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a b s t r a c t 

The movement of blood flow in arteries can be modeled by a system of conservation laws and has a 

range of applications in medical contexts. In this paper, we present efficient well-balanced discontinu- 

ous Galerkin methods for the one-dimensional blood flow model, which preserve the man-at-eternal- 

rest (zero velocity) and more general living-man (non-zero velocity) equilibria. Recovery of well-balanced 

states, decomposition of the numerical solutions into the equilibrium and fluctuation parts, and appropri- 

ate source term and numerical flux approximations are the key ideas in designing well-balanced meth- 

ods. Numerical examples are presented to verify the well-balanced property, high order accuracy, good 

resolution for both smooth and discontinuous solutions, and the ability to capture nearly equilibrium so- 

lutions well. We also test the proposed methods on nearly equilibrium flows with various Shapiro num- 

bers. Man-at-eternal-rest well-balanced methods work well for problems with low Shapiro number, but 

generate spurious flows when Shapiro number gets larger, while the living-man well-balanced methods 

perform well for all ranges of Shapiro number. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Blood flow models have been extensively used to mathemati-

ally understand and numerically simulate the human cardiovascu-

ar system. In 1775, Euler [9] derived a one-dimensional model of

he human arterial system from the conservation of mass and mo-

entum of the flow. Without the understanding of the wave-like

ature of the flow, he noticed that the problem was too difficult to

olve. Young [40] was the first to identify blood flow with wave-

ike behavior by finding analogous behavior between arterial blood

ow wave speed and Newton’s sound speed in air theories. Blood

ovement in arteries have flow with periodic variations known

s pulsatile flow, which has been understood and explained by

ighthill [18] and Pedley [24] . Nowadays, three-dimensional math-

matical models for the blood flow in arteries already exist, but

he simpler one-dimensional models with averaged quantities are

till of great importance [12,29,30] . The low computational cost of

ne-dimensional models as compared to higher dimensional mod-

ls allows for one to study the wave effects within isolated seg-
✩ The work of this author was partially supported by the NSF grant DMS-1753581 . 
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ents of an artery or within the systemic arterial system (i.e. in

he aorta and systemic arteries) [23,25,26,28] . Another usage of

ne-dimensional models is the ability to study the effects of ar-

erial modifications, such as placements of stents and prostheses,

n pulse waves [5,12] . Lastly, one-dimensional models can also

e easily coupled with lumped parameter models [27] and three-

imensional fluid-structure models [10,11] . A systematic compar-

son of computational hemodynamics in arteries between one-

imensional and three-dimensional models with deformable vessel

alls was carried out in [32] , where they observed good agreement

etween the two models, especially during the diastolic phase of

he cycle. 

The one-dimensional partial differential equation (PDE) model

or the blood flow through arteries [12,20,28] takes the form, 
 

 

 

A t + Q x = 0 , 

Q t + 

(
α

Q 

2 

A 

)
x 

+ 

A 

ρ
p x = 0 , 

(1.1) 

here A (x, t) = πR 2 (x, t) is the cross-sectional area with R ( x,

 ) > 0 being the radius. The variable Q(x, t) = A (x, t) u (x, t) is the

ischarge, u ( x, t ) denotes the flow velocity, and the constant ρ is

he blood density. The parameter α is the momentum-flux correc-

ion coefficient that depends on the assumed velocity profile, and
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http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2020.104493&domain=pdf
https://doi.org/10.13039/100000001
mailto:jhout001@ucr.edu
mailto:xing.205@osu.edu
https://doi.org/10.1016/j.compfluid.2020.104493


2 J. Britton and Y. Xing / Computers and Fluids 203 (2020) 104493 

Fig. 1. Diagram of the one-dimensional blood flow model with the cross-sectional 

radius at rest ( R 0 ), cross-sectional radius ( R ), and velocity ( u ). 
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in this paper, we take α = 1 , which means a blunt velocity profile.

The source terms representing the viscous resistance of the flow

and gravitational effect could be added to the system. We refer to

[13] for the full description of this model. 

To close the system, one needs an additional equation to link

the pressure with the displacement of the vessel. A simple law de-

scribing the elastic behavior of the arterial wall is given by 

p = p ext + K(R − R 0 ) , or equivalently, 

p = p ext + 

K √ 

π

(√ 

A −
√ 

A 0 

)
, (1.2)

where p ext stands for the external pressure (assumed to be con-

stant), the constant K represents arterial stiffness, and A 0 (x ) =
πR 2 0 (x ) is the cross-section at rest (when u = 0 ) with R 0 ( x ) be-

ing its radius. Other complex nonlinear relationship could be in-

troduced as well. With the simple elastic law (1.2) , the one-

dimensional model (1.1) for the blood flow through arteries can be

rewritten in the form of hyperbolic balance laws ⎧ ⎪ ⎨ 

⎪ ⎩ 

A t + Q x = 0 , 

Q t + 

(
Q 

2 

A 

+ 

K 

3 ρ
√ 

π
A 

3 
2 

)
x 

= 

KA 

2 ρ
√ 

π
√ 

A 0 

(A 0 ) x , 
(1.3)

which will be studied in this paper. A stent or other physical varia-

tions may cause a non-constant cross-sectional at rest A 0 ( x ), intro-

ducing a non-zero source term. A diagram of the one-dimensional

blood flow model with the cross-sectional radius at rest ( R 0 ), cross-

sectional radius ( R ), and velocity ( u ) is presented in Fig. 1 . For sim-

plicity, we denote β = 

K 
ρ

√ 

π
in the rest of the paper. 

The PDE model (1.3) for the blood flow through arteries can be

written in the convenient hyperbolic balance laws notation 

∂ t U + ∂ x f (U) = S(U, A 0 ) , 

where 

 = 

(
A 

Q 

)
, f (U) = 

(
Q 

Q 2 

A 
+ 

β
3 

A 

3 
2 

)
, S(U, A 0 ) = 

( 

0 

βA 

2 
√ 

A 0 
(A 0 ) x 

) 

, 

are the conservative variables, the flux, and the source term, re-

spectively. The Jacobian matrix J (U) is given by 

J ( U ) = 

⎡ 

⎣ 

0 1 

c 2 −
(

Q 

A 

)2 2 Q 

A 

⎤ 

⎦ , 

with c = 

√ 

β
√ 

A 
2 . The eigenvalues of the Jacobian matrix are Q 

A 
± c,

which are real-valued and distinct [19] . This implies that the sys-

tem is hyperbolic. 

The system (1.3) representing the blood flow through arteries is

similar to the shallow water equations (SWEs) model. This model

is widely used for modeling rivers, river networks, lake flows, tides,

and tsunamis. The SWEs model and the blood flow model both

have two equations representing mass and momentum conserva-

tion. They belong to the family of hyperbolic balance laws, and
uch equations often admit non-trivial steady state solutions. These

quilibria involve the perfect cancellation of the source term and

he flux gradients in the PDE level, which may not be satisfied nu-

erically due to different numerical approximations to these two

erms. As a result, standard numerical methods may not be able to

aintain the steady state nor capture the nearly equilibrium flow

small perturbation of the equilibrium state) well, unless a much

efined mesh is used in the simulation. To resolve this issue, well-

alanced methods [2] are introduced to exactly preserve the steady

tate solutions at the discrete level. They are often found to be effi-

ient in capturing nearly equilibrium flow on a coarse mesh. There

ave been extensive studies on designing well-balanced methods

or the SWEs over non-flat bottom topography [1,15,38] and Euler

quations under gravitational fields [7,37] . 

The one-dimensional blood model through arteries (1.3) admits

on-trivial steady state solutions. By definition, the steady state

olutions appear when the conservative variables ( A, Q ) do not

hange over time, or equivalently, A t = 0 and Q t = 0 which leads to

 

 

 

 

 

Q x = 0 , (
Q 

2 

A 

+ 

β

3 

A 

3 
2 

)
x 

= 

βA 

2 

√ 

A 0 

(A 0 ) x . 
(1.4)

 simple steady state occurs when the velocity becomes 0, known

s the (non-zero pressure) man-at-eternal-rest steady state or

ead-man equilibrium in the literature 

u, 
√ 

A −
√ 

A 0 

)
= (0 , constant) . (1.5)

 special case of this steady state appears when the pressure in

1.2) is zero. This implies that A reduces to A 0 , that is, 

(u, A ) = (0 , A 0 ) . (1.6)

e will refer to this steady state as the zero pressure man-at-

ternal-rest steady state. The more general case occurs when the

elocity u does not vanish. By some simple algebra, the general

quilibrium state, denoted as the living-man equilibrium, can be

erived as 

Q , 
Q 

2 

2 A 

2 
+ β
(√ 

A −
√ 

A 0 

))
= constant. (1.7)

ne case in which this steady state might occur is in small

rteries that are extremely constricted by stenosis. In this case,

here is so much flow resistance that the flow loses pulsatility and

pproaches a steady state with non-zero velocity [14] . 

Various numerical methods have been designed for the one-

imensional blood flow model. A recent study [3] provides a sys-

ematic comparison of six commonly used numerical schemes for

ne-dimensional blood flow modelling. The numerical results are

ompared with theoretical results, as well as three-dimensional

umerical data in compatible domains, and good agreement was

bserved. Recently, well-balanced methods for the blood flow

hrough arteries which are efficient in capturing nearly equilib-

ium flows have gained more attention. In [8] , Delestre and La-

ree developed well-balanced first-order and second-order finite

olume schemes for the blood flow system in elastic tubes with

he man-at-eternal-rest equilibrium. They also showed the appear-

nce of spurious flows when a simple, non-well-balanced, numeri-

al method is used. Müller et al. [21] constructed high order well-

alanced Weighted Essentially Non-Oscillatory (WENO) scheme for

lood flow in elastic vessels with varying mechanical and geo-

etrical properties. A modified version of the Dumbser–Osher–

oro Riemann solver was introduced to treat the nonconservative

erm, and they show the resulting methods preserves the man-at-

ternal-rest equilibrium exactly. The numerical methods are then
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xtended to networks of elastic vessels with satisfying perfor-

ance. An upwind discretization for the source term to create a

nergy-balanced numerical solver was introduced by Murillo et al.

19] . Wang et al. [31] derived high order well-balanced finite dif-

erence WENO schemes that possess sharp shock transition. The

ain idea was to split the source term into two parts and approx-

mate them with compatible WENO operators. In [16] , the authors

xtended the hydrostatic construction idea (commonly used in the

esign of well-balanced methods for the SWEs) to develop high or-

er discontinuous Galerkin (DG) and finite volume WENO scheme

or the blood flow. Most of these well-balanced methods are de-

igned to preserve the stationary man-at-eternal-rest steady state.

s explained in [14] , such steady states may not be that relevant

or blood flow as they only occur in “dead men”. For the more gen-

ral living-man equilibrium state (1.7) , well-balanced methods are

rst studied in [20] , where a generalized hydrostatic reconstruction

echnique was used to construct the well-balanced numerical flux.

n [14] , Ghigo et al. presented a simple second order well-balanced

ethod for the one-dimensional blood flow in large arteries, with

wo well-balanced hydrostatic reconstruction techniques designed

o preserve the general steady state solutions. Numerically, the

roposed methods outperform the well-balanced methods for the

an-at-eternal-rest steady states based on the original hydrostatic

econstruction technique. 

The work in this paper aims to develop high order well-

alanced discontinuous Galerkin methods for both the man-at-

ternal-rest (1.5), (1.6) and living-man (1.7) steady states of the

ne-dimensional blood flow model. High order accurate numeri-

al methods are developed to provide accurate simulation on a

elatively coarse mesh. DG methods, which combine the flexibil-

ty of the finite element method and stability of the finite volume

ethod, have gained increased attention recently. Another reason

e choose DG methods in this study is due to their flexibility to

reat the junctions for network problems, as pointed out in [4,6] ,

hich would be important in the simulation of the human car-

iovascular system. Specific advantages of the DG scheme include

traightforward implementation of junction coupling conditions

ue to compactness and preservation of high order accuracy. Other

igh order methods may require stencils (wide or one-sided) that

egatively impact the accuracy and stability of the scheme [6] . We

tart by presenting two simple approaches to design well-balanced

ethods for the man-at-eternal-rest steady state solution. The first

pproach is based on the decomposition of the numerical solution

nd the hydrostatic reconstruction technique, while the second one

s based on the well-balanced technique in [34] to split the source

erm (as done in [31] ). We will show the link of these two ap-

roaches, although they are derived based on different motivations.

he main component of this paper is on how to design efficient

ell-balanced DG methods for the general living-man steady state.

pecial attention is paid to the projection operator to define the

umerical initial condition (piecewise polynomials) of finite ele-

ent methods. With a carefully chosen projection, one can recover

he nonlinear living-man equilibrium states from these numerical

nitial conditions. Next, the numerical solutions are decomposed

nto two parts, one corresponding to the equilibrium component,

nd the other corresponding to the fluctuation. We can show that,

f the living-man equilibrium is reached, this decomposition is ex-

ct in the sense that the fluctuation part becomes zero. Note that

he equilibrium component is computed from the numerical solu-

ion at the current time step, and is not given a priori. With this

ecomposition, the modified solution values at the cell interface

an be defined, which can recover the exact equilibrium solutions

hen the equilibrium state is reached. The general hydrostatic re-

onstruction idea is then adopted to provide the well-balanced nu-

erical flux. Together with a careful choice of the source term ap-
roximation, well-balanced DG methods for the general living-man

quilibrium can be designed. 

The paper is organized as follows. In Section 2 , the nec-

ssary notations are introduced and well-balanced DG methods

o preserve the man-at-eternal-rest steady state are discussed.

ection 3 presents the numerical performance of the DG meth-

ds in Section 2 . The well-balanced DG methods that maintain the

ore general living-man equilibrium state of the blood flow model

re discussed in Section 4 . In Section 5 , numerical examples are

iven to demonstrate the high-order accuracy, well-balanced prop-

rty, and good resolution for smooth and discontinuous solution of

he methods described in Section 4 . Concluding remarks are found

n Section 6 . 

