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Macroscopic models for flows strive to depict the physical world by considering quantities 
of interest at the aggregate level versus focusing on each discrete particle in the system. 
Many practical problems of interest such as the blood flow in the circulatory system, 
irrigation channels, supply chains, and vehicular traffic on freeway systems can all be 
modeled using hyperbolic conservation laws that track macroscopic quantities through a 
network. In this paper we consider the latter, specifically the second-order Aw-Rascle (AR) 
traffic flow model on a network, and propose a discontinuous Galerkin (DG) method for 
solving the AR system of hyperbolic partial differential equations with appropriate coupling 
conditions at the junctions. On each road, the standard DG method with Lax-Friedrichs 
flux is employed, and at the junction, we solve an optimization problem to evaluate the 
numerical flux of the DG method. As the choice of well-posed coupling conditions for the 
AR model is not unique, we test different coupling conditions at the junctions. Numerical 
examples are provided to demonstrate the high-order accuracy, and comparison of results 
between the first-order Lighthill-Whitham-Richards model and the second-order AR model. 
The ability of the model to capture the capacity drop phenomenon is also explored.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Macroscopic continuum models for hyperbolic network flows have been applied in a diverse array of applications in a 
variety of scientific fields. Such models utilize partial differential equations (PDEs) to simulate the evolution of the macro-
scopic quantities across a network. The practicality of the macroscopic PDE methods is realized through the simulation of 
large networks with many junctions and edges. A large network poses computational time issues if microscopic models are 
used, as the behavior of each entity across the network must be taken into account. Applications of hyperbolic network 
flows include blood circulation [29,34], supply chains [4], data packet flow and telecommunications [20], air traffic manage-
ment [39], vehicular traffic flow [2], and many more. A comprehensive overview of hyperbolic flows on networks is given in 
[10], which provides theoretical results, models for various types of applications of network flows, coupling conditions, and 
some numerical results.
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The spatial component of the model is given by a network, or topological graph, consisting of a collection of edges (also 
called links) and a set of junctions (also called nodes or vertices). Edges are connected at junctions, along with additional 
requirements so that the network can be described mathematically as a graph. On each edge, the dynamics are described 
by solutions to either a scalar PDE or systems of PDEs. As this paper is concerned with the application of traffic flow, 
terminology from traffic flow literature will be employed. A first-order model is a model where the evolution of vehicle 
density on the network are given by a single PDE on each edge. A second-order model is a model in which the dynamics 
are governed by a system of two PDEs on each edge, one for the density and one for the velocity of vehicles. This notion 
can be extended to larger systems as well. The use of the word “high-order” should not be confused with the terminology 
of the numerical analysis community, where a “high-order method” is a numerical scheme that can achieve a high-order of 
accuracy for computational implementation.

Much theoretical work has been done studying first and second order models of traffic flow. The seminal work done by 
Lighthill and Whitham [27] and Richards [36] developed the first order model for traffic flow, now known as the Lighthill-
Whitham-Richards (LWR) model of traffic flow, describing evolution of traffic density over time. The LWR model can be 
written in conservative form as

∂t u + ∂x f (u) = 0, (1.1)

where f (u) = uv(u) represents the flow of vehicles, and u and v are the vehicle density and velocity, respectively. Eq. 
(1.1) is also known as the continuity equation, and states that the number of vehicles is to be conserved. The average 
velocity function v = v(u) is a decreasing function of the density u, and the flow function f (u) = uv(u) defines a unique 
relationship between flow and density and is termed the “macroscopic fundamental diagram” (MFD) of traffic flow. Much 
work has been done on developing different MFDs, as well as showing that MFDs fit experimental data [19]. For our paper 
we are primarily interested in the numerical aspects of the junction problem, so when the LWR model is considered we 
simply take the normalized Greenshields’ relation v(u) = 1 − u, which states that velocity is a negative linear function of 
density, so that the flux becomes f (u) = u(1 − u). In the 1990s, Daganzo [16] developed the cell-transmission model (CTM) 
for the first order traffic flow problem, which looks at discrete vehicles in a discretized road, and proved that in the limit, 
the CTM approaches the first order LWR model. In [18], the method was extended to the network case. Also in 1995, Holden 
and Risebro [25] developed theory for the first order model on a network.

Second-order models were developed in an attempt to improve upon the first-order LWR model. In 1971, Payne [33]
derived a second-order model, using fluid flow as a basis for the extension. The model included a second PDE which made 
the velocity dynamic. This is due to certain limitations of using a single conservation law as in (1.1) to model the dynamics 
of traffic congestion, especially traffic jam situations, where decreased flow is observed on a traffic network when density 
rises above a critical value. The analogy of treating traffic as a fluid was advanced to use high-order models from fluid 
dynamics to add more details to traffic models, but the analogy between traffic flow and fluid flow is imperfect. In [17], 
Daganzo provided strong criticism against second-order models of traffic flow up to 1995, as the motion of fluid particles 
are determined by information both in front of and behind the particle, while traffic flow is anisotropic in nature, in that 
the driver is only influenced by the conditions downstream from its current position.

Aw and Rascle [5] developed a “proper” second-order model of traffic flow which addressed the criticisms of Daganzo 
[17] that the existing second order models were non-physical. The model is a nonlinear hyperbolic system of PDEs, which 
we will refer to as the Aw-Rascle (AR) model, and is given by{

∂t u + ∂x(uv) = 0

∂t(u(v + p(u))) + ∂x(uv(v + p(u))) = 0,
(1.2)

where u(x, t) and v(x, t) represent the density and velocity of the vehicles, respectively. The function p(u) is the “pressure” 
term, which is taken as an increasing function of the density u. The pressure is a well defined quantity in fluid flow, but 
may seem inappropriate for traffic flow, as there is not an immediate physical intuition of what pressure would represent. 
In fact, in [5], the authors state that the pressure term describes how drivers react to a change in the concentration of 
vehicles in front of them. Thus the pressure function is often referred to as an “anticipation” factor. For our numerical work, 
we take the pressure function to have the form p(u) = uγ , which is a common assumption in inviscid fluid flow theory. The 
adiabatic constant, γ , is generally taken such that γ > 1. We can rewrite (1.2) as⎧⎨⎩

∂t u + ∂x(q − up(u)) = 0

∂tq + ∂x

(
q2

u
− qp(u)

)
= 0,

(1.3)

where q = u(v + p(u)) represents a “pseudo-momentum”. For the numerical work in this paper, we will utilize the conser-
vation form3 of the AR model given by (1.3). We are interested in the network problem corresponding to the AR model, 

3 We could also write (1.3) in system form U = (u, q)T , which will be done in (3.4). The notation, U , will be used to define the coupling conditions in a 
concise way.
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which will be described in detail in Section 2. A traffic network consists of edges, in this case roads, that meet at a single 
node (junction), where the dynamics on each road are given by (1.3), and some prescribed conditions are defined at the 
junction, which are termed coupling conditions. We only consider single junction cases, with a particular number of incom-
ing and outgoing roads with one node. As the propagation speeds of the waves is finite, our method can be extended to 
multiple junctions by combining the junction types together to form a complex network.

There has also been a wide variety of work done on the numerical analysis of hyperbolic network flows across different 
fields. Applications where numerical methods have been employed to solve hyperbolic flows on networks include shallow 
water equations in channels [11,7], gas dynamics [6], blood flow circulation [29], and first order traffic flow models [2]. In 
particular, the discontinuous Galerkin (DG) method is applied to the first order LWR model on a network in [2], where the 
Riemann problem is solved exactly to determine the coupling conditions, and an equivalent form of the Godunov flux is 
applied to solve the junction problem. Other numerical methods using different approaches have been developed for traffic 
flow models including the cell transmission model [16], finite difference methods [28], WENO schemes for the multi-class 
LWR model [40], and finite volume methods for the Aw-Rascle-Zhang model [37].

In the past 20 years, high order accurate numerical schemes have gained increased attention and are being applied 
in many computational fields where systems of conservation laws appear. Among the choices of high-order methods, the 
DG method is a class of finite element methods that uses completely discontinuous piecewise polynomial basis functions, 
which reaps the benefits from both finite element and finite volume methods (see [35,14,15,12], and [13] for a historic re-
view). The DG method holds many superior advantages, including the local conservativity, the easy handling of complicated 
geometries, simple implementation boundary conditions, the implementation of hp-adaptivity, and highly efficient parallel 
implementations. DG methods have attracted increased attention for applications requiring high performance computing in 
large scale problems. Parallel efficiencies have been shown to be more than 80% for adaptive meshes and more than 99% for 
fixed meshes [8]. The DG method also provides simple adaptation with the predominantly used finite volume techniques, 
which benefits those groups who already implement those methods. These make the use of the DG method quite promising 
for the traffic flow problems on networks considered in this paper.

In the present paper, we discuss the derivation and development of DG methods to solve the Aw-Rascle model (1.3) on a 
network with various junction types and different coupling conditions. In [2], DG methods with Godunov flux are presented 
to solve the LWR model on networks. The Godunov flux, based on the exact Riemann solution, is computed at the junction, 
which relies on multiple cases for each type of junction. The number of cases also increases with the number of roads, thus 
making the evaluation of the flux at the junction complicated and time consuming if there are many roads entering and 
leaving the junction. Also, when the second order AR model is considered in this paper, it becomes too complicated to solve 
the Riemann problem exactly at the junction to determine the numerical flux. In [9], a first order numerical algorithm is 
developed to solve the coupling conditions at a junction via an optimization problem, and the accuracy and effectiveness of 
this algorithm is validated for the shallow water equations on networks. In this paper, we combine this technique with the 
DG methods and introduce a high order algorithm which can efficiently solve the AR model on networks. At the junction, 
only a single optimization problem, based on the DG solutions of directly neighboring cells on each road, needs to be solved 
with the a priori coupling conditions which can be handled by built-in solvers. One attraction of this formulation is that we 
can use fluxes other than the Godunov flux, say the Lax-Friedrichs flux or FORCE scheme, which do not require the exact 
solution of the Riemann problem. The novel contribution of this work is to introduce a high order DG framework for the AR 
traffic flow system which allows the usage of any numerical flux. The DG method allows for easy handling at the junction, 
as the method only relies on information from directly neighboring cells, making it an ideal choice for the junction problem. 
It was emphasized in [2] that “the DG method perhaps is the only realistic and efficient high order method for network 
problems”.

