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§10 Some extensions of small degree

Proposition 10.1 Let K be a field and let L be an extension of K of degree
two.

(a) There is an element o € L\ K such that L = K(«) and o® € K.

(b) The element « has the following uniqueness property: if L = K () for some
other element 5 € L\ K with 3? € K, then 3 = qa for some g € K.

(c) There is an automorphism o: L — L that acts as the identity on K and
satisfies o(a) = —a.

(d) We have 02 =1 and Gal(L/K) = {1,0} ~ (.

PROOF:  First choose any element A € L\ K. We claim that 1 and A are
linearly independent over K. To see this, consider a linear relation a.1 + bA = 0
with a,b € K. If b # 0 we can rearrange to get A\ = —ab™! € K, contrary to
assumption. We therefore have b = 0 so the original relation reduces to a = 0 as
required. As dimg (L) = 2 this means that {1, A} is a basis for L over K.

We can therefore write —\? in terms of this basis, say as —A\? = b\ + ¢, or
equivalently A\ + b\ + ¢ = 0. Next put « = A +b/2 € L. We find that
a? = N2+ D\ +b*/4 = —c+ b?/4 € K. By the same logic as for \ we also see
that {1, a} is a basis for L and so L = K(«), which proves (a).

Now suppose we have another element 3 € L\ K with 2 € K. We can write
B =x+ ya for some z,y € K. As 5 ¢ K we have y # 0. This gives

B = (2* + y%a) + 2rya,

which is assumed to lie in K, so we must have 22y = 0. As y # 0 this gives x = 0
and thus 8 = ya, proving (b).

Next, as {1, a} is a basis, we can define a K-linear map o: L — L by
olx +ya) =z —ya,

for any z,y € K. This satisfies o(co(z +ya)) = o(x —ya) = z + ya, so o = id.
It also has 0(0) = 0 and o(1) = 1. Now consider elements ¢ = u + va and
v=2x+yain L. We have

pv = (ux 4+ vya) + (ve + uy)a,
o(pv) = (ux +vya) — (vr + uy)a,
o(po(v) = (u—va)(z —ya) = (ux + vya) — (vr + uy)o = o(uv),

so o is a field automorphism.
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Now let 7 be any other automorphism of L with 7| = id. Write a = o? € K.
We can apply 7 to the equation a? —a = 0 to get 7(a)? —a = 0, or in other words
7(a)? —a® = 0, or in other words (7(a) — a)(7(a) + ) = 0, so either 7(a) = «
or 7(a) = —a. In the first case we have 7 = id, and in the second case we have
T = 0. It follows that Gal(L/K) = {id, o} as claimed. %

Proposition 10.2 Let p and ¢ be distinct prime numbers, put

B ={1,\5.Vi.vPi} C R,

and let L be the span of B over Q.

(a) The set B is linearly independent over Q, so is a basis for L, and [L : Q] = 4.
(b) L is a splitting field for the polynomial (> — p)(t* — q) € Q[t].

(¢) There are automorphisms o and 7 of L given by

o(w+ 2D+ y/q+ 2/Pq) = w — /D + Y\ /9 — 2/Pq
T(w + 2/D + y/q + 2/Pq) = w + /D — y\/q — 2:/DG.

(d) We have 0> = 72 = 1 and o7 = 70, and Gal(L/Q) = {1,0,7,07} =~
02 X CQ.

PROOF: For part (a), consider a nontrivial linear relation w4 /p+y./q+2/pq =
0. Here w, z,y, z € Q, but after multiplying through by a suitable integer we can
clear the denominators and so assume that w,z,y,z € Z. We can then divide
through by any common factor and thus assume that ged(w,z,y,2) = 1. Now
rearrange the relation as w +x,/p = —(y + 2,/p)/q and square both sides to get

(w? + pz®) + 2wa\/p = (y* + p2°)q + 2yzq+/p.
We know that 1 and ,/p are linearly independent over Q, so we conclude that
wr = yzq,
w? + pr® = (y* + p2?)q.
From the first of these we see that either w or x is divisible by ¢. In either case
we can feed this fact into the second equation to see that w? and x? are both

divisible by ¢, so w and x are both divisible by ¢, say w = qu’ and x = qz’. We
can substitute these in the previous equations and cancel common factors to get

yz = w't'q

y* +pz* = (W + pa”)g.