. Man-at-eternal-rest well-balanced DG schemes 

We start by presenting well-balanced DG scheme for the sim-

ler man-at-eternal-rest steady states (1.5), (1.6) . The proposed

ethods will be extended to the general living-man equilibrium

1.7) in Section 4 . 

.1. Notations and discontinuous Galerkin methods 

The computational domain, denoted by I , will be discretized

nto J cells. The point x j , for j = 1 , . . . , J, is the center of the

ell I j = [ x 
j− 1 

2 
, x 

j+ 1 
2 

] . The size of the j th cell is denoted by

x j = x 
j+ 1 

2 
− x 

j− 1 
2 

. Furthermore, we let h = max j �x j . We seek an

pproximation U h of the solution U , which belongs to the finite

imensional space 

 

k 
h = { v : v | I j ∈ P k (I j ) , j = 1 , . . . , J} , (2.1)

here P k ( I ) is the space of polynomials in I of degree up to k . The

ross-sectional area at rest, A 0 , will also be projected into V 

k 
h 
, and

e denote it by ( A 0 ) h . The value of U h may not be continuous at

he cell interface x 
j+ 1 

2 
, thus we denote U 

+ 
h, j+ 1 

2 

= 

( 

A + 
h, j+ 1 

2 

Q + 
h, j+ 1 

2 

) 

as the

imit from the right cell I j+1 and U 

−
h, j+ 1 

2 

= 

( 

A −
h, j+ 1 

2 

Q −
h, j+ 1 

2 

) 

as the limit

rom the left cell I j . 
The traditional DG scheme, which may not be well-balanced,

an be written as 
 

I j 

∂ t U h v dx −
∫ 

I j 

f (U h ) ∂ x v dx + 

ˆ f j+ 1 2 
v −

j+ 1 2 

− ˆ f j− 1 
2 
v + 

j− 1 
2 

= 

∫ 
I j 

S(U h , (A 0 ) h ) v dx, (2.2) 

here v ( x ) is a test function from the test space V 

k 
h 
, and 

ˆ f j+ 1 2 
= F 

(
U 

−
h, j+ 1 2 

, U 

+ 
h, j+ 1 2 

)
. 

ere the function F ( a, b ) is the numerical flux, which takes infor-

ation from both the left and right side of the cell interface. We

mplement the simple Lax–Friedrichs flux 

 (a, b) = 

1 

2 

( f (a ) + f (b) − α(b − a ) ) , (2.3)

here α = max U h ( 
Q h 
A h 

+ 

√ 

β
√ 

A h 
2 ) is derived from determining the

igenvalues of the Jacobian matrix of f ( U ). The maximum in the

alculation of α can be taken either over the entire computational

omain or locally. 

The scheme (2.2) is a semi-discrete method. For the tempo-

al discretization, the high order total variation diminishing (TVD)

unge-Kutta time discretization can be used. Throughout this pa-

er the third order TVD Runge-Kutta method, 

U 

(1) 
h 

= U 

n 
h + �tF(U 

n 
h ) , 
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(2) 
h 

= 

3 

4 

U 

n 
h + 

1 

4 

(
U 

(1) 
h 

+ �tF 

(
U 

(1) 
h 

))
, 

 

n +1 
h 

= 

1 

3 

U 

n 
h + 

2 

3 

(
U 

(2) 
h 

+ �tF 

(
U 

(2) 
h 

))
. (2.4)

with spatial operator F defined as the terms in (2.2) except the

one containing the time derivative, is used. This completes the de-

scription of a fully discrete high order Runge-Kutta discontinuous

Galerkin (RKDG) method. 

Our goal is to design well-balanced DG methods which can pre-

serve the man-at-eternal-rest steady states (1.5) and (1.6) . Many

different approaches to design well-balanced methods have been

studied in the literature, mostly for the shallow water equations

with non-flat bottom topography. The key idea of well-balanced

methods in this paper is to decompose the numerical solution at

each time step into the equilibrium part and the fluctuation part,

which has also been studied in [33] . We carefully choose the de-

composition so that, if the steady state is reached, the equilibrium

part recovers the steady state perfectly. Then by approximating the

contribution of the equilibrium part and the fluctuation part in

the source term in a different way, one can achieve well-balanced

property. The details are given below. We would like to comment

that this approach is somehow similar to that of solving the new

PDE with the unknown being the perturbation to the equilibrium

state. The main difference is that our approach does not assume

the explicit knowledge of the equilibrium state a priori, and we re-

cover that equilibrium part (more specifically, the constant values

in (1.7) ) numerically. 

In the framework of DG methods, all of the numerical solutions

(including U h and ( A 0 ) h ) are discontinuous at the cell interfaces,

even at the steady state. To address this, we follow the idea of hy-

drostatic reconstruction, and present our well-balanced numerical

scheme in the form of ∫ 
I j 

∂ t U 

n 
h v dx −

∫ 
I j 

f (U 

n 
h ) ∂ x v dx + 

ˆ f j+ 1 2 
v −

j+ 1 2 

− ˆ f j− 1 
2 
v + 

j− 1 
2 

= 

∫ 
I j 

S(U 

n 
h , (A 0 ) h ) v dx + ( ̂  f j+ 1 2 

− ˆ f l 
j+ 1 2 

) v −
j+ 1 2 

− ( ̂  f j− 1 
2 

− ˆ f r 
j− 1 

2 

) v + 
j− 1 

2 

,

(2.5

where ˆ f 
j+ 1 

2 
− ˆ f l 

j+ 1 
2 

and 

ˆ f 
j− 1 

2 
− ˆ f r 

j− 1 
2 

are high order correction

terms at the level of O (�x k +1 ) when A 0 is smooth, regardless of

the smoothness of the solution U h . The design of ˆ f l 
j+ 1 

2 

and 

ˆ f r 
j− 1 

2 

,

known as the left and right fluxes, are central to this scheme and

will be discussed in the following subsection. The scheme (2.5) is

a spatially (k + 1) -th order conservative scheme and is equivalent

to the more compact formulation ∫ 
I j 

∂ t U 

n 
h v dx −

∫ 
I j 

f (U 

n 
h ) ∂ x v dx + 

ˆ f l 
j+ 1 2 

v −
j+ 1 2 

− ˆ f r 
j− 1 

2 

v + 
j− 1 

2 

= 

∫ 
I j 

S(U 

n 
h , (A 0 ) h ) v dx. (2.6)

A similar form has been described to obtain well-balanced meth-

ods for the shallow water equations [39] and for the blood flow

model [16] . 

The focus of the following subsections will be on defining the

left and right fluxes as well as presenting how the source term is

evaluated. To illustrate the approaches, we will start with the sim-

pler zero pressure man-at-eternal-rest case (1.6) in Section 2.2 . The

non-zero pressure man-at-eternal-rest case (1.5) will be discussed

in Section 2.3 . 

2.2. The zero pressure man-at-eternal-rest well-balanced scheme 

2.2.1. Well-balanced numerical fluxes 

First, at each time step, we decompose the conservative un-

known variables U into the sum of a reference equilibrium state
h 
 

e 
h 

and a fluctuation part U 

f 

h 
. Taking the zero pressure man-at-

ternal-rest steady state (1.6) in consideration, we can define the

quilibrium part of the conservative variables in I j by 

 

e 
h, j (x ) = 

( 

A 

e 
h, j 

(x ) 

Q 

e 
h, j 

(x ) 

) 

= 

(
(A 0 ) h, j (x ) 

0 

)
, (2.7)

ince the equilibrium state is explicitly given. The fluctuation part

 

f 

h 
can be determined by the decomposition of the summation 

 h = U 

e 
h + U 

f 

h 
, (2.8)

hich leads to 

 

f 

h, j 
(x ) = 

( 

A 

f 

h, j 
(x ) 

Q 

f 

h, j 
(x ) 

) 

= 

(
A h, j (x ) − (A 0 ) h, j (x ) 

Q h, j (x ) 

)
. (2.9)

hen the solution is at a steady state, one can observe that the

quilibrium parts U 

e 
h 

are equivalent to U h , hence U 

f 

h 
= 0 . The nota-

ions of U 

e 
h 

and U 

f 

h 
are introduced here to be consistent with those

n the living-man well-balanced methods in Section 4 , and are not

ecessary for this simpler man-at-eternal-rest steady state prob-

em. 

The idea of hydrostatic reconstruction is used for computing the

umerical fluxes. It was first introduced by Audusse in [1] . At time

tep t n , the cell interface values U 

±
h, j+ 1 

2 

are computed first. We con-

truct the cell interface value of A 0 as 

(A 0 ) 
∗
h, j+ 1 2 

= max 

(
(A 0 ) 

+ 
h, j+ 1 2 

, (A 0 ) 
−
h, j+ 1 2 

)
, (2.10)

nd use it to evaluate the modified cell interface values of A h 

 

∗, −
h, j+ 1 2 

= max 

(
(A 0 ) 

∗
h, j+ 1 2 

+ A 

f, −
h, j+ 1 2 

, 0 

)
= max 

(
A 

−
h, j+ 1 2 

− (A 0 ) 
−
h, j+ 1 2 

+ (A 0 ) 
∗
h, j+ 1 2 

, 0 

)
, 

 

∗, + 
h, j+ 1 2 

= max 

(
(A 0 ) 

∗
h, j+ 1 2 

+ A 

f, + 
h, j+ 1 2 

, 0 

)
= max 

(
A 

+ 
h, j+ 1 2 

− (A 0 ) 
+ 
h, j+ 1 2 

+ (A 0 ) 
∗
h, j+ 1 2 

, 0 

)
. (2.11)

he new cell boundary values for U are then defined as 

 

∗, ±
h, j+ 1 2 

= 

( 

A 

∗, ±
h, j+ 1 2 

Q 

±
h, j+ 1 2 

) 

. (2.12)

astly, the left and right fluxes are determined in the following

anner 

ˆ f l 
j+ 1 2 

= F 

(
U 

∗, −
h, j+ 1 2 

, U 

∗, + 
h, j+ 1 2 

)
+ 

(
0 

β
3 
(A 

−
h, j+ 1 2 

) 
3 
2 − β

3 
(A 

∗, −
h, j+ 1 2 

) 
3 
2 

)
, 

ˆ f r 
j− 1 

2 

= F 

(
U 

∗, −
h, j− 1 

2 

, U 

∗, + 
h, j− 1 

2 

)
+ 

(
0 

β
3 
(A 

+ 
h, j− 1 

2 

) 
3 
2 − β

3 
(A 

∗, + 
h, j− 1 

2 

) 
3 
2 

)
. (2.13)

he choice of U 

∗, ±
h, j+ 1 

2 

was defined in the way such that they are

he same at the cell interfaces when steady state is reached, which

s desirable for achieving the well-balanced property. Notice that

t the steady state, the left and right fluxes simplify to ˆ f l 
j+ 1 

2 

=
f (U 

−
h, j+ 1 

2 

) and 

ˆ f r 
j− 1 

2 

= f (U 

+ 
h, j− 1 

2 

) as a result of the numerical flux

 being consistent. 

.2.2. Source term approximation 

In an effort to balance the source term with the numerical

uxes, an approximation of the source term will be discussed in

his section. The source term S(U, A 0 ) = 

βA 

2 
√ 

A 0 
(A 0 ) x = βA ( 

√ 

A 0 ) x is

inear with respect to the variable A . As a result of this linearity
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p∫

A  

 

h  

s

2

D
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T  

fi  

a  

s  

s

 

p

 

a  

N  

a  

t  

a⎧⎨
⎩
I  

 

s  
nd the decomposition of U h in (2.8) , the source term can be de-

omposed as 

 

S ( U h , ( A 0 ) h ) v dx = 

∫ 
S 
(
U 

e 
h , ( A 0 ) h 

)
v dx + 

∫ 
S 
(
U 

f 

h 
, ( A 0 ) h 

)
v dx. 

(2.14) 

he second term on the right hand side can be directly computed

y a quadrature rule. On the other hand, since the function U 

e 
h 
(x )

s the equilibrium state, we recall the following relation 

 

I j 

S 
(
U 

e 
h , ( A 0 ) h 

)
v dx = −

∫ 
I j 

f 
(
U 

e 
h 

)
v x dx + f 

(
U 

e, −
h, j+ 1 2 

)
v −

j+ 1 2 

− f 

(
U 

e, + 
h, j− 1 

2 

)
v + 

j− 1 
2 

, (2.15) 

olds. When a quadrature rule is used for numerical integra-

ion, this equality holds approximately, up to the accuracy of the

uadrature rule. For the purpose of well-balancedness, we cannot

se (2.14) with a quadrature rule to approximate the source term,

nstead, the approximation for the source term will be evaluated

y 
 

I j 

S ( U h , ( A 0 ) h ) v dx = −
∫ 

I j 

f 
(
U 

e 
h 

)
v x dx + f 

(
U 

e, −
h, j+ 1 2 

)
v −

j+ 1 2 

− f 

(
U 

e, + 
h, j− 1 

2 

)
v + 

j− 1 
2 

+ 

∫ 
I j 

S 
(
U 

f 

h 
, (A 0 ) h 

)
v dx. 

(2.16) 

Taking the choice of U 

e 
h 

in (2.7) , the decomposition of the

ource term (2.14) becomes 
 

βA h ( 
√ 

(A 0 ) h ) x v dx = 

∫ 
βA 0 ( 

√ 

(A 0 ) h ) x v dx 

+ 

∫ 
β(A h − (A 0 ) h )( 

√ 

(A 0 ) h ) x v dx, 

(2.17) 

nd the approximation for the source term in (2.16) reduces to 

 

I j 

βA h ( 
√ 

A 0 ) x v dx = −
∫ 

I j 

β

3 

( (A 0 ) h ) 
3 
2 v x dx + 

β

3 

(
(A 0 ) 

−
h, j+ 1 2 

) 3 
2 

v −
j+ 1 2 

−β

3 

(
(A 0 ) 

+ 
h, j− 1 

2 

) 3 
2 

v + 
j− 1 

2 

+ 

∫ 
I j 

(A h − (A 0 ) h )( 
√ 

(A 0 ) h ) x v dx. (2.18)

emark 2.1. The source term used in this paper is due to only the

ross-sectional area at rest. The decomposition (2.14) will not hold

f the source term also included a friction term or another term

hat is not linear with respect to the conservative variables. How-

ver, one could consider a similar decomposition for the source

erm as follows 
 

S ( U h , ( A 0 ) h ) v dx = 

∫ 
S 
(
U 

e 
h , ( A 0 ) h 

)
v dx 

+ 

∫ (
S ( U h , ( A 0 ) h ) − S 

(
U 

e 
h , ( A 0 ) h 

))
v dx. 