The organization of the paper is as follows. Section 2 presents a detailed description of the network problem, along with 
choices of coupling conditions at the junction. In Section 3, we present a DG method for the network problem given in Sec-
tion 2. The detailed implementation of the coupling conditions at the junction is presented in Section 4. Section 5 contains 
various numerical experiments that show the optimal convergence rates, comparisons of different coupling conditions, and 
the behavior of the second order model. As comparison, we also implement the first order LWR model on networks with DG 
methods using Godunov flux, and the comparison of LWR and AR models on networks with the proposed DG method is also 
provided. We also compare how different coupling conditions affect the numerical scheme for the AR model. In addition, 
we present numerical results to show the capacity drop effect at the junction for two incoming roads and one outgoing 
road. Finally, concluding remarks are given in Section 6.

2. Aw-rascle traffic flow on a network

The introduction provided the history of the theoretical aspects of traffic flow modeling. In this section, a brief review 
of the AR traffic flow model on a network is given. In section 2.1 we define the problem of interest, the network AR model 
and notational conventions that will be important for the remainder of the paper. Section 2.2 outlines the theoretical work 
that has been done in developing coupling conditions that satisfy the Riemann problem at the junction.
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Fig. 2.1. Notation at the junction. (a) The left subfigure of (a) gives the direction of traffic where the arrows that point to the vertex (Edges 1 and 2) 
represent incoming roads, and the arrows pointing away from it are outgoing roads, for the case of 2 incoming roads and 2 outgoing roads. This notation 
is used in [21]. The right subfigure of (a) gives the junction in terms of the interface, where the vertex represents x = 0. (b) The left subfigure of (b) gives 
the situation after the x �→ −x has been applied to the incoming roads, so the direction of all traffics points outwards from x = 0. In the right subfigure of 
(b), each road points out of the vertex at x = 0, where the dotted line to left represents the “ghost cell”. This notation is used in [9].

2.1. Notation and conventions

In this subsection, we give concrete definitions and notational conventions that will hold for the remainder of the paper. 
In [21] and [25], the notational convention gives the following definition for incoming and outgoing roads. Each road k
is described as the interval [ak, bk] where ak = −∞, bk = 0 for incoming roads, and ak = 0, bk = +∞ for outgoing roads. 
They assume that traffic goes in the direction from ak to bk , thus traffic has positive speed in that direction. This notational 
convention can be visualized in Fig. 2.1a, where the vertex diagram and interface diagram provide a visual of the junction.

An alternative way to represent the roads, used in [9], utilizes a position mapping x �→ −x to the incoming road. The 
mapping allows the incoming roads to be represented on a positive interval, so that all roads are directed out of the interface 
at x = 0. To simplify the situation further for the numerical work, we consider each road on the unit interval [0, 1], exiting 
the junction. Each road has a dotted line portion to the left of the junction which represents a “ghost cell” for the solution 
of the left state of the Riemann problem at the junction. This notational convention can be visualized in right subfigure of 
Fig. 2.1b. For the remainder of the paper, we will use the notational convention in Fig. 2.1b on the unit interval.

For the traffic network problem, we apply the AR model given by (1.3), on each road. Assume that there are a total of 
m roads, so that initial conditions u(k)

0 (x) and q(k)
0 (x) are prescribed on each road k = 1, . . . , m. Let there be m̃ incoming 

roads and m̂ outgoing roads such that m = m̃ + m̂. We must also provide coupling conditions at the junction, denoted as 
�(U (1)(t, 0+), · · · , U (m)(t, 0+)) = 0, where U = (u, q)T denotes the vector of unknown variables. The coupling conditions de-
scribe how traffic moves from incoming roads to outgoing roads at the interface. Putting together (1.3), the initial conditions, 
and coupling conditions, we can describe the AR traffic network model on outgoing roads as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t u(k)(t, x) + ∂x
(
q(k)(t, x) − u(k)(t, x)p(u(k)(t, x))

)= 0 (t, x) ∈R+ × [0,1], k = m̃ + 1, . . . ,m̃ + m̂

∂tq(k)(t, x) + ∂x

(
(q(k)(t, x))2

u(k)(t, x)
− q(k)(t, x)p(u(k)(t, x))

)
= 0⎧⎪⎪⎨⎪⎪⎩

u(k)(0, x) = u(k)
0 (x) for x ∈ [0,1]

q(k)(0, x) = q(k)
0 (x) for x ∈ [0,1]

�(U (1)(t,0+), · · · , U (m)(t,0+)) = 0 t ≥ 0,

(2.1)

and incoming roads as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t u(k)(t, x) − ∂x
(
q(k)(t, x) − u(k)(t, x)p(u(k)(t, x))

)= 0 (t, x) ∈R+ × [0,1], k = 1, . . . ,m̃

∂tq(k)(t, x) − ∂x

(
(q(k)(t, x))2

u(k)(t, x)
− q(k)(t, x)p(u(k)(t, x))

)
= 0⎧⎪⎪⎨⎪⎪⎩

u(k)(0, x) = u(k)
0 (x) for x ∈ [0,1]

q(k)(0, x) = q(k)
0 (x) for x ∈ [0,1]

�(U (1)(t,0+), · · · , U (m)(t,0+)) = 0 t ≥ 0,

(2.2)

where u(k)(t, x) and q(k)(t, x) are the density and pseudo-momentum on the kth road, and the fluxes are given by 

q(k)(t, x) − u(k)(t, x)p(u(k)(t, x)) which is the flux of the density, and 
(q(k)(t, x))2

u(k)(t, x)
− q(k)(t, x)p(u(k)(t, x)) which is the flux 

of the pseudo-momentum. Note that there is a negative sign in front of the flux term in Eq. (2.2), which comes from the 
position mapping x �→ −x to update the computational domain from [−1, 0] to [0, 1] on the incoming roads. The initial 
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conditions for the density and pseudo-momentum are prescribed on each road with the functions u(k)
0 and q(k)

0 , with the 
coupling conditions �(U (k)(t, 0+)) = 0 defined for each set of PDEs and depends on both the incoming and outgoing roads, 
hence k = 1, . . . , m.

2.2. Coupling conditions

Coupling conditions prescribe equations that must be satisfied at the junction. These conditions model conservation 
of quantities, determine how much flow moves from road to road, and how quantities can be maximized or minimized. 
Different coupling conditions for second-order models of traffic flow have been proposed in the literature [21,23,24], and 
all of the methods described above provide a unique solution to the Riemann problem at the junction. Below, we will 
review them individually. First, there are some coupling conditions that are accepted by all of the papers we consider. Those 
coupling conditions are:

• The flux of the density must be conserved. This condition is required, as the number of vehicles that enter the junction 
from incoming roads must leave on an outgoing road. That is, vehicles cannot be created or destroyed at the junction.

• Waves produced at the junction must have positive speed, assuming that we orient all roads out of the junction (see 
Fig. 2.1b). This consideration is taken so that the solution will satisfy the boundary conditions at the junction, and 
results in a physical model.

At this point we now review possible coupling conditions, as various authors have considered different possibilities at the 
junctions and the choice of coupling condition has been shown to slightly affect the solution determined by the method. In 
[21], the coupling conditions considered include, in addition to the two above, the following

• There exists a traffic distribution matrix A, stating what percentage of the flux of the density on each incoming road 
moves to each outgoing road.

• The sum of the flux of the density on incoming roads is maximized.
• In some situations, the four coupling conditions above do not provide a unique solution. The last condition employed 

can be either: (i) maximize velocity on outgoing roads, (ii) maximize density on outgoing roads, or (iii) minimize the 
total variation of density on outgoing roads. According to [21], the choice of any one of (i)-(iii) isolates a unique solution, 
although the unique solution for each coupling condition may not be the same.

This model can be applied to the general m̃-incoming and m̂-outgoing roads case, with the restriction that m̃ ≥ m̂ (except 
for the special case of 1-incoming and 2-outgoing roads).

The coupling conditions in [23] include, in addition to the canonical two, the following three rules

• The quantity 
q

u
, which describes the “behavior” of drivers, must be the same before and after the junction.

• The sum of the flux of the densities on incoming roads is maximized.
• In some cases, the rules above do not provide a unique solution. The last condition is to maximize velocity on outgoing 

roads.

The coupling conditions in [23] are developed only for junction problems where there are m̃-incoming roads and 1-outgoing 
road, and 1-incoming road and m̂-outgoing roads. Note that the conditions are very similar, but the coupling conditions in 
[23] include a different condition, which ensures the quantity 

q

u
is the same on each side of the junction. Note that this 

conservation is not the same as conservation of the flow, as the total flow of the quantity 
q

u
may not be the same on 

both sides of the junction. Instead, each vehicle tends to conserve their quantity, 
q

u
, through the junction. Another distinct 

difference between the two sets of coupling conditions is the order in which variables are fixed or maximized on outgoing 
roads. In [23], maximization of the flux of the density is the final coupling condition implemented, whereas in [21] the 
maximization is the first coupling condition that is computed to set up a system of nonlinear equations. There are some 
important physical consequences of these choices.

Another set of coupling conditions given in [24] incorporate microscopic behavior at the junction to model junction 
merge behavior, and includes

• The flux of the pseudo-momentum q is conserved at the junctions.
• The sum of the flux of the densities on incoming roads is maximized, subject to a traffic distribution matrix A.
• In the case for 2 incoming roads and 1 outgoing road (or more generally when there is more than one incoming road), 

a “mixture rule” corresponding to microscopic considerations of how vehicles merge at the junction is introduced.
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We do not discuss the details of [24] here, as we do not consider these coupling conditions in this paper. For the remainder 
of the paper, we only consider the sets of coupling conditions discussed in [21] and [23]. The reader interested in the 
microscopic considerations to derive macroscopic coupling conditions should refer to [24]. This concludes the discussion of 
the coupling conditions.

