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Abstract
Shallow water equations with horizontal temperature gradients, also known as the Ripa
system, are used to model flows when the temperature fluctuations play an important role.
These equations admit steady state solutions where the fluxes and source terms balance
each other. We present well-balanced discontinuous Galerkin methods for the Ripa model
which can preserve the still-water or the general moving-water equilibria. The key ideas
are the recovery of well-balanced states, separation of the solution into the equilibrium
and fluctuation components, and appropriate approximations of the numerical fluxes and
source terms. The same framework is also extended to design well-balanced methods for the
constant height and isobaric steady state solutions of the Ripa model. Numerical examples
are presented to verify the well-balanced property, high order accuracy, and good resolution
for both smooth and discontinuous solutions.

Keywords Discontinuous Galerkin methods · Well-balanced methods · Ripa model ·
Shallow water equations · Moving-water equilibrium

1 Introduction

The shallow water equations with temperature fluctuations were introduced by Ripa in 1993
[11,22,23]. These equations are often referred to as the Ripa system and were introduced
for the purpose of modeling ocean currents. The introduction of temperature is advanta-
geous because the movement and behavior of ocean currents are impacted by forces such as
temperature acting upon the water. The one-dimensional Ripa equations take the form:
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⎧
⎪⎨

⎪⎩

ht + (hu)x = 0,

(hu)t + (hu2 + 1
2 gh

2θ)x = −ghθbx ,

(hθ)t + (hθu)x = 0,

(1.1)

where h(x, t) ≥ 0 represents the height of the water, u(x, t) ∈ R describes the velocity,
θ(x, t) > 0 is a potential temperature field, b(x) represents the bottom topography, and g is
the gravitational constant. The term hu represents water discharge and gh2θ/2 is the pressure
depending on the water temperature. The potential temperature field θ is defined to be the
reduced gravity g��/�ref [9], where�� is set to be the difference in potential temperature
from a reference value�ref. Additional source terms that model the friction along the bottom
and surface or variations in the width of the channel could be included. In this paper, we only
consider the source term that accounts for the bottom topography.

The Ripa system is a generalized model of the shallow water equations. The one-
dimensional shallow water equations take the form:

{
ht + (hu)x = 0,

(hu)t + (hu2 + 1
2 gh

2)x = −ghbx .
(1.2)

Notice that, when the potential temperature field θ = 1 in the Ripa model (1.1), the shallow
water equations (1.2) are recovered. The shallow water equations consist of the conservation
of mass and momentum, with the assumption that the density is constant. Two-layer and
multi-layer shallow water equations [4] have been studied to model the flows in the shallow
water regime where several layers with different densities appear. Such a model assumes
a piecewise constant density inside each layer, and allows for different densities across the
layers. Challenges in studying such models arise from the complicated eigenstructure, non-
conservative terms, and conditional hyperbolicity, etc. Despite these challenges, there have
been many studies on various numerical methods for multi-layer shallow water equations.
The Ripa model can be obtained by vertically averaging each variable (including the density)
over all layers from the bottom to the top, therefore, we lose the information of the interface
between layers, but the resulting model has a simpler eigenstructure and is always hyperbolic
in the conservative form. The horizontal temperature gradients are introduced in the Ripa
model to represent the variations in the fluid density.

Both the Ripa system (1.1) and the shallow water equations (1.2) belong to the family of
hyperbolic balance laws, which have gained growing attention in the last few decades. In the
one dimensional setting, such models usually take the form of

Ut + F(U )x = S(U ).

Due to the existence of the source term S(U ), hyperbolic balance laws introduce new compu-
tational challenges beyond the existing challenges of hyperbolic conservation laws. Balance
laws often admit non-trivial steady state solutions in which the source term balances the
effect of the flux gradients. The balance of fluxes and the source term as well as small per-
turbations of steady state solutions cannot be captured well by standard numerical methods
with a straightforward implementation of the source term, unless a much refined mesh is
used. Therefore, well-balanced methods, which can exactly preserve steady state solution at
the discrete level, are introduced to provide an accurate solution on a relatively coarse mesh
and resolve small perturbations to steady state solutions accurately.
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The steady state solutions of the Ripa model (1.1) occur when ∂tU = 0, that is
⎧
⎪⎪⎨

⎪⎪⎩

∂x (hu) = 0,

∂x

(
hu2 + 1

2 gh
2θ

)
= −ghθbx ,

∂x (hθu) = 0.

(1.3)

In the case of still-water, when the velocity u is zero, the steady state system (1.3) reduces
to

{
u = 0

∂x

(
1
2h

2θ
)

= −hθbx ,
(1.4)

which is an underdetermined PDE system. In order to reach a solution for (1.4), additional
assumptions for h, θ or bmust be enforced. There are three cases to consider if we require one
of these variables to be constant. This raises one discrepancy between the Ripa model and
the shallow water equations. The first case is the still-water steady state, which corresponds
to a flat water surface under constant temperature:

(
u, θ, h + b

) = (
0,C1,C2

)
, (1.5)

where C1,C2 are constants. This is the same lake-at-rest steady state solution of the shallow
water equations. The second case is the isobaric steady state, which corresponds to a wave
in which the height and temperature jump but velocity and pressure remain constant:

(
u, b, h2θ

) = (
0,C1,C2

)
. (1.6)

The last case is the constant water height steady state:
(
u, h, b + 1

2
h ln θ

)
= (

0,C1,C2
)
. (1.7)

The more general case occurs when the velocity u does not vanish. The moving-water
equilibrium is given by:

⎧
⎪⎨

⎪⎩

hu = constant,

θ = constant,
u2
2 + gθ(h + b) = constant,

(1.8)

where the momentum hu and potential temperature field θ are constant. It is easy to observe
that the lake-at-rest still-water steady state (1.5) is simply a special case of the moving-water
steady state (1.8). Well-balanced methods for the moving-water equilibrium can automati-
cally preserve the lake-at-rest steady state, but not vice versa.

Well-balanced numerical methods for shallow water equations are far more studied in the
literature, and can serve as a foundation of well-balanced methods for Ripa models. A vast
amount of well-balanced methods for the still-water steady state [1,2,16,17,21,31] have been
studied, and we refer to the survey papers [15,34] for a complete list of existing literature on
this topic. Well-balanced methods for the moving-water equilibrium are more complicated
and it is much more difficult to design such methods. Comparison of well-balanced methods
for the still-water and moving-water steady state solutions has been provided in [35], where
some numerical examples are shown to demonstrate the advantage of moving-water well-
balanced methods, especially for solutions near a moving-water equilibrium. Some moving-
water well-balanced methods been proposed in [3,7,8,24], and high order accurate well-
balanced weighted essentially non-oscillatory (WENO) methods can be found in [5,19,25].
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In [30], well-balanced and positivity-preserving discontinuous Galerkin (DG) methods were
developed for the shallow water equations with moving-water equilibrium.

Designing well-balanced methods for the Ripa model (1.1) can be a challenging task,
because its steady states are more complicated than those of the shallow water equations
[9]. In the last few years, there have been some studies on well-balanced methods for the
Ripa models, mostly focusing on the zero-velocity steady-state solutions (1.5) and (1.6). The
first well-balanced scheme for the Ripa system is developed in [9]. The proposed scheme is
well-balanced, positivity preserving and does not develop spurious pressure oscillations in
the neighborhood of temperature jumps. A second-order well-balanced finite volume scheme
for the Ripa system in one and two dimensions is designed in [28]. High-order well-balanced
WENOschemes that possess sharp shock transitionwere designed for theRipa system in [13],
by extending the well-balanced technique developed in [31] for the shallow water equations.
Other related works can be found in [12,14,26].