(2.19) 

he first term on the right hand side, 
∫ 

S 
(
U 

e 
h 
, ( A 0 ) h 

)
v dx, can be

pproximated by (2.15) . The second term on the right hand side

an be computed using numerical integration with an appropri-

te quadrature scheme. It is interesting to note that S ( U h , ( A 0 ) h ) −
 

(
U 

e 
h 
, ( A 0 ) h 

)
= S 
(
U h − U 

e 
h 
, ( A 0 ) h 

)
= S 

(
U 

f 

h 
, ( A 0 ) h 

)
when the source

erm is linear, and this leads to the original source decomposition

ormulation. 

emark 2.2. In the well-balanced methods designed for the SWEs

n [35] , a straightforward numerical integration of the source term
y a quadrature rule accurate for polynomial of degree 3 k − 1 is

ufficient. This is due to the fact that the Eq. (2.15) holds exactly

ith sufficiently accurate quadrature, therefore, Eqs. (2.14) and

2.16) are equivalent. For the blood flow with a source term of

he form S(U h , (A 0 ) h ) = 

βA h 
2 
√ 

(A 0 ) h 
( (A 0 ) h ) x , a direct numerical inte-

ral with quadrature rules does not yield a well-balanced method,

ecause 
√ 

(A 0 ) h is no longer a polynomial, hence any numerical 

ntegration may not be exact. For the steady state problem, the nu-

erical error would be dominated by the integration error, which

ecomes non-negligible, especially on a coarse mesh. 

We conclude this subsection by showing the scheme indeed

atisfies the well-balanced property. 

roposition 1. The DG scheme (2.6) for the blood flow system

1.3) with the zero pressure man-at-eternal-rest steady state (1.6) is

ell-balanced when paired with the numerical fluxes (2.13) and the

ource term decomposition (2.16) . 

roof. At the steady state, we have U 

f 

h 
= 0 and U 

e 
h 

= U h . The ap-

roximation (2.16) to the source term becomes 

 

I j 

S ( U h , ( A 0 ) h ) v dx 

= −
∫ 

I j 

f 
(
U 

e 
h 

)
v x dx + f 

(
U 

e, −
h, j+ 1 2 

)
v −

j+ 1 2 

− f 

(
U 

e, + 
h, j− 1 

2 

)
v + 

j− 1 
2 

= −
∫ 

I j 

f ( U h ) v x dx + f 

(
U 

−
h, j+ 1 2 

)
v −

j+ 1 2 

− f 

(
U 

+ 
h, j− 1 

2 

)
v + 

j− 1 
2 

. (2.20) 

dditionally, the left and right fluxes (2.13) simplify to ˆ f l 
j+ 1 

2 

=

f 

(
U 

−
h, j+ 1 

2 

)
and 

ˆ f r 
j− 1 

2 

= f 

(
U 

+ 
h, j− 1 

2 

)
at the steady state. Therefore, we

ave shown the fluxes and source term balance, which implies the

cheme is indeed well-balanced. �

.2.3. An alternative zero pressure man-at-eternal-rest well-balanced 

G scheme 

In this subsection, we present an alternative well-balanced DG

ethod for the zero pressure man-at-eternal-rest steady state (1.6) .

his follows the idea of decomposing the source term, proposed

rst in [34] for the shallow water equation, and later in [17,36] for

 general class of hyperbolic balance laws. The same idea has been

tudied in [31] to develop well-balanced finite difference WENO

cheme for the blood flow model. 

The key idea is to introduce the following source term decom-

osition, 

βA 

2 

√ 

A 0 

(A 0 ) x = β(A − A 0 ) 
(√ 

A 0 

)
x + 

(
β

3 

A 

3 
2 

0 

)
x , (2.21)

nd we refer to [36] for the motivation of such decomposition.

ote that this coincides with the source term approximation (2.18) ,

lthough they arise from different approaches. We can then move

he term 

(
β
3 A 

3 
2 
0 

)
x to the left side and combine it with the flux to

chieve the updated equation of the form 

 

 

 

A t + Q x = 0 , 

Q t + 

(
Q 

2 

A 

+ 

β

3 

A 

3 
2 − β

3 

A 

3 
2 

0 

)
x 

= β(A − A 0 ) 
(√ 

A 0 

)
x 
, 

(2.22) 

t is clear that at the zero pressure man-at-eternal-rest steady state

(Q, A ) = (0 , A 0 ) , the system of PDEs (2.22) has both zero flux and

ource term, hence the traditional DG scheme (2.2) is automatically
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e  
well-balanced when the Lax–Friedrichs fluxes defined in (2.3) is

updated to be 

F (U 

−
h 

, U 

+ 
h 
) 

= 

1 

2 

(
f (U 

−
h 
) + f (U 

+ 
h 
) − α

((
A 

+ 
h 

− (A 0 ) 
+ 
h 

Q 

+ 
h 

)
−
(

A 

−
h 

− (A 0 ) 
−
h 

Q 

−
h 

)))
, 

(2.23)

so that the added numerical diffusion term disappears at the

steady state. Note that f in (2.23) now corresponds to the flux in

the updated form (2.22) . The proof of the well-balanced property

is rather straightforward and is not included here. 

This is a simple approach to achieve well-balanced property,

and there is no need to introduce the hydrostatic reconstruction

idea when constructing the numerical fluxes. However, this cannot

be extended to the more complicated living-man equilibrium case.

2.3. The non-zero pressure man-at-eternal-rest well-balanced scheme 

In this section, we present well-balanced DG methods for the

man-at-eternal-rest steady state with non-zero pressure (1.5) . 

We start with the description of well-balanced numerical

fluxes. For the non-zero pressure man-at-eternal-rest steady state

(1.5) , the choice of the decomposition into U 

e 
h 

and U 

f 

h 
, as well as

the definition of A 

∗, ±
h, j+ 1 

2 

must be modified from those presented in

the previous subsection. The decomposed variables will be com-

puted based on the steady state solution (1.5) , therefore we denote

 = ( Q 
E 
) = ( 

Q √ 

A −
√ 

A 0 
) to be the equilibrium variables. The reference

equilibrium values ˆ V in each cell I j are defined by the following, 

ˆ 
 j = 

(
ˆ Q j 

ˆ E j 

)
= 

⎛ 

⎜ ⎝ 

Q h 

(
x −

j+ 1 2 

)
(√ 

A h, j −
√ 

( A 0 ) h, j 

)(
x −

j+ 1 2 

)
⎞ 

⎟ ⎠ 

, (2.24)

which will be constant for all j if the system is at a steady state. It

follows that the equilibrium part U 

e 
h, j 

can be defined using ˆ V j and

the true value of A 0 ( x ), 

 

e 
h, j (x ) = 

(
A 

e 
h, j 

(x ) 

Q 

e 
h, j 

(x ) 

)
= 

⎛ 

⎝ 

P 

((
ˆ E j + 

√ 

A 0 (x ) 
)2 
)

ˆ Q j 

⎞ 

⎠ , (2.25)

where the operator P can be taken as any projection into the

piecewise polynomial space V 

k 
h 

as long as it is the same projec-

tion that was used to evaluate the numerical initial condition. The

fluctuation part, U 

f 

h, j 
, is again defined as in (2.8) . With this, the cell

interface value of A 0 takes the form of 

(A 0 ) 
∗
h, j+ 1 2 

= max 

(
(A 0 ) 

+ 
h, j+ 1 2 

, (A 0 ) 
−
h, j+ 1 2 

)
, (2.26)

and the modified cell interface values of A h become 

A 

∗, −
h, j+ 1 2 

= max 

( (
ˆ E j + 

√ 

(A 0 ) 
∗
h, j+ 1 2 

)2 

+ A 

f, −
h, j+ 1 2 

, 0 

) 

, 

A 

∗, + 
h, j+ 1 2 

= max 

( (
ˆ E j+1 + 

√ 

(A 0 ) 
∗
h, j+ 1 2 

)2 

+ A 

f, + 
h, j+ 1 2 

, 0 

) 

. (2.27)

The definition of U 

∗, ±
h, j+ 1 

2 

, as well as the left and right fluxes ˆ f l 
j+ 1 

2 

,

ˆ f r 
j− 1 

2 

, are defined in the same way, as in (2.13) . These well-

balanced numerical fluxes are consistent with those for the living-

man equilibrium which will be presented in Section 4 . 
Alternatively, one may also follow the approach in [16] by let-

ing 
 

(A 0 ) 
∗
h, j+ 1 2 

= max 

(√ 

(A 0 ) 
+ 
h, j+ 1 2 

, 

√ 

(A 0 ) 
−
h, j+ 1 2 

)
, (2.28)

nd then redefining A h at the cell interfaces as 

 

A 

∗, −
h, j+ 1 2 

= max 

(√ 

A 

−
h, j+ 1 2 

−
√ 

(A 0 ) 
−
h, j+ 1 2 

+ 

√ 

(A 0 ) 
∗
h, j+ 1 2 

, 0 

)
, 

 

A 

∗, + 
h, j+ 1 2 

= max 

(√ 

A 

+ 
h, j+ 1 2 

−
√ 

(A 0 ) 
+ 
h, j+ 1 2 

+ 

√ 

(A 0 ) 
∗
h, j+ 1 2 

, 0 

)
, 

(2.29)

ithout involving U 

e 
h 

and U 

f 

h 
in the definition of the numerical

uxes. 

As for the source term approximation, we note that the source

erm decomposition (2.16) still holds. While U 

e and U 

f are de-

ned differently in this subsection, the decomposition approach

resented in Subsection 2.2.2 can still be applied. Note that the

irect numerical integration may not give well-balanced meth-

ds, as explained in Remark 2.2 . This completes our description of

ell-balanced methods for the non-zero pressure man-at-eternal-

est steady state (1.5) . One can show that the living-man well-

alanced method in Section 4 can reduce to this man-at-eternal-

est well-balanced method. Furthermore, one can show (2.29) and

2.27) each simplify to (2.11) when A = A 0 . 

roposition 2. The DG scheme (2.6) for the blood flow system

1.3) with the non-zero pressure man-at-eternal-rest steady state

1.5) is well-balanced when paired with (2.29) or (2.27) , the numeri-

al fluxes (2.13) , and the source term decomposition (2.16) . 

The proof is similar to the zero-pressure case and is thus omit-

ed here. 

emark 2.3. When the cross-sectional area at rest, A 0 , is con-

tant, the traditional DG scheme is recovered, i.e., the numerical

uxes reduce to standard flux and the source term approxima-

ion is simply zero. First, it is easy to observe that the source

erm approximation (2.18) reduces to exactly 0, since ( A 0 ) h is

onstant. Second, we will show that the left and right numeri-

al fluxes reduce to the original DG fluxes. When A 0 is constant,

hen (A 0 ) 
∗
h, j+ 1 

2 

= (A 0 ) 
+ 
h, j+ 1 

2 

= (A 0 ) 
−
h, j+ 1 

2 

, so the calculation of A 

∗, ±
h 

y definitions (2.11), (2.29) or (2.27) reduces to 

 

∗, ±
h, j+ 1 2 

= max 

(
A 

±
h, j+ 1 2 

, 0 

)
= A 

±
h, j+ 1 2 

. (2.30)

ore generally, we have that U 

∗, ±
h, j+ 1 

2 

= U 

±
h, j+ 1 

2 

. Therefore, by def-

nition of the left and right fluxes, we obtain 

ˆ f l 
j+ 1 

2 

= 

ˆ f 
j+ 1 

2 
and

ˆ f r 
j− 1 

2 

= 

ˆ f 
j− 1 

2 
. 

. Numerical tests for the man-at-eternal-rest well-balanced 

ethod 

In this section, we present some numerical examples by testing

he well-balanced DG scheme designed for the man-at-eternal-rest

teady state in Section 2 . The third order TVD Runge-Kutta time

iscretization (2.4) is used in conjunction with piecewise quadratic

olynomials (k = 2) in space, unless otherwise stated. The CFL

umber is taken to be 0.15. 

.1. Accuracy test 

Our first numerical example tests the accuracy of our man-at-

ternal-rest well-balanced scheme on a problem with smooth so-
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Table 1 

L 1 errors and convergence orders of the accuracy test in Section 3.1 , using P 0 , P 1 and P 2 piece- 

wise polynomials and the man-at-eternal-rest well-balanced method. In each case, k + 1 order of 

accuracy is achieved. 

k = 0 k = 1 k = 2 

Variable J L 1 Error Order L 1 Error Order L 1 Error Order 

A 25 6.1718e-01 4.0986e-02 1.7291e-03 

50 4.0692e-01 0.6009 1.0077e-02 2.0241 2.2503e-04 2.9418 

100 2.4564e-01 0.7282 2.5017e-03 2.0093 2.8740e-05 2.9690 

200 1.3642e-01 0.8485 6.2420e-04 2.0028 3.6297e-06 2.9851 

400 7.2062e-02 0.9207 1.5614e-04 1.9992 4.5768e-07 2.9874 

Q 25 2.5275e02 6.2128e00 3.4189e-01 

50 1.4833e02 0.7689 1.5283e00 2.0233 4.1757e-02 3.0334 

100 8.0719e01 0.8779 3.8083e-01 2.0047 5.1194e-03 3.0280 

200 4.2203e01 0.9356 9.5287e-02 1.9989 6.3175e-04 3.0185 

400 2.1582e01 0.9676 2.3935e-02 1.9931 7.8696e-05 3.0050 

Table 2 

Parameters in the initial condition (3.2) for the zero pressure man-at-eternal-rest well-balanced tests. 