6§10 SOME EXTENSIONS OF SMALL DEGREE 61

The same logic now tells us that y and z are both divisible by ¢, contradicting the
assumption that ged(w, x,y,z) = 1. It follows that there can be no such linear
relation, which proves (a).

For (b), the main point to check is that L is actually a subfield of R. To see this,
write eg = 1, ey = /p, e2 = /g and e3 = /pg. By a straightforward check
of the 16 possible cases, we see that e;e; is always a rational multiple of e; for
some k (for example ejes = pey). In particular, we have e;e; € L. Now suppose
we have two elements =,y € L, say x = Z?:o xie; and y = Z?:o yje;. Then
zy =), viyjeie; with z;y; € Q and e;e; € L, and L is a vector space over Q,
so xy € L. We therefore see that L is a subring of R. As L is finite-dimensional
it follows that L is a subfield of R. It is clearly generated by the roots of the
polynomial

ft) = =p)(t* —q) =t —vp)(t + VD)t — VOt + V1),

so it is a splitting field for f(¢).

Next, we can regard L as a degree two extension of Q(,/q) obtained by adjoining a
square root of p. Proposition 10.1 therefore gives us an automorphism o of L that
acts as the identity on Q(,/q), and this is clearly described by the formula stated
above. Similarly, we obtain the automorphism 7 by regarding L as Q(,/p)(/q)

rather than Q(,/q)(,/p). This proves (c).

Now let 6 be an arbitrary automorphism of L (which automatically acts as the
identity on Q). We must then have 0(\/p)> = 0(,/p°) = 0(p) = p, so 0(,/p) =
+./p. Similarly we have 6(,/q) = £,/q, and it follows by inspection that there
is a unique automorphism ¢ € {1,0, 7,07} that has the same effect on /p and
/4 as 0. This means that the automorphism ¢ = »'6 has ¥(,/p) = \/p and
¥(y/q) = /4, and therefore also ¥(\/pq) = ¥(\/p)¥(\/q) = /Pq- As B is a basis
for L over QQ and 1 acts as the identity on B, we see that ¢ = id, and so 6 = ¢.
This proves (d). ¢

We next consider two different cubic equations for which the answers work out
quite neatly. In a later section we will see that general cubics are conceptually not
too different, although the formulae are typically less tidy.

Example 10.3 We will construct and study a splitting field for the polynomial
f(x) = 2% —3x —3 € Q[z]. This is an Eisenstein polynomial for the prime 3, so it
is irreducible over Q. We start by noting that (3-++/5)/2 is a positive real number,
with inverse (3 — 1/5)/2. We let 3 denote the real cube root of (3 + /5)/2, so
that 371 is the real cube root of (3 —+/5)/2. Then put w = (/=3 —1)/2 € C,
sow?=1and w?+w+1=0. Finally, put o; = w'8 + 1/(w’B) for i =0, 1,2.



62 MAS 442/6310

We claim that these are roots of f(x). Indeed, we have

aj = (W'B)° +3(w'B)*/(w'B) + 3w'B/(W'B)* + 1/ (w'B)’
=B+ P+ 3WB+w B
= (3+V5)/2+ (3—V5)/2 + 3a; = 3+ 3a,,

which rearranges to give f(a;) = 0 as claimed. We also note that ay is real,
whereas «; and ay are non-real and are complex conjugates of each other. It
follows that we have three distinct roots of f(x), and thus that f(z) = (z —
ap)(x —ay)(x— aw), so the splitting field is generated by «, a1 and ay. We write
L for this splitting field.

Next, note that @ (the complex conjugate of w) is w™!, and so a7 = ay and @ =

a1, whereas oy = « because g is real. This means that conjugation permutes
the roots a; and so preserves L. We thus have an automorphism o: L — L given
by o(a) =a for all a € L.

We also claim that there is an automorphism p of L with p(ag) = a3 and p(ay) =
ag and p(as) = . Indeed, Proposition 9.2 tells us that there is an automorphism
A such that A(ag) = ay. We know that A permutes the set R = {«, a1, s} of
roots of f(x), so it must either be the three-cycle (o ay ) or the transposition
(cvg 7). In the first case, we can just take p = \; in the second, we can take
p = Ao. It is now easy to check that the set {1,p, p? o, po, p?c} gives all six
permutations of R. It follows that the Galois group Gal(L/Q) is §s.

