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CONSERVATIVE, DISCONTINUOUS GALERKIN–METHODS FOR THE

GENERALIZED KORTEWEG–DE VRIES EQUATION

J.L. BONA, H. CHEN, O. KARAKASHIAN, AND Y. XING

Abstract. We construct, analyze and numerically validate a class of conservative, discontinuous Galerkin
schemes for the Generalized Korteweg–de Vries equation. Up to round-off error, these schemes preserve
discrete versions of the first two invariants (the integral of the solution, usually identified with the mass,
and the L

2–norm) of the continuous solution. Numerical evidence is provided indicating that these conser-
vation properties impart the approximations with beneficial attributes, such as more faithful reproduction
of the amplitude and phase of traveling–wave solutions. The numerical simulations also indicate that the
discretization errors grow only linearly as a function of time.

1. Introduction

Considered here are the initial-boundary-value problems

(1.1)

{

ut + (up+1)x + ǫuxxx = 0, 0 < x < 1, t > 0,
u(x, 0) = u0(x), 0 < x < 1,

for the Generalized Korteweg–de Vries equation, posed with periodic boundary conditions on the interval
[0, 1], where p is a non-negative integer and ǫ is a non-zero parameter. These evolution equations are among
the simplest of a general class of models featuring nonlinear convection (the term (p+1)upux in this case) and
linear dispersion (the higher-order term uxxx). This family of equations and others like them that feature
nonlinearity and dispersion arise as mathematical models for the propagation of physical waves in a wide
variety of situations (see e.g. [13, 35, 42, 15, 17, 23, 1]). The equations in (1.1) have also attracted attention
because the mathematical theory pertaining to them is surprisingly interesting and subtle.

The initial-boundary-value problems (IBVP’s henceforth) appearing in (1.1) are locally well posed in a
wide range of function classes, including those that allow some of them to be justified as approximations of
more complete models for physical phenomena (see [24, 30, 41, 20, 5] for theory in this direction). However,
the resulting solutions do not always exist for all time. Singularity formation may occur and there are a few
rigorous results in this direction as well (see [38, 37, 8]).

There remain puzzling, unresolved issues connected with singularity formation. A well-designed set of
numerical simulations often provides helpful information in situations where rigorous results prove to be
elusive. If smooth solutions form singularities during their evolution, they necessarily develop large values
and large gradients (see [6]). Because of this attribute, solutions that form singularities in finite time are said
to blow up. When singularities appear, they seem to form locally. Consequently, an idea that comes to the
fore when designing a numerical scheme to investigate singularity formation is to implement time-dependent
spatial refinements that are locally dense in regions where the solution is no longer of order one. Properly
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carried out, such a method has the possibility of retaining both stability and accuracy long enough for the
structure of the singularity to become apparent.

The literature on numerical methods for the Korteweg–de Vries equation ((1.1) with p = 1) is vast, with
finite difference, finite element, finite volume and spectral methods all having their proponents. The reader
may consult [46, 47, 45, 40, 33, 7, 2, 48, 10, 32, 36] and the many references contained in these works for
an introduction to the literature in this area. In the cases p = 1, 2, there are also an interesting class of
non-standard methods based on the Inverse Scattering Transform (IST) (see [43, 44]). Certain of these
schemes, e.g. [10, 43, 32, 44, 36], are conservative, meaning they preserve the discrete versions of continuous
conservation laws for the equations. Experience shows that schemes preserving the discrete analogs of
conservation laws appertaining to solutions of a partial differential equation often produce approximations
that behave qualitatively like their continuous counterparts, in addition to featuring accuracy when the mesh
size is sufficiently fine. Convergence results together with rigorous error bounds are available for some of
the schemes mentioned above, but the extant analysis relies upon uniform spatial meshes. As indicated
above, this is an assumption that probably should be avoided when tackling blowup issues. Indeed, previous
numerical work described in [21] by two of the present authors and their collaborators has made it clear that
capturing the blowup with uniform spatial and temporal grids is unlikely and that a successful approach to
the simulation of blowing-up solutions of (1.1) will almost certainly require highly non-uniform meshes.

The Discontinuous Galerkin–method (DG–method henceforth) is a class of finite element approximations
using discontinuous, piecewise polynomials as both the solution and test-function spaces (see [29] for a
historical review). It combines advantages of both finite element and finite volume methods, including high
order accuracy, high parallel efficiency, flexibility for hp-adaptivity and straightforward implementation on
arbitrary meshes in geometries without any special symmetries. The DG-method has attracted considerable
attention in the past two decades and has been applied successfully to produce good approximation of
solutions to a wide range of partial differential equations, many of them arising in important applications
areas. Particularly relevant for the present discussion is the fact that such schemes do not demand continuity
at the spatial grid-points, and this allows a flexibility in making local refinements to an existing numerical
grid not shared by continuous Galerkin methods.

The DG–method was originally introduced in the context of hyperbolic conservation laws. Later, the
method was extended to deal with derivatives of order higher than one. Within the DG–framework, especially
relevant to our development is the important body of work [27, 49, 50] on approximating solutions of
evolution equations with higher-order derivatives using the Local Discontinuous Galerkin method (LDG–
method) developed initially for the Korteweg–de Vries equation (KdV equation from now on) introduced by
Yan and Shu [50]. The L2–error estimates for the semi-discrete LDG methods for the KdV–equation were
provided in [49]. Later, Cheng and Shu [27] proposed a new DG–method to solve directly time-dependent
equations with higher-order spatial derivatives without the introduction of the auxiliary variables required
by the LDG formulation. A key ingredient in this more recent method is a projection w̃ of the solution u of
(1.1) that is consistent with the dispersive term. This projection plays the role in approximating solutions
of dispersive equations that the elliptic projection does in the context of parabolic or hyperbolic equations.

In the present paper, we construct a similar projection w of the solution u which, in addition to being
consistent with the dispersive term, has the added advantage of being conservative. The new projection w
is used in the derivation of error estimates. Unlike w̃, the projection w is global. Indeed, this is the way
conservation is enforced. The non-locality of the projection leads to interesting analytical complications and
necessitates the imposition of some additional assumptions on the mesh and the degree of the polynomials
used in the approximation (see below). While one of these assumptions appears to be important in our
context, the other does not. In any case, they are not particularly restrictive as far as simulating solutions
of equations like (1.1) is concerned.

It is worthwhile commenting on the overarching intuition that guided this work. As mentioned already,
the technical starting point was the methods introduced in [27]. A drawback of the ideas developed in this
work is that the resulting schemes are dissipative (discussed in more detail presently). Dissipative schemes
have an inherent problem with traveling waves possessing finite energy, as such methods constantly run
down energy. In the case of nonlinear, dispersive wave equations, traveling waves subsist on a balance
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being struck between nonlinear steepening and dispersive spreading. Dissipation destroys this balance. For
the Generalized Korteweg–de Vries equations (GKdV–equations henceforth), it is known for a fact in case
p = 1, 2 that arbitrary, finite-energy initial data resolves into traveling waves and a dispersive component.
Numerical evidence (see again [21, 22]) indicates this to be true for other values of p as well. Thus, dissipation
introduced by the numerical scheme not only directly degrades accuracy, but it may result in the breakdown
of the entire structure of a solution by destroying the traveling waves. In so far as this heuristic discussion
has validity, it would appear wise to develop schemes that can integrate such traveling-wave solutions very
accurately.

For the readers’ benefit, the outline of the paper is sketched. Section 2 is devoted to notation and
other preliminary material including the function spaces that are relevant to the analysis that follows. The
discontinuous finite element spaces V q

h of degree q ≥ 2 defined on a mesh Th are then introduced. Based
on these finite element spaces, conservative bilinear and multi-linear forms corresponding, respectively, to
the dispersive and nonlinear terms in (1.1) can then be specified. These forms define operators which lead
directly to a semi-discrete approximation (an approximation where the spatial variable is discrete, but the
temporal variable remains continuous). The section is concluded by establishing existence and uniqueness
of solutions to the semi-discrete approximations.

In Section 3, the projection w which is consistent with the weak form for the dispersive term is constructed.
It plays a central role in the subsequent development. As mentioned, the projection w differs from the
projection w̃ of [27] in that it maintains a conservative property that is enjoyed by the fully continuous
problem. Propositions 3.1 and 3.2 constitute the technical core of the paper. Highlights of their content
include the following.

(i) Existence of the projection w is proved under the slightly unusual assumptions that the degree q of
the polynomials in the discontinuous finite element spaces is even and that the number of cells in
the mesh Th is odd.

(ii) Under the assumption that the number of adjacent cells of different length remains bounded as h ↓ 0,
it is shown that the projections w are optimally close to solutions u of the equation (1.1)

The technical requirements appearing in these lemmas stem from the global nature of the projection w.
Section 5 contains numerical experiments designed in part to ascertain whether these conditions are essential
or artifacts of the proofs. The evidence collected suggests somewhat surprisingly that the parity of q has
an effect on the convergence rates. The convergence rate for even q appears to be q + 1 whilst, for odd
values of q, the rate seems to be q. The weak regularity assumption on the mesh also has a bearing upon
the numerical accuracy, whereas the requirement that the number of cells in Th be odd was apparently not
important as far as convergence rates and accuracy are concerned.

The principal convergence results are contained in Proposition 3.3 and Theorem 3.1. It is shown there
that, under the above mentioned conditions, the semi-discrete approximation converges to the solution u
at the rate O(hq) as h ↓ 0. This is suboptimal by one power of h, an effect owing to the treatment of the
nonlinear term. This is the same rate obtained by Cheng and Shu for q > 2. When q = 2, we obtain here

that the convergence is O(h2), whereas in [27] the error was only proved to be O(h
3
2 ) as h ↓ 0.