˜ R �R K ρ x 1 x 2 x 3 x 4 L 

4 × 10 −3 m 10 −3 m 10 8 Pa 
m 

1060 kg 
m 3 

10 −2 m 3 . 05 × 10 −2 m 4 . 95 × 10 −2 m 7 × 10 −2 m 0.14 m 

l
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t  
utions. The initial conditions for x ∈ [0, 10] are 

 (x, 0) = sin 

(
π

5 

x 

)
+ 10 , Q(x, 0) = e cos ( π5 x ) , (3.1)

ith the cross-sectional area at rest 

 0 (x ) = 

1 

2 

cos 2 
(
π

5 

x 

)
+ 5 , 

nd K = 10 8 Pa 
m 

, ρ = 1060 kg 

m 

3 . Periodic boundary conditions are

mployed. We compute until time t = 0 . 01 when the solution is

till smooth. Since there is no explicitly known solution in this

ase, the errors are computed by iteratively comparing results from

eshes of uniform cell widths h and h /2. Table 1 contains the L 1 

rrors and orders of accuracy for P 0 , P 1 and P 2 polynomials. For

ach polynomial degree k , we see that (k + 1) th order accuracy is

chieved. 

.2. Tests for the well-balanced property 

.2.1. A zero pressure man-at-eternal-rest steady state 

In this section, we demonstrate that the proposed DG scheme

ptly preserves the zero pressure man-at-eternal-rest steady state

1.6) with a non-constant cross-sectional area at rest. We consider 

he case of a dead man with an aneurysm, which implies there is

o blood flow occurring in a section of an artery that has a non-

onstant radius. An aneurysm occurs when the arterial wall weak-

ns and balloons outwards. The initial conditions for the radius, R ,
Fig. 2. Numerical solutions of the man-at-eternal-rest problem in Section 3.2 , at ti
re given by 

 (x, 0) = R 0 (x ) 

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

˜ R , if x ∈ [0 , x 1 ] ∪ [ x 4 , L ] , 

˜ R + 

�R 
2 

[
sin 

(
x −x 1 
x 2 −x 1 

π − π
2 

)
+ 1 

]
, if x ∈ [ x 1 , x 2 ] , 

˜ R + �R, if x ∈ [ x 2 , x 3 ] , 

˜ R + 

�R 
2 

[
cos 
(

x −x 3 
x 4 −x 3 

π
)

+ 1 

]
, if x ∈ [ x 3 , x 4 ] , 

(3.2) 

or an artery of length L , with all the remaining parameters found

n Table 2 . The initial conditions for the cross-sectional area and

ross-sectional area at rest are thus given by 

 (x, 0) = πR (x, 0) 2 , A 0 (x ) = πR 0 (x ) 2 . (3.3)

The initial velocity is assumed to be zero, thus Q(x, 0) = 0 . We

mpose transmissive boundary conditions at both endpoints of the

omain and compute this example until time t = 5 . Since the ini-

ial condition is the man-at-eternal-rest steady state, the solution

hould stay unchanged. The L 1 and L ∞ errors of the numerical

olutions are shown in Table 3 and demonstrate that the well-

alanced property was maintained when using the man-at-eternal-

est well-balanced scheme. The errors were computed by com-

aring the numerical solution to the numerical initial conditions.

ig. 2 shows the area of the artery and the velocity at t = 5 with a

esh of 200 cells. 

For comparison, we also compute the same test using the tradi-

ional DG method in which the standard numerical fluxes are used
me t = 5 with quadratic basis functions and mesh of size 200 uniform cells. 
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Table 3 

Table of absolute and relative L 1 and L ∞ errors for the zero pressure man-at-eternal-rest well- 

balanced test representing an aneurysm in Section 3.2 . Errors are given for both the traditional 

DG scheme and the well-balanced scheme. The well-balanced scheme demonstrates the well- 

balanced property, while the traditional DG scheme does not have the well-balanced property. 

Relative errors are included for A since the scale of the problem is so small. However, relative 

errors are not included for Q since the exact value is identically 0. 

Traditional DG Scheme Man-at-Eternal-Rest WB DG Scheme 

Variable Error Type L 1 Error L ∞ Error L 1 Error L ∞ Error 

A Absolute 1.8404e-13 1.7712e-08 2.042e-19 2.4335e-15 

Relative 3.3148e-09 3.1990e-04 3.5744e-15 3.8730e-11 

Q Absolute 1.8404e-13 1.7712e-08 2.042e-19 2.4335e-15 

Table 4 

Parameters in (3.4) for the non-zero pressure man-at-eternal-rest well-balanced 

tests. 

˜ R �R K ρ L x 1 x 2 x 3 x 4 

4 × 10 −3 m 10 −3 m 10 8 Pa 
m 

1060 kg 
m 3 

0.14 m 

9 L 
40 

1 L 
4 

3 L 
4 

31 L 
40 
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and the source term is computed with a straightforward numerical

integration. Fig. 3 and the errors in Table 3 demonstrate that the

traditional DG scheme does not preserve the steady state exactly

in the discrete level. 

3.2.2. A non-zero pressure man-at-eternal-rest steady state 

In this subsection, we consider the case of a dead man with

stenosis. Stenosis occurs when the artery narrows and it leads to

reduced blood flow from the heart to the rest of the body. Steno-

sis can be caused by a congenital heart defect, calcium buildup,or

rheumatic fever which is a result of a strep throat infection. The

radius at rest, R 0 , for an artery of length L is given by 

R 0 (x ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

˜ R + �R, if x ∈ [0 , x 1 ] ∪ [ x 4 , L ] , 

˜ R − �R 
2 

[
sin 

(
x −x 1 
x 2 −x 1 

π − π
2 

)
− 1 

]
, if x ∈ [ x 1 , x 2 ] , 

˜ R , if x ∈ [ x 2 , x 3 ] , 

˜ R − �R 
2 

[
cos 
(

x −x 3 
x 4 −x 3 

π
)

− 1 

]
, if x ∈ [ x 3 , x 4 ] , 

(3.4)

where all the parameters are found in Table 4 . 

Then the initial conditions are determined by the equilibrium

values, that is 

A (x, 0) = (C + 

√ 

πR 0 (x )) 2 , Q(x, 0) = 0 . (3.5)

where we set the constant C = 10 −3 . We impose transmissive

boundary conditions and run the scheme until the final time of
Fig. 3. The difference between A, Q at the final time t = 5 and the numerical initial cond

in Section 3.2 . 
 = 1 on mesh sizes of 50 and 200 uniform cells. The errors are

ound in Table 5 and demonstrate that the well-balanced property

s preserved even on the coarse mesh of 50 cells. We also compare

he results of the traditional DG scheme and non-zero pressure

an-at-eternal-rest scheme well-balanced DG scheme in Fig. 4 . It

s clear from the figures that the use of a well-balanced scheme is

specially important for preserving the non-constant area A . 

.3. Tests for small perturbations of the man-at-eternal-rest steady 

tates 

In this section, we examine multiple tests in which the initial

onditions of a man-at-eternal-rest steady state are perturbed in

 small region. The initial perturbation will split into two waves

oving away from the source in opposite directions. We compare

he man-at-eternal-rest well-balanced and traditional DG schemes

o demonstrate the advantage of well-balanced methods in han-

ling the propagation of these small perturbations. 

Different wave propagation behaviors arise in arteries with con-

tant and variable cross-sectional areas. We will first discuss the

xpected behaviors before exploring specific examples. Suppose an

ncident pulse is introduced at the left arterial end (with cross-

ectional area A 1 ) and then travels towards the right (with cross-

ectional area A 2 ). When the pulse crosses into the region of the

essel with cross-sectional area A 2 it generates a transmission

ulse propagating in the same direction, and also a reflected pulse

ropagating to the left. The speed and wavelength of the reflected

ulse is the same as the incident pulse because both pulses are

raveling in the same medium. The amplitude of the reflected pulse

s smaller and can be either inverted or non-inverted depending

n the shape of the cross-sectional area. The reflection pulse is in-

erted when A 1 < A 2 , and non-inverted when A 1 > A 2 . See Fig. 5

or a visualization of this process. The ratio of the amplitude of
itions, when the traditional DG scheme is used for the man-at-eternal-rest problem 
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Fig. 4. Plots of the errors at time t = 1 for the non-zero pressure man-at-eternal-rest problem from Section 3.2.2 . The results using the non-zero pressure man-at-eternal-rest 

well-balanced scheme (top row) are compared with the results when using the traditional DG scheme (bottom row). 

Fig. 5. An initial perturbation pulse splits into a transmission and reflection pulse when it moves from a region of area A 1 to a region of area A 2 . The transmission pulse 

continues in the same direction of the original pulse while the reflection pulse moves in the opposite direction. 



10 J. Britton and Y. Xing / Computers and Fluids 203 (2020) 104493 

Table 5 

Table of absolute and relative L 1 and L ∞ errors for non-zero pressure man-at-eternal-rest well-balanced 

test representing stenosis in Section 3.2.2 . Errors are given for the traditional DG scheme and the well- 

balanced scheme for both J = 50 and J = 200 uniform spatial cells. The well-balanced scheme demonstrates 

the well-balanced property, while the traditional DG scheme does not have the well-balanced property. 

Traditional DG Scheme Man-at-Eternal-Rest WB DG Scheme 

J Variable Error Type L 1 Error L ∞ Error L 1 Error L ∞ Error 

50 A Absolute 6.5745e-09 3.2637e-05 6.9075e-17 1.7727e-13 

Relative 2.0676e-07 1.0273e-03 2.1538e-15 5.5236e-12 

Q Absolute 6.9733e-13 7.5473e-08 2.0062e-17 5.8616e-14 

200 A Absolute 2.1580e-10 4.1932e-06 8.1454e-17 8.3574e-13 

Relative 6.7907e-09 1.3198e-04 2.5398e-15 2.6044e-11 

Q Absolute 2.1929e-15 1.3615e-09 2.5451e-17 2.7981e-13 

Table 6 

Parameters for the wave equation problem (3.7) . 

R 0 K ρ x 1 x 2 x 3 L ε

4 × 10 −3 m 10 8 Pa 
m 

1060 kg 
m 3 

2 L 
10 

m 

4 L 
10 

m 

6 L 
10 

m 0.16 m 5 × 10 −3 
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Table 7 

Parameters for (3.10) in the propagation of a pulse to and from an expan- 

sion problems. 

˜ R �R K ρ x 1 x 2 L 

4 × 10 −3 m 10 −3 m 10 8 Pa 
m 

1060 kg 
m 3 

19 L 
40 

m 

L 
2 

m 0.16 m 
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the reflected pulse and the incident pulse, known as the reflection

coefficient R , can be computed exactly and is given by 

R = 

A 1 
C 1 

− A 2 
C 2 

A 1 
C 1 

+ 

A 2 
C 2 

. (3.6)

where the Moens–Korteweg coefficients C i corresponding to A 1 and

A 2 are defined as C i = 

√ 

K 
√ 

A i 
2 ρ

√ 

π
for i = 1 , 2 . The transmission coeffi-

cient, T , given by T = 1 + R represents the ratio of the amplitude

of the transmission pulse to the incident pulse. 

The numerical example in Section 3.3.1 portrays an artery with

constant cross-sectional area. Therefore, the waves resulting from

the perturbation will propagate through the domain and after they

exit the domain, the radii will return to the unperturbed state. On

the other hand, the examples in Sections 3.3.2 and 3.3.3 represent

arteries with non-constant cross-sectional area, resulting in the ap-

pearance of reflection and transmission pulses. 

3.3.1. Wave equation 

We start with the following wave equation example with con-

stant cross-section at rest, which has been studied in [8] by De-

lestre et al. It is a small perturbation test, in which an “approxi-

mate” solution can be found analytically. The initial conditions are

given by 

A (x, 0) = 

{
π(R 0 ) 

2 , if x ∈ [0 , x 2 ] ∪ [ x 3 , L ] , 

π(R 0 ) 
2 
[
1 + ε sin 

(
π x −x 2 

x 1 

)]2 
, if x ∈ [ x 2 , x 3 ] , 

Q(x, 0) = 0 , (3.7)

on the computational domain [0, L ]. The cross-section at rest is

given by A 0 (x ) = πR 0 (x ) 2 . The parameters used in our simulation

are listed in Table 6 . 

As shown in [8] , when neglecting all the high order terms of ε,

its solution can be expressed as ⎧ ⎨ 

⎩ 

R (x, t) = R 0 + 

ε

2 

[ φ(x − C 0 t) + φ(x + C 0 t)] , 

u (x, t) = −ε
C 0 
R 0 

[ −φ(x − C 0 t) + φ(x + C 0 t)] , 
(3.8)

where φ(x ) = R 0 sin (π x −x 2 
x 1 

) 1 [ x 2 ,x 3 ] with 1 being the indicator

function and the constant C 0 is the Moens–Korteweg wave velocity

 0 = 

√ 

K 

√ 

A 0 

2 ρ
√ 

π
= 

√ 

KR 0 

2 ρ
≈ 13 . 73 . (3.9)
We employee transmissive boundary conditions at the end-

oints of the domain. Fig. 6 shows the numerical results at times

 = 0 . 0 02 , 0 . 0 04 , and 0.006 with a mesh of 200 cells. Comparison

ith the analytical exact solution (3.8) demonstrates that these

mall perturbations are well captured. 

.3.2. Propagation of a pulse to and from an expansion 

In the examples below, we consider the reflection and the

ransmission of a small wave in an aneurysm, when the cross-

ection at rest is not a constant. Following the setup in [8] , we

onsider the radius of the cross-section at rest given by 

 0 (x ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

˜ R + �R, if x ∈ [0 , x 1 ] , 

˜ R + 

�R 
2 

[
1 + cos 

(
x −x 1 
x 2 −x 1 

π
)]

, if x ∈ [ x 1 , x 2 ] , 

˜ R , otherwise , 

(3.10)

here the necessary parameters are listed in Table 7 . 