High order accurate numerical schemes such as finite difference and finite volumeWENO
schemes, spectral methods, and DG methods have been developed to reduce the number of
computational cells and thus reduce the computational time, while still achieving high order
accuracy. Specifically, the DG method is a class of finite element methods in which the
numerical solutions and test functions live in a discontinuous piecewise polynomial space.
A review of the method can be found in [10]. The DG method combines the flexibility of
the finite element method and the stability of the finite volume method. Additionally, DG
methods enjoy advantages including high order accuracy, high parallel efficiency, flexibility
for hp-adaptivity and arbitrary geometry and meshes, etc.

Themain objective of this paper is to develop high orderwell-balancedDGmethods for the
Ripa system (1.1), which can preserve the still-water equilibrium solution (1.5) and moving-
water steady state solution (1.8) exactly at the discrete level. This will be the first moving-
water well-balanced method for the Ripa model, to our best knowledge. To achieve this
goal, we start with a transformation between the conservative variables and the equilibrium
variables (to be defined in Sect. 4). For the finite element methods, the initial conditions are
projected into a polynomial solution spaces to provide a numerical initial condition. Even
though the exact initial conditions are in moving-water equilibrium, the numerical initial
conditions may no longer be. One challenge in designing well-balanced methods is the
recovery of the well-balanced states from the numerical initial condition, which is achieved
by a new choice of projection operator. Then, we can decompose the numerical solution
into an equilibrium part and the fluctuation part, and show that the fluctuation part is zero at
the steady state. Following the idea of hydrostatic reconstruction, one can carefully design
well-balanced numerical fluxes. A well-balanced source term approximation is achieved by
treating the equilibrium and fluctuation parts in different ways.

The methods presented here are extensions of the ones in [30] for the moving-water
equilibrium of the shallowwater equations. In this paper, several improvements over thewell-
balanced methods in [30] have been presented to improve the algorithm. First, the recovery
of the well-balanced states in [30] are obtained by solving nonlinear equations, which could
be complicated. A special projection of the exact initial condition is proposed in this paper in
order to provide a much easier way to recover the well-balanced states. This also leads to a
more simple way to evaluate the well-balanced components of the solutions at each time step.
Second, due to the existence of the potential temperature field, extra attention is provided
to accommodate more components in the conservative and the equilibrium variables. Lastly,
we simplify the procedure to evaluate the updated cell boundary values resulted from the
hydrostatic reconstruction. This leads to a more efficient and simple way to compute the
well-balanced numerical fluxes than those computed in [30]. Furthermore, the same idea
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can be generalized to preserve other steady state solutions of the Ripa system, including
the isobaric and constant water height equilibria which do not appear in the shallow water
equations.

This paper is organized as follows. In Sect. 2, we introduce some notations and discuss the
well-balanced DGmethod for still-water lake-at-rest equilibrium. Numerical examples using
the methods outlined in Sect. 2 are found in Sect. 3 to demonstrate the accuracy and well-
balanced property of the scheme as well as show that it can aptly handle perturbations of the
still-water steady state and provide good resolution for discontinuous solutions. Although our
main focus is on moving-water well-balanced methods, it is useful to present the still-water
preserving DG methods in Sects. 2 and 3. The purpose is twofold. First, the well-balanced
DG method for still-water equilibrium is not available in the literature and a simple method
achieving such a goal is interesting by itself. Second, this would serve as a basis for the design
of themoving-waterwell-balancedmethods for theRipa system,which is presented in Sect. 4.
We will also show that when applied to still-water equilibrium, the proposed moving-water
well-balanced methods reduce to the still-water well-balanced method in Sect. 2. Addition-
ally, we show how the method can be modified to preserve the constant water height and
isobaric steady states. In Sect. 5, numerical examples of our methods for the one-dimensional
Ripa system are provided, to demonstrate the high order accuracy, well-balanced property,
and good resolution for smooth and discontinuous solutions. Finally, concluding remarks are
contained in Sect. 6.

2 Still-Water Well-Balanced DGMethods

A variety of well-balanced DG methods for the shallow water equations with still-water
steady state solutions

u = 0, h + b = constant (2.1)

have been developed. In this section, we extend the method introduced in [33,36] to provide
still-water well-balanced methods for the Ripa system (1.1), with the still-water steady state
solution (1.5). The same structure will be generalized in Sect. 4 for the moving-water case.
The still-water well-balanced DG methods are much simpler than the moving-water well-
balanced methods, and would be useful if one’s target is to simulate a small perturbation
of the still-water equilibrium state. The still-water well-balanced method presented can be
extended to two-dimensional Ripa models easily. However, there is no general form of the
moving-water equilibrium in two dimensions, hence no two-dimensionalmoving-water well-
balanced methods are available.

2.1 Notation and DG Numerical Scheme

In order to shorten notation, we rewrite (1.1) as

∂tU + ∂x f (U ) = S(U , b), (2.2)

where

U =
⎛

⎝
h
hu
hθ

⎞

⎠ , f (U ) =
⎛

⎝
hu

hu2 + 1
2 gh

2θ

hθu

⎞

⎠ , S(U , b) =
⎛

⎝
0

−ghθbx
0

⎞

⎠ . (2.3)
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The variables U are the conservative variables, f (U ) is the flux, and S(U , b) is the source
term.

We discretize the computational domain into cells I j = [x j− 1
2
, x j+ 1

2
], and denote the size

of the j th cell by �x j . Furthermore, we let τ = max j �x j . We seek an approximation Uτ

which belongs to the finite dimensional DG space:

V
k
τ = {v : v|I j ∈ Pk(I j ), j = 1, . . . , J }, (2.4)

where Pk(I ) is the space of polynomials of degree up to k in the domain I , and J is the total
number of cells. In addition, bτ denotes the projection of the bottom function b into Vk

τ . We
denote U+

τ, j+ 1
2
and U−

τ, j+ 1
2
as the limit values of Uτ at the element interface x j+ 1

2
from the

right cell I j+1 and from the left cell I j , respectively. The conventional DG scheme in each
cell can be formulated as

∫

I j
∂tUτ v dx −

∫

I j
f (Uτ )∂xv dx + f̂ j+ 1

2
v−
j+ 1

2
− f̂ j− 1

2
v+
j− 1

2
=

∫

I j
S(Uτ , bτ )v dx,

(2.5)

where v(x) is a test function from the test space Vk
τ and

f̂ j+ 1
2

= F
(
Uτ

(
x−
j+ 1

2
, t

)
,Uτ

(
x+
j− 1

2
, t

))
,

with F(a, b) being the numerical flux. It has been shown that for high order DG methods,
the effect of different fluxes on the accuracy of methods is relatively small [20]. Therefore,
in this paper, we will employ the use of the simple Lax–Friedrichs flux:

F(a, b) = 1

2

(
f (a) + f (b) − α(b − a)

)
, (2.6)

where α = max(|u| + √
ghθ), and the maximum in the calculation of α is taken either

globally (Lax–Friedrichs flux) or locally (local Lax–Friedrichs flux).
We aim to preserve the lake-at-rest still-water solution (1.5). The well-balanced numerical

scheme, as described in [36] for the shallow water equations, has the form:
∫

I j
∂tU

n
τ v dx −

∫

I j
f (Un

τ )∂xv dx + f̂ l
j+ 1

2
v−
j+ 1

2
− f̂ r

j− 1
2
v+
j− 1

2
=

∫

I j
S(Un

τ , bτ )v dx .(2.7)