In Section 4, some previously analyzed, semi-discrete dissipative schemes are reviewed and contrasted with
the present method. There is also introduced a conservative, second order, temporal integration scheme.
Applying this to a semi-discrete approximation yields a fully discrete numerical scheme.

A C–language program implementing the fully discrete scheme is used in Section 5 to effect the afore-
mentioned numerical experiments. The outcomes of the experiments are discussed in some detail. A brief
summary together with perspectives for future research concludes the paper.

2. The Numerical Approximation

Details of the numerical approximations are now set forth. This begins with a discussion of the spatial
discretization which leads directly to a semi-discrete approximation of the continuous problem.
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2.1. The meshes. Let Th denote a partition of the real interval [0, 1] of the form 0 = x0 < x1 < · · · <
xM = 1. We will also say that Th is a mesh on [0, 1]. The points xm are called nodes while the intervals
Im = [xm, xm+1] will be referred to as cells. The notation x−m = x+

m = xm will be useful in taking account,
respectively, of left- and right-hand limits of discontinuous functions. The caveat followed throughout is
that x−0 = x−M and x+

M = x+
0 corresponding to the underlying spatial periodicity of the solutions being

approximated.
The meshes Th are taken to be quasi-uniform. This means that if hm = xm+1 − xm and h = hmax =

maxm hm, then there is a positive constant c such that, for all m,

(2.1) 0 < c ≤ hm

h
.

Additional constraints stemming from technical considerations are imposed on the mesh in Proposition 3.1.

2.2. Function spaces. In addition to the usual Sobolev spaces W s,p = W s,p([0, 1]), repeated use will be
made of the so-called broken Sobolev spacesW s,p(Th). These are the finite Cartesian products ΠI∈Th

W s,p(I).
Note that if sp > 1, the elements of W s,p(Th) are uniformly continuous when restricted to a given cell, but
they may be discontinuous across nodes. For the purpose of quantifying these potential discontinuities,
introduce the following notation: for v ∈W s,p(Th), s ≥ 1, let v+

m and v−m denote the right-hand and left-hand
limits, respectively, of v at the node xm. The jump [vm] (sometimes written [v]m) of v at xm is defined as
v+

m − v−m. Similarly, the average {vm} (also denoted {v}m) of v at xm is 1
2 (v+

m + v−m). These are all standard
notations in the context of DG–methods. In all cases, the definitions are meant to adhere to the convention
that v−0 = v−M and v+

M = v+
0 . Norms in the Sobolev classes W s,p will be denoted ‖ · ‖W s,p or ‖ · ‖W s,p(I)

when the interval I might be in doubt. In case the interval I is clear from context, we will sometimes use
an unadorned norm ‖ · ‖ to connote the L2(I)–norm.

Use will also be made of the classes Lp([0, T ];W s,r) of functions u = u(x, t) which are measurable mappings
from [0, T ] into W s,r and such that

‖u‖Lp([0,T ];W s,r) =

(

∫ T

0

‖u(·, τ)‖p
W s,r dτ

)1/p

<∞,

with the usual modification if p = ∞.
The following, basic embedding inequality (see [4]) will find frequent use in our development. For v ∈

H1(Th) = W 1,2(Th) and any cell I ∈ Th, there is a constant c which is independent of the cell I such that

(2.2) ‖v‖L∞(I) ≤ c
(

h
−1/2
I ‖v‖L2(I) + h

1/2
I ‖vx‖L2(I)

)

,

where hI is the length of I. Indeed, the dependence of (2.2) on hI is easily ascertained by a simple scaling
argument. Note that (2.2) may also be viewed as a trace inequality.

2.3. The discontinuous polynomial spaces. The spatial approximations will be sought in the space of
discontinuous, piecewise polynomial functions V q

h subordinate to the mesh Th, viz.

V q
h = {v | v

∣

∣

Im
∈ Pq(Im), m = 1, · · · ,M}

where Pq is the space of polynomials of degree q and q ≥ 2. The spaces V q
h have well known, local approxi-

mation and inverse properties which are spelled out here for convenience (cf. [11], [25]). Let q ≥ 2 be fixed
and let i, j be such that 0 ≤ j ≤ i ≤ q+ 1. Then, for any cell I and any v in Hj(I), there exists a χ ∈ Pq(I)
such that

(2.3) |v − χ|j,I ≤ chi−j
I |v|i,I ,

where |v|i,I denotes the seminorm ‖v(i)‖L2(I) on the Sobolev space Hi(I) and the constant c is independent

of hI . The above property continues to hold if the Lp–based Sobolev spaces replace the L2–based classes
Hj . In particular, it holds for the L∞ norm, which is to say, with i, j as above, there is a χ ∈ Pq(I) such
that

(2.4) |∂j
x(v − χ)|L∞(I) ≤ chi−j

I |∂i
xv|L∞(I).
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The equally well-known inverse inequality

(2.5) |χ|j,I ≤ ch−j
I |χ|0,I ,

for all χ ∈ Pq(I) (see [25]) will also find frequent use.

2.4. The weak formulation. Multiplying the nonlinear term in the GKdV–equation (1.1) by v ∈ H1(Th),
integrating the result over [0, 1] and integrating by parts cell by cell leads to the formula

∑

I∈Th

((up+1)x, v)I = −
∑

I∈Th

(up+1, vx)I +

M−1
∑

m=0

[

(u−m+1)
p+1 v−m+1 − (u+

m)p+1 v+
m

]

= −
∑

I∈Th

(up+1, vx)I −
M−1
∑

m=0

[up+1v]m.(2.6)

Notice that the only way information (fluxes) can be transmitted between cells is through the jumps [f(u)v]m
where f(u) = up+1. Information will be transmitted correctly if u is smooth, e.g. if u is the solution of the
partial differential equation being studied here. However, if u is a discontinuous approximation of a solution
of (1.1), then the above formula need not feature correct transmission of information across the nodes and
so f(u) = up+1 cannot be accurately reconstructed from its projection on the piecewise polynomial spaces.

To counter this problem, it is standard to replace f in the jump terms by a suitable function f̂ which will
insure the crucial requirement of consistency (correct transmission of information). Of course, it must also

be the case that the choice of f̂ will guarantee stability of the numerical scheme. In the present development,

the choice of f̂ is

(2.7) f̂(u+
m, u

−
m) =

1

p+ 2

p+1
∑

j=0

(u+
m)p+1−j(u−m)j .

This version of f̂ leads directly to the nonlinear operator N : H1(Th) → V q
h whose L2([0, 1])-inner product

with any v ∈ H1(Th) is

(2.8) (N (u), v) = −
∑

I∈Th

(up+1, vx)I −
M−1
∑

m=0

f̂(u+
m, u

−
m) [vm].

The operator N is well defined by virtue of the Riesz Representation Theorem. The following, important
consistency result obtains for this operator.

Lemma 2.1. (i) The nonlinear term defined by (2.8) with the choice of f̂ in (2.7) is consistent in the sense
that for all 1-periodic functions u in C1([0, 1]), there holds

(2.9) (N (u), v) = ((up+1)x, v), ∀v ∈ H1(Th).

(ii) The nonlinear term defined by (2.8) with the choice of f̂ in (2.7) is conservative in the sense that

(2.10) (N (v), v) = 0 ∀v ∈ H1(Th).

Proof. (i) For u as specified above,

f̂(u+
m, u

−
m) = up+1(xm), m = 0, · · · ,M − 1.

Thus,

f̂(u+
m, u

−
m)[vm] = [up+1v]m, m = 0, · · · ,M − 1,

and (2.9) follows from (2.6).
(ii) To establish (2.10), it is suffices to notice that, on one hand,

f̂(v+
m, v

−
m)[v]m =

1

p+ 2
[vp+2]m, m = 0, · · · ,M − 1,
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and on the other, that
∑

I∈Th

(vp+1, vx)I = − 1

p+ 2

M−1
∑

m=0

[vp+2]m.

The proof of the Lemma is complete. �

To derive a bilinear form for the dispersive term, perform integration by parts twice to obtain

(2.11)
∑

I∈Th

(uxxx, v)I =
∑

I∈Th

(ux, vxx)I −
M−1
∑

m=0

[uxxv]m +

M−1
∑

m=0

[uxvx]m.

There are many identities that can be used to express the jump terms appearing in (2.11). Indeed, for
φ, ψ ∈ H2(Th), we list three, among the possible ways of expressing [φψ]m, viz.

(2.12) [φψ]m =























φ+
m[ψ]m + [φ]mψ

−
m,

φ−m[ψ]m + [φ]mψ
+
m,

{φ}m[ψ]m + [φ]m{ψ}m.

These identities must be put into a context that ensures proper transmission of information (fluxes) across
the nodes as well as stability and consistency with the IBVP (1.1). To this end, define the operator D :
H2(Th) → V q

h by

(2.13) (D(u), v) =
∑

I∈Th

(ux, vxx)I −
M−1
∑

m=0

(

u+
xx[v]m − [u]mv

+
xx

)

+
M−1
∑

m=0

{ux}m[vx]m.

The next lemma delineates crucial properties of D that justify the particular form chosen in (2.13).

Lemma 2.2. (i) The operator D defined by (2.13) is consistent in the sense that

(2.14) (D(u), v) = (uxxx, v), ∀v ∈ H3(Th),

is valid for all 1-periodic functions u in C2([0, 1]) ∩H3(Th).
(ii) The operator D defined by (2.13) is skew-adjoint, which is to say,

(2.15) (D(v), v) = 0 ∀v ∈ H3(Th).

Proof. (i) With u as specified, [u]m, [ux]m and [uxx]m vanish. Thus, using the first identity in the display
(2.12), we have [uxxv]m = u+

xx[v]m + [uxx]mv
−
m = u+

xx[v]m − [u]mv
+
xx. Similarly, from the third identity in

(2.12), one sees that [uxvx]m = {ux}m[vx]m + [ux]m{vx}m = {ux}m[vx]m. The conclusion now follows from
(2.11).

