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Abstract Nonlinear dispersive wave equations model a substantial number of physical sys-
tems that admit special solutions such as solitons and solitary waves. Due to the complex
nature of the nonlinearity and dispersive effects, high order numerical methods are effective
in capturing the physical system in computation. In this paper, we consider the Boussinesq
coupled BBM system, and propose local discontinuous Galerkin (LDG) methods for solv-
ing the BBM system. For the proposed LDG methods, we provide two different choices of
numerical fluxes, namely the upwind and alternating fluxes, as well as establish their stability
analysis. The error estimate for the linearized BBM system is carried out for the LDG meth-
ods with the alternating flux. To present a time discretization that conserves the Hamiltonian
numerically, the midpoint rule with a nontrivial nonlinear term in the discretization is pro-
posed. Both Hamiltonian conserving and dissipating time discretizations are implemented,
with multiple combinations of numerical flux and time discretization tested numerically.
Numerical examples are provided to demonstrate the accuracy, long-time simulation, and
Hamiltonian conservation properties of the proposed LDG methods for the coupled BBM
system.
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1 Introduction

Nonlinear dispersive water wavemodels have numerous applications in a variety of engineer-
ing disciplines. One specific model is the Boussinesq approximation for water waves, which
was developed by Joseph Boussinesq in 1871 [8] to take into account the vertical structure
of the horizontal and vertical flow velocity. Derived from the Euler equations, this approx-
imation results in nonlinear partial differential equations called Boussinesq-type equations,
which incorporate frequency dispersion (as opposed to the nonlinear shallowwater equations,
where no frequency dispersion is present). In coastal engineering applications, Boussinesq-
type equations are frequently used in computer models for the simulation of water waves in
propagation of long-crested waves on the ocean, shallow seas, large lakes, coastlines, and
harbors. These equations can also model water waves moving through a channel which have
small amplitude and long wavelengths.

In practical applications, certain physical assumptions are made about the water waves,
which lead to simplified mathematical models. A special case is the the abcd-Boussinesq
systems which describe the propagation of small amplitude and long wavelength surface
waves that are irrotational, incompressible, inviscid, and are influenced by gravity. In [5], the
abcd-Boussinesq systems used to model such water waves are derived and given by{

ηt + ux + (ηu)x + auxxx − bηxxt = 0

ut + ηx + uux + cηxxx − duxxt = 0,
(1.1)

where η(x, t) represents proportional deviation of the free surface from its rest position, and
u(x, t) represents proportional horizontal velocity. The constant parameters a, b, c, and d
are not taken arbitrarily, and are chosen via the following relationships:

a + b = 1

2

(
θ2 − 1

3

)
, c + d = 1

2
(1 − θ2) ≥ 0, (1.2)

with θ ∈ [0, 1], representing the scaled height (where θ = 0 is the bottom of the channel and
θ = 1 is the free surface). In [5], seven different choices of the parameters are given, which
lead to multiple types of Boussinesq systems including the classical Boussinesq sytem, Kaup
system and Bona–Smith system etc. When there is no dispersive term, i.e., a, b, c, d = 0,
the model (1.1) reduces to {

ηt + ((1 + η)u)x = 0

ut + (η + 1
2u

2)x = 0,
(1.3)

which is the shallow water equation if we replace 1 + η by water height h.
In this paper, we consider the coupled BBM system (taking a = c = 0 and b = d = 1

6 or
equivalently θ2 = 2

3 in (1.2)), which is given by⎧⎪⎨
⎪⎩

ηt + ux + (ηu)x − 1

6
ηxxt = 0,

ut + ηx + uux − 1

6
uxxt = 0, (x, t) ∈ [a0, a1] × [0, T ],

(1.4)

subject to the initial conditions

u(x, 0) = u0(x), η(x, 0) = η0(x), (1.5)

and periodic boundary conditions

u(a0, t) = u(a1, t), η(a0, t) = η(a1, t). (1.6)
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The systems in (1.4) are coupled nonlinear partial differential equations with weak dispersion
effects resulting from the uxxt and ηxxt terms. In the derivation of (1.1) (and therefore (1.4)),
dissipative effects are not considered, and the system given in (1.4) admits the following
Hamiltonian functionals∫

R

η dx,
∫
R

u dx,
∫
R

(ηu + ηxux ) dx,
1

2

∫
R

[
η2 + (1 + η)u2

]
dx . (1.7)

The coupled BBM system is related to the single BBM equation, which was derived by
Benjamin, Bona, and Mahoney in 1972 in [3]. The single BBM equation was developed as
an alternative to the Korteweg–de Vries (KdV) equation. Recall the KdV equation given by

ut + ux + uux + uxxx = 0, (1.8)

and the single BBM equation can be written as

ut + ux + uux − uxxt = 0, (1.9)

where constants in front of the nonlinear and high-order terms have been suppressed. In [3],
the assumptions involved in the derivation of the KdV equation are equally valid for the
single BBM equation (1.9). The single BBM equation has some attractive features that the
KdV equation lacks, one specific example is better dispersion properties resulting in stability
in high wavenumber components (see [3] for details).

There have been awide range of theoretical work and various numerical methods available
for the coupled BBM system. Bona and Chen provided existence, uniqueness, and regularity
results of the coupled BBM system in [4]. The derivation of the system (1.1), and well-
posedness results were given for multiple cases of (1.1), including (1.4) in [5] and [6].
Previous work established that solutions to (1.4) may blow-up in finite time if 1 + η < 0.
Chen and Liu [10] extended the result relating to the Hamiltonian (1.10), that solutions to
(1.4) would not blow-up in finite time if ηwas bounded from below. In [4], an unconditionally
stable fourth-order accurate finite difference numerical scheme is developed for (1.4). In [1],
the same numerical method from [4] was used to conduct an in depth analysis to compare the
solutions to the single BBM equation and the coupled BBM system. Finite element methods
have been designed for the two dimensional coupled BBM system in [17].

In recent years, high order accurate numerical schemes have attracted increasing atten-
tion in many computational fields. Among different high-order methods, the discontinuous
Galerkin (DG) method is a class of finite element methods using completely discontinuous
piecewise polynomial basis functions, which inherits the benefits of both finite element and
finite volume methods (see [12,14,15,21], and [13] for a historic review). Advantages of
DG methods are many, including the local conservativity, the ability for easy handling of
complicated geometries and boundary conditions, the flexibility for hp-adaptivity, efficient
parallel implementation, and easy coordination with finite volume techniques, making the
methods very attractive in in a wide range of applications. The DG methods were later gen-
eralized to the local discontinuous Galerkin (LDG) methods by Cockburn and Shu in [16] to
solve the convection–diffusion equations and partial differential equations with high order
spatial derivatives, motivated by successful numerical experiments from Bassi and Rebay
for the compressible Navier–Stokes equations [2]. Later, LDG methods have been designed
for many nonlinear dispersive equations, and we refer to the review paper [26] for the lat-
est development of the LDG method. Recently, there have been many studies in designing
LDG methods which can conserve the energy or Hamiltonian of the model numerically. An
energy conserving LDGmethod for the generalized KdV equation is proposed in [7]. Energy
conserving LDG methods have also been designed for other type of equations, including
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the second order wave equation [11,24], Camassa–Holm equation [20], Degasperis–Procesi
equation [19], etc.