Thedesignof f̂ l
j+ 1

2
and f̂ r

j− 1
2
, knownas thewell-balancednumerical fluxes, are definedbelow

in Sect. 2.2. The source term approximation will be discussed in Sect. 2.3. This method is
equivalent to

∫

I j
∂tU

n
τ v dx −

∫

I j
f (Un

τ )∂xv dx + f̂ j+ 1
2
v−
j+ 1

2
− f̂ j− 1

2
v+
j− 1

2

=
∫

I j
S(Un

τ , bτ )v dx + (
f̂ j+ 1

2
− f̂ l

j+ 1
2

)
v−
j+ 1

2
− (

f̂ j− 1
2

− f̂ r
j− 1

2

)
v+
j− 1

2
,

(2.8)

and the terms f̂ j+ 1
2
− f̂ l

j+ 1
2
and f̂ j− 1

2
− f̂ r

j− 1
2
are at the level of O(τ k+1) (independent of the

smoothness of the solution U ) when the bottom topography b is smooth, and can be viewed
as high order correction terms to the source term approximation.
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The total variation diminishing (TVD) Runge–Kutta time discretization is used to increase
temporal accuracy and stability. The third order TVD Runge–Kutta method, described as:

U (1)
τ = Un

τ + �tF(Un
τ ),

U (2)
τ = 3

4
Un

τ + 1

4

(
U (1)

τ + �tF(
U (1)

τ

))
,

Un+1
τ = 1

3
Un

τ + 2

3

(
U (2)

τ + �tF(
U (2)

τ

))
,

(2.9)

is used throughout this paper, where F is the spatial operator. In the following subsections
we describe how the flux functions are defined and the source term is decomposed.

2.2 Well-Balanced Numerical Fluxes

The conservative variable can be decomposed into a reference equilibrium state Ue
τ and

a fluctuation part U f
τ . In each computational cell I j , the equilibrium state Ue

τ (x) can be
computed from the constant equilibrium variables defined as (setting H = h + b)

V̂ j =
⎛

⎝
Ĥ j

m̂ j

θ̂ j

⎞

⎠ =

⎛

⎜
⎜
⎜
⎝

(hτ + bτ )
(
x−
j+ 1

2

)

(hu)τ

(
x−
j+ 1

2

)

θτ

(
x−
j+ 1

2

)

⎞

⎟
⎟
⎟
⎠

, (2.10)

and the bottom function bτ in the form of

Ue
τ, j (x) =

⎛

⎝

heτ, j (x)
(hu)eτ, j (x)
(hθ)eτ, j (x)

⎞

⎠ =
⎛

⎜
⎝

Ĥ j − bτ (x)
m̂ j(

Ĥ j − bτ (x)
)
θ̂ j

⎞

⎟
⎠ , (2.11)

which belongs to the DG space V
k
τ . The fluctuation part U f

τ is then determined by the
decomposition

Uτ = Ue
τ +U f

τ . (2.12)

It is easy to observe that at the still-water steady state (1.5), the reference equilibrium state
Ue

τ is equal to Uτ , and U
f

τ reduces to 0.
The numerical fluxes are constructed following the approaches in [33,36].After computing

the boundary values U±
τ, j+ 1

2
at the time step tn , we set

b∗
τ, j+ 1

2
= max

(
b+
τ, j+ 1

2
, b−

τ, j+ 1
2

)
, (2.13)

by utilizing the idea of hydrostatic reconstruction in [1]. A new hydrostatic reconstruction
method has been presented in [6], which performs better in some cases, for example, when
water runs down a hill. Next, the height function at the cell interface can be redefined as:

h∗,±
τ, j+ 1

2
= max

(
0, h±

τ, j+ 1
2

+ b±
τ, j+ 1

2
− b∗

j+ 1
2

)
, (2.14)
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or equivalently,

h∗,−
τ, j+ 1

2
= max

(
0, Ĥ j − b∗

τ, j+ 1
2

+ (h f )−
τ, j+ 1

2

)
,

h∗,+
τ, j+ 1

2
= max

(
0, Ĥ j+1 − b∗

τ, j+ 1
2

+ (h f )+
τ, j+ 1

2

)
, (2.15)

by using the new defined Ĥ j and h f . This results in the following updated boundary values
of U :

U∗,±
τ, j+ 1

2
=

⎛

⎜
⎜
⎝

h∗,±
τ, j+ 1

2

h∗,±
τ, j+ 1

2
u±

τ, j+ 1
2

h∗,±
τ, j+ 1

2
θ±
τ, j+ 1

2

⎞

⎟
⎟
⎠ . (2.16)

Finally, the left and right fluxes are given as:

f̂ l
j+ 1

2
= F

(
U∗,−

τ, j+ 1
2
,U∗,+

τ, j+ 1
2

)
+ f

(
U−

τ, j+ 1
2

)
− f

(
U∗,−

τ, j+ 1
2

)
,

f̂ r
j− 1

2
= F

(
U∗,−

τ, j− 1
2
,U∗,+

τ, j− 1
2

)
+ f

(
U+

τ, j− 1
2

)
− f

(
U∗,+

τ, j− 1
2

)
.

(2.17)

At the steady state (1.5), although the original cell boundary values h+
τ, j+ 1

2
, h−

τ, j+ 1
2
may not be

the same, we have h±
τ, j+ 1

2
+b±

τ, j+ 1
2

= constant . Then following the definition in (2.14), this

implies h∗,+
τ, j+ 1

2
= h∗,−

τ, j+ 1
2
. Since u±

τ, j+ 1
2

= 0 and θ±
τ, j+ 1

2
= constant at the steady state (1.5),

we can conclude thatU∗
τ is continuous at cell interfaces, i.e.U∗,+

τ, j+ 1
2

= U∗,−
τ, j+ 1

2
. Furthermore,

due to the consistency of the numerical flux F , it can be shown that f̂ l
j+ 1

2
= f

(
U−

τ, j+ 1
2

)
and

f̂ r
j− 1

2
= f

(
U+

τ, j− 1
2

)
, which is a desirable quality for achieving the well-balanced property.

2.3 The Source Term Decomposition

The source term can be decomposed similarly as in (2.12), because S(U , b) = −ghθbx is
linear with respect to the conservative variable hθ :

∫

I j
S
(
Uτ , bτ

)
v dx =

∫

I j
S
(
Ue

τ , bτ

)
v dx +

∫

I j
S
(
U f

τ , bτ

)
v dx . (2.18)

Notice that the second term on the right hand side can be directly computed by any quadrature
rule with sufficient accuracy. On the other hand, since Ue

τ , j (x) is the equilibrium state, the
first term on the right hand side can be expanded as

∫

I j
S
(
Ue

τ , bτ

)
v dx = −

∫

I j
f
(
Ue

τ

)
vx dx + f

(
Ue,−

τ, j+ 1
2

)
v−
j+ 1

2
− f

(
Ue,+

τ, j− 1
2

)
v+
j− 1

2
,

(2.19)

whereUe
τ ∈ V

k
τ is a polynomial. On the numerical level, when all these integrals are replaced

by numerical integrations, this equality holds exactly if one uses a quadrature rule which is
accurate for polynomial of degree 3k − 1. If a less accurate quadrature rule is used, the
equality holds approximately, up to the accuracy of the quadrature rule. Thus the source term
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can be evaluated using the following form:
∫

I j
S
(
Uτ , bτ

)
v dx = −

∫

I j
f
(
Ue

τ

)
vx dx + f

(
Ue,−

τ, j+ 1
2

)
v−
j+ 1

2
− f

(
Ue,+

τ, j− 1
2

)
v+
j− 1

2

+
∫

I j
S
(
U f

τ , bτ

)
v dx . (2.20)

Since the only non-zero source term is in the momentum equation, we can plug in the
definition of the flux and Ue

τ to obtain the following equivalent source term approximation

−
∫

I j
ghτ θτ (bτ )xv dx = 1

2
gθ̂ j

((
Ĥ j − bτ

)2
v
)−
j+ 1

2

− 1

2
gθ̂ j

((
Ĥ j − bτ

)2
v
)+
j− 1

2

−
∫

I j

1

2
gθ̂ j

(
Ĥ j − bτ

)2
vx dx

−
∫

I j
g
(
hτ θτ + (Ĥ j − bτ )θ̂ j

)
(bτ )xv dx

= gθ̂ j

(
b2τ
2

v − Ĥ j bτ v

)−

j+ 1
2

− gθ

(
b2τ
2

v − Ĥ j bτ v

)+

j− 1
2

−
∫

I j
gθ̂ j

(
b2τ
2

− Ĥ j bτ

)

vx dx

−
∫

I j
g
(
hτ θτ + (Ĥ j − bτ )θ̂ j

)
(bτ )xv dx .

