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§ 10 Some extensions of small degree

Proposition 10.1 Let K be a field and let L be an extension of K of degree
two.

(a) There is an element ↵ 2 L \K such that L = K(↵) and ↵2 2 K.

(b) The element ↵ has the following uniqueness property: if L = K(�) for some
other element � 2 L \K with �2 2 K, then � = q↵ for some q 2 K.

(c) There is an automorphism � : L ! L that acts as the identity on K and
satisfies �(↵) = �↵.

(d) We have �2 = 1 and Gal(L/K) = {1, �} ' C2.

Proof: First choose any element � 2 L \ K. We claim that 1 and � are
linearly independent over K. To see this, consider a linear relation a.1 + b� = 0
with a, b 2 K. If b 6= 0 we can rearrange to get � = �ab

�1 2 K, contrary to
assumption. We therefore have b = 0 so the original relation reduces to a = 0 as
required. As dimK(L) = 2 this means that {1,�} is a basis for L over K.

We can therefore write ��2 in terms of this basis, say as ��2 = b� + c, or
equivalently �

2 + b� + c = 0. Next put ↵ = � + b/2 2 L. We find that
↵
2 = �

2 + b� + b
2
/4 = �c + b

2
/4 2 K. By the same logic as for � we also see

that {1,↵} is a basis for L and so L = K(↵), which proves (a).

Now suppose we have another element � 2 L \ K with �2 2 K. We can write
� = x+ y↵ for some x, y 2 K. As � 62 K we have y 6= 0. This gives

�
2 = (x2 + y

2
a) + 2xy↵,

which is assumed to lie in K, so we must have 2xy = 0. As y 6= 0 this gives x = 0
and thus � = y↵, proving (b).

Next, as {1,↵} is a basis, we can define a K-linear map � : L ! L by

�(x+ y↵) = x� y↵,

for any x, y 2 K. This satisfies �(�(x+ y↵)) = �(x� y↵) = x+ y↵, so �2 = id.
It also has �(0) = 0 and �(1) = 1. Now consider elements µ = u + v↵ and
⌫ = x+ y↵ in L. We have

µ⌫ = (ux+ vya) + (vx+ uy)↵,

�(µ⌫) = (ux+ vya)� (vx+ uy)↵,

�(µ)�(⌫) = (u� v↵)(x� y↵) = (ux+ vya)� (vx+ uy)↵ = �(µ⌫),

so � is a field automorphism.
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Now let ⌧ be any other automorphism of L with ⌧ |K = id. Write a = ↵
2 2 K.

We can apply ⌧ to the equation ↵2�a = 0 to get ⌧(↵)2�a = 0, or in other words
⌧(↵)2 � ↵

2 = 0, or in other words (⌧(↵)� ↵)(⌧(↵) + ↵) = 0, so either ⌧(↵) = ↵

or ⌧(↵) = �↵. In the first case we have ⌧ = id, and in the second case we have
⌧ = �. It follows that Gal(L/K) = {id, �} as claimed. ⇥
Proposition 10.2 Let p and q be distinct prime numbers, put

B = {1,pp,
p
q,
p
pq} ⇢ R,

and let L be the span of B over Q.

(a) The set B is linearly independent over Q, so is a basis for L, and [L : Q] = 4.

(b) L is a splitting field for the polynomial (t2 � p)(t2 � q) 2 Q[t].

(c) There are automorphisms � and ⌧ of L given by

�(w + x
p
p+ y

p
q + z

p
pq) = w � x

p
p+ y

p
q � z

p
pq

⌧(w + x
p
p+ y

p
q + z

p
pq) = w + x

p
p� y

p
q � z

p
pq.

(d) We have �2 = ⌧
2 = 1 and �⌧ = ⌧�, and Gal(L/Q) = {1, �, ⌧, �⌧} '

C2 ⇥ C2.

Proof: For part (a), consider a nontrivial linear relation w+x
p
p+y

p
q+z

p
pq =

0. Here w, x, y, z 2 Q, but after multiplying through by a suitable integer we can
clear the denominators and so assume that w, x, y, z 2 Z. We can then divide
through by any common factor and thus assume that gcd(w, x, y, z) = 1. Now
rearrange the relation as w+x

p
p = �(y+ z

p
p)
p
q and square both sides to get

(w2 + px
2) + 2wx

p
p = (y2 + pz

2)q + 2yzq
p
p.

We know that 1 and
p
p are linearly independent over Q, so we conclude that

wx = yzq,

w
2 + px

2 = (y2 + pz
2)q.

From the first of these we see that either w or x is divisible by q. In either case
we can feed this fact into the second equation to see that w

2 and x
2 are both

divisible by q, so w and x are both divisible by q, say w = qw
0 and x = qx

0. We
can substitute these in the previous equations and cancel common factors to get

yz = w
0
x
0
q

y
2 + pz

2 = (w02 + px
02)q.
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The same logic now tells us that y and z are both divisible by q, contradicting the
assumption that gcd(w, x, y, z) = 1. It follows that there can be no such linear
relation, which proves (a).