In the present paper, we discuss the derivation and development of LDGmethods to solve
the coupled BBM system (1.4), which conserve or dissipate the Hamiltonian functional

E(η, u) = 1

2

∫
I

[
η2 + (1 + η)u2

]
dx . (1.10)

To that effect, we develop two different choices of numerical flux, where one choice (the alter-
nating flux, to be defined in Sect. 2) conserves the Hamiltonian for long time simulations, and
the second flux (upwind flux) adds numerical dissipation and has a Hamiltonian decreasing
property. Optimal error estimate is derived for the linearized coupled BBM system. We have
also experimented with two different types of time discretizations, the implicit second order
midpoint rule which conserves the Hamiltonian, and the standard Runge–Kutta methods.
Proof is provided to verify that the LDG method with the alternating flux, coupled with the
midpoint rule temporal discretization, and a special nonlinear term discretization, conserves
the discrete Hamiltonian exactly. Note that the Hamiltonian (1.10) is only guaranteed to be
non-negative when 1+η ≥ 0. Under this condition, the stability of the LDGmethod follows
from the Hamiltonian conservation (or dissipation). When such condition does not hold, we
observe numerically that bothHamiltonian conserving and dissipativemethods performwell.
Numerical evidence is also provided to show that the Hamiltonian conserving methods have
a smaller phase and shape error for the long time simulations.

The organization of the paper is as follows. In Sect. 2, we present an LDG method for the
problem with two choices of numerical fluxes. We then prove the Hamiltonian conservation
and dissipation properties for the alternating and upwind numerical fluxes, respectively.
Section 3 is devoted to the error estimate of the proposedmethods for the linearized equations.
Temporal discretizations, along with their conservation property, are discussed in Sect. 4.
Section 5 contains various numerical experiments that show the optimal convergence rates,
long time simulations, solitary wave generations and collisions. Finally, concluding remarks
are given in Sect. 6.

2 Local Discontinuous Galerkin Discretization

2.1 Notation

Given an interval I = [a0, a1], we divide I into N subintervals and label each cell as I j =[
x j− 1

2
, x j+ 1

2

]
for j = 1, . . . , N . The center of each cell is given by x j = 1

2

(
x j− 1

2
+ x j+ 1

2

)
,

with mesh size h j = x j+ 1
2
− x j− 1

2
. We denote the maximal mesh size as h = max

1≤ j≤N
h j . Let

V k
h denote the piecewise polynomial space

V k
h = {v : v|I j | v ∈ Pk(I j ), j = 1, . . . , N }, (2.1)

where Pk(I j ) denotes the space of polynomials of degree k on the cell I j . Functions in V k
h are

allowed to have discontinuities across the cell interface. The terms v−
j+ 1

2
and v+

j+ 1
2
represent

the limit value of v at x j+ 1
2
from the left cell I j and the right cell I j+1, respectively.

We let uh ∈ V k
h denote the solution of the DG numerical method. The notations for the

jump at the interface, and the average of the function are given by [uh] = u+
h − u−

h and
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{uh} = 1
2

(
u+
h + u−

h

)
, respectively. The L1 and L2 norms over the interval I are given by

|| · ||1 and || · ||, respectively. For shorthand notation, we define

(φ, ψ)I j =
∫
I j

φψ dx, (φ, ψ) =
N∑
j=1

∫
I j

φψ dx . (2.2)

2.2 The LDG Method

In this section, we describe the semi-discrete LDGmethod for (1.4) by discretizing the space
with the LDG method, and leave the time continuous. Time discretizations will be discussed
in Sect. 4. We start by rewriting (1.4) as a first order system:

wt + (η + q)x = 0, vt + (u + p)x = 0,
w = u − 1

6rx , v = η − 1
6 sx ,

r = ux , s = ηx ,

q = 1
2u

2, p = ηu.

(2.3)

Herewe introduce two new variables p, q to replace the nonlinear terms, for the purpose of
designing Hamiltonian preservingmethods later. Using the abbreviated notation and periodic
boundary condition, we formulate the LDG method for the system (2.3) as the following:
find uh, ηh, ph, qh, rh, sh, wh, vh ∈ V k

h , such that

((wh)t , φ) − (ηh + qh, φx ) −
N∑
j=1

(η̃h + q̂h) j+ 1
2
[φ] j+ 1

2
= 0, (2.4a)

(wh, ψ) = (uh, ψ) + 1

6
(rh, ψx ) + 1

6

N∑
j=1

(̂rh) j+ 1
2
[ψ] j+ 1

2
, (2.4b)

(rh, ϕ) = −(uh, ϕx ) −
N∑
j=1

(̂uh) j+ 1
2
[ϕ] j+ 1

2
, (2.4c)

(qh, ζ ) =
(
1

2
u2h, ζ

)
, (2.4d)

((vh)t , ρ) − (uh + ph, ρx ) −
N∑
j=1

(ũh + p̂h) j+ 1
2
[ρ] j+ 1

2
= 0, (2.4e)

(vh, θ) = (ηh, θ) + 1

6
(sh, θx ) + 1

6

N∑
j=1

(̂sh) j+ 1
2
[θ ] j+ 1

2
, (2.4f)

(sh, λ) = −(ηh, λx ) −
N∑
j=1

(̂ηh) j+ 1
2
[λ] j+ 1

2
, (2.4g)

(ph, ϑ) = (ηhuh, ϑ), (2.4h)

for all test functions φ,ψ, ϕ, ζ, ρ, θ, λ, ϑ ∈ V k
h . The hat and tilde terms ûh, ũh, η̂h , etc.,

known as numerical fluxes, are the boundary terms at each cell interface obtained from
the integration by parts. In the next two subsections, we will consider two different sets
of numerical fluxes, namely the alternating and upwind fluxes, with different conservation
properties.
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2.3 Alternating Flux

The choice of alternating flux can be summarized in the following groups{
ûh = u+

h ,

η̂h = η−
h ,

{
ûh = u−

h ,

η̂h = η+
h ,⎧⎪⎪⎨

⎪⎪⎩
ũh + p̂h = u+

h + p+
h ,

η̃h + q̂h = η−
h + q−

h ,

r̂h = r−
h ,

ŝh = s+
h ,

⎧⎪⎪⎨
⎪⎪⎩
ũh + p̂h = u−

h + p−
h ,

η̃h + q̂h = η+
h + q+

h ,

r̂h = r+
h ,

ŝh = s−
h ,

where we can choose one bracketed group from row 1 for ûh , η̂h , and one group from row 2
for the others. Note that the indices j + 1

2 are dropped for convenience, as all fluxes above
are computed at the same point at the cell boundary. It is emphasized that the choice of flux
is not unique, as one can choose up to four different pairs of fluxes, as stated above. In this
paper, we choose the ones on the left, namely,

ûh = u+
h , η̂h = η−

h ,

ũh + p̂h = u+
h + p+

h , η̃h + q̂h = η−
h + q−

h ,

r̂h = r−
h , ŝh = s+

h , (2.5)

with the periodic boundary conditions on the boundary.
We now turn to establish the conservation of the Hamiltonian E(η, u) defined in (1.10).