(2.21)

This formulation is exactly the extension of the source term approximation introduced in [32]
for the shallow water equations. However, a different well-balanced approach was used in
that paper, where the source term was decomposed as −ghbx = −g(h + b)bx + g(b2)x/2.

Remark 2.1 As we explained, the equality (2.19) holds exactly when a quadrature rule accu-
rate for polynomial of degree 3k − 1 is used. If this is the case, we can simply replace
the source term approximation (2.20) by the direct numerical integration of the source term
− ∫

I j
ghτ θτ (bτ )xv dx with this sufficiently high accurate quadrature rule. In other words, the

numerical integration of the source term is automatically well-balanced, without any special
treatment. The same conclusion has been observed in [33] for the shallow water equations.

Remark 2.2 In this paper, we only consider a source term due to the bottom topography,
which is linear with respect to the conservative variable U . When other nonlinear source
terms (for instance the Manning friction term) are included, the source term decomposition
(2.18) will not hold any more, but one can introduce the following decomposition in a similar
manner

∫

I j
S(U , b)v dx =

∫

I j
S(Ue, b)v dx +

∫

I j

(
S(U , b) − S(Ue, b)

)
v dx . (2.22)

Note that when S is linear, i.e., S(U , b)−S(Ue, b) = S(U−Ue, b) = S(U f , b), this decom-
position reduces to (2.18). The first term on the right hand side of (2.22) can be approximated
as in (2.19), and the second term on the right hand side is computed by a straightforward
numerical integral. This will provide well-balanced source term approximation.

Remark 2.3 When the bottom topography is flat (i.e., b(x) = constant C), the traditional
DG methods are recovered from our well-balanced DG scheme, that is, the source term
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approximation reduces to 0 exactly and the left and right numerical fluxes reduce to the
original fluxes. First, when b(x) = C is a constant, one has bτ (x) = C , therefore the source
term approximation presented in (2.21) simply reduces to zero. Second, when b(x) = C ,
b∗
τ, j± 1

2
defined in (2.13), is also the same constant, which leads to

h∗,±
τ, j+ 1

2
= max

(
0, h±

τ, j+ 1
2

+ b±
τ, j+ 1

2
− b∗

j+ 1
2

)
= h±

τ, j+ 1
2
.

More generally we have U∗,±
τ, j+ 1

2
= U±

τ, j+ 1
2
. Therefore the left and right numerical fluxes

defined in (2.17) reduce to the original DG fluxes: f̂ l
j+ 1

2
= f̂ j+ 1

2
, f̂ r

j− 1
2

= f̂ j− 1
2
.

At the end of this section, we show that the proposed numerical methods are well-balanced
for the still-water steady state solutions.

Proposition 1 The DG scheme (2.7) for the Ripa system (1.1), paired with the numerical
fluxes (2.17) and source term approximation (2.20), is well-balanced for the still-water steady
state (1.5).

One can easily verify this holds by observing that U f
τ = 0 at the lake-at-rest still-water

steady state, and thus the well-balanced numerical fluxes reduce to f̂ l
j+ 1

2
= f

(
U−

τ, j+ 1
2

)
and

f̂ r
j− 1

2
= f

(
U+

τ, j− 1
2

)
.

Remark 2.4 Although the description is for one dimensional problemonly, the proposedwell-
balancedmethods for the still-water steady state (1.5) can be extended to the two-dimensional
problem in a straightforward way.

3 Numerical Tests for the Still-Water Well-BalancedMethods

In this section, we present numerical results of our still-water well-balanced DG methods,
described in Sect. 2, for the Ripa system (1.1). Piecewise quadratic polynomials (k = 2) in
space, paired with the third order TVD Runge–Kutta time discretization (2.9), are used in the
tests. The CFL number is taken to be 0.1. The constant M in the TVB limiter is taken to be
0, except for the accuracy test, in which no slope limiter was implemented. The gravitational
constant g is fixed to be 9.812 m/s2. We compute multiple types of tests: an accuracy test,
verification of the well-balanced property, small perturbations of steady states, and tests for
discontinuous solutions.

3.1 Accuracy Test

In this subsection, we test the accuracy of our still-water well-balanced scheme for smooth
solutions. The initial conditions in the domain x ∈ [0, 1] are given by

⎧
⎪⎨

⎪⎩

h(x, 0) = 5 + esin(2πx),

(hu)(x, 0) = sin(cos(2πx)),

θ(x, 0) = sin(2πx) + 2,

(3.1)

with the bottom function b(x) = sin2(πx) and periodic boundary conditions. We run the
simulation until time 0.02, while the solution is still smooth. Since there is no explicitly
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Fig. 1 Solutions of well-balanced methods for the accuracy test in Sect. 3.1 at time t = 0.02

Table 1 L1 errors and orders of accuracy for the test in Sect. 3.1, using the still-water well-balanced method

No. of cells h hu hθ

L1 error Order L1 error Order L1 error Order

25 0.001347 0.012963 0.001480

50 0.000205 2.7137 0.001757 2.8829 0.000206 2.8442

100 2.9801e−05 2.7842 0.000226 2.9580 3.2526e−05 2.6638

200 4.0093e−06 2.8939 2.9190e−05 2.9539 5.1699e−06 2.6534

400 5.0280e−07 2.9953 3.6862e−06 2.9852 7.3483e−07 2.8146

known solution in this case, the errors are computed by comparing numerical results of
uniform meshes with size J and 2J . Figure1 displays the numerical solutions at time 0.02
with 200 uniform cells. Table1 contains the L1 errors and numerical orders or accuracy. We
can observe that the third order convergence rate is achieved which matches our expectation
of order k + 1 accuracy.

3.2 Tests for theWell-Balanced Property

The following tests are chosen to verify that the DG methods preserve the still-water steady
state (1.3) with a non-flat bottom. For these examples, the errors are calculated by comparing
the numerical results to the initial conditions.

First, we will consider the following still-water steady state for x ∈ [0, 1]
h + b = 2, u = 0, θ = 10. (3.2)

The bottom function is discontinuous and defined as

b(x) =
{
1, if 0.3 < x < 0.7,

0, otherwise,

and transmissive boundary conditions are employed. We plot the numerical results at time
t = 1 with 200 uniform cells in Fig. 2, with the L1 and L∞ errors shown in Table2. From
the error table, it can be concluded that the well-balanced property is achieved.