First, we consider a pulse propagating towards an expansion.

he perturbation is applied to the region of the artery with smaller

adii and given by the following 

 (x, 0) = 

⎧ ⎨ 

⎩ 

R 0 (x ) 
[ 

1 + ε sin 

(
100 

20 L 
π
(

x − 65 L 

100 

))] 
, if x ∈ 

[
65 L 
100 

, 85 L 
100 

]
, 

R 0 (x ) , otherwise . 

(3.11)

he parameter ε = 5 . 0 × 10 −3 and the momentum Q(x, 0) = 0 m 

3 

s 

re considered. The boundary conditions are transmissive at the

ndpoints of the domain. The initial state and numerical solutions

t times t = 0 . 002 and t = 0 . 006 are presented in Fig. 7 . Fig. 8

emonstrates how the wave propagates as a function of time for

ll time. 

Second, we consider a pulse propagation from an expansion. In

his case, the perturbation is initiated in the region of the vessel

ith larger area. The perturbed radius now becomes 

 (x, 0) = 

⎧ ⎨ 

⎩ 

R 0 (x ) 
[ 

1 + ε sin 

(
100 

20 L 
π
(

x − 15 L 

100 

))] 
, if x ∈ 

[
15 L 
100 

, 35 L 
100 

]
, 

R 0 (x ) , otherwise , 

(3.12)

here ε = 5 . 0 × 10 −3 . As before, the fluid is at rest, Q(x, 0) = 0 m 

3 

s ,

nd transmissive boundary conditions are imposed at the end-

oints of the domain. In Fig. 9 , we see the initial state and numer-
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Fig. 6. Solutions of the radius R and velocity u of the wave equation problem at various times with quadratic basis functions and a uniform mesh of 200 cells and the exact 

solutions at the same times. 

Fig. 7. Initial conditions and solution of the propagation of a pulse to an expansion problem at various times with a mesh of 200 uniform cells. The reflection pulse, visible 

at time t = 0 . 006 , is inverted. 

Fig. 8. Propagation of the pulse to an expansion over all time. The plots show the difference between the numerical solution at time t and the initial conditions. A mesh of 

200 uniform cells was used to compute the solution. Around time t = 0 . 003 the left-moving wave meets the expansion and the inverted reflection wave forms. 
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Fig. 9. Initial conditions and solution of the propagation of a pulse from an expansion problem at various times computed with a mesh of 200 uniform cells. The reflection 

pulse, visible at time t = 0 . 006 , is non-inverted. 

Fig. 10. Propagation of the pulse from an expansion over all time. The plots show the difference between the numerical solution at time t and the initial conditions. A mesh 

of 200 uniform cells was used to compute the solution. Around time t = 0 . 003 the right-moving wave meets the expansion and the non-inverted reflection wave forms. 
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ical results at times t = 0 . 002 and t = 0 . 006 . Fig. 10 demonstrates

how the wave propagates as a function of time for all time. 

3.3.3. Perturbation of a non-zero pressure man-at-eternal-rest 

well-balanced problem 

In this subsection, we impose a small perturbation to a non-

zero pressure man-at-eternal-rest steady state problem represent-

ing stenosis in a ‘dead man’. We show that the well-balanced

scheme aptly handles the perturbation. We also compute the same

test using the traditional DG scheme and compare the results. 

The radius at rest is given by (3.4) and the original initial con-

ditions are given by (3.5) . We impose a small perturbation at the

center of the artery to the cross-sectional radii in the following

manner, 

R pert (x, 0) 

= 

{ 

R 0 (x ) 
[
1 + ε sin 

(
100 
10 L 

π
(
x − 45 L 

100 

))]
, if x ∈ 

[
45 L 
100 

, 55 L 
100 

]
, 

R 0 (x ) , otherwise . 

The initial condition for the perturbed cross-sectional area is then

defined as A pert (x, 0) = πR pert (x, 0) 2 . The scheme is run until time
 = 8 × 10 −4 , before the traveling perturbation waves exit the do-

ain. 

We test this problem with ε = 10 −3 and ε = 10 −4 for two dif-

erent sizes of mesh, J = 50 and J = 200 uniform cells. The results

or the well-balanced DG scheme are presented in Fig. 11 and the

esults for the traditional DG scheme are found in Fig. 12 . The well-

alanced scheme aptly handles the perturbation for either mesh

ize and for either size perturbation. On the other hand, the tra-

itional DG scheme does not work as well. In the case where

 = 50 uniform cells, then the undesirable behavior arises for ei-

her perturbation size. In the case where J = 200 uniform cells,

he scheme has similar results for the perturbation with smaller

mplitude (i.e. ε = 10 −4 ), however the scheme improves when the

mplitude of the perturbation is larger (i.e. ε = 10 −3 ). However, in

ither case, the scheme is still out-performed by the well-balanced

ethod. 

. Living-man well-balanced DG scheme 

In this section, well-balanced methods for maintaining the gen-

ral living-man steady state (1.7) will be described. Due to the
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Fig. 11. Perturbation of non-zero pressure man-at-eternal-rest well-balanced problem in Section 3.3.3 for all time up until t = 0 . 008 using the non-zero pressure well-balanced 

DG scheme . The scheme performs well for both mesh sizes and for both perturbation sizes. 
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Fig. 12. Perturbation of non-zero pressure man-at-eternal-rest well-balanced problem in Section 3.3.3 for all time up until t = 0 . 008 using the traditional DG scheme . The 

scheme performs poorly on the coarse mesh of 50 uniform cells for either size perturbation. For the refined mesh of 200 uniform cells, the scheme improves slightly for the 

larger perturbation, but still does not perform as well as the well-balanced scheme. 
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Fig. 13. Radii at rest for the artery with an aneurysm defined by (5.6) . 
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omplexity of the steady state, extra attention is given to the pro-

ection of the initial conditions, as well as the source term and nu-

erical flux calculations. 

.1. Numerical initial conditions 

In general, the L 2 projection of the true initial condition U 0 

s taken to be the numerical initial condition U 

0 
h 

for modal DG

chemes, as was done for the man-at-eternal-rest well-balanced

G scheme in Section 2 . However, the projected polynomial U 

0 
h 

ay not be in the equilibrium state. Thus the cell boundary values

 

±
h, j+ 1 

2 

, as well as the function values at the quadrature points used

o evaluate the volume integral, may also not be in equilibrium.

his contributes to the challenges of how to recover the equilib-

ium information from these polynomials. We would like to com-

ent that this difficulty disappears for the finite difference meth-

ds, because the points values of the initial condition in any fi-

ite difference methods, by design, automatically satisfy the equi-

ibrium. 

The same difficulty also appears in high order well-balanced fi-

ite volume methods, whose numerical initial condition is simply

he cell average. In [22] where well-balanced methods were de-

igned for the shallow water equations with moving-water equilib-

ium state, this difficulty was identified. The issue was addressed

n that paper by defining the well-balanced states as the solu-

ions of nonlinear equations and then solving them using Newton’s

ethod. The same idea was later extended to construct numeri-

al initial conditions of well-balanced DG methods in [33] . A sim-

ler approach, without involving the nonlinear equations and the

ewton’s method, is proposed in [17] , by introducing a special pro-

ection of the initial condition to take advantage of the flexibility

f the DG method. A further modification of the projection from

17] is proposed in this paper to produce the numerical initial con-

ition U 

0 
h 

. 
We introduce the following projection P h ω of any function ω 

nto the space V 

k 
h 

satisfying, on each interval I j , 

 

I j 

P h ωv dx = 

∫ 
I j 

ωv dx, (4.1)

or any v ∈ P k −1 on I j , and 

(P h ω ) 
(

x −
j+ 1 2 

)
= ω 

(
x −

j+ 1 2 

)
, (4.2)

t the right boundary value x 
j+ 1 

2 
of the cell I j . This projection is

nown as the Radau projection. The polynomial P h ω for each cell

 j can be determined by solving a local linear algebra problem of

he size (k + 1) × (k + 1) derived from the discretized versions of

4.1) and (4.2) . This is a local projection defined on each interval I j .

ne can show that the error of this projection has optimal order

f h k +1 . 

The projections of the initial condition U 

0 
h 

and the cross-

ectional area at rest ( A 0 ) h ( x ) are defined to be 

 

0 
h (x ) = P h U 0 (x ) , (A 0 ) h (x ) = P h A 0 (x ) . (4.3)

t the right boundary point of each cell, it can be shown that 

 

0 
h 

(
x −

j+ 1 2 

)
= U 0 

(
x −

j+ 1 2 

)
, (A 0 ) h 

(
x −

j+ 1 2 

)
= A 0 

(
x −

j+ 1 2 

)
, for all j, 

(4.4) 

hich means that the equilibrium states (4.6) are recovered at

hese points 

u 

2 
h 

2 

+ β
(√ 

A h −
√ 

(A 0 ) h 

))(
x −

j+ 1 2 

)
= constant, for all j

his information will be very useful when decomposing the solu-

ions into the equilibrium and fluctuation parts in the following

ection. 
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Fig. 14. The difference between A, Q at the final time t = 5 and the corresponding numerical initial conditions for the artery with an aneurysm problem from Section 5.2.1 . 

We compare the living-man well-balanced DG method (top row) and the man-at-eternal-rest well-balanced DG method (bottom row). Both plots were computed with a 

mesh of 200 uniform cells and S in = 0 . 5 . The man-at-eternal-rest method does not handle the non-zero velocity equilibria as well as the living-man scheme. 
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Remark 4.1. In [17] , a slightly different projection was introduced

to compute the numerical initial conditions. That was defined by

the formula (4.1) , combined with 

(P h ω)(x j ) = ω(x j ) , (4.5)

which requires the projected polynomial overlaps with the original

function at the center x j of each cell I j . However, this projection

may not be optimal for some polynomial degree k , therefore we in-

troduce a different projection P h in this paper. Note that the choice

of this projection is not unique. Alternatively, we could have also

chosen to fix the numerical initial conditions to be equal to the

true solution at the left side of each computational cell. 

4.2. Conservative, equilibrium variables and the decomposition of 

solutions 

The living-man equilibrium variables from (1.7) will be denoted

as 

 = 

(
Q 

E 

)
= 

( 

Q 

Q 2 

2 A 2 
+ β
(√ 

A −
√ 

A 0 

)) 

. (4.6)

We need to transform the conservative variables U to the equilib-

rium variables V and vice versa, during the construction of well-

balanced numerical flux. The equilibrium variables can be eas-
ly computed from U and the cross-sectional area at rest A 0 , and

e denote it by V = V (U, A 0 ) . On the other hand, suppose V and

he cross-sectional area at rest A 0 are given, we can evaluate U =
 (V , A 0 ) (or simply A = A (V, A 0 ) as Q can be directly obtained from

 ) in the following way. The equilibrium variable E is defined as 

 = 

Q 

2 

2 A 

2 
+ β
(√ 

A −
√ 

A 0 

)
, 

hich is equivalent to 

A 

5 
2 −
(
β
√ 

A 0 + E 

)
A 

2 + 

1 

2 

Q 

2 = 0 . (4.7)

he conservative variable A can be recovered by finding the root

f the Eq. (4.7) . One can use Newton’s method to find the root,

y using A h ( x i ) as the initial guess, where x i is either a quadra-

ure point or a cell-boundary value depending on where we are

olving the problem. Müller et al. [20] address the recovery of A

rom the living-man equilibrium by solving the similar nonlinear

quation and considering the subcritical, supercritical, or critical

ases. In [14] by Ghigo et al., they assume that values for Q are

mall enough that living-man equilibrium variables (1.7) can be ap-

roximated by (1.5) . This eliminates the need to recover A from a

ractional-degree equality. 

Next, we propose the decomposition of the solution U h into the

eference equilibrium state U 

e 
h 

and the fluctuation state U 

f 

h 
. The
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Fig. 15. Radii at rest for the artery with stenosis defined by (5.7) . 
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eference equilibrium values ˆ V j in cell I j are defined as 

ˆ 
 j = 

( 

ˆ Q j 

ˆ E j 

) 

= 

⎛ 

⎜ ⎝ 

Q h 

(
x −

j+ 1 2 

)
E h 

(
x −

j+ 1 2 

)
⎞ 

⎟ ⎠ 

. (4.8) 

he equilibrium state U 

e 
h 
(x ) can then be computed from these val-

es and the true function A 0 ( x ) (not ( A 0 ) h ( x )) 

 

e 
h, j (x ) = 

(
A 

e 
h, j 

(x ) 

Q 

e 
h, j 

(x ) 

)
= P h U 

(
ˆ V j , A 0 (x ) 

)
, (4.9)

n each cell I j . The projection P h is used to ensure that U 

e 
h 

∈ V 

k 
h 
,

ince the functions U 

(
ˆ V j , A 0 (x ) 

)
may no longer be piecewise poly-

omials due to the nonlinear mapping. Finally, we can decompose

he numerical solution U h as 

 h = U 

e 
h + U 

f 

h 
(4.10)

ith the fluctuation part U 

f 

h 
= U h − U 

e 
h 

∈ V 

k 
h 
. Note that this decom-

osition will be computed at each time step t n . Both U 

e 
h 

and U 

f 

h 
ill be used in the computation of the well-balanced fluxes and

ource term approximations. 

.3. Well-balanced numerical fluxes 

As explained in Section 2 , the well-balanced DG scheme takes

he form of 
 

I j 

∂ t U 

n 
h v dx −

∫ 
I j 

f (U 

n 
h ) ∂ x v dx + 

ˆ f l 
j+ 1 2 

v −
j+ 1 2 

− ˆ f r 
j− 1 

2 

v + 
j− 1 

2 

= 

∫ 
I j 

S(U 

n 
h , (A 0 ) h ) v dx. (4.11) 

owever, to achieve living-man well-balanced method, different

ays to construct the well-balanced numerical flux and source

erm from those in Section 2 are needed. 
If the system is in the living-man equilibrium (4.6) , at the ini-

ial time t 0 , the cell boundary values U 

−
h, j+ 1 

2 

are equal to the ex-

ct equilibrium solutions at the right boundary point due to the

hoice of projection P h (4.2) , however the same does not hold

or the other cell boundary values. This may generate discontin-

ous cell interface values, leading to non-well-balanced numerical

uxes, which may result in the equilibrium state not being pre-

erved. One way to address this problem is to modify the projec-

ion so that the exact values are taken at both cell boundaries, with

n example being the nodal DG method with Gauss–Lobatto nodes.

ere, we would like to avoid the usage of Gauss–Lobatto nodes,

nd use the idea of hydrostatic reconstruction to determine the

umerical fluxes, following the study in [33,35,39] in the context

f the shallow water equations. 