3. Discontinuous Galerkin (DG) method

3.1. Notation

Given an interval I = [a, b], we divide I into N subintervals and label each cell as I j = [x j− 1
2
, x j+ 1

2
] for j = 1, . . . , N , with 

a = x 1
2

and b = xN+ 1
2

. The center of each cell is given by x j = 1
2 (x j− 1

2
+ x j+ 1

2
), with mesh size h j = x j+ 1

2
− x j− 1

2
. We denote 

the maximal mesh size as h = max
1≤ j≤N

h j . Let V κ
h denote the piecewise polynomial space

V κ
h = {v : v|I j

∈ Pκ (I j), j = 1, . . . , N}, (3.1)

where Pκ (I j) denotes the space of polynomials of degree κ on the cell I j . Functions in V κ
h are allowed to have discontinu-

ities across the cell interface. The terms v−
j+ 1

2
and v+

j+ 1
2

represent the limit value of v at x j+ 1
2

from the left cell I j and the 
right cell I j+1, respectively.

We let Uh ∈ V κ
h denote the solution of the DG numerical method. The notations for the jump at the interface, and the 

average of the function are given by [Uh] = U+
h − U−

h and {Uh} = 1
2

(
U+

h + U−
h

)
, respectively. For shorthand notation, we 

define

(φ,ψ)I j =
∫
I j

φψ dx, (φ,ψ) =
N∑

j=1

∫
I j

φψ dx. (3.2)

3.2. DG method for the AR model on each road

In this section, we construct the DG method for (2.1) and (2.2) by discretizing the space with the DG method, and using 
strong stability preserving (SSP) Runge-Kutta (RK) methods in time. As the outgoing and incoming road cases are the same 
up to a sign difference, we will just consider the outgoing road formulation as the incoming road formulation can be defined 
similarly.

We can write (2.1) (and similarly (1.1)) in the following general form of a system of conservation laws

Ut + F (U )x = 0, (3.3)

on each road, where F (U ) is the flux term. Utilizing the conservative form of the AR model, we have the following variables

U =
(

u
u(v + p(u))

)
=
(

u
q

)
, F (U ) =

(
uv

uv(v + p(u))

)
=
⎛⎝ q − up(u)

q2

u
− qp(u)

⎞⎠ . (3.4)

Using the variables in (3.4), we formulate the DG method for the system (2.1) and (2.2) as the following: find U (k)

h ∈ V κ
h , 

such that((
U (k)

h

)
t
, φh

)
I j

=
(

F (U (k)

h ), (φh)x

)
I j

− F̂ j+1/2(U (k),−
h , U (k),+

h )φ−
h, j+1/2 + F̂ j−1/2(U (k),−

h , U (k),+
h )φ+

h, j−1/2, (3.5)

for all test functions φh ∈ V κ
h . The F̂ j+1/2 terms represent the numerical fluxes, which come from the boundary terms at 

each cell interface obtained from the integration by parts. There is not a unique choice of the numerical flux in general. For 
our numerical experiments, we will use the Lax-Friedrichs (LF) flux which is given by

F̂ j+1/2(U (k),−
h, j+1/2, U (k),+

h, j+1/2) = 1

2
(F (U (k),−

h, j+1/2) + F (U (k),+
h, j+1/2)) − α

2
(U (k),+

h, j+1/2 − U (k),−
h, j+1/2), (3.6)

where α = max
U

{|λ1(U )|, |λ2(U )|} is the Lax-Friedrichs constant. The maximum can be taken globally (over the entire com-

putational domain) or locally, leading to the LF or local LF flux. The λ j(U ) are the eigenvalues of Jacobian matrix of F (U ), 
which are given by λ1(U ) = v = 1

u

(
q − uγ +1

)
and λ2(U ) = v − γ uγ . The framework presented in this paper can also be 

applied to other choices of numerical fluxes as well.
The discretization of the spatial domain using the DG method handles all of the numerical fluxes at the edge of each 

cell, but a problem arises for the flux F̂1/2 of the very first cell, as this is where the junction is located. To determine the 
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flux F̂1/2, we need to implement the appropriate coupling conditions as outlined in section 2.2. In the next section, we will 
explain in details how we numerically compute these fluxes at the junction.

Spurious artificial oscillations can appear near discontinuities in the numerical solution where shock-waves appear in 
hyperbolic problems. When such oscillations appear, total variation bounded (TVB) limiters can be applied to control these 
artifacts and to achieve total variation stability. The limiter should not change the cell averages when the limiter is applied, 
and the accuracy of the method for smooth solutions should remain the same. In this paper, we apply the TVB limiter 
outlined in [38].

The DG formulation (3.5) for the AR model is solved in time utilizing the SSPRK3 method [22], which is given as

(U (k)

h )(1) = (U (k)

h )i + 
ti L
(
(U (k)

h )i
)

(U (k)

h )(2) = 3

4
(U (k)

h )i + 1

4
(U (k)

h )(1) + 1

4

ti L

(
(U (k)

h )(1)
)

(U (k)

h )i+1 = 1

3
(U (k)

h )i + 2

3
(U (k)

h )(2) + 2

3

ti L

(
(U (k)

h )(2)
)

, (3.7)

where L represents the spatial operator, which denotes the right side of (3.5), and 
ti is the numerical time step.

4. Implementation of the coupling conditions

In this section, we describe the implementation of the coupling conditions for the AR model on a network in the general 
case, by extending the first order method developed in [9] to the high order DG framework. We start with describing the 
main idea to evaluate the numerical flux on the junction. In subsection 4.1, the methodology to decide the admissible region 
is presented, the maximization of density flux coupling condition is discussed in subsection 4.2, and in the subsequent 
subsections 4.3-4.6 we provide the specific coupling conditions we implement for the 1-1, 1-2, 2-1, and 2-2 junction cases, 
respectively. Finally, in 4.7, we discuss the optimization algorithms used in solving the maximization/minimization problems.

On each road, we utilize the DG method (3.5) with the Lax-Friedrichs flux (3.6) for the spatial discretization, and 
SSPRK3 scheme (3.7) in time. To construct DG method for the AR model on a network, it requires the implementation 
of coupling conditions at the left hand boundary x = 0, in other words, we need to determine F̂1/2(U (k),−

h,1/2, U
(k),+
h,1/2) =

F̂1/2((U (k)

h )L, (U (k)

h )R), with (U (k)

h )L and (U (k)

h )R denoting the left and right states at the junction on the kth road. Note 
that (U (k)

h )R is the numerical solution in the first cell and (U (k)

h )L is the numerical solution in the “ghost cell”. In our prob-

lem, it needs to be solved from the coupling conditions at the junction. For the case with no junction involved, (U (k)

h )L

comes from the given boundary condition.
To determine the unknown values of (U (k)

h )L , and subsequently the flux F̂1/2((U (k)

h )L, (U (k)

h )R), we extend the technique 
developed in [9] for the first order finite difference method to the DG framework. First, the DG method (3.5) is rewritten as 
the following equivalent formulation((

U (k)

h

)
t
, φh

)
I j

= −
(

F (U (k)

h )x, (φh)
)

I j

−
(

F̂ j+1/2(U (k),−
h , U (k),+

h ) − F (U (k),−
h, j+1/2)

)
φ−

h, j+1/2

+
(

F̂ j−1/2(U (k),−
h , U (k),+

h ) − F (U (k),+
h, j−1/2)

)
φ+

h, j−1/2, (4.1)

by applying integration by parts. Note that this DG formulation (4.1) is introduced just to motivate our approach in deter-
mining (U (k)

h )L at the junction, and will not be used in our algorithm. All of the computation use the conventional form 
(3.5). By introducing the notation of “fluctuations”(

D(k)
j+1/2

)− = F̂ j+1/2(U (k),−
h , U (k),+

h ) − F (U (k),−
h, j+1/2),(

D(k)
j−1/2

)+ = − F̂ j−1/2(U (k),−
h , U (k),+

h ) + F (U (k),+
h, j+1/2),

the DG method becomes((
U (k)

h

)
t
, φh

)
I j

= −
(

F (U (k)

h )x, (φh)
)

I j

−
(

D(k)
j+1/2

)−
φ−

h, j+1/2 −
(

D(k)
j−1/2

)+
φ+

h, j−1/2. (4.2)

When φh = 1, it reduces to (U (k)

h )t |I j = − 
(

D(k)
j+1/2

)−−
(

D(k)
j−1/2

)+
, which shares the form of the residual distribution method 

[3]. At the junction, the fluctuations 
(

D(k)
1/2

)±
are defined by(

D(k)
1/2

)− = F̂1/2 − F
(
(U (k)

h )L

)
,

(
D(k)

1/2

)+ = − F̂1/2 + F
(
(U (k)

h )R

)
,
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and the 
(

D(k)
1/2

)−
term contains all information of backward moving waves at the interface of the cell. One of the main 

coupling conditions outlined in traffic flow is that only waves entering the junction (right-moving waves or waves with 
positive speed) are admissible, as outlined in section 2.2. Ideally, to satisfy the coupling condition of admissible waves, we 
would like to require that 

(
D(k)

1/2

)− = 0, as this would mean there would be no information traveling backwards into the 
junction. If the Godunov flux with the exact Riemann solver is employed at the junction (as in [2] for the LWR model), this 
condition will be satisfied exactly. With the choice of LF flux (or other numerical flux corresponding to different approximate 
Riemann solvers), this condition cannot be enforced exactly, instead we relax it to the minimization problem

min
(U (k)

h )L

m∑
k=1

∣∣∣∣∣∣∣∣(D(k)
1/2

)− (
(U (k)

h )L, (U (k)

h )R

)∣∣∣∣∣∣∣∣2 , (4.3)

subject to the coupling conditions

�
(
(U (1)

h )I , . . . , (U (m)

h )I

)
= 0, (4.4)

where k indexes the road number, m is the total number of roads, and the unknowns (U (k)

h )L are the left states coming 
from the variables uh and qh in the ghost cell, (U (k)

h )R are the right states coming from the first cell inside the domain, and 
(U (k)

h )I = (U (k)

h )I

(
(U (k)

h )L, (U (k)

h )R

)
are the intermediate values at x = 0 by solving the Riemann problem with left and right 

values (U (k)

h )L,R approximately. We could choose the intermediate values as

(U (k)

h )I

(
(U (k)

h )L, (U (k)

h )R

)
= 1

2

(
(U (k)

h )R + (U (k)

h )L

)
− 1

2α

(
F
(
(U (k)

h )R

)
− F

(
(U (k)

h )L

))
. (4.5)

For the LF flux used in this paper, the left-moving (backwards) fluctuation takes the form of(
D(k)

1/2

)− = 1

2

(
F
(
(U (k)

h )R

)
− F

(
(U (k)

h )L

))
− α

2

(
(U (k)

h )R − (U (k)

h )L

)
. (4.6)

The solution of the minimization problem (4.3) and (4.4) produces the values (U (k)

h )L in the ghost cells. Therefore, once the 
optimization problem is solved, we have the last component (flux F̂1/2) to update the numerical solution of the DG method 
(3.5) and (3.6) at the given time step.