(ii) To establish (2.15), it is suffices to notice that the second sum on the right-hand side of (2.13) vanishes
when v = u and that

∑

I∈Th

(vx, vxx)I =
1

2

∑

I∈Th

∫

I

∂x(vx)2 dx = −1

2

M−1
∑

m=0

[v2
x]m = −

M−1
∑

m=0

{vx}m[vx]m.

The proof of the Lemma is complete. �

The semi-discrete approximation uh : [0, T ] → V q
h of the solution u of (1.1) is defined in terms of N and

D by

(uht, v) + (N (uh), v) + ǫ(D(uh), v) = 0, ∀v ∈ V q
h , t ∈ [0, T ],(2.16)

uh(0) = Pu0,

where P is a projection operator into V q
h . Possible choices for Pu0 are the L2-projection of u0 into V q

h or the
Lagrange interpolant of u0 in V q

h . For both of these choices, the optimal estimate ‖u0 − uh(0)‖ = O(hq+1)
as h ↓ 0 obtains.
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Expanding uh in terms of a basis for the finite-dimensional space V q
h , it is readily seen that (2.16) is

equivalent to a system whose independent variables are ordinary differential equations in the time-dependent
coefficients of the expansion. It is immediate that this system has existence and uniqueness of a solution
corresponding to given initial data Pu0, at least locally in time. Global existence of the semi-discrete
approximation will ensue as a byproduct of the following conservation law which implies appropriate a priori
bounds.

Theorem 2.1. The semi-discrete approximation uh satisfies

(2.17) ‖uh(t)‖ = ‖uh(0)‖
for all t ≥ 0 for which the solution exists.

Proof. Letting v = uh in (2.16) leads to

1

2

d

dt
‖uh(t)‖ + (N (uh), uh) + ǫ(D(uh), uh) = 0.

The result follows at once from (2.10) and (2.15). �

Since all norms on V q
h are equivalent, the above result entails that ‖uh‖L∞ is bounded for all t > 0 by

a constant, which may of course depend on h. Since the restriction of f to the space-time cylinder that
contains uh is locally Lipschitzian, the existence of uh for all time follows.

3. Error estimates

For parabolic and hyperbolic equations, a centrally important tool used in deriving error estimates has
been the so-called Elliptic Projection of the time-dependent solution u. Since the third derivative operator
lacks the positivity property of elliptic operators, devising an appropriate projection for it turns out to be a
little more subtle.

In an important contribution, Cheng and Shu constructed in [27] projection operators for a class of
equations with third- and higher-order derivatives. One such projection, suitable for the GKdV–equation, is
defined in the following manner. For u ∈ H3(Th), the projection w̃ ∈ V q

h is specified by the conditions

(3.1)

(w̃, v)I = (u, v)I , ∀v ∈ Pq−3(I), I ∈ Th,
w̃(x−m) = u(x−m), m = 1, · · · ,M,
w̃x(x+

m) = ux(x+
m), m = 0, · · · ,M − 1,

w̃xx(x+
m) = uxx(x+

m), m = 0, · · · ,M − 1.

Note that for q = 2 the first condition is vacuous. Also, the definition is local to each cell. Hence, classical
finite element approximation theory (see e.g. [25], [28]) can be brought to bear to show that w̃ is indeed well
defined and that it is an optimal approximation to u in the sense that

(3.2) ‖u− w̃‖W j,p(I) ≤ chq+1−j
I |u|W q+1,p(I), I ∈ Th, j = 0, 1, p = 2,∞.

where hI is the length of cell I. The projection w̃ defined by (3.1) is not consistent with the conservative
approximation D defined by (2.13). That is to say, it is not the case that (D(w̃), v) = (D(u), v), ∀v ∈ V q

h .
This fact led us to define another projection w of u determined by the requirements

(3.3)

(w, v)I = (u, v)I , ∀v ∈ Pq−3(I), I ∈ Th,
w(x−m) = u(x−m), m = 1, · · · ,M,
{wx}m = {ux}m = ux(xm), m = 0, · · · ,M − 1, or m = 1, · · · ,M,
wxx(x+

m) = uxx(x+
m), m = 0, · · · ,M − 1.

Note that the only difference between (3.3) and (3.1) is in the third equation. This seemingly minor change
causes the construction of w and the analysis of its properties to be more demanding. In fact, at present,
we are able to show that w exists only for even values of q ≥ 2. Furthermore, the optimal approximation
properties of w require the imposition of some restrictions on the mesh Th which will be spelled out later.
Part of the difficulty resides in the fact that the averages {wx}m force a coupling across cells which makes
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the definition of w a global one. However, it is straightforward to show that this new projection, when it
exists, is consistent with the operator D.

Lemma 3.1. Let u be smooth and 1-periodic. The projection w defined by (3.3) satisfies

(3.4) (D(w), v) = (D(u), v), ∀v ∈ V q
h .

Proof. Integrating the term
∑

I∈Th
(wx, vxx)I in (2.13) by parts and using the second identity in (2.12) for

the jumps [wvxx]m, it follows at once that

(D(w), v) = −
∑

I∈Th

(w, vxxx)I −
M−1
∑

m=0

w+
xx(xm)[v]m +

M−1
∑

m=0

{wx}m[vx]m −
M−1
∑

m=0

w−[vxx]m.

The conclusion of the lemma now follows from the definition of w. �

Proposition 3.1. Suppose u is sufficiently smooth and periodic. Further assume that q ≥ 2 is even and
that the number of cells in Th is odd. Then, there exists a unique w satisfying the conditions (3.3). The
projection w has the approximation properties

(3.5) ‖u− w‖W j,p(I) ≤ ch1−j
I





∑

I∈T N
h

hq
I‖u‖W q+1,∞(I) +

∑

I∈Th\T N
h

hq+1
I ‖u‖W q+2,∞(I)



 j = 0, 1, p = 2,∞,

for a constant c independent of I, where T N
h is the set of cells whose length differs from at least one of its

two immediate neighbors.

Proof. We assume that q ≥ 4. The case q = 2 falls to a similar, somewhat easier argument.
Let w̃ and w be defined by (3.1) and (3.3), respectively, and let e = w − w̃. The quantity e satisfies the

conditions

(3.6)

(e, v)I = 0, ∀v ∈ Pq−3(I), ∀I ∈ Th,
e(x−m) = 0, m = 1, · · · ,M,
ex(x−m) + ex(x+

m) = ux(xm) − w̃x(x−m), m = 0, · · · ,M − 1, or m = 1, · · · ,M,
exx(x+

m) = 0, m = 0, · · · ,M − 1.

For ℓ ≥ 0, let Pℓ(t), be the usual Legendre polynomials that are orthogonal on [−1, 1], normalized so that
Pℓ(1) = 1. Given a cell Im = [xm, xm+1], consider the affine map

(3.7) x = x(ξ) =
hm

2
ξ +

xm + xm+1

2
, −1 ≤ ξ ≤ 1,

that maps [−1, 1] onto Im. The family of rescaled Legendre polynomials Pm,ℓ(x) is defined by Pm,ℓ(x) = Pℓ(ξ)
where x and ξ are related by (3.7). The polynomials Pm,ℓ are orthogonal with respect to the L2-inner product
on Im.

Let em denote the restriction of e to Im. The em’s can be expressed in terms of the rescaled Legendre
polynomials thusly;

em(x) =

q
∑

ℓ=0

αm,ℓPm,ℓ(x) =

q
∑

ℓ=0

αm,ℓPℓ(ξ), m = 0, · · · ,M − 1.

The first equation in (3.6) and the orthogonality of the Legendre polynomials imply that

(3.8) αm,ℓ = 0, ℓ = 0, · · · , q − 3, m = 0, · · · ,M − 1.

The second and fourth equations in display (3.6) my be used to solve for αm,q−2 and αm,q−1 in terms of
αm,q To accomplish this, use the identities

P ′
ℓ(±1) =

1

2
(±1)ℓ−1ℓ(ℓ+ 1), ℓ = 1, · · · ,(3.9)

P ′′
ℓ (±1) =

1

8
(±1)ℓ(ℓ − 1)ℓ(ℓ+ 1)(ℓ+ 2), ℓ = 2, · · · ,(3.10)
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which are easily proved by induction using the well-known recursion relations possessed by the Legendre
polynomials.

From the second relation in (3.6), and taking account of the affine mapping defined in (3.7) and the
normalization Pℓ(1) = 1, there follows immediately that

(3.11) e(x−m) = em−1(xm) = αm−1,q−2 + αm−1,q−1 + αm−1,q = 0, m = 1, · · · ,M.

Similarly the fourth equation may be used to deduce that

exx(x+
m) = (q − 3)(q − 2)(q − 1)q αm,q−2 − (q − 2)(q − 1)q(q + 1)αm,q−1

+(q − 1)q(q + 1)(q + 2)αm,q = 0, m = 0, · · · ,M − 1.(3.12)

Note that the factors 1
8 and h−2

m which arises from taking the second derivative have been suppressed since
they are of no importance when exx is set equal to zero. The last two equations imply that

(3.13) αm,q−2 = − q(q + 1)

(q − 2)(q − 1)
αm,q and αm,q−1 =

2(2q − 1)

(q − 2)(q − 1)
αm,q, m = 0, · · · ,M − 1.