Second, we consider another lake-at-rest still-water steady state problem in which the
bottom function defined on the interval domain [−2, 2] consists of two humps and is defined
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Table 2 L1 and L∞ errors for the well-balanced test to preserve the still-water equilibria

Test L1 error L∞ error

h hu hθ h hu hθ

(3.2) 9.9959e−16 7.6925e−15 3.9599e−15 2.6401e−13 4.2333e−12 1.9380e−12

(3.4) 6.9148e−17 1.6519e−15 2.7659e−16 2.8422e−14 4.2056e−12 1.1369e−13

Fig. 2 Solution of well-balanced methods for the still-water steady state problem (3.2) at t = 1. The steady
state is preserved as h + b, hu, and θ are constant

as

b(x) =

⎧
⎪⎨

⎪⎩

0.85(cos(10π(x + 0.9)) + 1), if − 1 ≤ x ≤ −0.8,

1.25(cos(10π(x − 0.4)) + 1), if 0.3 ≤ x ≤ 0.5,

0, otherwise.

(3.3)

The initial conditions are set as:

h(x, 0) = 6 − b(x), u(x, 0) = 0, θ(x, 0) = 4. (3.4)

We run the simulation until time t = 1. The numerical results are shown in Fig. 3, and
the L1, L∞ errors of the numerical solution with 200 uniform cells are presented in Table2,
which shows that the well-balanced property is again maintained. For comparison, we also
run the same test with the traditional DG method (i.e., the standard numerical fluxes and the
straightforward integration of the source term). The numerical results are presented in Figs. 4
and 5, where we can observe that the steady state is not preserved. It can be seen that, at the
region where the bottom function is non-zero, h + b does not preserve the constant steady
state, and the solution hu is non-zero.

3.3 Tests of Small Perturbations

The tests in this subsection are selected to demonstrate that perturbations to the still-water
steady states are aptly captured by the proposed well-balanced scheme. We will also com-
pare the performance of well-balanced and traditional DG schemes. Prior to defining the
perturbations, let us denote χ as the indicator function on an interval:

χ[a,b] =
{
1, if x ∈ [a, b],
0, otherwise,

(3.5)
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Fig. 3 Solution of well-balanced methods for the still-water steady state flow over two bumps (3.4) at t = 1,
with 200 uniform cells

Fig. 4 Solution of non-well-balanced methods for the still-water steady state flow over two bumps (3.4) with
200 uniform cells. It can be seen that the steady state for h + b is not preserved, as the water surface is not flat
above the not-constant portions of the bottom function. The bottom figures show zoomed in images of h + b
where b is non-constant
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Fig. 5 Solution for hu of the non-well-balanced methods for the still-water steady state flow over two bumps
(3.4) with 200 uniform cells. It can be seen that the steady state solution of hu is not preserved as it is non-zero

and denote the still-water steady state initial conditions (3.4) in Sect. 3.2 as
(
heq , (hu)eq ,

(hθ)eq
)
(x, 0). We will examine the numerical results with three different perturbations out-

lined below.

(a) Small perturbation to both h and hθ First, perturbations of sizes 0.01, 0.04 are applied
to the initial conditions of h and hθ , respectively, in the interval [−1.5,−1.4]:

(
h, hu, hθ

)
(x, 0) = (

heq , (hu)eq , (hθ)eq
)
(x, 0) + [0.01, 0, 0.04]χ[−1.5,−1.4]. (3.6)

(b) Small perturbation to h Second, a small perturbation of size 0.01 is applied to the initial
condition of h in the interval [−1.5,−1.4]:

(
h, hu, hθ

)
(x, 0) = (

heq , (hu)eq , (hθ)eq
)
(x, 0) + [0.01, 0, 0]χ[−1.5,−1.4]. (3.7)

(c) Large perturbation to h Third, a larger perturbation of size 1 is applied to the initial
condition of h in the interval [−1.5,−1.4]:

(
h, hu, hθ

)
(x, 0) = (

heq , (hu)eq , (hθ)eq
)
(x, 0) + [1, 0, 0]χ[−1.5,−1.4]. (3.8)

The numerical test with the initial condition (3.8) is considered in [9,28] and will be
compared to the other tests (3.6), (3.7) in this section. The perturbation of the test (3.6) splits
into two waves moving away from the point of origin. On the other hand, the perturbation of
the tests (3.7) and (3.8) split into three waves. The two outer waves move away from the point
of origin, as expected, while there is a third wave in the center which remains unmoved in
the perturbed region. The amplitude of this wave reduces until it reaches a total water height
of approximately 6.005 for the test (3.7) and 6.479 for the test (3.8). In the same interval,
the value of hθ converges to a value of approximately 23.980 for the test (3.7) and 22.215
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Fig. 6 Initial conditions and numerical solution of water surface h + b for the perturbation tests (3.6), with
200 and 800 uniform cells. The initial perturbation split into two waves moving away from the point of origin.
At time t = 0.125, the downstream moving wave has passed over the two bumps in the bottom topography
and the upstream wave has exited the domain. The bottom left plot contains the original perturbation and the
bottom right plot contains a zoomed in image of the remaining downstream moving wave

for the test (3.8). It is easy to verify that, in this region, the solution converges to an isobaric
steady state (1.6) as h2θ stays constant inside and outside of the interval.

We run the test until time t = 0.125. At this point for all perturbation examples, the
downstreammoving wave has passed through both bumps of the bottom topography function
and the upstreammoving wave has exited the domain. Figures6 and 7 compare the numerical
results of three perturbation tests for h+b using well-balanced DGmethods with mesh sizes
of 200 and 800 uniform cells. It can be observed that the solutions are well captured by
our methods. Figure8 compares the results of three cases for hu and hθ . We would like to
point out that the solutions contain the isobaric steady state in the interval [−1.5,−1.4] [for
examples (3.7) and (3.8)], and our methods perform well for these test cases.

Next we examine the performance of the the traditional DG scheme on the same test cases.
Figure9 includes the numerical results for these tests. It can be seen that the traditional DG
scheme does not handle the perturbation as well as the well-balanced scheme. It is especially
evident for examples (3.6) and (3.7) in which the initial perturbations were small.
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Fig. 8 Initial conditions and numerical solution of hu, hθ for the perturbation tests (3.6) (top row), (3.7)
(middle row), (3.8) (bottom row), with 200 and 800 uniform cells at time t = 0.125. Although the shape of
hu is similar for all cases, the amplitude varies
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Fig. 9 Solutions of perturbation tests (3.6) (top row), (3.7) (middle row), and (3.8) (bottom row), using the
traditional DGmethod. In all cases, the traditional DG scheme doesn’t handle perturbations as well as the still-
water well-balanced scheme. The larger the perturbation, the closer the results of the traditional DG methods
are to the well-balanced method

3.4 Tests for Riemann Problems

In this subsection, we consider problems that contain discontinuities in the initial conditions,
known as Riemann problems or dam break problems for the shallow water equations.

First, we consider the dam break problem in the computational domain [−200, 400] with
the initial conditions

(h, u, θ)(x, 0) =
{

(5, 0, 20), when x < 0,

(10, 40, 5), when x ≥ 0.
(3.9)

The bottom function is given as b(x) = 0 and we employ transmissive boundary conditions.
This example is computed using the still-water well-balanced DG method with a uniform
mesh of 200 cells. Figure10 displays the numerical results at times t = 1, 2, and 3, and the
solutions are captured well by our methods.
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Fig. 10 Numerical solutions of the well-balanced DG methods for (3.9) at various times with 200 uniform
cells

Fig. 11 Initial conditions and numerical solutions of test (3.11) at time t = 0.05 using 200 uniform cells. The
water surface h+ b, bottom topography b, potential temperature field θ , and pressure p = 1

2 gh
2θ are plotted.