Prior to redefining the boundary values and constructing our

uxes, we first define the unique cell interface value of A 0 as 

(A 0 ) 
∗
h, j+ 1 2 

= max 

(
(A 0 ) 

+ 
h, j+ 1 2 

, (A 0 ) 
−
h, j+ 1 2 

)
, (4.12) 

or all j . This choice of (A 0 ) 
∗
h, j+ 1 

2 

will aid in guaranteeing continuity

cross the cell interface at the equilibrium state for the conserva-

ive variables. Now we set the redefined boundary values to be 

 

∗, ±
h, j+ 1 2 

= 

( 

A 

∗, ±
h, j+ 1 2 

Q 

∗, ±
h, j+ 1 2 

) 

= 

( 

max 

(
0 , A ( ̂  V j , (A 0 ) 

∗
h, j+ 1 2 

) 
)

ˆ Q 

±
h, j+ 1 2 

) 

+ U 

f 

h 
(x ±

j+ 1 2 

) 

= 

( 

max 

(
0 , A ( ̂  V j , (A 0 ) 

∗
h, j+ 1 2 

) 
)

+ A 

f 

h 
(x ±

j+ 1 2 

) 

Q 

±
h, j+ 1 2 

) 

, (4.13) 

here the values ˆ V j are given in (4.8) and U 

f 

h 
is given in (4.10) .

hen the system is in equilibrium, A 

f 

h 
(x ±

j+ 1 
2 

) = 0 and 

ˆ V j = 

ˆ V j+1 ,

ence U 

∗, −
h, j+ 1 = U 

∗, + 
h, j+ 1 for all j . 
2 2 
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Fig. 16. The difference between A, Q at the final time t = 5 and the corresponding numerical initial conditions for the artery with stenosis problem from Section 5.2.2 , when 

using the living-man well-balanced DG method (top row) and the man-at-eternal-rest well-balanced DG method (bottom row). Both plots were computed with a mesh of 

200 uniform cells and S in = 0 . 5 . 
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t∫

 

It would also be satisfactory to define (A 0 ) 
∗
h, j+ 1 

2 

=
min ((A 0 ) 

+ 
h, j+ 1 

2 

, (A 0 ) 
−
h, j+ 1 

2 

) , or other combinations of (A 0 ) 
±
h, j+ 1 

2 

following the generalization of the hydrostatic reconstruction

idea and designed to ensure continuity across the cell interfaces.

One possible choice is to let (A 0 ) 
∗
h, j+ 1 

2 

= (A 0 ) 
−
h, j+ 1 

2 

, then one can

show that A 

(
ˆ V j , (A 0 ) 

∗
h, j+ 1 

2 

)
= A 

−
h, j+ 1 

2 

which eliminates the need to

employ Newton’s method to recover A . 

Lastly, the well-balanced numerical fluxes can be computed in

the same way as was introduced for the man-at-eternal-rest well-

balanced scheme 

ˆ f l 
j+ 1 2 

= F 

(
U 

∗, −
h, j+ 1 2 

, U 

∗, + 
h, j+ 1 2 

)
+ f 

(
U 

−
h, j+ 1 2 

)
− f 

(
U 

∗, −
h, j+ 1 2 

)
, 

ˆ f r 
j− 1 

2 

= F 

(
U 

∗, −
h, j− 1 

2 

, U 

∗, + 
h, j− 1 

2 

)
+ f 

(
U 

+ 
h, j− 1 

2 

)
− f 

(
U 

∗, + 
h, j− 1 

2 

)
, (4.14)

where F ( a, b ) is a numerical flux, such as the Lax-Friedrichs flux

defined in (2.3) . Notice that when U 

∗, + 
h, j+ 1 

2 

= U 

∗, −
h, j+ 1 

2 

, the fluxes re-

duce to 

ˆ f l 
j+ 1 2 

= f (U 

−
h, j+ 1 2 

) , ˆ f r 
j− 1 

2 

= f (U 

+ 
h, j− 1 

2 

) (4.15)

as a result of the numerical flux F ( a, b ) being consistent. 
.4. Well-balanced source term decomposition 

The source term approximation for the living-man well-

alanced scheme is approached in the same manner as in

ection 2.2.2 for the man-at-eternal-rest well-balanced scheme.

ue to the fact that the source term is linear with respect to the

ariable A , the source term can take on a decomposition similar to

he form found in (4.10) 

 

S(U h , (A 0 ) h ) v dx = 

∫ 
S(U 

e 
h , (A 0 ) h ) v dx + 

∫ 
S(U 

f 

h 
, (A 0 ) h ) v dx. 

(4.16)

he second term on the right hand side can be directly computed

y any quadrature rule with sufficient accuracy. Since U 

e 
h 

is the

quilibrium state, we can follow the discussion in Section 2.2.2 to

pproximate the first term. Thus the approximation for the source

erm takes the form 

 

I j 

S(U h , (A 0 ) h ) v dx = −
∫ 

I j 

f (U 

e 
h ) v x dx + f (U 

e, −
h, j+ 1 2 

) v −
j+ 1 2 

− f (U 

e, + 
h, j− 1 

2 

) v + 
j− 1 

2 

+ 

∫ 
I j 

S(U 

f 

h 
, (A 0 ) h ) v dx. 

(4.17)
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Fig. 17. Radii at rest for the artery with a decreasing step defined by (5.8) . 
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U  
he details of the derivation and some explanations can be found

n Section 2.2.2 . 

.5. A TVB slope limiter 

In this section we discuss the implementation of a slope limiter,

hich is necessary when the solution contains discontinuities. We

mploy the modified minmod slope limiter with a total variation

ounded (TVB) parameter M , defined as 

˜ 
 (a 1 , . . . , a l ) = 

{
a 1 , if | a 1 | ≤ M�x 2 , 

minmod (a 1 , . . . , a l ) , otherwise , 
(4.18)

ith the minmod function given by 

inmod (a 1 , . . . , a l ) 

= 

{
s min (| a 1 | , . . . , | a l | ) , if s = sign (a 1 ) = . . . = sign (a l ) , 

0 , otherwise . 

(4.19) 

At each cell I j , we define the modified cell boundary values to

e 

 

(mod) 

h 
(x −

j+ 1 2 

) = Ū h, j 

+ minmod 

(
U h (x −

j+ 1 2 

) − Ū h, j , Ū 

n 
h, j − Ū 

n 
h, j−1 , Ū 

n 
h, j+1 − Ū 

n 
h, j 

)
, 

 

(mod) 

h 
(x + 

j− 1 
2 

) = Ū h, j 

−minmod 

(
Ū h, j − U h (x + 

j− 1 
2 

) , Ū 

n 
h, j − Ū 

n 
h, j−1 , Ū 

n 
h, j+1 − Ū 

n 
h, j 

)
, (4.20) 

here Ū 

n 
j 

is the cell average in cell I j at time t n . Note that the

lope limiting procedure may not be required in every cell. If

˜  (a 1 , . . . , a l ) = a 1 (i.e., U 

(mod) 

h 
(x ±

j∓ 1 
2 

) = U h (x ±
j∓ 1 

2 

) ) in cell I j , which

mplies that the solution is smooth, then limiting is not necessary
n that cell. Otherwise, limiting is required and we can recover a

ew P k polynomial U 

n 
h, j 

(x ) from the cell average Ū 

n 
h, j 

and the up-

ated cell boundary values (4.20) for k ≥ 2 that preserves the orig-

nal cell average in I j . This new polynomial then replaces the old

ne in this cell and will be used in the computation. 

Note that when the living-man equilibrium state (1.7) is

eached, the equilibrium may not be preserved if the slope lim-

ter is activated. Therefore we wish to carefully determine which

ells need limiting by applying the above procedure to the fluc-

uation part of the variables U 

f 

h 
. If limiting is required in a cell,

he slope limiting procedure is then performed on U h . Recall that

hen a steady state is reached, U 

f 

h, j 
= 0 for all values of j . There-

ore, limiting is not required and the limiter has no affect on the

ell-balanced property. 

It is important to note this procedure meets the necessary con-

itions of a limiter: it does not change the solution in smooth and

ell-balanced regions, and it does not change cell averages (hence

aintains the mass conservation property of the DG method). 

.6. Verification of the living-man well-balanced property 

roposition 3. The proposed RKDG scheme (2.6) with numerical

uxes (4.14) and source term approximation (4.17) is exactly well-

alanced for the living-man equilibrium (1.7) . 

roof. We assume the initial data are in the living-man equilib-

ia state, and the same analysis applies when the solution reaches

he living-man equilibria at the time step t n . The projection P h 

uarantees the numerical initial conditions will satisfy the equi-

ibrium condition at the values x −
j+ 1 

2 

for all j . This implies that

ˆ 
 j = constant for all j . Therefore, the equilibrium part, U 

e 
h 
, com-

uted from 

ˆ V j and A 0 ( x ) is equivalent to the conservative variable

 h , and this further implies that U 

f 

h 
= 0 . The source term approxi-
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Fig. 18. The difference between A, Q at the final time t = 5 and the corresponding numerical initial conditions for the decreasing step problem with S in = 0 . 5 from 

Section 5.2.3 , when using the living-man well-balanced DG method (top row) and the man-at-eternal-rest well-balanced DG method (bottom row). 
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mation (4.17) can then be rewritten as ∫ 
I j 

S(U h , (A 0 ) h ) v dx = −
∫ 

I j 

f (U h ) v x dx + f (U 

−
h, j+ 1 2 

) v −
j+ 1 2 

− f (U 

+ 
h, j− 1 

2 

) v + 
j− 1 

2 

(4.21)

The modified cell boundary values become 

 

∗, −
h, j+ 1 2 

= 

( 

max 

(
0 , A ( ̄V j , (A 0 ) 

∗
j± 1 

2 

) 
)

m̄ 

+ 
j± 1 

2 

) 

= U 

∗, + 
h, j+ 1 2 

, (4.22)

as a result of U 

f 

h 
= 0 . Due to the consistency of the Lax–Friedrichs

flux and the definition of the left and right fluxes, it can be shown

that 

ˆ f l 
j+ 1 2 

= f (U 

−
h, j+ 1 2 

) , ˆ f r 
j− 1 

2 

= f (U 

+ 
h, j− 1 

2 

) (4.23)

at the steady state. Therefore, one can easily observe that the flux

terms exactly balance the source term approximation, which shows

the well-balanced property. �

This section concludes with two remarks about the well-

balanced RKDG methods for the arterial blood flow model when

the cross-sectional area at rest is constant, and the comparison of

living-man and the man-at-eternal-rest well-balanced methods. 

Remark 4.2. When the cross-sectional area at rest, A 0 , is constant,

the traditional DG scheme is recovered, that is, the source term
pproximation reduces to 0 and the left and right numerical fluxes

educe to the original fluxes. First, we look at the source term. Def-

nition (4.9) implies that U 

e 
h, j 

= P h U( ̂  V j , A 0 ) = constant in each cell

 j when A 0 = constant . Therefore, it can be shown that 

 

I j 

S 
(
U 

e 
h , ( A 0 ) h 

)
v dx = −

∫ 
I j 

f 
(
U 

e 
h 

)
v x dx + f 

(
U 

e, −
h, j+ 1 2 

)
v −

j+ 1 2 

− f 

(
U 

e, + 
h, j− 1 

2 

)
v + 

j− 1 
2 

= 0 . 

dditionally, ((A 0 ) h ) x = 0 , hence, the numerical integral
 

I j 
S 

(
U 

f 

h 
, ( A 0 ) h 

)
v dx = 0 . Together, this implies the source term

pproximation is zero. 

Second, we will show that the left and right numerical

uxes reduce to the original DG fluxes. When A 0 is con-

tant, then (A 0 ) 
∗
h, j+ 1 

2 

= (A 0 ) 
+ 
h, j+ 1 

2 

= (A 0 ) 
−
h, j+ 1 

2 

which implies that

 

(
ˆ V j , (A 0 ) 

∗
h, j+ 1 

2 

)
recovers the original value of A 

e 
h 

at the cell in-

erface exactly. Therefore, 

 

∗, ±
h, j+ 1 2 

= max 

(
0 , A ( ̂  V j , (A 0 ) 

∗
h, j+ 1 2 

) + A 

f, ±
h, j+ 1 2 

)
= max 

(
0 , A 

e, ±
h, j+ 1 2 

+ A 

f, ±
h, j+ 1 2 

)
= A 

±
h, j+ 1 2 

. (4.24)
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Fig. 19. The perturbation to the aneurysm problem for different values of S in when the living-man well-balanced scheme is used. The two types of plots include snapshots of 

the solution at times t = 0 , 0 . 0025 , 0 . 005 , as well as plots that demonstrate how the perturbation propagates throughout the domain as a function of time. It can be seen 

that the larger the Shapiro number, the faster the perturbation propagates, especially the right moving wave. We can also see the formation of reflection waves. 