From the normalizations (3.9) and the third equation of (3.6), there obtains

1
hℓ−1

(

(q − 2)(q − 1)αℓ−1,q−2 + (q − 1)q αℓ−1,q−1 + q(q + 1)αℓ−1,q

)

(3.14)

+ 1
hℓ

(

− (q − 2)(q − 1)αℓ,q−2 + (q − 1)q αℓ,q−1 − q(q + 1)αℓ,q

)

= ux(xℓ) − w̃x(x−ℓ ).

for m = 1, · · · ,M and ℓ ≡ m mod M . Using the result of (3.13) in (3.14) leads to the system of equations

(3.15) α̂ℓ−1,q + α̂ℓ,q =
q − 2

2q(2q − 1)

(

ux(xℓ) − w̃x(x−ℓ )
)

, m = 1, · · · ,M, ℓ ≡ m mod M,

where α̂m,q = αm,q/hm. The coefficient matrix of this system is an M ×M circulant matrix with first row
[1, 1, 0, · · · , 0]. This matrix is invertible if and only if M is odd, and in this case, its inverse is also circulant,
having 1

2 [1,−1, 1,−1, · · · ,−1, 1] as its first row. Thus, if ηm = ux(xm+1) − w̃x(x−m+1), m = 0, · · · ,M − 1,
with ηM := η0, then

(3.16) α̂m,q =
q − 2

4q(2q − 1)

(

ηm −
∑

ℓ∈σm

(

ηℓ − ηℓ+1

)

)

m = 0, · · · ,M − 1,

where the index set σm is such that each ηℓ appears exactly once in the expression on the right-hand side of
this formula.

It is clear from the inequalities in (3.2) that |ηm| ≤ chq
m‖uq+1‖L∞(Im). Proposition 3.2 (see below) also

shows that |ηℓ − ηℓ+1| ≤ chq+1
ℓ ‖uq+2‖L∞(Iℓ∪Iℓ+1) whenever hℓ = hℓ+1. It then follows that

(3.17) |αm,q| ≤ chm

{

hq
m‖uq+1‖L∞(Im) +

∑

I∈T N
h

hq
I‖uq+1‖L∞(I) +

∑

I∈Th\T N
h

hq+1
I ‖uq+2‖L∞(I)

}

for m = 0, · · · ,M − 1. Now in view of (3.8) and (3.13), all the αm,ℓ’s satisfy (3.17). Finally, since
‖Pℓ‖L∞(0,1) = ‖Pm,ℓ‖L∞(Im) ≤ c for some constant depending only on ℓ, the estimate (3.5) for p = ∞, j = 0
follows from (3.2) and the triangle inequality. The case p = 2, j = 0 follows as a direct consequence. The
remaining cases p = 2,∞, j = 1 follow in turn from the bound ‖P ′

m,ℓ‖L∞(Im) ≤ ch−1
m . This concludes the

proof. �

Remark 3.1. Commentary is in order concerning the conditions imposed in the previous result.

(i) In contrast to the estimate (3.2) of the Cheng-Shu projection (3.1), the bound (3.5) is not fully local
due to the nonlocal nature of the projection. Also, it is suboptimal in terms of the regularity required
in the proof.

(ii) For odd values of q, the left-hand side of (3.15) changes to α̂ℓ−1,q − α̂ℓ,q. The resulting circulant
matrix is singular for all values of M . This is why q is presumed to be even.
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(iii) Notice that the proof of Propsition 3.1 depends upon the number M of cells being odd. This is because
of the periodicity required of the projection w. However, note also that the approximation uh can
be determined whether or not M is odd. Obviously, there is no problem connected with creating a
mesh Th with an odd number M of cells. Moreover, this property is easily preserved in a process of
repeated refinement or coarsening at later times in the temporal integration. Numerical experiments
indicate that the convergence rates are the same, whether or not the mesh possesses an odd number
of cells and so we have tentatively concluded this restriction is simply an artifact of our proof, which
relies upon the projection.

(iv) For a uniform mesh, the parameter ν = #{T N
h }, the number of cells at least one of whose immediate

neighbors have different lengths than does the cell in question, is zero and so the estimate (3.5)
becomes optimal. On the other extreme, ν is bounded by the total number M of cells in Th, in which
case the estimate (3.5) becomes completely suboptimal. However it is possible, in fact straightforward,
to achieve extremely local refinements while at the same time keeping ν quite small. This can be
accomplished by implementing refinement in “patches”, by which we mean a refinement wherein
various subsets of contiguous cells are refined uniformly. This scheme of refinement is very well
suited to the simulation of localized singularities.

Proposition 3.2. If w̃ is the projection of u defined by (3.1), then there are values ζm,j , j = 0, · · · , q − 2
belonging to the cell Im such that

(3.18) ηm = ux(xm+1) − w̃x(x−m+1) = hq
m

q−2
∑

j=0

ρju
(q+1)(ζm,j), m = 0, · · · ,M − 1,

where the constants ρj , j = 0, · · · , q − 2 depend only on q. Moreover, it transpires that

(3.19) |ηm − ηm+1| ≤ chq+1
m ‖uq+2‖L∞(Im∪Im+1) whenever hm = hm+1.

Proof. Consider the Legendre polynomial expansion

w̃m(x) = w̃(x)|Im
=

q
∑

j=0

αm,jPm,j(x),

of w̃ on Im and the Taylor expansion

um(x) = u(x)|Im
=

q
∑

j=0

u(j)(xm)

j!
(x− xm)j +

u(q+1)(ξm(x))

(q + 1)!
(x− xm)q+1,

of u around xm, where ξm = ξm(x) lies in Im. The first equation in (3.1) together with the preceding two
formulas leads to

∫

Im

w̃(x)(x − xm)ldx =

q
∑

j=0

αm,j

∫

Im

Pm,j(x)(x − xm)ldx(3.20)

=

∫

Im

u(x)(x− xm)ldx =

q
∑

j=0

u(j)(xm)

j!(j + l + 1)
hj+l+1

m +
u(q+1)(ζm,l)

(q + 1)!(q + l + 2)
hq+l+2

m , l = 0, · · · , q − 3,

where ζm,l is a point in cell Im obtained by utilizing the Mean Value Theorem for integrals. Using a change
of variables related to the affine map (3.7) yields

∫

Im

Pm,j(x)(x − xm)ldx =

(

hm

2

)l+1 ∫ 1

−1

Pj(ξ)(ξ + 1)ldξ =















0 l < j

(l!)2hl+1
m

(l − j)!(l + j + 1)!
l ≥ j

,

where the last equality is based on Rodrigues’ formula that states Pj(ξ) = 1
2jj!

dj

dξj (ξ2 − 1)j and repeated use

of integration by parts. Hence, the matrix whose elements are
∫

Im
Pm,j(x)(x − xm)ldx is lower triangular
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and invertible. Consequently, (3.20) may be rewritten as

(3.21) αm,l =

q
∑

j=0

βj,lh
j
mu

(j)(xm) + hq+1
m

q−3
∑

j=0

γj,lu
(q+1)(ζm,j), l = 0, · · · , q − 3.

where βj,l and γj,l are constants that depend only on q.
The last three equations of (3.1), combined with the identities (3.9) for the Legendre polynomials, allow

one to derive the formulas

w̃(x−m+1) =

q
∑

j=0

αm,j =

q
∑

j=0

u(j)(xm)

j!
hj

m +
u(q+1)(ζm,q−2)

(q + 1)!
hq+1

m = u(xm+1),

w̃x(x+
m) =

q
∑

j=0

αm,jP
′
m,j(xm) =

2

hm

q
∑

j=0

αm,jP
′
j(−1) =

1

hm

q
∑

j=1

αm,j(−1)j−1j(j + 1) = ux(xm),

w̃xx(x+
m) =

q
∑

j=0

αm,jP
′′
m,j(xm) =

4

h2
m

q
∑

j=0

αm,jP
′′
j (−1) =

1

2h2
m

q
∑

j=1

αm,j(−1)j(j − 1)j(j + 1)(j + 2) = uxx(xm).

These equations can be written as the linear system




1 1 1
−(q − 2)(q − 1) (q − 1)q −q(q + 1)

(q − 3)(q − 2)(q − 1)q −(q − 2)(q − 1)q(q + 1) (q − 1)q(q + 1)(q + 2)









αm,q−2

αm,q−1

αm,q





=







∑q
j=0

u(j)(xm)
j! hj

m +
u(q+1)(ζm,q−2)

(q+1)! hq+1
m

hmux(xm)
2h2

muxx(xm)






−







∑q−3
j=0 αm,j

∑q−3
j=1 αm,j(−1)j−1j(j + 1)

∑q−3
j=1 αm,j(−1)j(j − 1)j(j + 1)(j + 2)







for the unknowns αm,q−2, αm,q−1 and αm,q. The determinant of this 3 × 3 matrix is 4q2(q − 1)2(2q − 1),
hence it is invertible and we can therefore write αm,l in the form

αm,l =

q
∑

j=0

βj,lh
j
mu

(j)(xm) + hq+1
m

q−2
∑

j=0

γj,lu
(q+1)(ζm,j), l = q − 2, q − 1, q.

It is then concluded that the equation

w̃x(x−m+1) =

q
∑

j=0

αm,jP
′
m,j(xm+1) =

2

hm

q
∑

j=0

αm,jP
′
j(1) =

1

hm

q
∑

j=1

αm,jj(j + 1)

=
1

hm

q
∑

j=0

ǫjh
j
mu

(j)(xm) + hq
m

q−2
∑

j=0

ρju
(q+1)(ζm,j),(3.22)

holds, where ǫj and ρj are constants that depend only on q. Since w̃ is an optimal approximation to u, (see
(3.2)) it appears that

w̃x(x−m+1) − ux(xm+1) = O(hq
m) as hm ↓ 0.

For this relation to hold, the first term on the right-hand side of (3.22) must equal ux(xm+1). This establishes
(3.18). Finally, when hm = hm+1, (3.18) allows the use of the Mean-Value Theorem to extract the additional
factor of hm. This concludes the proof. �

Attention is now turned to estimating the error ‖uh(t) − u(t)‖. The principal component of this task is
the estimation of uh(t) − w(t).