The result for θ is a horizontal translation of the initial condition

Next, we look at the dam break problem over a non-flat bottom. We define the bottom
topography on the domain [−1, 1] to include two bumps:

b(x) =

⎧
⎪⎨

⎪⎩

0.5 cos (10π(x + 0.3)) + 1, when − 0.4 ≤ x ≤ −0.2,

0.75 cos (10π(x − 0.3)) + 1, when 0.2 ≤ x ≤ 0.4,

0, otherwise.

(3.10)

The initial conditions are defined as:

(h, u, θ)(x, 0) =
{

(5, 0, 3), when x < 0,

(2, 0, 5), when x ≥ 0.
(3.11)

We test the problem until time 0.05. Figure11 shows the results at the final time, compared
to the initial conditions. We see that the potential temperature field at the final time is a
horizontal translation of the initial condition. The proposed DG methods can capture the
discontinuity very well even on a coarse mesh of 200 uniform cells.

4 Moving-Water Well-Balanced DGMethods

The objective of this section is to present well-balanced methods which maintain the general
moving steady state (1.8). Compared with the still-water equilibrium, the moving-water
steady state is more complex, therefore, special care is provided to the recovery of the
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well-balanced states, the source term approximation, and the construction of well-balanced
numerical fluxes.We also showhow thewell-balancedmethods for the generalmoving steady
state can be extended to the isobaric (1.6) and constant water height (1.7) steady states.

4.1 Numerical Initial Conditions

Recovery of the well-balanced states from the numerical initial conditions in the piecewise
polynomial space Vk

τ can be a challenging task. Usually, the initial conditions of the modal
DG method are taken to be the L2 projection of the true initial conditions U0, which works
well for the lake-at-rest still-water preserving methods. However, the projected polynomial,
denoted as U0,τ , may not be in the equilibrium state when the moving-water equilibrium is
considered. As a result, the cell boundary values U±

τ, j+ 1
2
may not be in equilibrium. This is

problematic because the cell boundary values are used to compute the numerical fluxes and
thus increases the difficulty in designing a well-balanced scheme.

This difficulty has been observed in [30] in which well-balanced methods were designed
for the shallow water equations with moving-water equilibrium state. It was resolved there
by defining the well-balanced states as the solutions of nonlinear equations and then solving
them using Newton’s method, which could be complicated. In this paper, we propose a
different and much simpler method to define the numerical initial conditions and to recover
the well-balanced states, thanks to the flexibility of the DG methods.

The initial conditions of the DGmethod should be polynomials that approximate the exact
solutions with enough accuracy. Thus we introduce a new projection (known as the Radau
projection) of the initial condition by defining Pτω to be a projection of ω intoVk

τ , such that
∫

I j
Pτωv dx =

∫

I j
ωv dx (4.1)

for any v ∈ Pk−1 on I j , and

(Pτω)

(

x−
j+ 1

2

)

= ω
(
x j+ 1

2

)
, (4.2)

at the right boundary value x j+ 1
2
of the cell I j . The polynomial Pτω for each cell I j can be

determined by solving a local linear algebra problem of the size (k + 1) × (k + 1) derived
from the discretized versions of (4.1) and (4.2).

We define the projection of the initial condition U0,τ and the projection of the bottom
function bτ (x) to be

U0,τ (x) = PτU0(x), bτ (x) = Pτb(x), (4.3)

and it can be shown that

U0,τ

(

x−
j+ 1

2

)

= U0

(
x j+ 1

2

)
, bτ

(

x−
j+ 1

2

)

= b
(
x j+ 1

2

)
, for all j . (4.4)

Thus, at the right boundary point of each cell I j , the equilibrium states (1.8) are recovered
using the piecewise polynomial projections of the exact solutions, i.e.,

(
u2τ
2

+ gθτ (hτ + bτ )

) (

x−
j+ 1

2

)

= constant, for all j .

Notice that the numerical initial condition is only in perfect equilibrium at the right boundary
point of each cell.
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Remark 4.1 The choice of the projection Pτ is not unique. Instead of requiring the projected
function match the original function at the right end point x j+ 1

2
as in (4.2), we could choose

any other point in the cell I j , except the center x j . Such projection with the choice of x j
has been presented in [18]. However, we noticed that projection is only optimal when the
polynomial degree k is even, and it is suboptimal when k is odd.

4.2 Conservative and EquilibriumVariables

We denote the moving-water equilibrium variables from (1.8) as:

V =
⎛

⎝
E
m
θ

⎞

⎠ =
⎛

⎝

u2
2 + gθ(h + b)

hu
θ

⎞

⎠ , (4.5)

which become constants at the steady state (1.8). It is necessary to transform the conservative
variables U into equilibrium variables V , and vice versa in the process of maintaining the
well-balanced property. Given U and the bottom function b, the equilibrium variables can
be easily computed, and we denote it by V = V (U , b). On the other hand, suppose V and
the bottom function b are given, we can evaluate U = U (V , b) in the following way. Let us
rewrite E as

E = m2

2h2
+ gθ(h + b), (4.6)

which leads to the cubic polynomial

m2

2
+ (gθb − E)h2 + (gθ)h3 = 0. (4.7)

To recover the water height h, we find the correct root of this cubic polynomial. Three roots
of a cubic polynomial can be found analytically. If the polynomial returns three real-valued
roots, one of them is negative, and the other two correspond to the subsonic and supersonic
cases. We choose h(V , b) as the root that is closest to hτ (x̂i ), where x̂i is either a quadrature
point or a cell-boundary value. In the other case when the polynomial has one real-valued root
and two complex-valued roots, the only real-valued root is negative and we choose h(V , b)
to be the real part of the complex roots. Once h is obtained,m and hθ can be easily recovered
from V .

Next, we propose to decompose the solution Uτ , into the reference equilibrium state Ue
τ

and the fluctuation part U f
τ , with the expectation that U f

τ reduces to 0 at the moving-water
equilibrium (1.8). Note that this decomposition will be computed not only for the initial
conditions, but also at each time step. In each computational cell I j , the equilibrium state
Ue

τ (x) can be computed from the constant equilibrium variables

V̂ j =
⎛

⎝
Ê j

m̂ j

θ̂ j

⎞

⎠ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Eτ

(

x−
j+ 1

2

)

mτ

(

x−
j+ 1

2

)

θτ

(

x−
j+ 1

2

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.8)
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and the bottom function bτ in the form of

Ue
τ (x) =

⎛

⎝
heτ (x)

(hu)eτ (x)
(hθ)eτ (x)

⎞

⎠ := PτU (V̂ j , bτ ). (4.9)

Unlike the still-water case in (2.11), the functions U (V̂ j , bτ ) may not be piecewise poly-
nomials as a result of the nonlinear mapping, even though V̂ j is constant and bτ ∈ V

k
τ .

Therefore, the same projection Pτ is used to project them into the DG space Vk
τ . Lastly, we

can decompose the numerical solution Uτ as follows:

Uτ = Ue
τ +U f

τ , (4.10)

whereU f
τ = Uτ −Ue

τ ∈ V
k
τ . If the initial conditionU0(x) is in themoving-water equilibrium

(1.8), the reference equilibrium state Ue
τ (constructed in the way above) is identical to the

solution Uτ , and therefore U f
τ = 0.