For (b), the main point to check is that L is actually a subfield of R. To see this,
write e0 = 1, e1 =

p
p, e2 =

p
q and e3 =

p
pq. By a straightforward check

of the 16 possible cases, we see that eiej is always a rational multiple of ek for
some k (for example e1e3 = pe2). In particular, we have eiej 2 L. Now suppose
we have two elements x, y 2 L, say x =

P3
i=0 xiei and y =

P3
j=0 yjej. Then

xy =
P

i,j
xiyjeiej with xiyj 2 Q and eiej 2 L, and L is a vector space over Q,

so xy 2 L. We therefore see that L is a subring of R. As L is finite-dimensional
it follows that L is a subfield of R. It is clearly generated by the roots of the
polynomial

f(t) = (t2 � p)(t2 � q) = (t�p
p)(t+

p
p)(t�p

q)(t+
p
q),

so it is a splitting field for f(t).

Next, we can regard L as a degree two extension of Q(
p
q) obtained by adjoining a

square root of p. Proposition 10.1 therefore gives us an automorphism � of L that
acts as the identity on Q(

p
q), and this is clearly described by the formula stated

above. Similarly, we obtain the automorphism ⌧ by regarding L as Q(
p
p)(

p
q)

rather than Q(
p
q)(

p
p). This proves (c).

Now let ✓ be an arbitrary automorphism of L (which automatically acts as the
identity on Q). We must then have ✓(

p
p)2 = ✓(

p
p
2) = ✓(p) = p, so ✓(

p
p) =

±p
p. Similarly we have ✓(

p
q) = ±p

q, and it follows by inspection that there
is a unique automorphism ' 2 {1, �, ⌧, �⌧} that has the same e↵ect on

p
p andp

q as ✓. This means that the automorphism  = '
�1
✓ has  (

p
p) =

p
p and

 (
p
q) =

p
q, and therefore also  (

p
pq) =  (

p
p) (

p
q) =

p
pq. As B is a basis

for L over Q and  acts as the identity on B, we see that  = id, and so ✓ = '.
This proves (d). ⇥
We next consider two di↵erent cubic equations for which the answers work out
quite neatly. In a later section we will see that general cubics are conceptually not
too di↵erent, although the formulae are typically less tidy.

Example 10.3 We will construct and study a splitting field for the polynomial
f(x) = x

3� 3x� 3 2 Q[x]. This is an Eisenstein polynomial for the prime 3, so it
is irreducible over Q. We start by noting that (3+

p
5)/2 is a positive real number,

with inverse (3 �
p
5)/2. We let � denote the real cube root of (3 +

p
5)/2, so

that ��1 is the real cube root of (3�
p
5)/2. Then put ! = (

p
�3� 1)/2 2 C,

so !3 = 1 and !2 + ! + 1 = 0. Finally, put ↵i = !
i
� + 1/(!i

�) for i = 0, 1, 2.
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We claim that these are roots of f(x). Indeed, we have

↵
3
i
= (!i

�)3 + 3(!i
�)2/(!i

�) + 3!i
�/(!i

�)2 + 1/(!i
�)3

= �
3 + �

�3 + 3(!i
� + !

�i
�
�1)

= (3 +
p
5)/2 + (3�

p
5)/2 + 3↵i = 3 + 3↵i,

which rearranges to give f(↵i) = 0 as claimed. We also note that ↵0 is real,
whereas ↵1 and ↵2 are non-real and are complex conjugates of each other. It
follows that we have three distinct roots of f(x), and thus that f(x) = (x �
↵0)(x�↵1)(x�↵2), so the splitting field is generated by ↵0, ↵1 and ↵2. We write
L for this splitting field.

Next, note that ! (the complex conjugate of !) is !�1, and so ↵1 = ↵2 and ↵2 =
↵1, whereas ↵0 = ↵0 because ↵0 is real. This means that conjugation permutes
the roots ↵i and so preserves L. We thus have an automorphism � : L ! L given
by �(a) = a for all a 2 L.

We also claim that there is an automorphism ⇢ of L with ⇢(↵0) = ↵1 and ⇢(↵1) =
↵2 and ⇢(↵2) = ↵0. Indeed, Proposition 9.2 tells us that there is an automorphism
� such that �(↵0) = ↵1. We know that � permutes the set R = {↵0,↵1,↵2} of
roots of f(x), so it must either be the three-cycle (↵0 ↵1 ↵2) or the transposition
(↵0 ↵1). In the first case, we can just take ⇢ = �; in the second, we can take
⇢ = ��. It is now easy to check that the set {1, ⇢, ⇢2, �, ⇢�, ⇢2�} gives all six
permutations of R. It follows that the Galois group Gal(L/Q) is §3.

Example 10.4 Consider the polynomial f(x) = x
3+x

2�2x�1. We first claim
that this is irreducible over Q. Indeed, if it were reducible we would have f(x) =
g(x)h(x) for some monic polynomials g(x), h(x) 2 Q[x] with deg(g(x)) = 1 and
deg(h(x)) = 2. Gauss’ Lemma would then tell us that g(x), h(x) 2 Z[x]. This
would mean that g(x) = x� a for some a 2 Z, and thus f(a) = 0. However, we
have f(2m) = 2(4m3 +2m2 �m)� 1 and f(2m+1) = 2(4m3 +8m2 +3m)� 1
so f(a) is odd for all a 2 Z, which is a contradiction.