M  

n  

R  

t  

a  

t

V

ore generally that U 

∗, ±
h, j+ 1 

2 

= U 

±
h, j+ 1 

2 

. Therefore the left and right

umerical fluxes reduce to the original DG fluxes: ˆ f l 
j+ 1 

2 

= 

ˆ f 
j+ 1 

2 
,

ˆ f r 
j− 1 

2 

= 

ˆ f 
j− 1 

2 
. 

emark 4.3. Although the well-balanced methods presented in

his section were designed to preserve the living-man equilibria, it
lso preserve the simpler man-at-eternal-rest steady state. Notice

hat when Q = 0 , the equilibrium values ˆ V j become 

ˆ 
 j = 

(
ˆ Q j 

ˆ E j 

)
= 

( 

0 

β
(√ 

A h −
√ 

(A 0 ) h 

)(
x −

j+ 1 2 

)) 

, (4.25) 
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Fig. 20. The perturbation to the aneurysm problem for different values of S in when the man-at-eternal-rest well-balanced scheme is used. The two types of plots include 

snapshots of the solution at times t = 0 , 0 . 0025 , 0 . 005 , as well as plots that demonstrate how the perturbation propagates throughout the domain as a function of time. 

It can be seen that the smaller the Shapiro number, the better the scheme performs because the living-man steady state becomes nearer to a non-zero pressure man-at- 

eternal-rest steady state. 

U

U  

T  

t  

S

5

 

d  
and the decomposition of U, as in (4.9) and (4.10) becomes 

 

e 
h, j = 

( 

P h 

(
ˆ E j 
β

+ 

√ 

(A 0 ) h 

)2 

ˆ Q j 

) 

, 

 

f 

h, j 
= 

(
A h, j 

Q h, j 

)
−
( 

P h 

(
ˆ E j 
β

+ 

√ 

(A 0 ) h 

)2 

ˆ Q j 

) 

. (4.26)
herefore, the living-man well-balanced scheme reduces to

he man-at-eternal-rest well-balanced scheme presented in

ection 2.3 . 

. Numerical tests for the living-man well-balanced methods 

In this section, we present numerical results for the one-

imensional blood flow system (1.3) using the generalized living-
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Table 8 

L 1 errors and convergence orders of the accuracy test in Section 5.1 , using P 0 , P 1 and P 2 piecewise 

polynomials and the living-man well-balanced method. In each case, k + 1 order of accuracy is 

achieved. 

k = 0 k = 1 k = 2 

Variable J L 1 Error Order L 1 Error Order L 1 Error Order 

A 25 6.1773e-01 4.0942e-02 1.7301e-03 

50 4.0751e-01 0.6002 1.0068e-02 2.0237 2.2514e-04 2.9420 

100 2.4607e-01 0.7278 2.5003e-03 2.0097 2.8747e-05 2.9693 

200 1.3667e-01 0.8484 6.2353e-04 2.0036 3.6285e-06 2.9860 

400 7.2197e-02 0.9207 1.5570e-04 2.0017 4.5571e-07 2.9932 

Q 25 2.5275e02 6.2138e00 3.4179e-01 

50 1.4838e02 0.7684 1.5290e00 2.0229 4.1730e-02 3.0340 

100 8.0758e01 0.8776 3.8080e-01 2.0055 5.1098e-03 3.0297 

200 4.2223e01 0.9356 9.5164e-02 2.0005 6.2939e-04 3.0212 

400 2.1591e01 0.9676 2.3794e-02 1.9998 7.8033e-05 3.0118 
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a

an well-balanced methods described in Section 4 . We implement

ur scheme using piecewise quadratic polynomials (k = 2) paired

ith the third order TVD Runge-Kutta time discretization (2.4) . The

FL number is take to be 0.15 and the constant M in the TVB

imiter is taken to be 0, unless otherwise stated. Multiple types

f tests: accuracy test, well-balanced test, perturbations of steady

tates, and tests for discontinuous solutions, are presented in this

ection. 

.1. Accuracy test 

In this section, we will test the accuracy of our living-man well-

alanced DG scheme for smooth solutions with non-zero velocity.

e have chosen strictly positive functions for both A and A 0 to

void difficulties with square roots and division by a small number.

he initial conditions in the domain x ∈ [0, 10] are given by 

 (x, 0) = sin 

(
π

5 

x 

)
+ 10 , Q(x, 0) = e cos ( π5 x ) , (5.1)

ith the cross-sectional area at rest 

 0 (x ) = 

1 

2 

cos 2 
(
π

5 

x 

)
+ 5 , 

nd K = 10 8 Pa 
m 

, ρ = 1060 kg 

m 

3 . Periodic boundary conditions are

mployed in this test. We run the simulation until time t = 0 . 01

hen the solution is still smooth. Since there is no explicitly
Fig. 21. The boundary condition (5.10) with S in = 0 . 1 , ε = 5 × 10 −2 , and T = 0 . 01 . 
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nown solution in this case, the errors are computed by comparing

esults from meshes of uniform cell widths h and h /2. Table 8 con-

ains the L 1 errors and numerical orders of accuracy for P 0 , P 1 

nd P 2 polynomials. For each polynomial degree k , (k + 1) th or-

er is observed, which indicates the optimal convergence rate is

chieved. 

.2. Test for well-balanced property 

In this section, we will demonstrate that the proposed

iving-man well-balanced DG scheme preserves the steady state

1.7) with non-zero velocity. We will examine three examples that

epresent the physiological conditions of an aneurysm, stenosis,

nd a decreasing step. The initial conditions for each of the exam-

les in this section will be determined from the equilibrium vari-

bles of the steady state, which take the form 

 s = Q in , E s = 

Q 

2 
in 

2(A out ) 2 
+ β
(√ 

A out −
√ 

(A 0 (L ) 
)
, (5.2)

here the subscript ‘in’ represents the value at the inlet or left side

f the domain, ‘out’ represents the value at the outlet or the right

ide of the domain, and L is the length of the artery. The function

or A ( x , 0) can be determined from (5.2) and the cross-sectional

rea at rest, which is unique to each example. 

The values of A in and A out are given by 

 in = A 0 (0)[1 + S in ] 
2 , A out = A 0 (L )[1 + S in ] 

2 , (5.3)

here S in is the Shapiro number at the inlet. The Shapiro num-

er is the equivalent of the Froude number for the shallow water

quations and is determined by the formula S = u/C where C is the

oens–Korteweg wave velocity. The Shapiro number determines

hether the system is in subcritical ( S < 1), critical ( S = 1 ), or su-

ercritical ( S > 1) flow. Blood flow is typically subcritical, hence

hat is the only case we will consider in the numerical examples.

e will consider S in = { 0 . 5 , 0 . 1 , 0 . 01 } in our numerical examples.

he Moens–Korteweg velocity at the inlet is defined as 

 in = 

√ 

K 

√ 

A in 

2 ρ
√ 

π
. (5.4) 

inally, the value for Q in can then be determined as a function of

he Shapiro number in the following way 

 in = A in S h,in C in . (5.5)

e also introduce the notation �R to represent the wall defor-

ation parameter. Other important parameters in this section are

ound in Table 9 . In each of the examples, we fix the boundary

onditions to be Q in at the inlet and A out at the outlet of the do-

ain. 
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Fig. 22. The perturbation to the stenosis problem for different values of S in when the living-man well-balanced scheme is used. The two types of plots include snapshots of 

the solution at times t = 0 . 0 04 , 0 . 0 07 , 0 . 01 , as well as plots that demonstrate how the perturbation propagates throughout the domain as a function of time. It can be seen 

that the larger the Shapiro number, the faster the perturbation propagates. 

Table 9 

Parameters for well-balanced living-man problems. 

R in �R K ρ L 

4 × 10 −3 m 1 × 10 −3 m 10 8 Pa 
m 

1060 kg 
m 3 

0.16 m 

Table 10 

The parameters used in the following examples that depend 

on the Shapiro number at the inlet, S in . The smaller the 

Shapiro number S in , the slower the discharge Q in . 

S in 0.5 0.1 0.01 

A in 1 . 1310 × 10 −4 6 . 0821 × 10 −5 5 . 1276 × 10 −5 

C in 16.8232 14.4065 13.8046 

Q in 9 . 5133 × 10 −4 8 . 7622 × 10 −5 7 . 0784 × 10 −6 
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Fig. 23. The perturbation to the stenosis problem for different values of S in when the non-zero pressure man-at-eternal-rest well-balanced scheme is used. The two types 

of plots include snapshots of the solution at times t = 0 . 0 04 , 0 . 0 07 , 0 . 01 , as well as plots that demonstrate how the perturbation propagates throughout the domain as a 

function of time. 
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Table 10 contains the some of the important constants used in

he following examples. The constants all depend on the Shapiro

umber at the inlet. It can be seen that the smaller the Shapiro

umber, the slower the discharge value Q in . We expect the living-

an well-balanced scheme to maintain the steady states with ma-

hine zero error. The man-at-eternal-rest well-balanced scheme

ay not be able to preserve the non-zero velocity steady states.

owever, we expect the man-at-eternal-rest well-balanced scheme
o perform better for lower Shapiro numbers because the lower the

hapiro number, the closer the living-man steady state will be to-

ards the man-at-eternal-rest steady state (1.5) (i.e. zero velocity).

.2.1. An aneurysm 

In this subsection, we consider the living-man equilibrium

1.7) with non-zero velocity where the choice of cross-sectional

adii is meant to represent that of an aneurysm. We set the cross-
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Fig. 24. The perturbation to the decreasing step problem for different values of S in when the living-man well-balanced scheme is used. The two types of plots include snapshots 

of the solution at times t = 0 . 0 04 , 0 . 0 07 , 0 . 01 , as well as plots that demonstrate how the perturbation propagates throughout the domain as a function of time. 

 

w  

a  

F

 

W  

t  

w  

t  

i  
sectional radii at rest to be 

R 0 (x ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

R in , if x ∈ [0 , x 1 ] ∪ [ x 4 , L ] , 

R in + 

�R 
2 

[
1 − cos 

(
x −x 1 
x 2 −x 1 

π
)]

, if x ∈ [ x 1 , x 2 ] , 

R in + �R, if x ∈ [ x 2 , x 3 ] , 

R in + 

�R 
2 

[
1 + cos 

(
x −x 3 
x 4 −x 3 

π
)]

, if x ∈ [ x 3 , x 4 ] , 

(5.6)
ith x 1 = 

9 L 
40 , x 2 = 

L 
4 , x 3 = 

3 L 
4 , x 4 = 

31 L 
40 and the cross-sectional area

t rest given by A 0 (x ) = πR 0 (x ) 2 . The radii at rest is shown in

ig. 13 . 

The living-man equilibrium state should be exactly preserved.

e run the problem using a uniform mesh of 200 cells until time

 = 5 . The L 1 and L ∞ errors shown in Table 11 demonstrate that the

ell-balanced property is indeed maintained. We also demonstrate

hat the man-at-eternal-rest well-balanced DG methods presented

n Section 2 cannot maintain this general steady state with non-
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Fig. 25. The perturbation to the decreasing step problem for different values of S in when the non-zero pressure man-at-eternal-rest well-balanced scheme is used. The two 

types of plots include snapshots of the solution at times t = 0 . 0 04 , 0 . 0 07 , 0 . 01 , as well as plots that demonstrate how the perturbation propagates throughout the domain 

as a function of time. 

z  

L  

t  

i  

m  

S
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s  

r  

w  
ero velocity for larger Shapiro numbers. The corresponding L 1 and

 

∞ errors are found in Table 11 as well. The difference between

he numerical solution at the final time t = 5 and the numerical

nitial conditions is plotted in Fig. 14 , comparing both the living-

an and man-at-eternal-rest well-balanced DG schemes when

 in = 0 . 5 . 
.2.2. Stenosis 

The function choice for the radius at rest representing aortic

tenosis was first introduced in [14] , and we changed to the pa-

ameters in this paper so that the units of measure are consistent

ith the units used in all other examples. The definition for the
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Table 11 

Table of absolute and relative L 1 and L ∞ errors for aneurysm problem in Section 5.2.1 , using the living-man well- 

balanced scheme and the man-at-eternal-rest well-balanced scheme. The living-man scheme demonstrates the well- 

balanced property for each value of S in . The man-at-eternal-rest DG scheme does not preserve the more general non- 

zero equilibrium state, but does improve as S in , and thus Q in , decreases. 

L 1 Error L ∞ Error 

Variable Error Type S in = 0 . 5 S in = 0 . 1 S in = 0 . 01 S in = 0 . 5 S in = 0 . 1 S in = 0 . 01 

Living-Man Well-Balanced Scheme 

A Absolute 1.0083e-18 3.4893e-19 3.3321e-19 8.5896e-15 2.9880e-15 2.8745e-15 

Relative 7.3596e-15 4.6213e-15 5.1503e-15 6.2715e-11 4.0073e-11 4.4936e-11 

Q Absolute 9.3710e-18 3.4733e-19 1.4663e-19 7.3244e-14 2.7368e-15 1.1583e-15 

Relative 9.8505e-15 3.9640e-15 2.0715e-14 7.6992e-11 3.1234e-11 1.6363e-10 

Man-at-Eternal-Rest Well-Balanced Scheme 

A Absolute 1.5579e-13 4.1811e-15 4.0531e-17 1.8957e-08 2.4602e-10 1.9813e-12 

Relative 1.1679e-09 5.4732e-11 6.1572e-13 1.6030e-04 3.8299e-06 3.5730e-08 

Q Absolute 1.9450e-12 5.0298e-14 4.5631e-16 1.9807e-07 4.0129e-09 3.4643e-11 

Relative 2.0445e-09 5.7403e-10 6.4465e-11 2.0820e-04 4.5797e-05 4.8942e-06 

Table 12 

Table of absolute and relative L 1 and L ∞ errors for the stenosis problem in Section 5.2.2 , using the living-man well- 

balanced scheme and the man-at-eternal-rest well-balanced scheme. 