Proposition 3.3. Assume that the conditions of Proposition 3.1 hold and let ζ := uh−w, η := w−u where
w is the projection of u defined by (3.3). Suppose that for some t⋆ ∈ (0, T ], it transpires that

(3.23) h−1‖ζ(t)‖L∞(0,1) + ‖ζx(t)‖L∞(Th) ≤ 1, ∀ t ∈ [0, t⋆].
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Then, for the same range t ∈ [0, t∗], the inequality

(3.24) ‖ζ(t)‖ ≤ Cect
(

‖ζ(0)‖ + hq
)

,

holds true, where the constants C and c depend on p and ‖u‖L∞([0,t∗];W q+2,∞(0,1)).

Proof. It follows from (1.1), (2.16), (2.9) and (2.14) that

(3.25) (ζt, v) + (ηt, v) + (N (uh) −N (w), v) + (N (w) −N (u), v) + ǫ(D(ζ), v) = 0, ∀v ∈ V q
h .

In view of the skew-adjointness of D expressed in (2.15), if we set v = ζ in (3.25), there appears the differential
equation

(3.26)
1

2

d

dt
‖ζ‖2 + (ηt, ζ) + (N (uh) −N (w), ζ) + (N (w) −N (u), ζ) = 0.

To begin, we observe that the mapping u→ w := Pu defined by(3.3) is linear and thus commutes with the
time differentiation operator, viz. wt = Put. Hence Proposition 3.1 implies that ‖wt −ut‖ ≤ chq, and so the
bound

(3.27) |(ηt, ζ)| ≤ chq‖ζ‖

emerges. The third and fourth terms on the left-hand side of (3.26) will be estimated separately.

Part I: Estimation of (N (uh) −N (w), ζ).

In detail, the term (N (uh) −N (w), ζ) is given by

(N (uh) −N (w), ζ) = −
∑

I∈Th

(up+1
h − wp+1, ζx)I

− 1

p+ 2

M−1
∑

m=0

p+1
∑

j=0

(

(u+
h )p+1−j

m (u−h )j
m − (w+)p+1−j

m (w−)j
m

)

[ζ]m(3.28)

:= E1 + E2.

Since up+1
h − wp+1 = ψζ with ψ :=

∑p
j=0 u

p−j
h wj , integrating by parts yields

(3.29) E1 =
1

2

(

∑

I∈Th

(ψx, ζ
2)I +

M−1
∑

m=0

[ψ ζ2]m

)

:= E(1)
1 + E(2)

1 .

Because uh = ζ + w, we can write ψ =
∑p

j=0

∑p−j
ℓ=0

(

p−j
ℓ

)

ζℓwp−ℓ. Hence, it follows from assumption (3.23)
that

(3.30)
∣

∣E(1)
1

∣

∣ ≤ c‖ζ‖2.

for some constant c depending only on p and u (through w).

It remains to obtain suitable bounds on the quantities E(2)
1 and E2. Both these terms contain powers of

the form ζℓ, ℓ = 2, · · · , p+ 2 with coefficients involving w. Using the trace/embedding inequality (2.2), the
inverse inequality (2.5) and assumption (3.23) provides the inequalities

(3.31) |ζ±m|ℓ ≤ c|ζ±m|ℓ−2h−1
m ‖ζ‖2

Ĩ
≤ c‖ζ‖2

Ĩ
, for ℓ ≥ 3,

where Ĩ is the union of the two cells to the right and left of the node xm. To obtain a similar inequality for

the quadratic powers of ζ requires a little more effort. The strategy is to combine parts of E(2)
1 and E2 to

produce terms of the form [w]ζ2 with the jumps [w] providing the needed extra degree of accuracy. What is



CONSERVATIVE DG METHODS FOR THE GKDV EQUATION 13

left after this sortie falls to the analysis leading to (3.35). In more detail, write

E(2)
1 =

1

2

M−1
∑

m=0

p
∑

j=0

p−j
∑

ℓ=0

(

p− j

ℓ

)(

(w+
m)p−ℓ(ζ+

m)ℓ+2 − (w−
m)p−ℓ(ζ−m)ℓ+2

)

=
1

2
(p+ 1)

M−1
∑

m=0

(

(w+
m)p(ζ+

m)2 − (w−
m)p(ζ−m)2

)

+ E(4)
1 := E(3)

1 + E(4)
1 ,(3.32)

where E(4)
1 is an expression containing cubic and higher powers of ζ+

m, ζ
−
m with coefficients depending on p

and w. Just as in the argument leading to (3.31), it follows straightaway that

(3.33)
∣

∣E(4)
1

∣

∣ ≤ c‖ζ‖2.

Attention is turned now to E2. As in (3.32), write

E2 =
−1

p+ 2

M−1
∑

m=0

p+1
∑

j=0

p+1−j
∑

ℓ=0

j
∑

k=0
k+ℓ>0

(

p+ 1 − j

ℓ

)(

j

k

)

(ζ+
m)ℓ(ζ−m)k(w+

m)p+1−j−ℓ(w−
m)j−k [ζm]

=
−1

p+ 2

M−1
∑

m=0

p
∑

j=0

(

(p+ 1 − j)(w+
m)p−j(w−

m)jζ+
m + (j + 1)(w+

m)p−j(w−
m)jζ−m

)

[ζm] + E(2)
2(3.34)

:= E(1)
2 + E(2)

2 ,

where E(2)
2 is an expression containing cubic and higher powers of ζ+

m, ζ
−
m with coefficients depending on p

and w, and which therefore obeys the estimate

(3.35)
∣

∣E(2)
2

∣

∣ ≤ c‖ζ‖2.

What is left now is E(3)
1 and E(1)

2 , which are estimated together. Indeed, noting that
∑p

j=0(p + 1 − j) =
∑p

j=0(j + 1) = 1
2 (p+ 1)(p+ 2), it follows that

E(3)
1 + E(1)

2 =
1

p+ 2

M−1
∑

m=0

p
∑

j=0

(

(p+ 1 − j)
(

(w+
m)p − (w+

m)p−j(w−
m)j
)

(ζ+
m)2

+(p− 2j)(w+
m)p−j(w−

m)jζ+
mζ

−
m − (j + 1)

(

(w−
m)p − (w+

m)p−j(w−
m)j
)

(ζ−m)2
)

.(3.36)

In view of the range of the index j, it is clear that the w terms in the first and third sums can be expressed,
independently of each other, as gj(w

+, w−)[w] for some functions gj . On the other hand, in view of the
range of values of p−2j for j = 0, · · · , p, the second sum is also seen to contain terms, each of which has the
jump [w] as a factor. On the other hand, (3.5) implies that |[w]m| = |[u − w]m| ≤ chq+1

m . We thus deduce
that

(3.37) E(3)
1 + E(1)

2 ≤ c‖ζ‖2.

Gathering together (3.30), (3.33), (3.35) and (3.37) leads to the conclusion

(3.38) |(N (uh) −N (w), ζ)| ≤ c‖ζ‖2,

where the constant c depends only on p and u.

Part II: Estimation of (N (w) −N (u), ζ).
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Note that this term also satisfies (3.28) with uh replaced by u. Defining η = w−u and letting ψ be given
by ψ =

∑p
j=0 u

p−jwj , it transpires after integration by parts that

(N (w) −N (u), ζ) =
∑

I∈Th

(

(ψη)x, ζ
)

I
+

M−1
∑

m=0

[ψ η ζ]m

− 1

p+ 2

M−1
∑

m=0

p+1
∑

j=0

p+1−j
∑

ℓ=0

j
∑

k=0
k+ℓ>0

(

p+ 1 − j

ℓ

)(

j

k

)

(η+
m)ℓ(η−m)k(u+

m)p+1−j−ℓ(u−m)j−k [ζm](3.39)

:= E1 + E2 + E3.

It follows from the estimate (3.5) that

(3.40)
∣

∣E1

∣

∣ ≤ chq‖ζ‖,
for some constant depending on p and u. Similarly, applying the trace/embedding inequality (2.2), there
obtains

(3.41)
∣

∣E2

∣

∣+
∣

∣E3

∣

∣ ≤ chq‖ζ‖.
Finally, estimate (3.24) of the theorem follows from combining the bounds (3.38), (3.40), (3.41) in (3.26)

together with an application of Gronwall’s Lemma. �

The groundwork has been laid for stating and proving the main convergence result for the semi-discrete
approximation uh defined in (2.16)

Theorem 3.1. Assume that the solution of (1.1) is sufficiently regular and that uh(0) is chosen to satisfy
‖u0 − uh(0)‖ = O(hq) as h ↓ 0. Then, there exists h0 > 0 depending on u, p and T and constants C and c
such that for all h in the range (0, h0], the inequality

(3.42) ‖(u− uh)(t)‖ ≤ Cecthq, for 0 ≤ t ≤ T,

holds, where as in Proposition 3.3 the constants C and c depend on p and ‖u‖L∞([0,T ];W q+2,∞(0,1)).

Proof. To begin, note that by virtue of (3.5) and the triangle inequality, it is sufficient to prove the estimate

(3.43) ‖ζ(t)‖ ≤ Cecthq, for 0 ≤ t ≤ T

for suitable constants C and c and all h sufficiently small. Another application of the triangle inequality
yields that

(3.44) ‖ζ(0)‖ ≤ ‖uh(0) − u0‖ + ‖u0 − w(0)‖ ≤ chq,

holds for some constant c depending only on u0. By virtue of the embedding/trace and inverse inequalities
(2.2) and (2.5), the inequality

(3.45) h−1‖ζ(0)‖L∞(0,1) + ‖ζx(0)‖L∞(Th) ≤ chq−3/2

is valid with a constant depending, as before, only upon u0. Since q ≥ 2, there exists h1 depending only on
u0 through the constants in the above two inequalities such that

(3.46) h−1‖ζ(0)‖L∞(0,1) + ‖ζx(0)‖L∞(Th) ≤
1

2
, for 0 < h ≤ h1.