Theorem 2.1 The Hamiltonian

Eh(t) = 1

2

∫
I

[
η2h + (1 + ηh)u

2
h

]
dx (2.6)

is conserved by the semi-discrete LDG method (2.4) with the choice of alternating flux (2.5).

Proof Choosing φ = uh + ph − (sh)t/6 and ρ = ηh + qh − (rh)t/6 in (2.4a) and (2.4e)
respectively, we deduce(

(wh)t , uh + ph − 1

6
(sh)t

)
−

(
ηh + qh,

(
uh + ph − 1

6
(sh)t

)
x

)

−
N∑
j=1

(η−
h + q−

h ) j+ 1
2

[
uh + ph − 1

6
(sh)t

]
j+ 1

2

= 0, (2.7a)

(
(vh)t , ηh + qh − 1

6
(rh)t

)
−

(
uh + ph,

(
ηh + qh − 1

6
(rh)t

)
x

)

−
N∑
j=1

(u+
h + p+

h ) j+ 1
2

[
ηh + qh − 1

6
(rh)t

]
j+ 1

2

= 0. (2.7b)

Next,we take the timederivative of (2.4b) and (2.4f), and chooseψ = uh+ph and θ = ηh+qh
to get

((wh)t , uh + ph) = ((uh)t , uh + ph) +
(
1

6
(rh)t , (uh + ph)x

)

+ 1

6

N∑
j=1

((rh)t )
−
j+ 1

2
[uh + ph] j+ 1

2
, (2.8a)
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((vh)t , ηh + qh) = ((ηh)t , ηh + qh) +
(
1

6
(sh)t , (ηh + qh)x

)

+ 1

6

N∑
j=1

((sh)t )
+
j+ 1

2
[ηh + qh] j+ 1

2
. (2.8b)

Add the equations in (2.7) and (2.8) respectively, then subtract the resulting equations to
obtain

− 1

6
((wh)t , (sh)t ) − 1

6
((vh)t , (rh)t ) + ((uh)t , uh + ph) + ((ηh)t , ηh + qh)

= 1

6

N∑
j=1

([(rh)t (uh + ph)] − [(rh)t ](u+
h + p+

h ) − (rh)
−
t [uh + ph]

)
j+ 1

2

+ 1

6

N∑
j=1

([(ηh + qh)(sh)t ] − [ηh + qh](sh)+t − (η−
h + q−

h )[(sh)t ]
)
j+ 1

2

−
N∑
j=1

([(ηh + qh)(uh + ph)] − [ηh + qh](u+
h + p+

h ) − (η−
h + q−

h )[uh + ph]
)
j+ 1

2

= 0, (2.9)

after we integrate the complete derivative out.
Next, take the time derivative of (2.4b) and (2.4f), and choose ψ = (sh)t and θ = (rh)t

to get

((wh)t , (sh)t ) = ((uh)t , (sh)t ) + 1

6
((rh)t , (sh)t x ) + 1

6

N∑
j=1

((rh)t )
−
j+ 1

2
[(sh)t ] j+ 1

2
, (2.10a)

((vh)t , (rh)t ) = ((ηh)t , (rh)t ) + 1

6
((sh)t , (rh)t x ) + 1

6

N∑
j=1

((sh)t )
+
j+ 1

2
[(rh)t ] j+ 1

2
. (2.10b)

Similarly, taking ϕ = (ηh)t and λ = (uh)t in the time derivative of (2.4c) and (2.4g) yields

((rh)t , (ηh)t ) = −((uh)t , (ηh)t x ) −
N∑
j=1

((uh)t )
+
j+ 1

2
[(ηh)t ] j+ 1

2
, (2.11a)

((sh)t , (uh)t ) = −((ηh)t , (uh)t x ) −
N∑
j=1

((ηh)t )
−
j+ 1

2
[(uh)t ] j+ 1

2
. (2.11b)

Adding the equations in (2.10) and (2.11) together and using integration by parts, we obtain

((wh)t , (sh)t ) + ((vh)t , (rh)t ) = − 1

6

N∑
j=1

([(rh)t (sh)t ] − [(rh)t ](sh)+t − (rh)
−
t [(sh)t ]

)
j+ 1

2

+
N∑
j=1

([(ηh)t (uh)t ] − [(ηh)t ](uh)+t − (ηh)
−
t [(uh)t ]

)
j+ 1

2

= 0. (2.12)
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Combining the Eqs. (2.9) and (2.12), we have

((uh)t , uh) + ((ηh)t , ηh) + ((uh)t , ph) + ((ηh)t , qh) = 0, (2.13)

Therefore,

d

dt

1

2

∫
I

(
η2h + (1 + ηh)u

2
h

)
dx = ((ηh)t , ηh) + ((uh)t , uh) + (uh(uh)t , ηh) + ((ηh)t , u

2
h/2)

= ((uh)t , uh) + ((ηh)t , ηh) + ((uh)t , ph) + ((ηh)t , qh) = 0 (2.14)

where the second equality comes from the Eqs. (2.4b) and (2.4f). ��
Remark 2.1 Another choice of the numerical flux is the central flux, which is well-known
for conserving the Hamiltonian exactly. It takes the form of

ûh = {uh}, η̂h = {ηh},
ũh + p̂h = {uh} + {ph}, η̃h + q̂h = {ηh} + {qh},
r̂h = {rh}, ŝh = {sh}, (2.15)

and the same conclusion in Theorem 2.1 holds for the central flux. It is also known for the
even-odd phenomenon of convergence rate, i.e., one can observe optimal convergence (of
order k+1) if even order polynomial space (of degree k) is used, and suboptimal convergence
(of order k) if odd order polynomial space is used.We have performed numerical simulations
with central flux for the coupled BBM system and observed the same behavior. Therefore, we
believe the alternating flux, which provides optimal convergence rate, is a better candidate
for Hamiltonian-preserving methods.

2.4 Upwind Flux

The other set of numerical flux is the upwind flux, which is widely used for hyperbolic
conservation laws to provide numerical dissipation. The choice of upwind flux for (1.4) can
be summarized as

ũh = {uh} − 1

2
[ηh], η̃h = {ηh} − 1

2
[uh],

q̂h = {qh} − 1

2
[ph], p̂h = {ph} − 1

2
[qh],

(̂rh)t = {(rh)t } − 1

2
[(sh)t ], (̂sh)t = {(sh)t } − 1

2
[(rh)t ]

(̂uh)t = {(uh)t } + 1

2
[(ηh)t ], (̂ηh)t = {(ηh)t } + 1

2
[(uh)t ], (2.16)

With the above choice, we have the following theorem that shows the dissipation of the
Hamiltonian E(η, u) over time.