In the following subsections, we consider the coupling conditions discussed in [21] and [23] which will be defined in 
(4.4) for the cases of 1-1, 1-2, 2-1, and 2-2 junction types, where the first number is the number of incoming roads and the 
second one is the number of outgoing roads. For the situation of the 1-1 junction and 1-2 junction, the coupling conditions 
from both papers appear to produce practically same result, which will be shown in section 5. The 2-1 and 2-2 junction 
cases are more complicated, as there is mixing from incoming roads to outgoing roads. The 2-1 junction case, as we shall 
see, will provide an example where the two sets of coupling conditions differ. The 2-2 case is only considered with the 
coupling conditions from [21], as the coupling conditions in [23] are only provided for the m̃ − 1 and 1 − m̂ junction types.

Before proceeding further, we give an overview of the procedure for the implementation of the coupling conditions. 
All of the coupling conditions, except for the maximization of density flux and preference for waves of positive speed, 
can be described via nonlinear algebraic equations. The two exceptions are formulated through optimization problems. The 
preference for waves of positive speed condition, when using the LF flux, is defined through the minimization of fluctuations 
(4.3), when solved will provide the unknown left states at the junction. Prior to being able to solve the minimization 
problem (4.3), the coupling conditions (4.4) must be defined as a system of equations, which requires the maximization of 
density flux problem to be solved beforehand. The maximization of the density flux problem returns the maximized fluxes 
which are used to construct nonlinear equations used in the definition of (4.4). To solve the maximization of density flux, 
we must first determine the admissible values for the flux of the density. The admissible values of the density flux must be 
consistent with the preference for waves of positive speed condition, which in turn is determined by the states in the ghost 
cells of the left states through the junction Riemann problem. For example, in [21], the admissible region for the flux of the 
density must be determined on each road, consistent with the coupling condition requirements. The admissible region is a 
function of (U (k)

h )R and γ in the (u, q)-plane with respect to some computed functions. The admissible region computation 
is also different for incoming and outgoing roads, therefore each case is treated separately.4 It should be noted that the 
maximization problem may not return the maximum possible flux of the density, as heavily congested traffic will not allow 
for the maximum possible flux to be achieved. We now give the details of the admissible region in the next subsection, and 
those of the maximization of density flux in Section 4.2.

4 The maximization of density flux is used for the 1-2, 2-1, and 2-2 junction cases. The 1-1 junction case is simple and does not require this additional 
condition to obtain a unique solution, whereas the other junction types will require this coupling condition.
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4.1. Determining the admissible region

The computation of the admissible regions for the two types of coupling conditions considered in this paper are dis-
cussed in [21] and [23]. To demonstrate the computation of the admissible regions for the AR model, we provide an 
overview of sections 5.1 and 5.2 in [21].

First, define the following regions D, D1 and D2 in the (u, q)-plane as

D1 = {
(u,q) ∈ D

∣∣q ≥ (γ + 1)uγ +1 } , (4.7)

D2 = {
(u,q) ∈ D

∣∣q ≤ (γ + 1)uγ +1 } , (4.8)

D = {
(u,q) ∈R+ ×R+ ∣∣uγ +1 ≤ q ≤ u

}
. (4.9)

The domains in (4.7)-(4.9) are referred to as domains of invariance. With the assumption that u ∈ [0, umax = 1], by the 
generalized Greenshields’ Relation5

vmax(u) = 1 − uγ , (4.10)

and the equation for pseudo-momentum q = u(v + uγ ), the bounds of the domain D in (4.9) are readily obtained. The 
domains in (4.7) and (4.8) are two subdomains of D. The importance of these domains is theoretical in nature, in that any 
initial data for the Riemann problem that lies in these domains must have a solution in the domains. These regions are used 
in [21] to determine the solution to the maximization of density flux problem which is discussed in the next subsection.

In order to satisfy the coupling condition that the waves produced by the half-Riemann problem must have positive 
speed, we must enforce the admissible region �inc

k , for the density flux δk on the incoming roads to be

�inc
k =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎣0, γ

(
1

γ + 1

) γ +1
γ

(
q(k)

R

u(k)
R

) γ +1
γ

⎤⎥⎦ , if (u(k)
R ,q(k)

R ) ∈ D2,

[
0,q(k)

R −
(

u(k)
R

)γ +1
]

, if (u(k)
R ,q(k)

R ) ∈ D1.

(4.11)

For what is to follow in subsection 4.2, we introduce a new notation for the upper bounds of the admissible regions. We 
define

δmax
k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ

(
1

γ + 1

) γ +1
γ

(
q(k)

R

u(k)
R

) γ +1
γ

if (u(k)
R ,q(k)

R ) ∈ D2,

q(k)
R −

(
u(k)

R

)γ +1
if (u(k)

R ,q(k)
R ) ∈ D1,

(4.12)

where δmax
k represents the maximum possible density flux on incoming road k. The maximum possible flux does not neces-

sarily mean that δmax
k will be achieved in the maximization of flux, as severe congestion could cause less than optimal flux 

at the junction.
Second, we determined the admissible region �out

k for the density flux on outgoing roads. One function of importance 

is the curve of the second family (CSF) going through (u(k)
R , q(k)

R ), given by q = q(k)
R

u(k)
R

u + uγ +1 − (u(k)
R )γ u. This curve is deter-

mine through analyzing the Riemann problem for the AR model (details are provided in [21]). Again, we must have waves 
produced by the half-Riemann problem to have positive speed, thus the admissible region �out

k , for the density flux δk on 
the outgoing roads is

�out
k =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎣0, γ

(
1

γ + 1

) γ +1
γ

⎤⎦ , if CSF is completely in D1,

[
0, 1

u(k)
R

(
q(k)

R −
(

u(k)
R

)γ +1
)(

1 +
(

u(k)
R

)γ − q(k)
R

u(k)
R

) 1
γ

]
, otherwise.

(4.13)

5 Density must always be non-negative, and a maximum density a road can handle gives an upper bound; for simplicity we take the upper bound to 
be unity. Along with the assumption that velocity is non-negative, and the maximum velocity is governed by, what is known in traffic flow theory as, 
generalized Greenshields’ relation.



10 J. Buli, Y. Xing / Journal of Computational Physics 406 (2020) 109183
Similar to the incoming road case, the δmax
k for outgoing roads are defined as

δmax
k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ

(
1

γ + 1

) γ +1
γ

, if CSF is completely in D1,

1
u(k)

R

(
q(k)

R −
(

u(k)
R

)γ +1
)(

1 +
(

u(k)
R

)γ − q(k)
R

u(k)
R

) 1
γ

, otherwise.

(4.14)

A similar analysis of the Riemann problem with the coupling conditions outlined in [23] is also done, except that the 
admissible regions give restrictions on the values of the density and pseudo-momentum. As the theory of admissible regions 
are not the main focus of this paper, we omit the details of the computations. The details are provided in [23]. With the 
admissible regions for the density flux δk on both incoming and outgoing roads, and the maximum possible fluxes, we now 
have all the components necessary to solve the maximization of density flux optimization problem.

4.2. Maximization of density flux

Before proceeding with the case-specific maximization problems, we provide a general overview of the maximization 
flux coupling condition, and how the condition fits into (4.4). First, we use the notation δ̂k to represent the solution to 
the maximization of flux problem, which is the maximal attained (not necessarily the maximum possible) flow leaving the 
incoming road k. The value of δ̂k has bounds such that δ̂k ∈ [0, δmax

k ] is enforced, where δmax
k represents the maximum 

possible flux determined through the admissible region computation described in 4.1. The δ̂k values for each road k are 
dependent upon the value of γ in the pressure term and the right and left states of the density and pseudo-momentum for 
each road. The solution of the maximization problem returns the ̂δk for incoming roads. To get the fluxes ̂δk for the outgoing 
roads, the traffic distribution matrix A is applied to the vector of δ̂k for incoming roads. We then set up the equations that 
are nonlinear in u(k)

L

q(k)
I − (u(k)

I )γ +1 − δ̂k = 0,

for k = 1, . . . , m, where u(k)
I and q(k)

I are given by the interface equation (4.5). The other coupling conditions are already 
provided in terms of nonlinear equations. Putting these coupling conditions in vector form, we get the coupling condition 
vector � in (4.4). We can now consider the specific maximization problems for the 1-2, 2-1, and 2-2 cases.

