Irreducibility of Galois representations attached to low weight Siegel modular forms

Ariel Weiss

The University of Sheffield

a.weiss@sheffield.ac.uk

p-adic modular forms and Galois representations Sheffield, 15th July 2019

The classical case

•
$$f = \sum_{n=0}^{\infty} a_n q^n \in M_k(N,\epsilon)$$
 normalised Hecke eigenform, $k \ge 2$

• Associated ℓ -adic Galois representation

$$ho_\ell: \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})
ightarrow \operatorname{GL}_2(\overline{\mathbf{Q}}_\ell)$$

unramified for all $p \nmid \ell N$ with

$$\operatorname{Tr} \rho_{\ell}(\operatorname{Frob}_{p}) = a_{p}, \quad \det \rho_{\ell} = \epsilon \chi_{\ell}^{k-1}$$

 \bullet Associated mod ℓ Galois representation

$$\overline{
ho}_\ell : \mathsf{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) o \mathsf{GL}_2(\overline{\mathbf{F}}_\ell)$$

When are ρ_ℓ and $\overline{\rho}_\ell$ irreducible?

Example: a reducible *l*-adic Galois representation

$$G_{12}(z) = \frac{691}{65520} + \sum_{n=1}^{\infty} \sigma_{11}(n) q^n \quad \checkmark \qquad \rho_{\ell} \cong \mathbf{1} \oplus \chi_{\ell}^{11}$$

Theorem (Ribet, '70s)

If f is cuspidal, then:

- **1** ρ_{ℓ} is irreducible for all ℓ ;
- **2** $\overline{\rho}_{\ell}$ is irreducible for all but finitely many ℓ ;

Example: a reducible mod ℓ Galois representation

$$\Delta(z) = 1 + \sum_{n \geq 2} \tau(n) q^n \quad \text{and} \quad \overline{\rho}_{691} \cong \mathbf{1} \oplus \overline{\chi}_{691}^{11}$$

Genus 2 Siegel modular forms

Cuspidal automorphic representation π of $GSp_4(\mathbf{A}_{\mathbf{Q}})$, such that π_{∞} a holomorphic (limit of) discrete series.

- has weights (k_1, k_2) , $k_1 \ge k_2 \ge 2$
- has a level N
- has a character ϵ
- has Hecke operators T_p and Hecke eigenvalues a_p

High weight: $k_2 > 2$ Low weight: $k_2 = 2$

Arthur's classification: 5 classes of cuspidal Siegel modular form:

- General
- Yoshida
- Saito-Kurokawa
- Soudry
- Howe–Piatetski-Shapiro

reducible Galois representations

The high weight case: $k_2 > 2$

• Associated ℓ -adic Galois representation

$$ho_\ell:\mathsf{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})
ightarrow\mathsf{GSp}_4(\overline{\mathbf{Q}}_\ell)$$

unramified for all $p \nmid \ell N$ with

$${\sf Tr}\,
ho_\ell({\sf Frob}_{
ho})={\sf a}_{
ho},\qquad {\sf sim}\,\,
ho_\ell=\epsilon\chi_\ell^{k_1+k_2-3}$$

- Associated mod ℓ Galois representation $\overline{\rho}_{\ell}$: Gal($\overline{\mathbf{Q}}/\mathbf{Q}$) $\rightarrow \mathsf{GSp}_4(\overline{\mathbf{F}}_{\ell})$
- ρ_{ℓ} is de Rham for all ℓ and crystalline if $\ell \nmid N$
- Hodge-Tate weights $\{0, k_2 2, k_1 1, k_1 + k_2 3\}$
- The Hecke eigenvalues satisfy the generalised Ramanujan conjecture

Theorem

• (Ramakrishnan 2013) If ρ_{ℓ} is crystalline and if $\ell > 2(k_1 + k_2 - 3) + 1$, then ρ_{ℓ} is irreducible.

2 (BLGGT 2014) $\overline{\rho}_{\ell}$ is irreducible for 100% of primes.