Theorem 2.2 For the semi-discrete LDGmethod (2.4) with the choice of upwind flux (2.16),
the Hamiltonian Eh(t) satisfies

d

dt
Eh(t) = 1

2

d

dt

∫
R

[
η2h + (1 + ηh)u

2
h

]
dx ≤ − 1

12

N∑
j=1

[(uh)t ]
2 − 1

12

N∑
j=1

[(ηh)t ]
2 ≤ 0,

(2.17)

for all time.
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Proof We begin with the LDG method given by (2.4). In Eqs. (2.4a) and (2.4e), the test
functions φ, ρ are taken to be φ = uh + ph − 1

6 (sh)t and ρ = ηh + qh − 1
6 (rh)t . Summing

up the resulting equations yields

(
(wh)t , uh + ph − 1

6
(sh)t

)
+

(
(vh)t , ηh + qh − 1

6
(rh)t

)

=
(

ηh + qh,

(
uh + ph − 1

6
(sh)t

)
x

)
+

N∑
j=1

(̃ηh + q̂h) j+ 1
2

[
uh + ph − 1

6
(sh)t

]
j+ 1

2

+
(
uh + ph,

(
ηh + qh − 1

6
(rh)t

)
x

)
+

N∑
j=1

(̃uh + p̂h) j+ 1
2

[
ηh + qh − 1

6
(rh)t

]
j+ 1

2

.

(2.18)

Next, we take the sum of the time derivative of (2.4b) and (2.4f) with the test functions
ψ = uh + ph − 1

6 (sh)t and θ = ηh + qh − 1
6 (rh)t , which leads to

(
(wh)t , uh + ph − 1

6
(sh)t

)
+

(
(vh)t , ηh + qh − 1

6
(rh)t

)

=
(

(ηh)t , ηh + qh − 1

6
(rh)t

)
+ 1

6

(
(sh)t ,

(
ηh + qh − 1

6
(rh)t

)
x

)

+ 1

6

N∑
j=1

((̂sh)t ) j+ 1
2

[
ηh + qh − 1

6
(rh)t

]
j+ 1

2

+
(

(uh)t , uh + ph − 1

6
(sh)t

)
+ 1

6

(
(rh)t ,

(
uh + ph − 1

6
(sh)t

)
x

)

+ 1

6

N∑
j=1

((̂rh)t ) j+ 1
2

[
uh + ph − 1

6
(sh)t

]
j+ 1

2

. (2.19)

Subtracting (2.18) from (2.19), as well as regrouping these terms, we have

(
(ηh)t , ηh + qh − 1

6
(rh)t

)
+

(
(uh)t , uh + ph − 1

6
(sh)t

)

+ 1

6

(
(sh)t , (ηh + qh)x

) + 1

6
(ηh + qh, (sh)t x )

+ 1

6

N∑
j=1

((̂sh)t [ηh + qh] + (̃ηh + q̂h) [(sh)t ]) j+ 1
2

+ 1

6

(
(rh)t , (uh + ph)x

) + 1

6
(uh + ph, (rh)t x )

+ 1

6

N∑
j=1

((̂rh)t [uh + ph] + (̃uh + p̂h) [(rh)t ]) j+ 1
2

− 1

36
((sh)t , (rh)t x ) − 1

36
(rh, (sh)t x ) − 1

36

N∑
j=1

((̂sh)t [(rh)t ] + (̂rh) [(sh)t ]) j+ 1
2
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− (
ηh + qh, (uh + ph)x

) − (uh + ph, (ηh + qh)x )

−
N∑
j=1

((̃ηh + q̂h) [uh + ph] + (̃uh + p̂h) [̃ηh + q̂h]) j+ 1
2
. (2.20)

Using the choice of upwind flux for η̃h , ũh , q̂h , p̂h , (̂rh)t , and (̂sh)t in (2.16), Eq. (2.20)
reduces to(

(ηh)t , ηh + qh − 1

6
(rh)t

)
+

(
(uh)t , uh + ph − 1

6
(sh)t

)

+
N∑
j=1

(
1

6
[uh + ph][(sh)t ] − 1

6
[ηh + qh][(rh)t ]

+ 1

72
[(rh)t ]2 + 1

72
[(sh)t ]2 + 1

2
[uh + ph]2 + 1

2
[ηh + qh]2

)
j+ 1

2

= 0. (2.21)

Now, we take the test functions ϕ = 1
6 (ηh)t and λ = 1

6 (uh)t in the time derivative of (2.4c)
and (2.4g), and sum up the resulting equations to obtain

1

6
((rh)t , (ηh)t ) + 1

6
((sh)t , (uh)t )

= − 1

6
((uh)t , (ηh)t x ) − 1

6
((ηh)t , (uh)t x ) − 1

6

N∑
j=1

((̂uh)t [(ηh)t ] + (̂ηh)t [(uh)t ]) j+ 1
2

= 1

12

N∑
j=1

([(uh)t ]2 + [(ηh)t ]2
)
j+ 1

2
, (2.22)

with the choices of flux for (̂uh)t and (̂ηh)t in (2.16). Summing up (2.21) and (2.22), we
obtain

((ηh)t , ηh + qh) + ((uh)t , uh + ph)

+
N∑
j=1

(
1

6
[uh + ph][(sh)t ] − 1

6
[ηh + qh][(rh)t ] + 1

12
[(uh)t ]2 + 1

12
[(ηh)t ]2

+ 1

72
[(rh)t ]2 + 1

72
[(sh)t ]2 + 1

2
[uh + ph]2 + 1

2
[ηh + qh]2

)
j+ 1

2

= 0, (2.23)

which leads to

((ηh)t , ηh + qh) + ((uh)t , uh + ph) + 1

12

N∑
j=1

[(uh)t ]
2 + 1

12

N∑
j=1

[(ηh)t ]
2 ≤ 0, (2.24)

by Young’s inequality. The same procedure in the alternating flux proof can be used to
establish the following inequality

d

dt

1

2

∫
I

(
η2h + (1 + ηh)u

2
h

)
dx = ((uh)t , uh) + ((ηh)t , ηh) + ((uh)t , ph) + ((ηh)t , qh)

≤ − 1

12

N∑
j=1

[(uh)t ]
2 − 1

12

N∑
j=1

[(ηh)t ]
2 ≤ 0, (2.25)
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which completes the proof. ��

3 Error Estimate for the Linearized System

In this section, we provide optimal error estimate for the linearized coupled BBM system
when the alternating flux is used. The linearized coupled system takes the form of{

ηt + ux − ηxxt = 0,

ut + ηx − uxxt = 0, (x, t) ∈ [a0, a1] × [0, T ], (3.1)

where we have suppressed the constant coefficient 1/6 for the ease of presentation. The LDG
methods (2.4) then reduce to

((wh)t , φ) − (ηh, φx ) −
N∑
j=1

(η̃h) j+ 1
2
[φ] j+ 1

2
= 0,

(wh, ψ) = (uh, ψ) + (rh, ψx ) +
N∑
j=1

(̂rh) j+ 1
2
[ψ] j+ 1

2
,

(rh, ϕ) = −(uh, ϕx ) −
N∑
j=1

(̂uh) j+ 1
2
[ϕ] j+ 1

2
,

((vh)t , ρ) − (uh, ρx ) −
N∑
j=1

(ũh) j+ 1
2
[ρ] j+ 1

2
= 0,

(vh, θ) = (ηh, θ) + (sh, θx ) +
N∑
j=1

(̂sh) j+ 1
2
[θ ] j+ 1

2
,

(sh, λ) = −(ηh, λx ) −
N∑
j=1

(̂ηh) j+ 1
2
[λ] j+ 1

2
. (3.2)

Let us introduce three projections to be used later. The first projection is the standard
piecewise L2 projection, which will be denoted as P , with∫

I j
(Pw(x) − w(x))v(x) dx = 0 for all v ∈ Pk(I j ), j = 1, · · · , N . (3.3)

We also define P+ as a projection such that for a function w, P+w is the unique function in
V k
h satisfying ∫

I j
(P+w(x) − w(x))v(x) dx = 0 for all v ∈ Pk−1(I j ), (3.4)

and

P+w

(
x+
j− 1

2

)
= w

(
x j− 1

2

)
for all j. (3.5)

Similarly, P− is defined as∫
I j

(P−w(x) − w(x))v(x) dx = 0 for all v ∈ Pk−1(I j ), (3.6)
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and

P−w

(
x−
j+ 1

2

)
= w

(
x j+ 1

2

)
for all j. (3.7)

All the projections mentioned previously satisfy the property (see [25] for details)

||εw|| + h||εw||∞ + h
1
2 ||εw||�h ≤ Chk+1, (3.8)

where εw = Pw − w or εw = P±w − w, �h denotes the boundary points of all elements
I j , and C is a constant depending on w and independent of h.