For the 1-2 junction case, the maximization of flux coupling condition is given by:

δ̂1 = max
δ1

δ1, subject to

{
δ1 ∈ [0, δmax

1 ]
A · δ1 ∈ [0, δmax

2 ] × [0, δmax
3 ] , (4.15)

where A is the exogenous traffic distribution matrix, and δ̂1 is the flux of the density on the incoming road which solves 
the maximization problem. Recall that the admissible regions [0, δmax

k ] are, in general, a function of the right state (U (k)

h )R =
(u(k)

R , q(k)
R )T and the value of γ , through the admissible region computation. To get the value for the outgoing roads, we just 

apply the traffic distribution matrix A to this vector:

[̂δ2, δ̂3] = A · [̂δ1
]= [α1,2,α1,3] · [̂δ1

]= [
α1,2δ̂1,α1,3δ̂1

]
, (4.16)

which states that the fraction α1,2 vehicles from incoming road 1 travel to outgoing road 2, and the fraction α1,3 vehicles 
from incoming road 1 travel to outgoing road 3, such that α1,2 + α1,3 = 1.

The maximization of flux for 2-1 junction case is slightly more complicated. One can imagine a freeway merge where two 
different freeways merge into a single one, and if there is a large number of vehicles attempting to enter from each incoming 
road, congestion sets in and traffic backs up. We consider two possibilities depending upon the values of δmax

1 , δmax
2 , and 

δmax
3 determined from the admissible region calculation. If δmax

1 + δmax
2 < δmax

3 , then there will not be severe congestion, 
as both incoming road fluxes can be maximal and the condition δ̂1 + δ̂2 = δ̂3 ∈ [0, δmax

3 ] will be satisfied. In this case, we 
simply have that δ̂k = δmax

k for k = 1, 2, and δ̂3 = δ̂1 + δ̂2. In terms of the traffic distribution matrix, which in this case is 
given by A = [1, 1], all vehicles must travel through the junction to the outgoing road such that

δ̂3 = A · [̂δ1, δ̂2
]T = [1,1] · [̂δ1, δ̂2

]T = δ̂1 + δ̂2. (4.17)

If on the other hand, δmax
1 + δmax

2 > δmax
3 , then it may be the case that the sum of the fluxes on the incoming roads 

will be greater than road 3 can accommodate (i.e. δmax
3 ), and the required condition in (4.17) may produce results where 

δ̂3 /∈ [0, δmax
3 ] if we use the δmax

k for k = 1, 2. To remedy this situation, we introduce a fixed “merge coefficient” called q∗ , 
which states that the percentage q∗ of vehicles can enter from road 1 and 1 − q∗ can enter from road 2. For our numerical 
experiments, we take the value of q∗ = 1

2 , but other choices can be made. Now, the maximization of flux of the density can 
be given as
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δ̂ = [̂
δ1, δ̂2

]= max
δ1,δ2

δ1 + δ2, subject to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δ1 ∈ [0, δmax

1 ]
δ2 ∈ [0, δmax

2 ]
δ1 + δ2 ∈ [0, δmax

3 ]
δ1

q∗ = δ2

1 − q∗

, (4.18)

where 
[̂
δ1, δ̂2

]
are the flux of the densities on the 2 incoming roads which solves the maximization problem. We then apply 

(4.17) to get the other 2 fluxes.
Finally, the maximization of flux for 2-2 junction case is similar to the 1-2 junction case with an additional incoming 

road, and can be written as

δ̂ = [̂
δ1, δ̂2

]= max
δ1,δ2

δ1 + δ2, subject to

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δ1 ∈ [0, δmax

1 ]
δ2 ∈ [0, δmax

2 ]
[α1,1,α1,2] · [δ1, δ2]T ∈ [0, δmax

3 ]
[α2,1,α1,2] · [δ1, δ2]T ∈ [0, δmax

4 ]
, (4.19)

where αi, j are the entries of the 2 × 2 traffic distribution matrix A. Again, this optimization provides the values of δ̂1 and 
δ̂2, from which we apply A to get 

[̂
δ3, δ̂4

]T = A · [̂δ1, δ̂2
]T

for the other two roads.

4.3. 1 incoming road, 1 outgoing road

For the simple 1-1 junction case, we treat a single road as if there were a junction located on the interior of the said 
single road. We can compare the junction model directly to the case where we treat the 1-1 junction as a single interval, 
and just apply DG normally. Both methods should return the same solution, and this could be used as the first step to 
validate the junction model.

For the network case, we could implement the conservation of the flux of the density and obtain the unique solution 
as stated previously. We consider the following coupling conditions using the intermediate approximation values at the 
junction via (4.5), which is given as

� =

⎡⎢⎢⎣
q(1)

I − (u(1)
I )γ +1 −

(
q(2)

I − (u(2)
I )γ +1

)
q(1)

I

u(1)
I

− q(2)
I

u(2)
I

⎤⎥⎥⎦=
[

0

0

]
, (4.20)

where the first condition is the conservation of the flux of the density for the interface values, and the second one is the 
conservation of the quantity 

qI

uI
at the junction for each road. These two conditions are enough in the simple 1-1 junction 

case to provide a unique solution to the problem.

4.4. 1 incoming road, 2 outgoing roads

In the 1-2 case, six unknowns need to be determined, u(k)
L , q(k)

L , for k = 1, 2, 3. The admissible regions are first computed 
through the procedure outlined in section 4.1, from which we can determine the upper bound on the flux of the density 
for each road, denoted as δmax

k for k = 1, 2, 3. Then using the method outlined in 4.2, the equations for the maximization of 
flux can be determined. For the case of 1 incoming road and 2 outgoing roads we can define the coupling conditions �1

from [21] as

�1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

q(1)
I − (u(1)

I )γ +1 − δ̂1

q(2)
I − (u(2)

I )γ +1 − δ̂2

q(3)
I − (u(3)

I )γ +1 − δ̂3

q(2)
I − u(2)

I

q(3)
I − u(3)

I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎦ . (4.21)

The first three lines enforce the flux of the density being equal to the value determined from the maximization problem 
(4.15). The last two conditions enforce the maximization of speed on outgoing roads condition, which states that q(k)

I = u(k)
I

must hold for outgoing roads.
We also consider the coupling condition given in [23]. The maximization of density flux problem for this set of coupling 

conditions is slightly different in implementation than that of those developed for the conditions in [21]. For coupling 
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conditions in [23], we still compute an admissible region but the maximization problem is not implemented over the value 
δk , but instead its constituent components q(k) and u(k) . That is to say, for the 1-2 case we have

δ̂1 = max
q(1),u(1)

q(1) − (u(1))γ +1, subject to

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(u(k),q(k))T ∈ AdR, for k = 1, . . . ,m

q(1) − (u(1))γ +1 =
3∑

k=2

q(k) − (u(k))γ +1

q(1)

u(1)
= q(2)

u(2)
= q(3)

u(3)
≡ ε̂

, (4.22)

where AdR is the admissible region for the density and pseudo-momentum (see [23] for details on the computation of the 
admissible region). The value of ε̂ is defined to be 

q

u
which is determined through this optimization, so that the quantity 

is the same on each side of the junction. This value is then the fixed value of ε̂ , describing the behavior of drivers, which is 
used in the minimization of fluctuations problem. Once we have ̂δ1, applying (4.16) determines ̂δ2 and ̂δ3.

Having the setup with the maximization of density flux complete, the coupling conditions (4.4) utilized in [23] are given 
as

�2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q(1)
I −

(
u(1)

I

)γ +1 − δ̂1

q(2)
I −

(
u(2)

I

)γ +1 − δ̂2

q(3)
I −

(
u(3)

I

)γ +1 − δ̂3

q(1)
I

u(1)
I

− q(2)
I

u(2)
I

q(1)
I

u(1)
I

− q(3)
I

u(3)
I

q(1)
I

u(1)
I

− ε̂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.23)

where we have added conditions 4 and 5 to enforce the conservation of the value of the quantity 
q

u
across the junction, 

and condition 6 to enforce the equality of 
q

u
with the fixed value of ε̂ .

4.5. 2 incoming roads, 1 outgoing road

In the 2-1 case, we also need to determine 6 unknowns, u(k)
L , q(k)

L , for k = 1, 2, 3. This situation is more complicated than 
the previous two, as there is mixing involved at the junction, since vehicles are entering from both incoming roads into a 
single outgoing road which can cause severe congestion. As with the 1-2 case, the admissible regions are first computed 
to determine δmax

k , which was outlined in section 4.1. Using the method outlined in 4.2, we obtain the equations from the 
maximization of density flux condition. The coupling conditions �1 can thus be defined from [21] as

�1 =

⎡⎢⎢⎢⎢⎣
q(1)

I − (u(1)
I )γ +1 − δ̂1

q(2)
I − (u(2)

I )γ +1 − δ̂2

q(3)
I − (u(3)

I )γ +1 − δ̂3

q(3)
I − u(3)

I

⎤⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
0

0

0

0

⎤⎥⎥⎥⎦ , (4.24)

where the first 3 conditions are enforcing the values of the flux of the density on each road to be that of the solution of 
the maximization problem (4.18). The last condition enforces the maximization of speed condition.