4.3 Well-Balanced Numerical Fluxes

The semi-discrete moving-water well-balanced DG method for (2.2) is defined as follows:
we seek the DG solution Uτ satisfying

∫

I j
∂t (Uτ )v dx −

∫

I j
f (Uτ )∂xv dx + f̂ l

j+ 1
2
v−
j+ 1

2
− f̂ r

j− 1
2
v+
j− 1

2
=

∫

I j
S(Uτ , bτ )v dx,

(4.11)

for any test function v(x) ∈ V
k
τ . In order to determine the well-balanced numerical fluxes,

we extend the hydrostatic reconstruction approach presented in Sect. 2.2 for the still-water
equilibrium. After computing the boundary values U±

τ, j+ 1
2
at the time step tn , we again set

b∗
τ, j± 1

2
= max

(
b+
τ, j± 1

2
, b−

τ, j± 1
2

)
. (4.12)

However, other generalizations of the hydrostatic reconstruction could also be used. Next,
the height function at the cell interface can be redefined as:

h∗,−
τ, j+ 1

2
= max

(

0, h
(
V̂ j , b

∗
τ, j+ 1

2

)
+ h f ,−

τ, j+ 1
2

)

,

h∗,+
τ, j+ 1

2
= max

(

0, h
(
V̂ j+1, b

∗
τ, j+ 1

2

)
+ h f ,+

τ, j+ 1
2

)

, (4.13)

where the values V̂ j are given in (4.8) and h f
τ is given in (4.10). This results in following

updated boundary values of U :

U∗,±
τ, j+ 1

2
=

⎛

⎜
⎜
⎝

h∗,±
τ, j+ 1

2

m±
τ, j+ 1

2

h∗,±
τ, j+ 1

2
θ±
τ, j+ 1

2

⎞

⎟
⎟
⎠ . (4.14)

Finally, the well-balanced numerical fluxes can be computed:

f̂ l
j+ 1

2
= F

(
U∗,−

τ, j+ 1
2
,U∗,+

τ, j+ 1
2

)
+ f

(
U−

τ, j+ 1
2

)
− f

(
U∗,−

τ, j+ 1
2

)
,

f̂ r
j− 1

2
= F

(
U∗,−

τ, j− 1
2
,U∗,+

τ, j− 1
2

)
+ f

(
U+

τ, j− 1
2

)
− f

(
U∗,+

τ, j− 1
2

)
,

(4.15)
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where F(a, b) is a consistent numerical flux, such as the Lax–Friedrichs flux defined in
(2.6). Again, at the moving-water equilibrium (1.8), we have V̂ j = constant and h f

τ = 0,
therefore, h∗,+

τ, j+ 1
2

= h∗,−
τ, j+ 1

2
following the definition in (4.13). This leads to the continuity of

U∗
τ at cell interfaces, i.e. U∗,+

τ, j+ 1
2

= U∗,−
τ, j+ 1

2
. As a result, we can show that

f̂ l
j+ 1

2
= f

(

U−
j+ 1

2

)

, f̂ r
j− 1

2
= f

(

U+
j− 1

2

)

, (4.16)

due to the consistency of the numerical flux F(a, b).

Remark 4.2 The recovery of h from the equilibriumvariable V via solving a cubic polynomial
is needed twice at each time step, namely in (4.9) and (4.13) described above. Numerically,
the cubic polynomial computations allot for approximately 10–12% of total computational
time. One could further reduce the computational cost if redefining the variable b∗ in (4.12)
to

b∗
τ, j± 1

2
= b−

τ, j± 1
2
, (4.17)

which matches the definition of the Radau projection in (4.2). Therefore, h(V̂ j , b∗
τ, j+ 1

2
)

reduces to h−
τ, j+ 1

2
, and the updated cell boundary value h∗,± in (4.13) becomes

h∗,−
τ, j+ 1

2
= max

(

0, h−
τ, j+ 1

2
+ h f ,−

τ, j+ 1
2

)

, h∗,+
τ, j+ 1

2
= max

(

0, h−
τ, j+ 1

2
+ h f ,+

τ, j+ 1
2

)

,

(4.18)

which now does not involve the step to solve the cubic polynomial.

4.4 The Source Term Approximation

To maintain the well-balanced property, we introduce the following way to decompose the
source term, by directly extending the idea in Sect. 2.3 for the still-water equilibrium. We
first decompose the source term into the equilibrium and fluctuation parts

∫

S(Uτ , bτ )v dx =
∫

S(Ue
τ , bτ )v dx +

∫

S(U f
τ , bτ )v dx . (4.19)

As before, we use a quadrature rule to compute the second term on the right hand side. For
the first term, we notice that the equality

∫

I j
S
(
U (V̂ j , bτ ), bτ

)
v dx = −

∫

I j
f
(
U (V̂ j , bτ )

)
vx dx + f

(
U (V̂ j , bτ )

(
x−
j+ 1

2

))
v−
j+ 1

2

− f
(
U (V̂ j , bτ )

(
x+
j− 1

2

))
v+
j− 1

2
, (4.20)

holdswhen the exact integration is used, sinceU (V̂ j , bτ ) is the equilibrium solution in the cell
I j . In (4.9),Ue

τ is defined as the projection ofU (V̂ j , bτ ) with approximation error O(τ k+1).
Taking this error into consideration, the equation (4.20) becomes

∫

I j
S(Ue

τ , bτ )v dx + O
(
τ k+1

)
= −

∫

I j
f (Ue

τ )vx dx + f
(
Ue,−

τ, j+ 1
2

)
v−
j+ 1

2

− f
(
Ue,+

τ, j− 1
2

)
v+
j− 1

2
, (4.21)

123



   30 Page 24 of 37 Journal of Scientific Computing            (2020) 82:30 

in which the integrals can also be computed via quadrature rule with the same error O(τ k+1).
Unlike the still-water case in Sect. 2.3, the term f (Ue

τ ) is no longer a polynomial, even though
Ue

τ is, and we cannot compute these integrals exactly with a sufficiently accuracy quadrature
rule. To this end, the source term can be evaluated using the following form:

∫

I j
S(Uτ , bτ )v dx = −

∫

I j
f (Ue

τ )vx dx + f
(
Ue,−

τ, j+ 1
2

)
v−
j+ 1

2

− f
(
Ue,+

τ, j− 1
2

)
v+
j− 1

2
+

∫

I j
S
(
U f

τ , bτ

)
v dx . (4.22)

4.5 Slope Limiter

When the solution contains discontinuities, a slope limiter procedure may be necessary after
each inner stage of the Runge–Kutta time stepping procedure. We use the standard total
variation bounded (TVB) slope limiter [27] presented below. The TVB corrected minmod
function is defined by

m̃(a1, . . . , al) =
{
a1, if |a1| ≤ Mτ 2,

m(a1, . . . , al), otherwise,
(4.23)

where M is the TVB parameter, and the minmod function m(a1, . . . , al) is defined as:

m(a1, . . . , al) =
{
smin(|a1|, . . . , |al |), if s = sign(a1) = · · · = sign(al),

0, otherwise .
(4.24)

The slope limiter procedure involves two steps. First, one must check if any limiting in
needed in a specific cell. If the corrected minmod function returns the first argument, i.e.,

m̃
(
Uτ

(
x−
j+ 1

2

)
− Ūτ, j , Ūτ, j − Ūτ, j−1, Ūτ, j+1 − Ūτ, j

)
= Uτ

(
x−
j+ 1

2

)
− Ūτ, j ,

m̃
(
Ūτ, j −Uτ

(
x+
j− 1

2

)
, Ūτ, j − Ūτ, j−1, Ūτ, j+1 − Ūτ, j

)
= Ūτ, j −Uτ

(
x+
j− 1

2

)
,
(4.25)

with Ūτ, j standing for the cell average of Uτ in the cell I j , the limiting is not necessary in
this cell. Otherwise, we need to apply the limiter to all the variables in that cell, which is the
second step of the slope limiter procedure. We define the modified cell boundary values to
be

U (mod)
τ

(
x−
j+ 1

2

)
= Ūτ, j + m̃

(
Uτ

(
x−
j+ 1

2

)
− Ūτ, j , Ūτ, j − Ūτ, j−1, Ūτ, j+1 − Ūτ, j

)
,

U (mod)
τ

(
x+
j− 1

2

)
= Ūτ, j − m̃

(
Ūτ, j −Uτ

(
x+
j− 1

2

)
, Ūτ, j − Ūτ, j−1, Ūτ, j+1 − Ūτ, j

)
.
(4.26)

A P2 polynomial that preserves the original cell average in I j can then be recovered from
the updated cell boundary values (4.26) and the cell average Ūτ, j .