Example 10.4 Consider the polynomial f(z) = 23+ 2% —2x — 1. We first claim
that this is irreducible over Q. Indeed, if it were reducible we would have f(z) =
g(x)h(x) for some monic polynomials g(z), h(x) € Q[x] with deg(g(x)) = 1 and
deg(h(z)) = 2. Gauss' Lemma would then tell us that g(x), h(z) € Z[z]. This
would mean that g(x) = x — a for some a € Z, and thus f(a) = 0. However, we
have f(2m) = 2(4m> +2m? —m) —1 and f(2m +1) = 2(4m3 +8m? + 3m) — 1
so f(a) is odd for all a € Z, which is a contradiction.

We now exhibit the roots of f(z). Write

¢ = exp(2mi/7) = cos(2m/7) + isin(27/7)
a=C+ ¢t =2cos(27/7)
B=C+(?=2cos(4r/7)

vy =+ ¢ =2cos(87/7).

(Remember that ¢* = (72.) We claim that «, 3 and + are roots of f(x). First
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calculate f(a). We have:

o’ =¢P 3¢ 3¢+
o =P +2+4C
—2a=-20"1 -2
—1=-1.
If we add together the left hand sides we get f(«), and if we add together the
right hand sides we get 37 . ('.
Now remember that (" =1 and ( # 1, so

L+¢+C+ ¢+ 0+ + ¢ =0

Dividing by ¢* we get >0, (' =0, so f(a) = 0.
By a modification of this calculation we also have f(5) = f(y) = 0.

We now have three distinct roots for the cubic polynomial f(z), so we have
flz) = (z —a)(z = B)(x =)
We now claim that

Q(a) = Q(B) = Q(v) = Q(a, B,7)- (1)
First, observe that

a?—2=((?+2+)-2=(*+=p
BP—2= (24N 2=+ =n
P -2=(C+2+ ) 2=+ =+ (=a

The first of these shows that 8 € Q(«a), and so Q(5) C Q(«). From the other
equations we see that Q(v) C Q(B) and Q(a) C Q(vy). Altogether we have

Q(a) € Q(7) € Q(B) C Q(a), which implies (1).
So Q(«) is a splitting field for f(x).
Next, Proposition 9.2 tells us that there is an automorphism o of Q(«) with
o(a) = 3. Applying o to 3 = a? — 2 we get
o(f)=0c(a®—-2)=c(a)? —2=p5*-2=1.

By a similar argument we have o(y) = 7> — 2 = «, so o corresponds to the
three-cycle (v 8 ). We also know that | Gal(Q(«)/Q)| = [Q(«) : Q] = 3, and it
follows that Gal(Q(a)/Q) = {1,0, 0%} ~ Cj.
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Example 10.5 Consider the polynomial f(x) = z* — 1022 + 20, which is irre-
ducible over QQ by Eisenstein’s criterion at the prime 5. This is a quadratic function
of 2%, so by the usual formula it vanishes when 22 = (10 + /100 — 4 x 20)/2 =
5=+ /5 (and both of these values are positive real numbers) The roots of f(x)

are therefore o, 3, —a and — where & = /5 + /5 and 8 = /5 — V5. Itis a

special feature of this example that § can be expressed in terms of «. To see this,
note that o? = 5+ /5 and so a* = 30 + 10v/5. Then put 3’ = %a:’) — 3« and
note that

af =1a* —3a? =15+ 5V5 - 15 - 3v5 = -2V

aﬁz\/(5—|—\/5)(5—\/5):\/52—\/52:\/25—5:2\/5.

This shows that a8’ = —af, so f = =3’ = —(1a® — a) € Q(a). This shows
that all roots of f(z) lie in Q(«), so Q(«) is a splitting field for f(z) over Q. By
Proposition 9.2 there is an automorphism o of Q(a) with o(a) = (. It follows
that

o(V5) =c(a® —=5) =c(a)? = 5=p*-5=—V5.

We now apply o to the equation a8 = 2v/5 to get So(8) = —2v/5. We can
then divide this by the original equation a8 = 2v/5 to get o(3)/a = —1, so
0(B) = —a. Moreover, as o is a homomorphism we have o(—a) = —o(a) for
all a, so o(—a) = —f and o(—f) = «a. This shows that o corresponds to the

four-cycle (a 8 —a — f3). It follows that the automorphisms {1, 0, 02,03} are all
different, but | Gal(Q(«)/Q)| = [Q(«) : Q] = 4, so we have

Gal(Q(a)/Q) = {1,0,0% 0} ~ C,.