We can also implement the coupling conditions from [23], where the maximization problem is slightly different from 
that of the 1-2 junction case. The maximization problem in this case is defined as

δ̂3 = max
q(1),(2),u(1),(2)

2∑
k=1

q(k) − (u(k))γ +1, subject to

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(u(k),q(k))T ∈ AdR
q(1)−(u(1))γ +1

β1
= q(3) − (u(3))γ +1

q(2)−(u(2))γ +1

β2
= q(3) − (u(3))γ +1

q(3)

u(3)
= β1

q(1)

u(1)
+ β2

q(2)

u(2)
≡ ε̂

, (4.25)
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where the βk are the coefficients from βk = δmax
k /

2∑
j=1

δmax
j for k = 1, 2, and AdR is the admissible region from [23]. From the 

definition of βk , we can obtain the values for the maximized flux by ̂δk = βk δ̂3 for k = 1, 2. Similar to the 1-2 junction case, 
define the coupling conditions �2 from [23] as

�2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q(1)
I − (u(1)

I )γ +1 − δ̂1

q(2)
I − (u(2)

I )γ +1 − δ̂2

q(3)
I − (u(3)

I )γ +1 − δ̂3

β1
q(1)

I

u(1)
I

+ β2
q(2)

I

u(2)
I

− q(3)
I

u(3)
I

q(3)
I

u(3)
I

− ε̂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎦ , (4.26)

where the first three conditions in �2 correspond to conservation of the flux of the density, and the fourth and fifth 
representing the conservation of the quantity 

q

u
through the junction. The values of β1 and β2 are the coefficients describing 

what percentage of the flow into the outgoing road is coming from incoming road 1 and incoming road 2 which are defined 
after (4.25). The constants βk essentially play the same role as q∗ and 1 − q∗ in (4.18), but do not necessarily have to be 
defined as a priori constants. For example, we could fix the βk at the start of the implementation as constants, or define 
βk as in the sum after (4.25). The choice is not unique as stated in [23]; the constants simply give preference to one road 
over another if β1 
= β2 in the 2-1 junction case. These constants are introduced due to the possibility that the flow exiting 
the incoming roads is too great for the outgoing road to accept, which is why the introduction of these extra constants is 
required.

4.6. 2 incoming road, 2 outgoing roads

In the 2 incoming roads and 2 outgoing roads case, we must determine 8 unknowns, u(k)
L , q(k)

L , for k = 1, 2, 3, 4. The 
coupling conditions for the 2-2 junction case were only treated in [21], whereas the coupling conditions in [23] considered 
the m̃ − 1 and 1 − m̂ junction cases only. So for this section we will only consider one set of coupling conditions, �.

For the case of 2 incoming roads and 2 outgoing roads we can define the coupling conditions as

� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q(1)
I − (u(1)

I )γ +1 − δ̂1

q(2)
I − (u(2)

I )γ +1 − δ̂2

q(3)
I − (u(3)

I )γ +1 − δ̂3

q(4)
I − (u(4)

I )γ +1 − δ̂4

q(3)
I − u(3)

I

q(4)
I − u(4)

I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.27)

where the first four equations are the result of the maximization problem (4.19), and the last two equations are the max-
imization of speed condition on the two outgoing roads. The traffic distribution matrix for the 2-2 junction case is given 
by

A =
[
α1,1 α1,2

α2,1 α2,2

]
,

where α1,1 + α2,1 = 1 = α1,2 + α2,2. The relationship between the flux of the density at the junction is given by 
[̂
δ3, δ̂4

]T =
A · [̂δ1, δ̂2

]T
, where the δ̂1 and δ̂2 are the solutions to the maximization of the flow of the density on incoming roads 

condition, defined in (4.19).

4.7. Optimization problems

For the implementation of the coupling conditions described in this section, there are two optimization problems to be 
solved: the maximization problem in Subsection 4.2 which maximizes the flux of the density on incoming roads subject to 
various constraints, and the minimization of the fluctuations given by (4.3).

For the maximization problem, we use the scipy.optimize.minimize package in Python, where we implement 
the Sequential Least Squares Quadratic Programming (SLSQP ) method [31,1]. The maximization problem involves maxi-

mizing an objective function subject to nonlinear equality constraints �, with bounds on the values of u(k) and q(k) . Due 
L L
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to the nonlinear equality constraints and bounds, the SLSQP solver can handle both constraints and bounds, and has also 
been robust in terms of initial conditions in all numerical tests for the maximization problem. Prior to the maximization 
of flux, we determine the admissible region for the flux of the density. The initial guess for the solver is taken to be the 
midpoint of the admissible region for the fluxes δ1 and δ2, depending on which junction case is being considered.

For the minimization problem (4.3), we implement the optimization algorithm via a Lagrange multiplier method de-
scribed in [9]. The Armijo rule is utilized to determine the step size of the method. To simplify the notation, for the 
remainder of this subsection we drop the dependence on h and k so that U L = (U (k)

h )L . To solve (4.3), the Lagrange func-
tional is defined as

L (U L,μ) = g (U L) + μT �̃ (U L) , (4.28)

where

g (U L) =
m∑

k=1

∣∣∣∣∣∣∣∣(D(k)
1/2

)−
(U L, U R)

∣∣∣∣∣∣∣∣2 ,

�̃ (U L) = �(U I (U L, U R)). (4.29)

At local minima the derivatives of (4.28) with respect to U L and the Lagrange multipliers μ are equal to zero:

∇μLT [ν] = νT �̃ = 0,

∇U LLT [ζ ] = ∇U L gT ζ + μT ∇U L �̃ζ = 0. (4.30)

The first equation in (4.30) represents the coupling conditions, and the second equation in (4.30) is a linear system for the 
Lagrange multipliers μ. The system is overdetermined in this case as c < mn, where c is the number of coupling conditions. 
We can compute the minimizing solution for μ by the following equation

μ = −
(
∇U L �̃∇U L �̃

T
)−1 ∇U L �̃∇U L g, (4.31)

and the update for the values of the left-hand state in the ghost cells is given by

Ũ (i+1)
L = U (i)

L − α
(
∇U L g + ∇U L �̃

T μ
)

, (4.32)

where the Lagrange multipliers are found via (4.31). The step size α can be determined through any line search algorithm, 
and the initial value U (0)

L is used to start the update step in (4.32), so that we can determine the temporary value of U (i+1)
L , 

which we define as Ũ (i+1)
L , such that the coupling conditions are satisfied, i.e. �̃

(
Ũ (i+1)

L

)
= 0. Then we use the temporary 

value of Ũ (i+1)
L as the initial value for the minimization of g(U L) in (4.30), (4.3), and (4.4).

In the implementation for the initial condition of the solver, we define some vector ξ of pseudo-random numbers from 
a uniform distribution on either6 [−0.0001, 0.0001] or [−0.001, 0.001], and define the initial value for the minimization 
problem as U 0

L = U 0
R + ξ , where U 0

R is the vector of values of the states on right-hand side of the junction in the first cell 
of the domain.

In the numerical examples of Section 5, we use the Lagrange multiplier method as the optimizer of choice for the 
minimization problem (4.3). The optimizer has shown to be robust in finding local minima given our initial values, but is 
more time consuming than the SLSQP algorithm. For the SLSQP algorithm, we specify the objective function g (U L), its 
Jacobian, and the coupling conditions � as equality constraints as arguments to the solver, and the solver returns the U L

which minimize the objective function. We have chosen the Lagrange multiplier method for our numerical experiments due 
to the robustness on initial condition choice even though computation is more expensive. This is due to the fact that for 
some cases, the SLSQP method was sensitive to initial values for some junction types, and the method did not converge 
in all numerical experiments. When the SLSQP algorithm does converge, it is much faster than the Lagrange multiplier 
method, and converges to the same solution. As efficient treatment of optimization problems is not the goal of our paper, 
the Lagrange multiplier method has suited our needs for optimization. In any case, any choice of a nonlinear optimization 
solver that accepts bounds and constraints can be utilized here if speed is a concern.

5. Numerical experiments for the AR model

In this section numerical results are presented for the proposed DG method (3.5) for the AR model for different types 
of network junctions. In subsection 5.1, we present a convergence rate test to show the optimal convergence rate of the 
DG scheme for each polynomial space from P 0 to P 3 elements using coupling conditions from [21]. In subsection 5.2, we 

6 Numerical tests have shown nearly identical results, pulling ξ from either domain.
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Table 5.1
Accuracy test for the system (1.3) with initial data (5.1) for the 1-1 junction case. The L1 errors and 
orders for P 0, P 1, P 2, and P 3 solution spaces are given for the variables u(x, T ) and q(x, T ). Parameters: 

x = 1/N , 
t = CFL
x, T = 0.1.

N j ‖eu‖L1 Order ‖eq‖L1 Order

P 0 10 0 1.2582e−02 1.2582e−02
20 1 6.3520e−03 0.98 6.3519e−03 0.98
40 2 3.1976e−03 0.99 3.1975e−03 0.99
80 3 1.6029e−03 0.99 1.6029e−03 0.99
160 4 8.0250e−04 0.99 8.0250e−04 0.99
320 5 4.0151e−04 0.99 4.0151e−04 0.99

P 1 10 0 5.8382e−04 5.8378e−04
20 1 1.4462e−04 2.01 1.4462e−04 2.01
40 2 3.6042e−05 2.00 3.6042e−05 2.00
80 3 9.0033e−06 2.00 9.0033e−06 2.00
160 4 2.2503e−06 2.00 2.2503e−06 2.00
320 5 5.6256e−07 2.00 5.6256e−07 2.00

P 2 10 0 3.1880e−05 3.1880e−05
20 1 4.7253e−06 2.75 4.7253e−06 2.75
40 2 6.9243e−07 2.77 6.9243e−07 2.77
80 3 1.0045e−07 2.78 1.0045e−07 2.78
160 4 1.4417e−08 2.80 1.4417e−08 2.80
320 5 2.0473e−09 2.81 2.0474e−09 2.81

P 3 10 0 4.4062e−07 4.4062e−07
20 1 2.5307e−08 4.12 2.5307e−08 4.12
40 2 1.5541e−09 4.02 1.5541e−09 4.02
80 3 9.6444e−11 4.01 9.6444e−11 4.01
160 4 5.9881e−12 4.00 5.9881e−12 4.00
320 5 3.8495e−13 3.95 3.8507e−13 3.95

consider the 1-1, 1-2, 2-1, and 2-2 junction types where we also consider coupling conditions provided in [21] for the 
AR model. The numerical results of the AR model plotted against the Godunov method for the LWR model (1.1), are also 
provided in this section, along with comparing the situation with different pressure terms for the AR model. Subsection 5.3
addresses the comparison of the different coupling conditions provided in subsection 2.2. Of special interest is subsection 
5.3.3, where the numerical results are provided to support the case that capacity drop phenomenon can be observed with 
the second order AR model and the coupling conditions in [23].