We now exhibit the roots of f(x). Write

⇣ = exp(2⇡i/7) = cos(2⇡/7) + i sin(2⇡/7)

↵ = ⇣ + ⇣
�1 = 2 cos(2⇡/7)

� = ⇣
2 + ⇣

�2 = 2 cos(4⇡/7)

� = ⇣
4 + ⇣

�4 = 2 cos(8⇡/7).

(Remember that ⇣4 = ⇣
�3.) We claim that ↵, � and � are roots of f(x). First
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calculate f(↵). We have:

↵
3 = ⇣

�3 + 3⇣�1 + 3⇣ + ⇣
3

↵
2 = ⇣

�2 + 2 + ⇣
2

�2↵ = �2⇣�1 � 2⇣

�1 = �1.

If we add together the left hand sides we get f(↵), and if we add together the
right hand sides we get

P3
i=�3 ⇣

i.

Now remember that ⇣7 = 1 and ⇣ 6= 1, so

1 + ⇣ + ⇣
2 + ⇣

3 + ⇣
4 + ⇣

5 + ⇣
6 = 0.

Dividing by ⇣3 we get
P3

i=�3 ⇣
i = 0, so f(↵) = 0.

By a modification of this calculation we also have f(�) = f(�) = 0.

We now have three distinct roots for the cubic polynomial f(x), so we have

f(x) = (x� ↵)(x� �)(x� �).

We now claim that

Q(↵) = Q(�) = Q(�) = Q(↵, �, �). (1)

First, observe that

↵
2 � 2 = (⇣�2 + 2 + ⇣

2)� 2 = ⇣
�2 + ⇣

2 = �

�
2 � 2 = (⇣�4 + 2 + ⇣

4)� 2 = ⇣
�4 + ⇣

4 = �

�
2 � 2 = (⇣�8 + 2 + ⇣

8)� 2 = ⇣
�8 + ⇣

8 = ⇣
�1 + ⇣ = ↵.

The first of these shows that � 2 Q(↵), and so Q(�) ✓ Q(↵). From the other
equations we see that Q(�) ✓ Q(�) and Q(↵) ✓ Q(�). Altogether we have
Q(↵) ✓ Q(�) ✓ Q(�) ✓ Q(↵), which implies (1).

So Q(↵) is a splitting field for f(x).

Next, Proposition 9.2 tells us that there is an automorphism � of Q(↵) with
�(↵) = �. Applying � to � = ↵

2 � 2 we get

�(�) = �(↵2 � 2) = �(↵)2 � 2 = �
2 � 2 = �.

By a similar argument we have �(�) = �
2 � 2 = ↵, so � corresponds to the

three-cycle (↵ � �). We also know that |Gal(Q(↵)/Q)| = [Q(↵) : Q] = 3, and it
follows that Gal(Q(↵)/Q) = {1, �, �2} ' C3.
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Example 10.5 Consider the polynomial f(x) = x
4 � 10x2 + 20, which is irre-

ducible over Q by Eisenstein’s criterion at the prime 5. This is a quadratic function
of x2, so by the usual formula it vanishes when x

2 = (10±
p
100� 4⇥ 20)/2 =

5 ±
p
5 (and both of these values are positive real numbers). The roots of f(x)

are therefore ↵, �, �↵ and �� where ↵ =
p

5 +
p
5 and � =

p
5�

p
5. It is a

special feature of this example that � can be expressed in terms of ↵. To see this,
note that ↵2 = 5 +

p
5 and so ↵4 = 30 + 10

p
5. Then put �0 = 1

2↵
3 � 3↵ and

note that

↵�
0 = 1

2↵
4 � 3↵2 = 15 + 5

p
5� 15� 3

p
5 = �2

p
5

↵� =
q

(5 +
p
5)(5�

p
5) =

q
52 �

p
5
2
=

p
25� 5 = 2

p
5.

This shows that ↵�0 = �↵�, so � = ��0 = �(12↵
3 � ↵) 2 Q(↵). This shows

that all roots of f(x) lie in Q(↵), so Q(↵) is a splitting field for f(x) over Q. By
Proposition 9.2 there is an automorphism � of Q(↵) with �(↵) = �. It follows
that

�(
p
5) = �(↵2 � 5) = �(↵)2 � 5 = �

2 � 5 = �
p
5.

We now apply � to the equation ↵� = 2
p
5 to get ��(�) = �2

p
5. We can

then divide this by the original equation ↵� = 2
p
5 to get �(�)/↵ = �1, so

�(�) = �↵. Moreover, as � is a homomorphism we have �(�a) = ��(a) for
all a, so �(�↵) = �� and �(��) = ↵. This shows that � corresponds to the
four-cycle (↵ � �↵ ��). It follows that the automorphisms {1, �, �2

, �
3} are all

di↵erent, but |Gal(Q(↵)/Q)| = [Q(↵) : Q] = 4, so we have

Gal(Q(↵)/Q) = {1, �, �2
, �

3} ' C4.