L 1 Error L ∞ Error 

Variable Error Type S in = 0 . 5 S in = 0 . 1 S in = 0 . 01 S in = 0 . 5 S in = 0 . 1 S in = 0 . 01 

Living-Man Well-Balanced Scheme 

A Absolute 9.3548e-19 2.9285e-19 2.5631e-19 7.4396e-15 2.3313e-15 2.0431e-15 

Relative 8.6103e-15 5.0023e-15 5.2088e-15 7.4199e-11 4.2203e-11 4.4224e-11 

Q Absolute 9.9849e-18 5.8225e-19 1.1724e-20 7.8033e-14 4.5572e-15 9.6175e-17 

Relative 1.0496e-14 6.6450e-15 1.6563e-15 8.2025e-11 5.2010e-11 1.3587e-11 

Man-at-Eternal-Rest Well-Balanced Scheme 

A Absolute 7.1488e-16 4.9425e-18 1.8366e-19 6.9856e-11 3.1689e-13 2.7633e-15 

Relative 7.2119e-12 8.6968e-14 3.7306e-15 7.3120e-07 6.0438e-09 6.2322e-11 

Q Absolute 6.2598e-15 8.6144e-17 8.4732e-19 4.5952e-10 4.6652e-12 3.9743e-14 

Relative 6.5801e-12 9.8313e-13 1.1971e-13 4.8303e-07 5.3242e-08 5.6147e-09 
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radius at rest is 

R 0 (x ) 

= 

⎧ ⎨ 

⎩ 

R in , if x ∈ [0 , x 1 ] ∪ [ x 2 , L ] , 

R in 

(
1 − �R 

2 

[ 
1 + cos 

(
π + 2 π

x − x 1 
x 2 − x 1 

)] )
, if x ∈ [ x 1 , x 2 ] , 

(5.7)

where x 1 = 

3 L 
10 and x 2 = 

7 L 
10 . The radii at rest is shown in Fig. 15 . 

The problem is computed until the final time t = 5 with a uni-

form mesh of 200 cells using both the living-man and man-at-

eternal-rest well-balanced schemes. The L 1 and L ∞ errors shown

in Table 12 and Fig. 16 displays the numerical solutions via the

living-man and the man-at-eternal-rest schemes at the final time

with S in = 0 . 5 . 

5.2.3. Decreasing step 

The example in this section represents blood flow from a par-

ent to a daughter artery in which the transition is idealized, that is,

the artery radii instantaneous changes from one value to a smaller

value. The function choice for the radius at rest representing a

decreasing step was first introduced in [14] . The radius at rest is

given by 

R 0 (x ) = 

{
R in if x < 

L 
2 
, 

R in ( 1 − �R ) if x ≥ L 
2 
. 

(5.8)

The radii at rest is shown in Fig. 17 . 

The problem is computed using both the living-man and man-

at-eternal-rest well-balanced schemes with a uniform mesh of 200
ells until the final time t = 5 . The L 1 and L ∞ errors shown in

able 13 demonstrate that the well-balanced property is indeed

aintained for the living-man scheme, but not for the man-at-

ternal-rest scheme. Fig. 18 displays the numerical solutions using

oth schemes with S in = 0 . 5 . Again, we observe that the man-at-

ternal-rest well-balanced DG methods cannot maintain this gen-

ral steady state with non-zero velocity well. 

.3. Nearly equilibrium flows 

In this section, numerical tests are provided to demonstrate that

he living-man well-balanced DG scheme can aptly handle small

erturbations to living-man steady states, and capture the nearly

quilibrium flows well. We will also compare the performance

f the living-man and man-at-eternal-rest well-balanced schemes.

ince each example from Section 5.2 contains arteries with non-

onstant area, we expect to see the formation of transmission and

eflection pulses when the perturbation wave crosses through a

ortion of the domain that changes shape. The values of the re-

ection and transmission coefficients in (3.6) become valid only for

mall S h,in since they were derived from linear analytic solutions

nd the flow is now nonlinear. 

.3.1. Perturbation of A for the aneurysm 

We consider a small perturbation to the living-man equilib-

ium state for an artery with an aneurysm, which was described

n Section 5.2.1 . The initial conditions can be determined from

5.2) and the cross-sectional radii at rest given by (5.6) . The origi-

al initial condition for the cross-sectional area is denoted A ( x , 0)
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Table 13 

Table of absolute and relative L 1 and L ∞ errors for the decreasing step test of in Section 5.2.3 , using the living-man 

well-balanced scheme and the man-at-eternal-rest well-balanced scheme. 

L 1 Error L ∞ Error 

Variable Error Type S in = 0 . 5 S in = 0 . 1 S in = 0 . 01 S in = 0 . 5 S in = 0 . 1 S in = 0 . 01 

Living-Man Well-Balanced Scheme 

A Absolute 8.2591e-19 2.697e-19 1.8666e-19 6.8517e-15 2.2094e-15 1.5366e-15 

Relative 8.0971e-15 4.9661e-15 4.0398e-15 6.5985e-11 4.0703e-11 3.3172e-11 

Q Absolute 1.0353e-17 4.8757e-19 1.1186e-18 8.0921e-14 3.8163e-15 8.7442e-15 

Relative 1.0883e-14 5.5644e-15 1.5802e-13 8.5061e-11 4.3554e-11 1.2353e-09 

Man-at-Eternal-Rest Well-Balanced Scheme 

A Absolute 2.4515e-11 1.0246e-13 2.9589e-16 4.0547e-06 5.8504e-08 4.7678e-10 

Relative 2.3512e-07 1.9215e-09 6.7841e-12 4.4164e-02 1.1875e-03 1.1455e-05 

Q Absolute 2.7844e-10 1.3728e-12 3.9381e-15 2.7728e-05 7.1167e-07 6.1411e-09 

Relative 2.9268e-07 1.5667e-08 5.5636e-10 2.9146e-02 8.1220e-03 8.6758e-04 
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nd we denote the perturbed initial conditions of A by 

 pert (x, 0) = A (x, 0) + π p(x ) 2 , 

here 

p(x ) = 

⎧ ⎨ 

⎩ 

ε sin 

(
100 

10 L 
π
(

x − 45 L 

100 

))
, if x ∈ 

[
45 L 
100 

, 55 L 
100 

]
, 

0 , otherwise , 

(5.9) 

ith ε = 5 × 10 −5 . The wave splits in two and moves in oppo-

ite directions away from the initial perturbation. The test is run

ith 200 uniform cells until the stopping time t = 0 . 005 and the

olutions are shown in Fig. 19 for the living-man well-balanced

cheme and in Fig. 20 for the man-at-eternal-rest well-balanced

cheme. It can be seen that only in the case with S in = 0 . 5 , the

an-at-eternal-rest well-balanced scheme does not handle the

erturbation very well. This is because, for small Shapiro num-

er, the living-man equilibrium state is near to a man-at-eternal-

est equilibrium, so the error in using the man-at-eternal-rest well-

alanced scheme is smaller than the error that arises from the per-

urbation. 

.3.2. Inflow pulse to Q for an artery with stenosis & a discontinuous

tep 

In this section we will simulate a pulse inflicted on the flow

 at the inlet of the domain. This pulse will be applied to both

he stenosis and discontinuous step problems in Section 5.2 . The

nitial conditions for both A and Q are determined in the same way

s in Section 5.2 , however we will introduce a different boundary
Fig. 26. Numerical solutions at time t = 0 . 005 with quadratic basis function and me
ondition for Q which simulates a pulse to the flow of blood. The

oundary condition for Q at the inlet, denoted 

˜ Q in , is defined in

he following way 

˜ 
 in (t) = 

{ 

Q in 

(
1 + ε sin 

(
2 π

t 

T 

))
if t ≤ T 

2 
, 

Q in otherwise , 

(5.10) 

here the pulse is inflicted until halfway through the compu-

ational time T , and then no more pulse is inflicted after that.

his problem is similar to the one introduced in [14] with

ome modifications and the introduction of parameter ε. The

alue for Q in is defined in (5.5) and depends on the Shapiro

umber S in = { 0 . 5 , 0 . 1 , 0 . 01 } . We set the amplitude parameter

= 1 × 10 −7 for the artery with stenosis and ε = 5 × 10 −2 for

he decreasing step problem. The boundary condition is shown

n Fig. 21 . 

All tests in this section are run until the final time of t =
 . 01 with a mesh of 200 uniform cells. For each variation of

he test, we will compare the performance of the living-man

nd man-at-eternal-rest well-balanced DG schemes. We present

he results for an artery with stenosis in Figs. 22 and 23 . Simi-

arly to the aneurysm perturbation problem, the man-at-eternal-

est scheme handles the perturbation as well as the living-man

cheme for S in = 0 . 1 and 0 . 01 . When S in = 0 . 5 , obvious error is ob-

erved in the numerical results of the man-at-eternal-rest well-

alanced scheme. In Figs. 24 and 25 , we list the numerical results

or the decreasing step problem, using both living-man and man-
sh sizes of 200 and 1600 uniform cells for the ideal tourniquet problem (5.11) . 
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Fig. 27. Numerical solutions at time t = 0 . 008 with quadratic basis function and mesh sizes of 200 and 1600 uniform cells for the Riemann problem (5.12) . TVB Minmod 

limiter is used. 

Fig. 28. Numerical solutions of U e 
h 

(top row) and U f 
h 

(bottom row) at time t = 0 . 008 with quadratic basis function and mesh size of 200 uniform cells for the Riemann 

problem (5.12) . Cells in which the minmod limiter was applied after the last RK step are colored in blue and non-limited cells are colored red. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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at-eternal-rest well-balanced DG schemes. Similar behavior can be

observed. 

5.4. Tests for discontinuous initial conditions 

Two Riemann problems with discontinuous initial conditions

will be considered in this section. We test the performance of the

well-balanced DG methods in capturing discontinuous solutions. 
.4.1. The ideal tourniquet 

Dam break problems are frequently studied for the shallow wa-

er equations. For the blood flow problem, the analogue is the ideal

ourniquet problem. We consider a tourniquet that is applied and

nstantaneously removed. The computational domain for this prob-

em is [ −0 . 04 , 0 . 04] and the initial conditions are given by 

 (x, 0) = 

{
π(R in ) 

2 , if x ≤ 0 , 

π(R out ) 
2 , otherwise , 

Q(x, 0) = 0 , (5.11)



J. Britton and Y. Xing / Computers and Fluids 203 (2020) 104493 31 

Fig. 29. Numerical solutions at time t = 0 . 008 with quadratic basis function and mesh sizes of 200 and 1600 uniform cells for the Riemann problem (5.12) . The WENO 

limiter is used. 

Table 14 

Parameters for the ideal tourniquet problem (5.11) 

and the Riemann problem (5.12) . 

R in R out K ρ

5 × 10 −3 m 4 × 10 −3 m 10 7 Pa 
m 

1060 kg 
m 3 

w  

r  

t  

m  

T  

t  

i  

c  

1  

n  

b  

s

5

v

 

p  

s

A

Q

a

A

T  

t  

u  

c  

u  

w  

b  

o  

U  

m  

W  

t  

i  

b  

c  

W  

o

6

 

o  

e  

a  

a  

t  

p  

t  

p  

a  

c  

e  

i  

h  

o  

t  

t

D

 

c  

i

R

 

 

 

 

 

 

 

ith the parameters listed in Table 14 . The cross-sectional area at

est is defined as A 0 (x ) = π(R out ) 
2 . Transmissive boundary condi-

ions are implemented at the endpoints of the computational do-

ain. The numerical solution is computed up to time t = 0 . 005 .

he discontinuity in the center becomes a shock wave propagating

o the right and a rarefaction wave moving to the left. The numer-

cal results with 200 uniform cells are presented in Fig. 26 . For

omparison, we also present the simulation results with refined

600 uniform cells as a “reference” solution. We can see that the

umerical solution agree well with the refined solutions. Our well-

alanced DG methods can capture the shock wave well, and the

lope limiter removes oscillatory near the discontinuities. 

.4.2. Riemann problem with non-flat radius at rest and non-zero 

elocity 

Next, we consider a problem similar to the ideal tourniquet

roblem, but with a non-zero velocity and discontinuous cross-

ectional area at rest given by 

 (x, 0) = 

{
π(4 × 10 

−3 ) 2 , if x ≤ 0 , 

π(3 . 5 × 10 

−3 ) 2 , x > 0 , 

(x, 0) = 

{
1 . 5 × 10 

−3 , if x ≤ 0 , 

1 × 10 

−3 , if x > 0 , 
(5.12) 

nd 

 0 (x ) = 

{
π(2 . 5 × 10 

−3 ) 2 , if x ≤ 0 , 

π(3 × 10 

−3 ) 2 , x > 0 , 
(5.13) 

he computational domain for this problem is [ −0 . 04 , 0 . 04] and

he test is run until time t = 0 . 008 . The numerical results with 200

niform cells and TVB minmod limiter are presented in Fig. 27 , and

ompared with the “reference” solution obtained with refined 1600

niform cells. We can see that the numerical solution agrees well

ith the refined solutions. The minmod limiter marks the trou-

led cells based on U 

f 

h 
and performs the actual limiting procedure

n U h . We also plotted the figures of the decomposed solutions

 

f 

h 
and U 

e 
h 

at the final time in Fig. 28 in which the troubled cells

arked by the limiter are distinguished from the non-limited cells.
e have compared minmod slope procedure with the results of

he standard minmod limiter (both trouble cell indicator and lim-

ting on U h ), and observed the same results. In these figures, it can

e seen that the shock profiles are smeared with 200 cells. For

omparison, we also included the numerical results in Fig. 29 when

ENO limiter is used instead, and this gives a sharp shock profile

n the same mesh (200 cells). 

. Conclusion 

In this paper we constructed and tested DG methods for the

ne-dimensional arterial blood flow system with the man-at-

ternal-rest and living-man equilibria. Well-balanced DG methods

re designed to efficiently capture the nearly equilibria flow which

re small perturbation of these equilibrium states. We focus on

he living-man equilibrium states which are more relevant to the

ractical problem. To construct well-balanced methods, special at-

ention was paid to the projection of the initial conditions into

iecewise polynomial space, the approximation of the source term,

nd the construction of the numerical fluxes. Extensive numeri-

al examples were given to demonstrate the well-balanced prop-

rty, accuracy, non-oscillatory behavior at discontinuities, and abil-

ty to resolve small perturbations to steady states. DG methods

ave been shown to be efficient for the hyperbolic balance laws

n network, and it would be interesting to test the performance of

he proposed methods on the arterial network blood flow simula-

ions, which will be our future work. 
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