5.1. Accuracy test

In this section, we test the accuracy of our proposed high order DG method (3.5), with the Lax-Friedrichs flux and 
the SSPRK3 temporal scheme (3.7). For the accuracy test, we take the CFL constant to be CFL = 0.1 for the P 0 and P 1

solution spaces, and CFL = 0.05 for the P 2 and P 3 solution spaces, so that the spatial error dominates for the higher order 
polynomial spaces. We then define the time step in terms of the spatial step size as 
t = CFL
x. The accuracy test is based 
upon comparing the solution at consecutive mesh sizes and computing the L1 error.

We consider the 1-1 junction case for the AR model (2.1) and (2.2), with coupling conditions given by (4.20), and the 
initial conditions given by

u0(x) = 0.5 + 0.25 cos(πx)

v0(x) = 1 − u0(x). (5.1)

The computational domain is [0, 1] for the incoming road and outgoing road, where the junction is located at x = 0. The 

spatial mesh used for each Pκ is 
x = 1

160
, and periodic boundary conditions are implemented. The solutions are computed 

up to time T = 0.1. As seen in Table 5.1, we observe the (k+1)st order convergence rate of the DG method for Pκ (κ =
0, 1, 2, 3) solution spaces for (3.5). The P 1

ref solution in Fig. 5.1 is obtained by using a refined mesh size of 
x = 1/2560, 
with the DG method implemented on a single continuous interval [−1, 1], with no junction.

5.2. Numerical experiments comparing LWR and AR models

In this section numerical results are presented for the proposed DG method (3.5) applied to AR model, and the DG 
method with the Godunov flux developed in [2] for the LWR models. In the first set of numerical test for each junction 
type, we do the same numerical test cases and initial conditions as in [2], to verify that the second order AR model can 
replicate the first order LWR model that was tested in the network case in [2]. Note that, if we take v(t, x) = 1 − u(t, x) and 
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Fig. 5.1. One incoming and one outgoing road case with initial and boundary data given in (5.1). (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

γ = 1 in the pressure term p(u) = uγ , the AR model reduces to the LWR model. We take these parameters for the first test 
case of each junction type.

To emphasize the difference between the LWR model and the AR model, we can then change the value of γ in the 
pressure term as is done in [30], which is carried out in subsection 5.2.4. The numerical experiments in [30] are for the 
single road Riemann problem case. In those examples, the velocity of vehicles in the AR model is shown to be faster than 
that of the LWR model. This behavior arises from an additional intermediate state that does not appear in the first order 
LWR model, which implies that the vehicles in the AR model have a less densely packed distribution than vehicles in the 
LWR model. Similar to the single road case, we consider the same type of approach in the network case. These numerical 
experiments are carried out for the cases of 2 incoming roads and 1 outgoing road.

5.2.1. One incoming road and two outgoing roads
In the first test with one incoming road and two outgoing roads, we use the following initial conditions

u(1)
0 (x) = 0.1, (5.2)

u(2)
0 (x) =

{
0.1, if x ∈ [0,0.2] ∪ [0.4,0.6] ∪ [0.8,1],
0.2, otherwise ,

(5.3)

u(3)
0 (x) = 0.1, (5.4)

with the coupling conditions given by (4.21), and with each road defined on the spatial interval x ∈ [0, 1]. The traffic 
distribution matrix is A = [0.5, 0.5]T . We use the mesh size 
x = 1/160, and temporal step size 
t = CFL
x, where CFL is 
the number given in Subsection 5.1 for each Pκ element space. The reference solution is obtained by running the Godunov 
method for the LWR model, as outlined in [2], with P 0 element and a spatial step size of 
x = 1/5120. The numerical 
results are given in Fig. 5.2, which shows that the proposed higher order DG scheme with the Lax-Friedrichs flux provides 
good numerical results and can resolve shocks and rarefactions well. Numerical results also demonstrate a good agreement 
with the reference solution computed by the method in [2] for the LWR model.

5.2.2. Two incoming roads and one outgoing road
For the next test with two incoming roads and one outgoing road, we use the following initial conditions

u(1)
0 (x) =

{
0.1, if x ∈ [0,0.2] ∪ [0.4,0.6] ∪ [0.8,1],
0.2, otherwise ,

(5.5)

u(2)
0 (x) = 0.1 + 0.05 sin(5πx), (5.6)

u(3)
0 (x) = 0.1, (5.7)

with the coupling conditions given by (4.24), and with each road defined on the spatial interval x ∈ [0, 1]. We use the mesh 
size 
x = 1/160, and temporal step size 
t = CFL
x. The reference solution is obtained by using the Godunov method for 
the LWR model, as outlined in [2], with P 0 element and a spatial step size of 
x = 1/5120. The results are given in Fig. 5.3. 
Similar to the 1-2 junction case, the numerical experiment shows that the higher order DG scheme again provides better 
numerical results than the first order methods, and agree well with the reference solution.

5.2.3. Two incoming roads and two outgoing roads
For the test with two incoming roads and two outgoing roads, we use the following initial conditions

u(1)
0 (x) =

{
0.1, if x ∈ [0,0.2] ∪ [0.4,0.6] ∪ [0.8,1],
0.2, otherwise ,

(5.8)
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Fig. 5.2. One incoming and two outgoing roads with initial and boundary data (5.2)-(5.4), coupling condition (4.21), α = 0.5, and T = 0.25. (a) Incoming 
Road 1; (b) Outgoing Road 2; (c) Outgoing Road 3.

u(2)
0 (x) = 0.2 + 0.1 sin(5πx), (5.9)

u(3)
0 (x) = 0.5, (5.10)

u(4)
0 (x) = 0.5, (5.11)

with the coupling conditions given by (4.27), and with each road defined on the spatial interval x ∈ [0, 1]. The traffic 
distribution matrix that we use is given as

A =
[

0.4 0.3

0.6 0.7

]
.

We use the mesh size 
x = 1/160, and temporal step size 
t = CFL
x. The reference solution is obtained by using the 
Godunov method for the LWR model, as outlined in [2], with P 0 element and a spatial step size of 
x = 1/5120. The 
results are given in Fig. 5.4. In this more complicated situation, the higher order DG methods capture the complicated 
structure on the outgoing roads much better than the first order P 0 method, which exhibits numerical diffusion at the 
discontinuities. Again, our results agree well with the reference solution by the method in [2].

5.2.4. Two incoming roads and one outgoing road with different pressure terms
The goal of this test is to demonstrate the differences between the first order LWR model and second order AR model. 

We will use DG methods to solve both models. For the LWR model, the Godunov flux is used, and the Lax-Friedrichs flux 
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Fig. 5.3. Two incoming and one outgoing roads with initial data (5.5)-(5.7), coupling condition (4.24), and T = 0.25. (a) Incoming Road 1; (b) Incoming Road 
2; (c) Outgoing Road 3.

is used for the AR model. Two cases of the AR model will be tested, one with γ = 1 and γ = 2, in the pressure term 
p(u) = uγ . For the γ = 1 case, we will recover the LWR model as in the previous cases, while for γ = 2, we will observe 
the second order model effects. For this test with two incoming roads and one outgoing road, we use the following initial 
conditions

u(1)
0 (x) =

{
0.5, if x ∈ [0,0.5],
0.8, if x ∈ (0.5,1.0], (5.12)

u(2)
0 (x) = u(1)

0 (x), (5.13)

u(3)
0 (x) = u(1)

0 (x), (5.14)

with the coupling conditions given by (4.24), and with each road defined on the spatial interval x ∈ [0, 1]. We use the P 2

element space, the mesh size 
x = 1/160, and temporal step size 
t = 0.05
x. The DG method with P 0 element space 
is used for the LWR model, with a spatial step size of 
x = 1/5120. The results at T = 0.15 are given in Fig. 5.5 and the 
results at T = 0.30 are given in Fig. 5.6. The first row of figures gives the density profiles on each road, while the second 
row gives the velocity profiles on each road. The AR model with γ = 1 in the pressure term should recover the LWR model, 
and at both times T = 0.15 and T = 0.30, we see that the AR model recovers the LWR model well. When the AR model 
is used with γ = 2, we start to see the effects of using a second order model over the first order model. We can see that 
the density is more distributed over the incoming roads, and the speeds of the vehicles are greater. The behavior observed 
follows from the different wave speeds, which are affected by the pressure term in the AR model. The performance of the 
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Fig. 5.4. Two incoming and two outgoing roads with initial data (5.8)-(5.11), coupling condition (4.27), and T = 0.25. (a) Incoming Road 1; (b) Incoming 
Road 2; (c) Outgoing Road 3; (d) Outgoing Road 4.

Fig. 5.5. Two incoming and one outgoing roads with initial data (5.12)-(5.14), coupling condition (4.24), and T = 0.15. (a) Incoming Road 1 density; (b) 
Incoming Road 2 density; (c) Outgoing Road 3 density; (d) Incoming Road 1 velocity; (b) Incoming Road 2 velocity; (c) Outgoing Road 3 velocity.

AR model in this numerical experiment agrees with the behavior outlined in [30], which reports similar results. Also of note 
in our junction model with the AR model case of γ = 2, the numerical experiment shows less congestion at the junction 
than the LWR case, as the density is distributed differently over the interval.

5.3. Comparisons of different coupling conditions

In this section numerical results are presented for the proposed DG method (3.5) applied to the AR model, with different 
types of coupling conditions in [21] and [23].
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Fig. 5.6. Two incoming and one outgoing roads with initial data (5.12)-(5.14), coupling condition (4.24), and T = 0.30. (a) Incoming Road 1 density; (b) 
Incoming Road 2 density; (c) Outgoing Road 3 density; (d) Incoming Road 1 velocity; (b) Incoming Road 2 velocity; (c) Outgoing Road 3 velocity.

