\sqrt{5})=\sigma\left(\alpha^{2}-5\right)=\sigma(\alpha)^{2}-5=\beta^{2}-5=-\sqrt{5}
$$

We now apply σ to the equation $\alpha \beta=2 \sqrt{5}$ to get $\beta \sigma(\beta)=-2 \sqrt{5}$. We can then divide this by the original equation $\alpha \beta=2 \sqrt{5}$ to get $\sigma(\beta) / \alpha=-1$, so $\sigma(\beta)=-\alpha$. Moreover, as σ is a homomorphism we have $\sigma(-a)=-\sigma(a)$ for all a, so $\sigma(-\alpha)=-\beta$ and $\sigma(-\beta)=\alpha$. This shows that σ corresponds to the four-cycle $(\alpha \beta-\alpha-\beta)$. It follows that the automorphisms $\left\{1, \sigma, \sigma^{2}, \sigma^{3}\right\}$ are all different, but $|\operatorname{Gal}(\mathbb{Q}(\alpha) / \mathbb{Q})|=[\mathbb{Q}(\alpha): \mathbb{Q}]=4$, so we have

$$
\operatorname{Gal}(\mathbb{Q}(\alpha) / \mathbb{Q})=\left\{1, \sigma, \sigma^{2}, \sigma^{3}\right\} \simeq C_{4}
$$