For h ≤ h1, let t⋆(h) := sup{t ≥ 0 : assumption (3.23) holds at t}. In view of (3.46) and the fact that ζ
is a continuous function of t, it is necessarily the case that t⋆(h) > 0. Consequently, the inequality (3.24)
must hold for all t ∈ [0, t⋆(h)). Taking account of (3.44), it follows that (3.43) must also hold up to t⋆(h). If
t⋆(h) ≥ T , the theorem is proved with h0 = h1. Otherwise, choose h0 with 0 < h0 ≤ h1 such that

(3.47) 2c̃ max
0≤t≤T

{

Cect
}

h
q−3/2
0 ≤ 1.

where the constants C, c are those appearing in (3.43) and c̃ is a constant that depends on the constants in
(2.1), (2.2) and (2.5). We will show that for all h ≤ h0, t

⋆(h) ≥ T . Indeed, suppose to the contrary that
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t⋆(h) < T for some h ≤ h0. Now with (3.43) holding up to t = t⋆(h), the inequalities (2.1), (2.2) and (2.5)
yield that

max
0≤t≤t⋆(h)

(

h−1‖ζ(t)‖L∞(0,1) + ‖ζx(t)‖L∞(Th)

)

≤ 2c̃ max
0≤t≤t⋆(h)

{

Cect
}

h
q−3/2
0

< 2c̃ max
0≤t≤T

{

Cect
}

h
q−3/2
0 ≤ 1.

which would contradict the assumption that t⋆(h) < T . �

4. Semi-conservative, dissipative and fully discrete schemes

There are semi-discrete schemes where one or both of the nonlinear and dispersive approximations N and
D are defined in such a way that they are consistent, but dissipative, e.g. those outlined in [27]. A dispersive
approximation D attuned to the projection w̃ introduced by (3.1) is defined by

(4.1) (D(u), v) =
∑

I∈Th

(ux, vxx)I −
M−1
∑

m=0

(

u+
xx[v]m − [u]mv

+
xx

)

+

M−1
∑

m=0

u+
x [vx]m.

This operator is dissipative since

(4.2) (D(v), v) =
1

2

M−1
∑

m=0

[vx]2m ≥ 0,

as follows from the same sort of calculation as that appearing in the proof of Lemma 2.2.
Dissipative counterparts of the nonlinear operator N , e.g. those considered in [27], can be constructed

using one of many monotone numerical fluxes developed in the context of hyperbolic conservation laws.
Typical monotone numerical fluxes are exact or approximate Riemann solvers, including upwinding, Lax-
Friedrichs-, Godunov-, Boltzmann- and Harten-Lax-Van Leer-type. As in [27], consider a continuous function

f̂(u+, u−) which is nonincreasing in u+, nondecreasing in u− and satisfies f̂(u, u) = up+1. For instance, we
could use the upwind flux

(4.3) f̂(u+, u−) = (u−)p+1

if the solution u of (1.1) happens always to be positive, which is the case for the two exact solutions tested in
this paper. It is easy to see that the corresponding operator N is dissipative in the sense that the multi-linear
form (N (v), v) ≥ 0, ∀v ∈ H1(Th). Together with (4.2), the latter inequality implies global existence of the
semi-discrete approximation uh defined by these schemes. In particular, we have ‖uh(t)‖ ≤ ‖uh(0)‖ for all
t > 0.

Error estimates which are O(hq) as h ↓ 0 can also be established for these dissipative semi-discrete schemes
by comparing uh to w̃. In this case, the existence and approximation properties of the projection are clear
and the conditions on the mesh required by Proposition 3.1 are not needed.

4.1. A conservative, fully discrete scheme. Not just any time-stepping method employed in a fully
discrete scheme will preserve the conservation properties of the semi-discrete approximations. A family of
temporal integrators having arbitrarily high order in time and which does preserve the conservation laws
up to round-off error is the implicit Runge-Kutta collocation type methods associated with the diagonal
elements of the Padé table for ez (see e.g. [31]).

In this paper, we consider the first two members of this family of conservative schemes. Let 0 = t0 <
t1 < · · · < tN = T be a partition of the interval [0, T ] and κn = tn+1 − tn. The fully discrete second-order
in time approximations un to u(·, tn) are constructed using the midpoint rule in the following manner. Let
u0 = uh(·, 0), and for n = 0, · · · , N − 1, let un+1 ∈ V q

h be defined as

(4.4) un+1 = 2un,1 − un,

where un,1 is the solution of the equation

(4.5) un,1 − un +
κn

2

(

N (un,1) + ǫD(un,1)
)

= 0.
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Some of the numerical experiments to be reported presently that evidenced very small spatial errors were
conducted using fourth-order in time approximations constructed in the following manner: let

(4.6) un+1 = un +
√

3
(

un,2 − un,1
)

,

with un,1 and un,2 given as solutions of the coupled system of equations

un,1 − un + κn

(

a11f
n,1 + a12f

n,2
)

= 0,(4.7)

un,2 − un + κn

(

a21f
n,1 + a22f

n,2
)

= 0,(4.8)

where fn,i = N (un,i) + ǫD(un,i), i = 1, 2 and a11 = a22 = 1/4, a12 = 1/4 −
√

3/6, a21 = 1/4 +
√

3/6.
Existence of {un}N

n=0 can be established by using a variant of the Brouwer Fixed-Point Theorem (cf.
[10]). The L2-conservation property ‖un‖ = ‖u0‖ is equally straightforward. Uniqueness and convergence
can be established under the CFL-type condition κnh

−1 ≤ c sufficiently small. In particular, assuming this
CFL-condition to be valid, the convergence rates

‖u(·, tn) − un‖ = O(hq
max + κ2s), κ = max

0≤n≤N
κn,

can be rigorously proven for the fully discrete approximation. Here s = 1 for the Midpoint rule and s = 2
for the two-stage, fourth-order method. The arguments in favor of these assertions are very similar to those
appearing already in [10, 32], and so we pass over the details.

5. Numerical experiments

Numerical experiments designed to gauge the performance of our conservative schemes are reported in
this section. Interest is given particularly to two issues:

(1) Validation of the theoretical results, including a study of the convergence rates and in particular
the dependence of these and other aspects of the approximations on the conditions specified in
Proposition 3.1.

(2) Comparing the performance of the conservative methods to the dissipative methods of [27]. This
includes not only a comparison of the convergence rates, but also a comparison of the errors as a
function of time.

We have implemented and tested four classes of spatial approximation schemes corresponding to one of
two choices for each of the operators N and D. For each of N and D, the spatial approximation was taken
to be either the conservative discretization defined in Section 3 (indicated briefly by C) or the dissipative
approximation as sketched in Section 4 (denoted by NC). The NC-NC method corresponds to the scheme
considered in [27] with the difference that we have implemented it together with the conservative time-
stepping method (4.4)-(4.5) so that comparisons between the various schemes, C-C, C-NC, NC-C and NC-
NC are fair. The notation C-NC, say, connotes that the spatial approximation uses the conservative version
for the nonlinear operator and the non-conservative approximation of the dispersive operator, and similarly
for the other three integration methods (see Table 5.1). In fact, the outcome of the experiments using C-NC
are not reported here since it turned out the approximations generated thereby were almost identical to
those of the NC-NC scheme. This latter fact is part of the evidence supporting our view that conservative
treatment of the dispersive term has a much larger effect on the resulting approximation than does using
a conservative scheme for the nonlinearity. As mentioned already, the various spatial approximations were
all implemented in a fully discrete version with the conservative, second order time stepping method (4.4)–
(4.5). The nonlinear algebraic equations that arise in the simulation were solved using two different methods,
viz. Newton’s method and an explicit-implicit scheme where the nonlinear term was made explicit and the
dispersive term implicit. There was little difference in accuracy or performance between the two schemes
and consequently, we do not dwell further on this issue.

The numerical experiments reported here are only for the KdV-equation

(5.1) ut + uux + ǫuxxx = 0



CONSERVATIVE DG METHODS FOR THE GKDV EQUATION 17

N D Designation

(2.8), (2.7) (2.13) C-C
(2.8), (2.7) (4.1) C-NC
(2.8), (4.3) (2.13) NC-C
(2.8), (4.3) (4.1) NC-NC

Table 1. Definition of conservative, nonconservative and semi-conservative schemes.

itself, with ǫ = 1/242. The computational domain was set to [0, 1] throughout and the domain was divided
into N cells. To check accuracy and convergence rates, two well-known solutions of (5.1) were used. The
first is a so-called cnoidal-wave solution,

(5.2) u(x, t) = a cn2 (4K(x− vt− x0))

where cn(z) = cn(z : m) is the Jacobi elliptic function with modulus m ∈ (0, 1) (see [3]) and the parameters
have the values a = 192mǫK(m)2 and v = 64ǫ(2m − 1)K(m)2 whilst x0 is an arbitrary, real translation.
Here, the function K = K(m) is the complete elliptic integral of the first kind and the parameters are
so organized that the solution u has spatial period 1. The choice of parameters is a specialization of the
general, cnoidal-wave solution which has three free parameters, though their range is restricted (see, e.g.
[35], Section 3) It deserves note that the cnoidal waves comprise stable solutions of the time dependent
problem [9], so numerical error will not set off instabilities of the continuous problem. Thus, any instability
that manifests itself would be due solely to the numerical scheme. We used the value m = 0.9 in all the
numerical experiments involving the cnoidal–wave solutions.