5.3.1. One incoming road and two outgoing roads
For the first test with one incoming road and two outgoing roads, we use the following initial conditions

u(1)
0 (x) = 0.1, (5.15)

u(2)
0 (x) =

{
0.1, if x ∈ [0,0.2] ∪ [0.4,0.6] ∪ [0.8,1],
0.2, otherwise,

(5.16)

u(3)
0 (x) = 0.1, (5.17)

with the coupling conditions given by (4.21) (in [21]) and (4.23) (in [23]) to compare the effects of different coupling 
conditions. Each road defined on the spatial interval x ∈ [0, 1]. We use the mesh size 
x = 1/160, and temporal step size 

t = CFL
x. The reference solution is obtained by using the Godunov method for the LWR model, as outlined in [2], with 
P 0 element and a spatial step size of 
x = 1/5120. The results are given in Fig. 5.7. The numerical results for both coupling 
conditions in this case are nearly identical, and both resolve the solution structure well for the high order method.

5.3.2. Two incoming roads and one outgoing road
For the next test with two incoming roads and one outgoing road, we use the following initial conditions

u(1)
0 (x) = 0.1 (5.18)

u(2)
0 (x) =

{
0.1 if x ∈ [0,0.2] ∪ [0.4,0.6] ∪ [0.8,1]
0.2 otherwise ,

(5.19)

u(3)
0 (x) = 0.1 (5.20)

with the coupling conditions given by (4.24) and (4.26). This test compares the effect of different coupling conditions. Each 
road defined on the spatial interval x ∈ [0, 1]. We use the mesh size 
x = 1/160, and temporal step size 
t = CFL
x. The 
reference solution is obtained by using the Godunov method for the LWR model, as outlined in [2], with P 0 element and 
a spatial step size of 
x = 1/5120. The results are given in Fig. 5.8. As with the 1-2 junction case, the numerical results 
for both coupling conditions are nearly identical, and both are able to achieve good results with a complicated solution 
structure on the outgoing roads for the high order method.

The comparison of coupling conditions tests thus far appear to illustrate that the coupling conditions in [21] and [23]
give similar, if not the same, numerical results. This can be explained by the fact that the initial conditions chosen for the 
numerical tests represent traffic conditions that do no introduce severe congestion at the junction. In the next subsection, 
we show that the coupling condition developed in [23] gives capacity drop when severe congestion is present, while the 
coupling condition in [21] does not generate the same results.

5.3.3. Capacity drop phenomenon test
In this subsection, we show the capacity drop phenomenon when applying the coupling conditions given in [23]. Capacity 

drop occurs when the outflow of vehicles from the junction is significantly lower than the maximum achievable flow at the 
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Fig. 5.7. Comparison of coupling conditions between [21] and [23]. One incoming and two outgoing roads with initial data (5.15)-(5.17), coupling conditions 
(4.21) and (4.23), α = 0.5, and T = 0.25. (a) Incoming Road 1; (b) Outgoing Road 2; (c) Outgoing Road 3.

same location. Consider the 2-1 junction case. If the flow from the two incoming roads is large enough that the outgoing 
road cannot accommodate the incoming flows, the result is flows leaving incoming roads are lower than optimal, and the 
flow entering the outgoing road from the junction rises, then falls due to congestion. In [23], it is stated that the coupling 
conditions in (4.26) may be able to replicate the capacity drop phenomenon.

More recently, in [32] and [26], examples are constructed to show that the capacity drop phenomenon can be achieved. 
The papers also state that the choice of initial conditions are sensitive to the observation of the phenomenon, and observa-
tions made from real data should be used to calibrate the model. For our example, we follow the general method that is 
used in the previously mentioned papers to construct an appropriate initial condition. We will consider a constant density 
and velocity on Incoming Road 2 and Outgoing Road 3. We will then have density starting at a relatively low value and in-
crease steeply, to overwhelm the outgoing road with an influx of vehicles, so that the resulting flow drops with an increase 
of density. As is done in [26], we track the density, density flux, and w = q/u on Incoming Road 1, and density and density 
flux on Outgoing Road 3.

We implement the following initial conditions,

u(1)
0 (x) =

{
0.1 + 0.7 sin

( 5
2πx

)
, if x ∈ [0, ζ ],

0.4, for x ∈ (ζ,1], (5.21)

u(2)
0 (x) = 0.2, (5.22)

u(3)
0 (x) = 0.1, (5.23)
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Fig. 5.8. Comparison of coupling conditions between [21] and [23]. Two incoming and one outgoing roads with initial data (5.18)-(5.20), coupling conditions 
(4.24) and (4.26), α = 0.5, and T = 0.25. (a) Incoming Road 1; (b) Incoming Road 2; (c) Outgoing Road 3.

where ζ = 0.4 −
(

2

5π

)
arcsin

(
3

7

)
. For the velocity functions, we take v0(x) = 1 − u0(x) as in the other numerical tests. 

The coupling conditions are given by (4.26), and with each road defined on the spatial interval x ∈ [0, 1]. We use the mesh 
size 
x = 1/160, and temporal step size 
t = 0.05
x. The simulation is implemented up to T = 0.655, with γ = 2 in the 
pressure term, with P 2 elements. We also take β1 = β2 = 0.5 for the merge constants in the coupling conditions instead of 
the given definition, as is done in [26]. For comparison, we use the second set of coupling conditions (4.24) (in [21]) which 
do not give the capacity drop phenomenon.

The main numerical results to present the capacity drop pattern are provided in Fig. 5.10. The plots of the fluxes on 
Incoming Road 1 for the coupling conditions (4.26) and (4.24), are provided in Figs. 5.10a and 5.10b, respectively. Both sets 
of coupling conditions observe lower than optimal flux values entering the junction when congestion sets in, representing 
vehicles backing up on Incoming Road 1.

In Figs. 5.10c and 5.10d, the plots of the fluxes on Outgoing Road 3 are given for the coupling conditions (4.26) and 
(4.24), respectively. These plots support the conclusion that capacity drop is observed when using coupling conditions in 
(4.26). We observe that flow from the junction onto Outgoing Road 3 increases and then decreases once congestion sets in 
for the coupling conditions (4.26), whereas the coupling conditions in (4.24) have increasing flux and reach a near constant 
state. This behavior matches the capacity drop behavior which was reported in the discrete test case in [26]. Additionally, 
observe in Fig. 5.9, that density is non-decreasing and velocity is non-increasing over time. Also note that in Figs. 5.10e and 
5.10f, that the quantity w = q/u decreases, then increases slightly for the coupling conditions in (4.26) which have a change 
in driver behaviors due to the coupling condition involving the quantity w = q/u. In contrast, the coupling conditions in 
(4.24) have a near constant value. The final density profiles for each road at time T = 0.655 are given in 5.11. It is clear from 
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Fig. 5.9. Capacity drop test: density and velocity plots over time for the two incoming roads and one outgoing road case with initial data (5.21)-(5.23), 
coupling conditions (4.24) and (4.26), with P 2 elements, and T = 0.655. (a) Incoming Road 1 density over time with coupling conditions (4.26); (b) 
Incoming Road 1 density over time with coupling conditions (4.24); (c) Incoming Road 1 velocity over time with coupling conditions (4.26); (d) Incoming 
Road 1 velocity over time with coupling conditions (4.24).

Fig. 5.10. Capacity drop test for two incoming roads and one outgoing road with initial data (5.21)-(5.23), coupling conditions (4.24) and (4.26), with P 2

elements, and T = 0.655. (a) Incoming Road 1 density flux with coupling conditions (4.26), with the blue curve representing ̂δ1 and red curve representing 
δmax

1 over time; (b) Incoming Road 1 density flux with coupling conditions (4.24), with the blue curve representing ̂δ1 and red curve representing δmax
1

over time; (c) Outgoing Road 3 density flux with coupling conditions (4.26); (d) Outgoing Road 3 density flux with coupling conditions (4.24); (e) Incoming 
Road 1 w = v + p(u) = q/u with coupling conditions (4.26); (f) Incoming Road 1 w = v + p(u) = q/u with coupling conditions (4.24).
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Fig. 5.10. (continued)

Fig. 5.11. Capacity drop test density profiles for two incoming roads and one outgoing road with initial data (5.21)-(5.23), coupling conditions (4.24) and 
(4.26), with P 2 elements, and T = 0.655. (a), (c), (e) Incoming Road 1, Incoming Road 2, Outgoing Road 3 densities with coupling conditions (4.26), 
respectively; (b), (d), (f) Incoming Road 1, Incoming Road 2, Outgoing Road 3 densities with coupling conditions (4.24), respectively.

this numerical test that the two sets of coupling conditions provide different results when severe congestion is introduced 
at the junction. We are also able to reproduce the capacity drop phenomenon for our continuous PDE based AR model using 
the DG method, and replicate similar qualitative results for the incoming and outgoing road quantities of the discrete test 
case reported in [26] which also observed capacity drop.
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6. Conclusion

In this paper, we have constructed a general framework of DG methods to solve the AR model on networks (2.1) and 
(2.2). Arbitrary numerical flux can be used, which does not require the exact solution to the complicated Riemann problem, 
and in this paper we consider the Lax-Friedrichs flux as an example. This is an extension of the first order method developed 
in [9] for the junction problem to high order DG methods. Numerical examples are provided to demonstrate the high-order 
accuracy, and comparison of results between the first-order LWR model and the second-order AR model. The ability of 
the model to capture the capacity drop phenomenon is also explored. In future work, we hope to incorporate stochastic 
components which can be systematically added to the system, to determine if stochasticity can capture more complicated 
behavior seen in real traffic data. Another important avenue for extension is to use our proposed model to approximate 
traffic flow on a large network of connected junctions to model a real freeway system. This effort would implement the DG 
method via GPU parallelization to take advantage of the benefits of the DG method. PeMS data from Caltrans is open-source 
freeway sensor data that provides a jumping off point in evaluating the efficacy of our proposed method. Given the interest 
and availability of abundant data in today’s world, analyzing data driven models for macroscopic PDE based methods would 
greatly benefit the traffic flow community in adopting these methods in practice.
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