We nowprovide the following theorem on the optimal error estimate for the linearized case
when the alternating flux is used. One simplification, compared with the nonlinear problem,
is that the linearized system yields an additional conserved quantity∫

I
(η2 + u2 + η2x + u2x ) dx, (3.9)

which is helpful in the proof of the error estimate presented below. The approach presented
here cannot be easily generalized to prove the optimal error estimate of the nonlinear system,
as the quantity (3.9) is not conserved by the nonlinear system, therefore new ideas are needed
for their error estimate.

Theorem 3.1 Let u, η be the exact solutions to (3.1), and uh, ηh be the numerical solution of
the LDG scheme (3.2). Assume u, η have enough regularity, there holds the following error
estimate:

||u − uh || ≤ Chk+1, ||η − ηh || ≤ Chk+1, (3.10)

where the constant C depends on the final time T , k and the Hk+1 norm of u, η up to time T .

Proof Let’s define the shorthand operators L( f, g) and R( f, g) as

L( f, g) = ( f, gx ) +
N∑
j=0

f +
j+ 1

2
[g] j+ 1

2
, R( f, g) = ( f, gx ) +

N∑
j=0

f −
j+ 1

2
[g] j+ 1

2
. (3.11)

Observe the following results of the above operators:

L( f, g) + R(g, f ) = 0, (3.12)

and

L(ω − P+ω, g) = 0, R(ω − P−ω, g) = 0, for all g ∈ V k
h . (3.13)

We will denote the following notations for the error estimate: ξω = Pω −ωh , εω = Pω −ω,
and eω = ω − ωh = ξω − εω, where ω stands for u, η, etc., and P is a projection that is
to be chosen later in the proof. With these shorthand notations, we can write out the error
equations based of the LDG method (3.2) for the linearized case

(ew
t , φ) = L(eη, φ), (3.14a)

(ew,ψ) = (eu, ψ) + L(er , ψ), (3.14b)

(er , ϕ) = −R(eu, ϕ), (3.14c)

(ev
t , ρ) = R(eu, ρ), (3.14d)

(ev, θ) = (eη, θ) + R(es, θ), (3.14e)

(es, ϑ) = −L(eη, ϑ). (3.14f)
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Subtract (3.14a) from the time derivative of (3.14b), and take the test functions φ = ψ = ξu

to obtain

(eut , ξ
u) + L(ert , ξ

u) − L(eη, ξu) = 0.

Applying the same procedure to (3.14d) and (3.14e) with the test functions φ = ψ = ξη

yields

(eη
t , ξ

η) + R(est , ξ
η) − R(eu, ξη) = 0.

Taking the test functions ϕ = ξ rt , ϑ = ξ st in (3.14c) and (3.14f) gives

(er , ξ rt ) + R(eu, ξ rt ) + (es, ξ st ) + L(eη, ξ st ) = 0.

Combining these equations and separating the error term eω as ξω − εω, we have

(ξ
η
t , ξη) + (ξut , ξu) + (ξ r , ξ rt ) + (ξ s, ξ st )

= (ε
η
t , ξη) + (εut , ξu) + (εr , ξ rt ) + (εs, ξ st )

+ L(εrt , ξ
u) + R(εst , ξ

η) − L(εη, ξu) − R(εu, ξη) + R(εu, ξ rt ) + L(εη, ξ st )

− L(ξ rt , ξu) − R(ξ st , ξ
η) + L(ξη, ξu) + R(ξu, ξη) − R(ξu, ξ rt ) − L(ξη, ξ st ), (3.15)

where the last line disappears following (3.12). If we take the projections of the variables as:

Pr = Pr Ps = Ps, Pu = P−u Pη = P+η, (3.16)

and utilize the relation (3.13), the error equation (3.15) becomes

1

2

d

dt

(||ξη||2 + ||ξu ||2 + ||ξ r ||2 + ||ξ s ||2) = (ε
η
t , ξη) + (εut , ξu) + L(εrt , ξ

u) + R(εst , ξ
η).

(3.17)
Applying the results in [23, Lemma 2.4] to Eqs. (3.14c) and (3.14f), we have the following
estimates

||ξη
x ||2 + h−1||[ξη]||2�h

≤ C1||ξ s ||2, ||ξux ||2 + h−1||[ξu]||2�h
≤ C1||ξ r ||2, (3.18)

which leads to

L(εrt , ξ
u) = (εrt , ξ

u
x ) +

N∑
j=0

(
εrt

)+
j+ 1

2
[ξu] j+ 1

2

≤ C1

2
||εrt ||2 + 1

2C1
||ξux ||2 + C1

2
h|| (εrt )+ ||2�h

+ 1

2C1
h−1||[ξu]||2�h

≤ ||ξ r ||2 + C1

2
||εrt ||2 + C1

2
h|| (εrt )+ ||2�h

≤ ||ξ r ||2 + Ch2k+2, (3.19)

where the optimal error estimate of the projection error (3.8) is used in the last inequality.
Similarly, we have

R(εst , ξ
η) ≤ ||ξ s ||2 + Ch2k+2. (3.20)

Combining the inequalities (3.17), (3.19), and (3.20), we have

1

2

d

dt

(||ξη||2 + ||ξu ||2 + ||ξ r ||2 + ||ξ s ||2) ≤ ||ξη||2 + ||ξu ||2 + ||ξ r ||2 + ||ξ s ||2 + Ch2k+2.

(3.21)
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The optimal error estimate (3.10) follows from the Gronwall’s inequality and the optimal
error estimate of the projection error (3.8). ��

4 Time Discretization

In this section, we present two different temporal discretizations that will be used to discretize
the semi-discrete LDG methods (2.4) in time.