The classical solitary-wave solution

(5.3) u(x, t) = A sech2 (K(x− vt− x0))

was also used, with A = 1, v = A/3, K = 1
2

√

A
3ǫ and x0 = 1/2 so that the wave commences its evolution

centered in the period domain. This traveling wave, too, is a stable solution of the KdV-equation (see [12]
and [14] for the original proof of this fact). Of course, the latter is not periodic in space, but owing to its
exponential decay, it can be treated as periodic by simply restricting it to the computational domain [0, 1] and
imposing periodic boundary conditions across x = 0 and x = 1. This truncation and the resulting evolution
that occurs when solving the periodic initial-value problem results in a solution of the KdV-equation (5.1)
which is a high accuracy approximation of the solitary-wave over long time scales. Much of the numerical
work on the KdV-equation has made use of this small trick to check for accuracy and convergence. Theory
and sharp error estimates of the time scale over which such periodic approximations remain valid may be
found in [16] and [26]. Another popular method of approximating solutions on the line or the half-line that
decay rapidly to zero at infinity is to truncate it on a sufficiently long spatial domain as above and then
use two-point boundary-value problems with homogeneous, Dirichlet conditions at the end-points (see e.g.
[18]). A numerical scheme developed to simulate directly solutions on unbounded domains was put forward
by Guo and Shen (see [34] and several, subsequent papers expanding on their original work).

5.1. Convergence rates. The results reported here begin with the case of a uniform mesh. Since the
second order Crank-Nicholson time discretization is employed and our interest is in the effect of the various
spatial discretizations, we determined the time-step by the relation κ = Ch2. This relationship guarantees
that the error will be dominated by the spatial discretization when q = 2, 3. For q = 4 and in view of
the very small spatial errors, we used a two-stage implicit Runge-Kutta method of Gauss-Legendre type.
This method is fourth-order accurate in time and can also be shown to have the conservative property
‖un‖ = ‖u0‖, n = 1, 2, · · · .

Tables 2, 3 and 4 contain the numerical errors and the calculated rates of convergence for q = 2, 3, 4.
The simulations of solutions of (5.1) that underlie the information in these tables were all made with the
cnoidal-wave initial data with the value of the elliptic modulus m = 0.9 and the other parameters as specified
below (5.2). It is worth pointing out that for the cnoidal-wave solutions, the value of m carries with it the
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Table 2. Cnoidal-wave problem, q = 2, uniform mesh.

N κ L2 error order L∞ error order
10 4.0E-02 1.3169E-00 1.9388E-00
20 1.0E-02 1.2735E-00 0.0483 2.1475E-00 -0.1475

C-C 40 2.5E-03 1.7869E-01 2.8333 3.0294E-01 2.8256
method 80 6.25E-04 1.2017E-02 3.8943 2.0728E-02 3.8694

160 1.5625E-04 7.6271E-04 3.9778 1.3499E-03 3.9407
320 3.90625E-05 4.8290E-05 3.9813 9.2342E-05 3.8697

10 4.0E-02 9.0693E-01 1.5463E-00
20 1.0E-02 3.1383E-01 1.5310 6.0458E-01 1.3548

NC-C 40 2.5E-03 1.9160E-01 0.7119 3.4252E-01 0.8197
method 80 6.25E-04 3.9244E-03 5.6095 7.6569E-03 5.4833

160 1.5625E-04 5.4422E-04 2.8502 9.8365E-04 2.9605
320 3.90625E-05 4.1574E-05 3.7104 7.8722E-05 3.6433

10 4.0E-02 7.1270E-01 1.2985E-00
20 1.0E-02 5.9638E-01 0.2571 1.1130E-00 0.2224

NC-NC 40 2.5E-03 5.7218E-01 0.0598 1.0403E-00 0.0975
method 80 6.25E-04 1.0466E-00 -0.8712 1.6738E-00 -0.6861

160 1.5625E-04 2.0404E-01 2.3588 3.4832E-01 2.2646
320 3.90625E-05 2.6643E-02 2.9370 4.5632E-02 2.9323

balance being struck between nonlinearity and dispersion. Values of m > 0 near to zero correspond to nearly
linear behavior, (the Jacobi elliptic function cn is nearly a cosine) while values of m < 1 near to one are
where nonlinear effects cannot be ignored (cn has a sharper crest and a wider trough). Starting with this
initial data, the exact solution is as in (5.2) and it is compared directly to the output of the fully discrete
schemes at the time t = 10 to determine the error. The L2- and L∞-norms of this error are calculated
numerically and reported in the tables. The computed convergence rates r are simply

r =
logE(N) − logE(2N)

log(2)

where E(M) is the L2- or L∞-error made using M cells in the spatial approximation.
For the C-C method, the convergence rate appears to be four for q = 2, three for q = 3 and five for q = 4.

Note that the reported rate for q = 4 when κ ∼ h2 shows the second-order temporal convergence rate of
the fully discrete scheme. As far as the assumptions in Propositions 3.1 are concerned, the parity N of cells
in Th does not have any detectable effect on the accuracy achieved by the scheme. On the other hand, the
parity of q certainly does seem to matter. Indeed, it appears that the actual spatial convergence rate is q+1
when q is even, but only q when q is odd. In the special case of q = 2 we observe fourth-order accuracy for
the spatial error.

Next are reported simulations made when the mesh was far from uniform. Indeed, the mesh Th was taken
to be 2h, h, · · · , 2h, h. For such a mesh, the number of adjacent cells with differing lengths is maximal, which
is to say, ν = M . Again using data obtained from simulating the cnoidal-wave solution described above, the
numerical error and orders of accuracy for q = 2 are determined and shown in Table 5.

The following points emerge from a study of the results reported in these tables.

(i) Care must be taken in comparing the results of tables 2 and 5 since, for the same number N of
cells, the maximum cell sizes are different by a factor of 4/3. Even taking this into account, there
is a noticeable degradation in the errors and convergence rates for the C-C method whereas the
NC-NC method seems to be immune to this effect. Thus, we tentatively conclude that accuracy and
convergence rates both suffer in the presence of a non-uniform mesh.
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Table 3. Cnoidal-wave problem, q = 3, uniform mesh

N κ L2 error order L∞ error order
10 4.0E-02 1.2083E-00 2.1869E-00
20 1.0E-02 1.5809E-01 2.9342 3.5795E-01 2.6110

C-C 40 2.5E-03 1.2153E-02 3.7014 3.3732E-02 3.4076
method 80 6.25E-04 1.2048E-03 3.3344 3.3640E-03 3.3259

160 1.5625E-04 1.3999E-04 3.1054 3.6877E-04 3.1894

10 4.0E-02 1.2644E-00 1.9401E-00
20 1.0E-02 1.9830E-01 2.6727 3.3587E-01 2.5302

NC-C 40 2.5E-03 1.1657E-02 4.0884 2.0516E-02 4.0331
method 80 6.25E-04 6.4542E-04 4.1748 1.2238E-03 4.0673

160 1.5625E-04 3.7251E-05 4.1149 8.0597E-05 3.9245

10 4.0E-02 9.7806E-01 1.6220E-00
20 1.0E-02 7.4734E-01 0.3882 1.2326E-00 0.3961

NC-NC 40 2.5E-03 3.6619E-02 4.3511 6.2686E-02 4.2974
method 80 6.25E-04 1.3171E-03 4.7972 2.2584E-03 4.7948

160 1.5625E-04 4.8798E-05 4.7544 8.3729E-05 4.7534

Table 4. Cnoidal-wave problem, q = 4, uniform mesh

N κ L2 error order L∞ error order
10 4.0E-02 7.6947E-02 1.3825E-01
20 1.0E-02 8.2647E-03 3.2188 1.8905E-02 2.8704

C-C 40 2.5E-03 3.8736E-06 11.0591 1.4713E-05 10.3274
method 80 6.25E-04 5.3864E-08 6.1682 2.6274E-07 5.8073

160 1.5625E-04 1.5628E-09 5.1071 7.3846E-09 5.1529

10 4.0E-02 2.2960E-01 3.8102E-01
20 1.0E-02 6.3339E-02 1.8579 1.1280E-01 1.7561

NC-C 40 2.5E-03 3.3763E-06 14.1954 1.2967E-05 13.0866
method 80 6.25E-04 5.3809E-08 5.9714 2.6235E-07 5.6272

160 1.5625E-04 1.5628E-09 5.1056 7.3875E-09 5.1503

10 4.0E-02 7.1739E-01 1.1916E-00
20 1.0E-02 1.1308E-02 5.9873 1.9327E-02 5.9461

NC-NC 40 2.5E-03 1.0106E-04 6.8059 1.7756E-04 6.7661
method 80 6.25E-04 8.1893E-07 6.9472 1.5333E-06 6.8535

160 1.5625E-04 6.8941E-09 6.8922 1.6311E-08 6.5546

(ii) Despite the observed reduction in the order of the C-C method, the errors are smaller than those of
the NC-NC method in the range of meshes employed (in this respect, see also Figure 1) although
this is expected to be reversed for larger values of N on account of the apparent higher order of the
NC-NC method.

5.2. Comparison of the conservative and non-conservative methods. In this subsection, further
numerical results are presented with the aim of acquiring a deeper understanding of the performance of the
conservative and non-conservative methods. A graphical approach is adopted to capture behavior that may
not be revealed by simple tabulation of errors and convergence rates.

We start with the cnoidal-wave test problem with q = 2 and κ = 0.000625. Figure 1 shows the plots of
the numerical solutions of three proposed methods, C-C, NC-C and NC-NC respectively, at time t = 10.
The exact solution is also provided as a reference in the plot. The NC-NC method has a large phase error,
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Table 5. Cnoidal-wave problem, q = 2, non-uniform mesh of type 2h, h, · · · , 2h, h.