The low weight case: $k_2 = 2$

• Associated ℓ -adic Galois representation

$$ho_\ell: \mathsf{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) o \mathsf{GSp}_4(\overline{\mathbf{Q}}_\ell)$$

unramified for all $p \nmid \ell N$ with

$${\sf Tr}\,
ho_\ell({\sf Frob}_{
ho})={\sf a}_{
ho},\qquad {\sf sim}\,
ho_\ell=\epsilon\chi_\ell^{k_1-1}$$

- Associated mod ℓ Galois representation $\overline{\rho}_{\ell}$: Gal($\overline{\mathbf{Q}}/\mathbf{Q}$) \rightarrow GSp₄($\overline{\mathbf{F}}_{\ell}$)
- Hodge-Tate-Sen weights $\{0, 0, k_1 1, k_1 1\}$

Theorem (W.)

- If ρ_{ℓ} is crystalline and $\ell > 2(k_1 1) + 1$, then ρ_{ℓ} is irreducible.
- **2** $\overline{\rho}_{\ell}$ is irreducible for all but finitely many such primes.

Theorem (W.)

For 100% of primes ℓ , ρ_{ℓ} is crystalline.

Irreducibility and modularity

Proof for elliptic modular forms (Ribet).

9 Suppose that $f \in S_k(N, \epsilon) \leftrightarrow \rho_\ell$ and that ρ_ℓ is reducible. Then

 $\rho_{\ell} \text{ has Hodge-Tate weights } \{0, k-1\} \implies \rho_{\ell} \simeq \psi_1 \oplus \psi_2 \chi_{\ell}^{k-1},$

with ψ_1, ψ_2 finite order characters. Decompose ρ_ℓ into 'nice' subrepresentations.

- **2** By class field theory, ψ_1, ψ_2 correspond to Dirichlet characters. Apply a modularity theorem.
- **③** Get an equality of partial *L*-functions

$$L^*(f \otimes \psi_1^{-1}, s) = \zeta^*(s)L^*(\psi_2\psi_1^{-1}, s+k-1);$$

The RHS has a pole at s = 1, but the LHS is holomorphic. Use automorphic arguments to reach a contradiction.

Irreducibility and modularity II

Theorem (W.)

If ρ_ℓ is crystalline and $\ell > 2(k_1 - 1) + 1$, then ρ_ℓ is irreducible.

1 Decompose ρ_{ℓ} into 'nice' subrepresentations.

Lemma (W.)

For all ℓ , either ρ_{ℓ} is irreducible, or it splits as a direct sum of distinct two-dimensional representations that are irreducible, regular and odd.

Apply a modularity theorem.

Theorem (Taylor 2006)

If $\ell > 2(k_1 - 1) + 1$ and ρ : $Gal(\overline{\mathbf{Q}}/\mathbf{Q}) \rightarrow GL_2(\overline{\mathbf{Q}}_{\ell})$ is irreducible, regular, crystalline and odd, then ρ is potentially modular.

Use automorphic arguments to reach a contradiction.
 Apply a standard *L*-functions argument using Brauer induction.

Ariel Weiss (Sheffield)

Theorem (Jorza 2012)

If $\ell \nmid N$ and the roots of the ℓ^{th} Hecke polynomial are distinct, then ρ_{ℓ} is crystalline.

Theorem (W.)

If π is not CM, then the roots of the ℓ^{th} Hecke polynomial are distinct for 100% of primes ℓ .

Proof:

- Decomposition lemma + density argument \implies roots of the ℓ^{th} Hecke polynomial are distinct for positive density of primes.
- Irreducibility Theorem $\implies \rho_\ell$ is irreducible for a positive density of primes.
- Density argument again \implies roots of the ℓ^{th} Hecke polynomial are distinct for 100% of primes.

Conjecture

If π is an algebraic cuspidal automorphic representation of $GL_n(\mathbf{A}_K)$, then ρ_ℓ is irreducible for all primes.

Known cases:

- n = 2: Ribet if K totally real
- n = 3: Blasius–Rogawski if K totally real, π polarisable

Partial results:

- BLGGT (2014): if K is CM and π is "extremely regular" and polarisable, then ρ_{ℓ} is irreducible for 100% of primes.
- Patrikis–Taylor (2015): if K is CM and π is regular and polarisable, then ρ_{ℓ} is irreducible for a positive density of primes.
- Xia (2018): if $n \le 6$, K is CM and π is regular and polarisable, then ρ_{ℓ} is irreducible for 100% of primes.

Thank you for listening!