4.1 Strong Stability Preserving Runge–Kutta (SSPRK) Methods

In applications, higher order time discretizations are often required. A standard choice of high
order time discretization is the well known class of SSPRK methods presented in [18]. Such
methods pose nonlinear stability properties in the discretization of hyperbolic conservation
laws. A variety of methods are presented in [18] including explicit, implicit, as well as multi-
step SSPRKmethods. In our numerical examples, wewill use the five stages SSPRK4 scheme
that is provided in [18,22], given by

u(1)
h = unh + 0.391752226571890�tL(unh),

u(2)
h = 0.444370493651235unh + 0.555629506348765u(1)

h + 0.368410593050371�tL(u(1)
h ),

u(3)
h = 0.620101851488403unh + 0.379898148511597u(2)

h + 0.251891774271694�tL(u(2)
h ),

u(4)
h = 0.178079954393132unh + 0.821920045606868u(3)

h + 0.544974750228521�tL(u(3)
h ),

un+1
h = 0.517231671970585u(2)

h + 0.096059710526147u(3)
h + 0.063692468666290�tL(u(3)

h ),

+ 0.386708617503269u(4)
h + 0.226007483236906�tL(u(4)

h ),

where L(·) is the spatial discretization, which is taken to be the LDG method.

4.2 Midpoint Time Discretization

As the SSPRK method dissipates the Hamiltonian, we describe in this subsection an alter-
native midpoint rule time stepping scheme, which can conserve the discrete Hamiltonian in
time.

Let {tn}Mn=0 be a partition of [0, T ] where �tn = tn+1 − tn . Denote ωn
h ∈ Vh (where

ω = u, η,w, v) as the numerical solution at time step n. We update in time via the following
equation

ωn+1
h = 2ωn,1

h − ωn
h , (4.1)

where ω
n,1
h are the solutions of the following equations

(Dwn
h , φ) −

(
η
n,1
h + qn,1

h , φx

)
−

N∑
j=1

(η̃
n,1
h + q̂n,1

h ) j+ 1
2
[φ] j+ 1

2
= 0, (4.2a)

(w
n,1
h , ψ) − (un,1

h , ψ) − 1

6
(rn,1

h , ψx ) − 1

6

N∑
j=1

(̂rn,1
h ) j+ 1

2
[ψ] j+ 1

2
= 0, (4.2b)

(rn,1
h , ϕ) + (un,1

h , ϕx ) +
N∑
j=1

(̂un,1
h ) j+ 1

2
[ϕ] j+ 1

2
= 0, (4.2c)
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(qn,1
h , ζ ) −

(
1

4

(
(unh)

2 + (un+1
h )2

)
, ζ

)
= 0, (4.2d)

(Dvnh , ρ) −
(
un,1
h + pn,1

h , ρx

)
−

N∑
j=1

(ũn,1
h + p̂n,1

h ) j+ 1
2
[ρ] j+ 1

2
= 0, (4.2e)

(v
n,1
h , θ) − (η

n,1
h , θ) − 1

6
(sn,1

h , θx ) − 1

6

N∑
j=1

(̂sn,1
h ) j+ 1

2
[θ ] j+ 1

2
= 0, (4.2f)

(sn,1
h , λ) + (η

n,1
h , λx ) +

N∑
j=1

(̂η
n,1
h ) j+ 1

2
[λ] j+ 1

2
= 0, (4.2g)

(pn,1
h , ϑ) − (η

n,1
h un,1

h , ϑ) = 0, (4.2h)

for all test functions φ,ψ, ϕ, ζ, ρ, θ, λ, ϑ ∈ V k
h and the notation D defined as

Dωn
h = ωn+1

h − ωn
h

�tn
= ω

n,1
h − ωn

h

�tn/2
. (4.3)

Notice that special care is needed in the implementation of themidpoint rule on the non-linear
terms in (4.2d), as the straightforward approach

(qn,1
h , ζ ) −

(
1

2
(un,1

h )2, ζ

)
= 0,

will not yield a conservative time discretization.
In the following theorem, we will show that the discrete Hamiltonian is conserved exactly

by the proposed LDG methods with alternating fluxes and midpoint rule time discretization.

Theorem 4.1 The solution to the midpoint rule LDGmethod (4.1) and (4.2), with the choice
of alternating flux (2.5), conserves the discrete Hamiltonian functional

En
h =

∫ [
(ηnh)

2 + (1 + (ηnh))(u
n
h)

2] dx (4.4)

for all n.

Proof Choosing φ = un,1
h + pn,1

h − 1
6Dsn,1

h and ρ = η
n,1
h + qn,1

h − 1
6Drn,1

h in (4.2a) and
(4.2e) respectively, we get(

Dwn
h , u

n,1
h + pn,1

h − 1

6
Dsnh

)
−

((
η
n,1
h + qn,1

h

)
,

(
un,1
h + pn,1

h − 1

6
Dsnh

)
x

)

−
N∑
j=0

(̃η
n,1
h + q̂n,1

h )

[
un,1
h + pn,1

h − 1

6
Dsnh

]
= 0, (4.5a)

(
Dvnh , η

n,1
h + qn,1

h − 1

6
Drnh

)
−

((
un,1
h + pn,1

h

)
,

(
η
n,1
h + qn,1

h − 1

6
Drnh

)
x

)

−
N∑
j=0

(̃un,1
h + p̂n,1

h )

[
η
n,1
h + qn,1

h − 1

6
Drnh

]
= 0. (4.5b)

Then, following the exact same steps as in the proof of Theorem 2.1, we can derive

(Dunh, u
n,1
h ) + (Dunh, p

n,1
h ) + (Dηnh , η

n,1
h ) + (Dηnh , q

n,1
h ) = 0, (4.6)
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which is an analogue of Eq. (2.13). From the definition of D, we obtain

Dunh u
n,1
h = un+1

h − unh
�tn

un+1
h + unh

2
= (un+1

h )2 − (unh)
2

2�tn
, Dηnh η

n,1
h = (ηn+1

h )2 − (ηnh)
2

2�tn
,

and also

(Dunh, p
n,1
h ) + (Dηnh , q

n,1
h ) = (η

n,1
h un,1

h ,Dunh) +
(
1

4

(
(unh)

2 + (un+1
h )2

)
,Dηnh

)

=
(

ηn+1
h + ηnh

2

un+1
h + unh

2
,
un+1
h − unh

�tn

)
+

(
1

4

(
(unh)

2 + (un+1
h )2

)
,
ηn+1
h − ηnh

�tn

)

= ηn+1
h (un+1

h )2 − ηnh(u
n
h)

2

2�tn
,

where the approximation of nonlinear terms in (4.2d) and (4.2h) is used in the first equality.
Combining these together, we conclude the result that En+1

h = En
h . ��

5 Numerical Experiments

In this section numerical results are presented for the proposed LDG method (2.4) for the
coupled BBM system (1.4). We will numerically test or validate the issues including the
convergence rate, Hamiltonian conservation or dissipation, and their long time behavior. The
third order finite element LDG methods (polynomials of degree k = 2), coupled with the
two different types of time discretizations given in the previous section, are implemented in
the numerical experiments.

To check accuracy and convergence rates, exact solutions are needed. One set of exact
solutions is the traveling wave solutions presented in [9]:

u(x, t) = 3k sech2
(

3√
10

(x − kt − x0)

)
,

η(x, t) = 15

4

(
−2 + cosh

(
3

√
2

5
(x − kt − x0)

))
sech4

(
3√
10

(x − kt − x0)

)
, (5.1)

where k = ± 5
2 , and x0 denote the center of the wave at t = 0. The initial condition can be

obtained from (5.1), i.e., u0(x) = u(x, 0) and η0(x) = η(x, 0).