N κ L2 error order L∞ error order
10 4.0E-02 1.3340E-00 5.8547E-00
20 1.0E-02 9.1940E-01 0.5370 1.6786E-00 1.8023

C-C 40 2.5E-03 6.1914E-01 0.5704 1.0938E-00 0.6179
method 80 6.25E-04 2.3766E-01 1.3814 3.9930E-01 1.4538

160 1.5625E-04 6.5006E-02 1.8703 1.1072E-01 1.8506
320 3.90625E-05 1.6573E-02 1.9718 2.8665E-02 1.9496

10 4.0E-02 5.6937E-01 1.0742E-00
20 1.0E-02 5.0389E-01 0.1763 9.5346E-01 0.1720

NC-C 40 2.5E-03 4.9450E-01 0.0271 8.8893E-01 0.1011
method 80 6.25E-04 8.7717E-01 -0.8269 1.4354E-00 -0.6913

160 1.5625E-04 1.8083E-01 2.2782 3.0860E-01 2.2176
320 3.90625E-05 3.1798E-02 2.5076 5.4337E-02 2.5057

10 4.0E-02 6.8821E-01 1.2660E-00
20 1.0E-02 6.5336E-01 0.0750 1.2087E-00 0.0668

NC-NC 40 2.5E-03 9.7878E-01 -0.5831 1.6384E-00 -0.4388
method 80 6.25E-04 1.2109E-00 -0.3070 1.8813E-00 -0.1994

160 1.5625E-04 3.2924E-01 1.8787 5.5988E-01 1.7485
320 3.90625E-05 4.4494E-02 2.8875 7.6207E-02 2.8771

which makes the solution very inaccurate. On the other hand, both C-C and NC-C methods demonstrate
quite a good approximation to the exact solution. We believe the large phase error of NC-NC method comes
from its non-conservative aspect. Indeed, the change in the L2-norm of the numerical solution from t = 0
to t = 10 was 3 × 10−16 for the C-C method, −3.06 × 10−4 for the NC-C method and −4.97 × 10−2 for the
NC-NC method. If the L2-norm is not conserved, the magnitude of the wave decays as t increases, thereby
slowing its speed of propagation since larger amplitude waves travel faster in the KdV–context. This explains
at least partially the large phase error of the NC-NC method. On the other hand, the better performance
of NC-C method suggests that insisting upon a conservative version of the dispersive approximation plays
a more important role in maintaining accuracy than does a conservative approach to approximating the
nonlinear term.

We have also tried the nonuniform mesh of type 2h, h · · · 2h, h with 80 cells. The comparison of the three
numerical solutions are shown in Figure 1, bottom right. Again, better performance of the conservative
method is observed.

Next, cubic polynomials were tested, i.e. the case q = 3. The same test as above was repeated with
N = 80 and the same κ. The solutions at time t = 10 are shown in Figure 2, which indicates only small
differences among these three methods. This fact can be observed from Table 3, where the L2-errors are all
of order 10−3. However, when we ran this test for much longer, out to t = 200, larger phase errors appeared
again in the approximation made via the NC-NC method, as shown in the right graph of Figure 2.

The numerical tests conducted with the solitary-wave initial data were qualitatively entirely consistent
with those conducted with the cnoidal-wave test problem. For that reason, we present only a small sampling
of the solitary-wave tests. With q = 2 and κ = 0.000625, the numerical solutions of the three proposed
methods at time t = 25, with the uniform meshes N = 40 and 80, are plotted in Figure 3. Again, one
observes a large phase error in the NC-NC solution as well as a growing amplitude error.

5.3. Time history of the L2-error and the shape-error. In this subsection, we investigate the longer
time temporal evolution of the L2-error of the three proposed methods. An interesting outcome of the
longer-time experiments is that the L2-error of the conservative method increases linearly with time, for
q = 2 though we do not know how to prove such a result. The linear temporal growth of the error had been
observed in an earlier work [22] where conservative, standard Galerkin methods using smooth splines were
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Figure 1. Numerical approximations of the cnoidal-wave problem using the C-C, NC-C
and NC-NC methods; comparisons with the exact solution at time t = 10 with q = 2. Top
left: 40 uniform cells; Top right: 80 uniform cells; Bottom left: 160 uniform cells; Bottom
right: 80 nonuniform cells.

employed. Moreover, the shape error, defined below, is virtually constant in time for the fully conservative
scheme.

Details of these simulations are now described. For the cnoidal-wave test problem with a uniform mesh,
N = 80, q = 2 and κ = 0.000625, the time evolutions of the L2-norm of the solution errors up to time t = 10
are shown in Figure 4, left. Observe that the C-C and NC-C methods have much smaller errors. Indeed,
at time t = 10, the error of the NC-NC method is about 100 times larger than that of the C-C method.
The C-C and NC-C methods show a linear and sublinear growth of the L2-error, respectively. On the other
hand, the left graph in Figure 4 shows that the same error for the NC-NC method is growing superlinearly.
However, an examination of the same data in the logarithmic scale reveals that the error does not grow at
an exponential rate.

The same simulation was made using cubic polynomials, the case where q = 3. The relevant time histories
are plotted up to time t = 200 in Figure 5, left. As observed earlier, for small time, the differences between
the errors for all three methods are small (as seen in Table 3). However, unlike the case q = 2 exhibited in
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Figure 2. Numerical approximations of the cnoidal-wave problem using the C-C, NC-C
and NC-NC methods; comparisons with q = 3 and 80 uniform spatial cells. Left: time
t = 10; Right: t = 200.
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Figure 3. Numerical approximations of the solitary-wave problem using the C-C, NC-C
and NC-NC methods; comparisons at time t = 25 with q = 2. Left: 40 uniform cells; Right:
80 uniform cells.

Figure 4 we see that now all three methods exhibit superlinear growth with the error of the NC-NC method
growing at the fastest clip. Furthermore the difference between conservative and nonconservative methods
becomes smaller as compared to the case q = 2. We feel that, as a general rule, these differences will become
less pronounced as the degree of the polynomials increases and/or the mesh becomes nonuniform.

Attention is now turned to the solitary-wave test problem. Time histories of the L2-errors up to time
t = 25 for q = 2, are shown in Figure 5, right, and results similar to those outlined above are seen.

Finally, we consider the shape error ê = ê(x, t) of an approximation uh of a true solution u of (5.1). The
shape error compares how good is the approximation, modulo the translation group on the period domain,
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and is defined precisely to be

ê(x, t) = min
ξ∈[−0.5,0.5]

||uh(x, t) − u(x+ ξ, t)||

where u(x, t) is the exact solution and uh(x, t) is the numerically obtained approximation. Thus, the shape
error is the minimization of the difference between the numerical approximation and the spatially shifted
exact solution. Of course, the spatial L2-norms appearing here are in fact a high-order Gauss-Legendre
integration of the square of the discrete solution minus the exact solution evaluated at the nodes of the
mesh. The concept of shape error was introduced in [22] with the purpose of providing a detailed analysis
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Figure 6. The time history of the L2-error and shape error of the numerical approximations
obtained using the C-C method with q = 2 and 80 uniform spatial cells. Left: the cnoidal-
wave problem (5.1) and (5.2); Right: the solitary-wave problem (5.1) and (5.3).

of the error in terms of a shape and a phase component. The shape error and the absolute error, both in
L2-norm, of the C-C method are both given in Figure 6. Observe that the shape error is almost constant
in time after an initial “settling down” period and shows a clearly visible periodic behavior. We believe
this behavior of the shape error to be indicative of some very interesting phenomena, such as the existence
of exact, discrete, traveling-wave solutions to the conservative numerical scheme when the space- and time-
discretization lengths are constant and bear an appropriate relation to each other.

6. Summary

Constructed, analyzed and tested are conservative numerical schemes for the GKdV-equation. It is found
that such schemes, in addition to possessing high accuracy, mimic very well the properties of the traveling-
wave solutions considered here. As it is known that general initial data for the KdV-equation breaks up into
solitary waves and a dispersive tail, the results displayed here indicate that the conservative scheme is likely
to produce better approximations of general solutions than do the non-conservative ones.

Work in progress is aimed at broadening the range of initial data that are investigated numerically as well
as considering higher powers of the nonlinearity. Similar theory and simulations are also being carried out
for coupled systems of nonlinear, dispersive wave equations of the form investigated recently in [19] (see also
[39]).
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equation. Matemática Aplicada e Computacional, 7:3–11, 1988.
[7] M.E. Alexander and J. Ll. Morris. Galerkin methods applied to some model equations for nonlinear dispersive waves. J.

Comp. Phys., 30:428–451, 1979.



CONSERVATIVE DG METHODS FOR THE GKDV EQUATION 25

[8] J. Angulo, J.L. Bona, F. Linares, and M. Scialom. Scaling, stability and singularities for nonlinear dispersive wave equations:
The critical case. Nonlinearity, 15:759–786, 2002.

[9] J. Angulo, J.L. Bona, and M. Scialom. Stability of cnoidal waves. Advances Differential Eq., 11:1321–1374, 2006.
[10] G. Baker, V.A. Dougalis, and O.A. Karakashian. Convergence of Galerkin approximations for the Korteweg-de Vries

equation. Math. Comp., 40:419–433, 1983.
[11] G. Baker, W. Jureidini, and O.A. Karakashian. Piecewise solenoidal vector fields and the Stokes problem. SIAM J. Num.

Anal., 27:1466–1485, 1990.
[12] T.B. Benjamin. The stability of solitary waves. Proc. Royal Soc. London, Ser. A, 328:153–183, 1972.
[13] T.B. Benjamin, J.L. Bona, and J.J. Mahony. Model equations for long waves in nonlinear dispersive systems. Philos. Trans.

Royal Soc. London, Ser. A, 272:47–78, 1972.
[14] J.L. Bona. On the stabilty theory of solitary waves. Proc. Royal Soc. London, Ser. A, 349:363–374, 1975.
[15] J.L. Bona. Model equations for waves in nonlinear, dispersive systems. In Proc. Int. Congress of Mathematicians, Helsinki,

1978, volume 2, pages 887–894. Academia Scientiarum Fennica: Hungary, 1980.
[16] J.L. Bona. Convergence of periodic wave trains in the limit of large wavelength. Appl. Sci. Research, 37:21–30, 1981.
[17] J.L. Bona. On solitary waves and their role in the evolution of long waves. In H. Amann, N. Bazley, and K. Kirchgässner,
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