5.1 Accuracy Test

The accuracy of our proposed LDG methods will be tested for a combination of numerical
fluxes and time discretizations. The exact traveling wave solutions (5.1) on the domain [0, L]
with L = 40 are used. We first test the LDG method with the alternating fluxes, combined
with both fourth order RK method and the second order midpoint rule. The time step size
of midpoint rule is taken as �t = c�x2 to be consistent with the fourth order RK method.
Their numerical errors and the orders of convergence of the variables ηh and uh are listed
in Tables 1, 2. The exact parameters for each test case, including the time step size, spatial
step size, are given in the caption of each table. From the tables, we can clearly see that
the proposed LDG methods with alternating flux achieve the optimal convergence rates of
3 if the P2 elements are used. To test the accuracy of the proposed LDG method with the
upwind flux, with the fourth order RK method, we implement it on the exact traveling wave
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Table 1 Convergence rate test
for the alternating flux in space
and SSPRK4 in time for the
traveling wave solutions (5.1)

Nx j ‖eη‖L1 Order ‖eu‖L1 Order

40 0 1.6003e−00 9.3584e−01

80 1 1.5717e−01 3.34 6.9160e−02 3.75

160 2 1.5362e−02 3.35 5.0564e−03 3.77

320 3 1.7227e−03 3.15 5.2204e−04 3.27

640 4 2.0514e−04 3.06 6.4118e−05 3.02

Parameters
k = 2, L = 40,�x = 1

2 j
for

j = 0, . . . , 4, �t = .1�x , T = 1

Table 2 Convergence rate test
for the alternating flux in space
and 2nd order midpoint rule in
time for the traveling wave
solutions (5.1)

Nx j ‖eη‖L1 Order ‖eu‖L1 Order

40 0 2.1994e−00 1.5848e−00

80 1 1.7709e−01 3.63 1.1434e−01 3.79

160 2 1.5581e−02 3.50 7.0977e−03 4.00

320 3 1.6858e−03 3.20 6.0759e−04 3.54

640 4 1.9711e−04 3.09 6.7434e−05 3.17

Parameters
k = 2, L = 40,�x = 1

2 j
for

j = 0, . . . , 4, �t = .1�x2,
T = 1, tolerance = 10−10

Table 3 Convergence rate test
for the upwind flux in space and
SSPRK4 in time for the traveling
wave solutions (5.1)

Nx j ‖eη‖L1 Order ‖eu‖L1 Order

40 0 1.6629e−00 1.0943e−00

80 1 1.1121e−01 3.90 1.1281e−01 3.28

160 2 8.0167e−03 3.79 1.2562e−02 3.17

320 3 7.3197e−04 3.45 1.5346e−03 3.03

640 4 7.8245e−05 3.23 1.9317e−04 2.99

Parameters
k = 2, L = 40,�x = 1

2 j
for

j = 0, . . . , 4, �t = .1�x , T = 1

solutions (5.1). We document the L1 error of the LDG solutions and list the results in Table 3,
respectively. Again, we can easily observe the desired third order rate of convergence.

5.2 Comparisons of Different Numerical Flux and Time Discretization

In this section, we investigate the long time behavior of the proposed LDGmethods to provide
comparison of different choices of numerical flux and time discretizations.

First, we will compare the difference in the (Hamiltonian dissipating) RK and (Hamilto-
nian conserving) midpoint rule temporal discretizations, while keeping the spatial discretiza-
tion as the LDG method with alternating flux. In this simulation, we take the exact traveling
wave solutions (5.1) with t = 0 as the initial condition. The parameters in the initial condi-
tion are taken as follows: x0 = 20 and L = 40, so that the peak of u(x, 0) and the trough
of η(x, 0) are located at the center of the domain. We take the boundary conditions to be
periodic, so that the wave will return to the initial profile after one period (with T = 16).
Discretizaitons of space and time are taken to be �x = 0.25 and �t = 0.1�x2.

The alternating flux with the SSPRK4 and midpoint rule time discretizations achieve
the correct order of accuracy for short time simulations, as indicated in the tables in the
previous subsection. In this test, we run the simulation for a long time, up to T = 180 which
corresponds to about eleven periods of the domain. The numerical solutions with three time
discretizaitons (SSPRK2, SSPRK4, midpoint rule), compared with the exact solutions, at
times T = 60, 130, and 180 are shown in Fig. 1. At time T = 60, no visual difference
among different solutions can be observed. When time increases to 130, we can see that the
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(a) (b)

(c) (d)

(e) (f)

Fig. 1 Wave profiles for time discretization comparison. a Comparison between the SSPRK2, SSPRK4,
and midpoint rule time discretizations for u(x, T = 60), using the exact solitary wave initial condition;
b comparison for η(x, T = 60); c comparison for u(x, T = 130); d comparison for η(x, T = 130);
e comparison for u(x, T = 180); f comparison for η(x, T = 180)

SSPRK4 method performs slightly better. At T = 180, the fourth order SSPRK4 method
clearly outperforms the other two, and midpoint rule is better than the second order SSPRK2
methodwith the same time step size. In Fig. 2, we plot the time history of the L1 error between
the exact solution and the numerical solutions up to T = 180. The error of SSPRK2 remains
the largest one, and the error of midpoint rule and SSPRK4 are similar until T = 120, after
which, the midpoint rule error increases much faster than the SSPRK4 scheme. It should be
reiterated that the alternating flux-SSPRK4 method is order 3 in space and order 4 in time,
whereas the alternating flux-midpoint rule method is order 3 in space and order 2 in time. As
time progresses, the time error is compounded and begins to dominate.

The lower plot in Fig. 1 demonstrates the time history of the Hamiltonian that was proven
for the midpoint rule with the alternating flux. It was shown in Sect. 4 that the discrete
Hamiltonian (4.4) is conserved exactly in time for the midpoint rule. The fluctuations in the
conserved quantity for the midpoint rule are extremely small, on the order of 10−10, while
the decay in the SSPRK4 method is on the order of 10−5. The deviation of the conserved
quantity for the SSPRK2 is much larger, as seen in the plot. This test shows that, with the
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(a) (b)

(c)

Fig. 2 Error and conserved quantity plots for time discretization comparison. a L1 errors over time for u(x, t),
for the LDG numerical approximation using each time scheme; b L1 errors for η(x, t); c the computed value
of the Hamiltonian (4.4) plotted over time for each choice of time discretization

same spatial discretization, theHamiltonian conservingmidpoint rule performs better than the
Hamiltonian dissipative SSPRK2 method, but the higher order SSPRK4 (which dissipates
Hamiltonian slightly) provides the best numerical solution. In the numerical experiments
below, we will fix the SSPRK4 as the temporal discretization.

We now turn to looking at the difference between the choices of numerical flux on the same
traveling wave solution. We will keep the choice of time discretization fixed as the SSPRK4
method, and compare the results of the alternating and upwind fluxes. We use the same
initial condition as in the comparison of time discretizations in the previous paragraphs. The
parameters of the simulation are taken to be: x0 = 20, L = 40,�x = 0.25, and�t = 0.1�x .
Both choices of flux are comparable in terms of L1 error up to about T = 20. After this point,
the discrepancy between the errors in the alternating flux and upwind flux become evident.
In Fig. 3, the comparison of both numerical solutions and the exact solution are provided
at various times. We can observe that the upwind flux approximation is lagging behind the
exact traveling wave solution, while the alternating flux approximation is essentially the
same as the exact solution. The time history of the L1 error and conserved Hamiltonian is
shown in Fig. 4, which shows a larger error produced by the upwind flux. In terms of the
Hamiltonian, the approximations verify that the Hamiltonian is constant for the alternating
flux approximation, and the Hamiltonian is decreasing over time for the upwind flux.

5.3 Solitary Wave Generation

In this subsection, we perform the test to generate solitary waves (with 1 + η ≥ 0), as was
done in [9] for their finite difference scheme. Generating such clean solitary waves is difficult
in the physical laboratory setting, but can be easily done numerically using the procedure
given in [9], and outlined as follows. This solitary wave solution will also be used in the next
subsection to test the head-on collisions of solitary waves.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3 Wave profiles for alternating and upwind comparison. a Comparison between the alternating and
upwind choices for u(x, T = 60), using the exact solitary wave initial condition. b Comparison for η(x, T =
60). c Comparison for u(x, T = 130). d Comparison for η(x, T = 130). e Comparison for u(x, T = 180).
f Comparison for η(x, T = 180)

The coupled BBM system (1.4) is provided with the following initial condition

η(x, 0) = N0 sech2
(
1

2

√
3N0

κ
(x − x0)

)
,

u(x, 0) = η(x, 0) − 1

4
η2(x, 0), (5.2)

with the parameters taken as x0 = 12, κ = 1 + 1
2N0, and N0 = 0.7, so that the peaks

of u(x, 0) and η(x, 0) are located close to the left boundary of the domain. We take the
boundary conditions to be periodic, and the length of the domain to be L = 120. Other
numerical parameters are taken as �x = 0.25 and �t = 0.1�x .

The initial wave (5.2) is provided to the LDG method and run up to a particular time,
denoted as T . Here we chose T = 48 for the first run, but this value is arbitrary. The wave is
evolved until the oscillations that are produced near the peaks are of small amplitude. Since
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(a) (b)

(c)

Fig. 4 Error and conserved quantity plots for alternating and upwind comparison. a L1 errors over time
for u(x, t), for the LDG numerical approximation using each numerical flux. b L1 errors for η(x, t). c The
computed value of the Hamiltonian (4.4) plotted over time for each choice of time discretization

we are using periodic boundary conditions, the only requirement of T is that the simulation
must be stopped before any dispersive tails coming from the right interferewith themainwave
(alternatively, one can use Dirichlet boundary conditions). The longer domain (L = 120 as
opposed to L = 40 in previous tests) allows for thewave to travel farther before the dispersive
tails become an issue. Once at time T = 48, the solution on the entire domain is clipped near
the peak, such that the main peaks are spliced out of the domain. We inspect the amplitude of
η(x, T ) and choose an subinterval of length 20 which contains the main peak, and save the
LDG approximation from the subinterval.1 The saved subinterval is then shifted and reloaded
as the initial condition, so that the peak is again located at x0 = 20, and then set u(x, 0) ≡ 0
and η(x, 0) ≡ 0 for the remaining portion of the domain. The clock is reset to t = 0, and
the LDG code is run again up to a time where the main peak can be clipped again, using
the described procedure. This setup allows the wave that was evolved in a previous run to
be used as the initial condition in the subsequent run, but without the dispersive tails. The
simulation is ran for a second time, up until T = 48. This procedure can be repeated as many
times as possible, to reduce the magnitude of the dispersive tails. Alternatively, one can use
a very long domain, and run the simulation one time for a larger value of T . We have also
used this method with L = 400, yielding similar results.

Figure 5 shows the evolution and filtering of the solitary wave by the LDG method with
alternating flux and SSPRK4 time discretization. In Fig. 5a, the initial condition (5.2) for
η(x, t) is plotted. Figure 5b shows the evolution of η(x, t), which is the wave profile (Recall
u(x, t), which is not shown, is the horizontal velocity of the wave) at time T = 48. The
dispersive tails emanating behind the main peak are evident. We can now excise the main

1 The length of this subinterval is arbitrary. We wish to capture the peak in the interval, and have the “tails”
near the peak to be close to zero.
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Fig. 5 Clean solitary wave generation for η(x, t). a Initial condition for the solitary wave generation.
b Equation (1.4) evolves up to T = 48 for the first run. c The peak of the solitary wave is excised from
(b) and inserted so that the peak is located at x0 = 12, as in figure (a). d The initial profile from (c) evolved
to T = 48, and no visible oscillations are present

peak from this wave profile, which can be used for another filtering step. The filtering step
reduces themagnitude of the oscillation, as can be seen in Fig. 5d, where on visual inspection,
the oscillations cannot be seen. The magnitude of the oscillations in this figure is on the order
of 10−5 after one filtering step.

5.4 Solitary Wave Collisions

In this example, we present a simulation for the head-on collision of two solitary waves of
the same height, using the clean solitary waves generated in the previous subsection. We use
the functions given in (5.2) to generate a right moving solitary wave, and we use

η̃(x, 0) = η(L − x, 0),

ũ(x, 0) = −u(L − x, 0),

to generate a left moving solitary wave, where η(x, 0) and u(x, 0) denote the functions in
(5.2). The sum of the resulting two wave profiles gives the initial condition for the solitary
wave collision test, as seen in Fig. 6a. Other parameters in the simulation are taken as follows:
�x = 0.5, �t = 0.1�x , and L = 200 for the length of the domain.

We apply the LDG method with alternating flux and SSPRK4 time discretization for
the simulation. Figure 6 track the movement of the two peaks moving towards each other,
combining to give a single peak, and then the waves moving past each other keeping the
same profile as before the collision. Figure 6a shows the initial condition, where there are
two peaks on the opposite ends of the domain. Figure 6b records the solution of η(x, T )

when the solitary waves traveled until time T = 40. We can observe that the amplitude and
shape of the wave are kept well, and no oscillations are present. In Figure 6c, the waves have
interacted at time T = 60 , as the two main peaks are visible, with the depression in the
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Fig. 6 Solitary wave collision for η(x, t). a Waves at T = 0. b Waves at T = 40. c Waves at T = 60.
d Waves at T = 61.5. e Waves at T = 67.5. f Waves at T = 80

center. At time T = 61.5, the two waves merge into one, as shown in Fig. 6d. In Fig. 6e, f,
we can observe that after the interaction, it separates into two solitary waves moving away
from each other, and with almost the same shape and amplitude as the waves before the
collision.

6 Conclusion

In this paper, we have constructed LDG methods with both alternating flux and upwind flux
for the coupled BBM system. This system has a Hamiltonian which is conserved for all time.
We have shown that the LDGmethodwith the alternating flux, coupledwith themidpoint rule
time discretization, provides a method which conserves the discrete Hamiltonian exactly, and
the LDGmethod with the upwind flux dissipates the Hamiltonian. An optimal error estimate
for the linearized system has been provided. Numerical examples are presented to illustrate
the accuracy of the proposed methods in simulating the coupled BBM system. We hope that
in future work, the choices of flux and methods presented here could be used to develop DG
methods for a wider class of problems associated with the full abcd-Boussinesq system.
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