This limiting proceduremay not preserve themoving-water equilibrium state (1.8). There-
fore, to maintain the well-balanced state when using the slope limiter, we perform the first
step (4.25) to determine if limiting is necessary in each cell, based on the fluctuation part
of the variables U f

τ . If limiting is required in a specific cell, the slope limiting procedure
is performed on the conservation variables Uτ . If the steady state solution is reached, the
fluctuation part satisfies U f

τ = 0, hence no TVB limiter is needed in any cell. Therefore
the well-balanced property will not be affected by the limiter procedure. Unlike in [30], we
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cannot use the equilibrium variable Vτ in the first step (4.25), due to the possibility of the
cell average V̄τ not being in equilibrium even at the moving-water steady state.

4.6 Well-Balanced Property

Proposition 2 The proposed DG scheme (4.11) for the Ripa system (1.1), paired with numer-
ical fluxes (4.15) and source term approximation (4.22), is well-balanced for the smooth
moving-water equilibrium (1.8).

Proof Suppose the initial data aremoving-water steady state equilibria. The special projection
Pτ ensures that the equilibrium state is maintained at the cell boundary x−

j+1/2 for all j for the

numerical initial conditions. Therefore, from the definition of (4.8), we have V̂ j = constant
for all j . This implies the equilibrium partUe

τ , computed from V̂ j and bτ in (4.9), is equivalent

to Uτ and that U f
τ = 0. The source term approximation (4.22) becomes

∫

I j
S(Uτ , bτ )v dx = −

∫

I j
f (Uτ )vx dx + f

(
U−

τ, j+ 1
2

)
v−
j+ 1

2
− f

(
U+

τ, j− 1
2

)
v+
j− 1

2
(4.27)

At the same time, since U f
τ = 0, the modified cell boundary values satisfy

U∗,−
τ, j+ 1

2
=

⎛

⎜
⎜
⎜
⎝

max
(
0, h

(
V̂ j , b

∗
j+ 1

2

))

m̂−
j+ 1

2

max
(
0, h

(
V̂ j , b

∗
j+ 1

2

))
θ̂−
j+ 1

2

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

max
(
0, h

(
V̂ j+1, b

∗
j+ 1

2

))

m̂+
j+ 1

2

max
(
0, h

(
V̂ j+1, b

∗
j+ 1

2

))
θ̂+
j+ 1

2

⎞

⎟
⎟
⎟
⎠

= U∗,+
τ, j+ 1

2
.

(4.28)

Due to the consistency of the Lax–Friedrichs flux and (4.28), it can be shown that

f̂ l
j+ 1

2
= f

(
U−

τ, j+ 1
2

)
, f̂ r

j− 1
2

= f
(
U+

τ, j− 1
2

)
, (4.29)

and the flux terms at the left hand side of (4.11) reduce to

−
∫

I j
f (Uτ )∂xv dx + f

(
U−

τ, j+ 1
2

)
v−
j+ 1

2
− f

(
U+

τ, j− 1
2

)
v+
j− 1

2
.

It thus follows that the flux terms exactly balance the source term approximation, and the
well-balanced property is proven. �	

We finish this section with some remarks about the moving-water equilibrium preserving
well-balanced RKDG method.

Remark 4.3 When the bottom topography is flat (i.e., b(x) = constant C), the traditional
DG methods are recovered from our well-balanced DG scheme, that is, the source term
approximation reduces to 0 exactly and the left and right numerical fluxes reduce to the
original fluxes. First of all, in each cell I j , V̂ j defined in (4.8) is a scalar number. When
b(x) = C is a constant, the value of h(V̂ j ,C) is also a constant which does not depend on
x within each cell I j . The same observation holds for Ue

τ (x) ≡ PτU (V̂ j ,C). Therefore, we
have
∫

I j
S

(
Ue

τ , bτ

)
v dx = −

∫

I j
f
(
Ue

τ

)
vx dx + f

(

Ue,−
τ, j+ 1

2

)

v−
j+ 1

2
− f

(

Ue,+
τ, j− 1

2

)

v+
j− 1

2
= 0.
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Also, the numerical integral
∫

I j
S

(
U f

τ , bτ

)
v dx = 0, since bτ (x) = C leads to (bτ )x = 0.

Together, this implies the source term approximation presented in (4.22) is zero.
Second, we show that the well-balanced numerical flux reduces to the standard DG flux.

Note that, when b(x) = C is a constant, b∗
τ, j± 1

2
defined by (4.12) or (4.17) is also the same

constant C . Therefore,

h∗,−
τ, j+ 1

2
= max

(

0, h(V̂ j ,C) + h f ,−
τ, j+ 1

2

)

= max

(

0, he,−
τ, j+ 1

2
+ h f ,−

τ, j+ 1
2

)

= h−
τ, j+ 1

2
.

(4.30)

Similarly, it can be shown that h∗,+
τ, j+ 1

2
= h+

τ, j+ 1
2
and more generally thatU∗,±

τ, j+ 1
2

= U±
τ, j+ 1

2
.

Therefore the left and right numerical fluxes defined in (4.15) reduce to the original DG
fluxes: f̂ l

j+ 1
2

= f̂ j+ 1
2
, f̂ r

j− 1
2

= f̂ j− 1
2
.

Remark 4.4 Our well-balanced methods are designed to preserve the moving-water equi-
librium (1.8). When applied to the still-water steady state (1.5), which is a special case of
the moving-water equilibrium with m = 0, they should automatically preserve this simpler
equilibrium. In fact, they reduce to the same still-water well-balanced methods presented in
Sect. 2 with the exception of the choice of projection.

4.7 Well-BalancedMethods for the ConstantWater Height and Isobaric Equilibria

The proposed framework to balance the moving-water equilibrium can also be extended
to preserve the constant water height steady state (1.7) and the isobaric steady state (1.6)
of the Ripa model. For each given equilibrium, one well-balanced method to balance this
equilibrium can be designed, but we cannot combine these into a unified well-balanced
method. Below, we will discuss how to design such scheme briefly with some necessary
details provided.

First, let’s consider the constantwater height steady state solution (1.7). Let the equilibrium
variables be denoted

V̂ j =
⎛

⎝
ĥ j

m̂ j

L̂ j

⎞

⎠ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

hτ

(

x−
j+ 1

2

)

(hu)τ

(

x−
j+ 1

2

)

(
bτ + 1

2hτ ln θτ

)
(

x−
j+ 1

2

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.31)

then the equilibrium parts can be determined as follows:

Ue
τ, j (x) =

⎛

⎝

heτ, j (x)
(hu)eτ, j (x)
(hθ)eτ, j (x)

⎞

⎠ =

⎛

⎜
⎜
⎝

ĥ j

m̂ j

ĥ jPτ

(

exp

(
2
ĥ j

(L̂ j − bτ (x))

))

⎞

⎟
⎟
⎠ , (4.32)

where Pτ is the same Radau projection described in (4.1) and (4.2). The fluctuation partU f
τ

is again determined by the decompositionUτ = Ue
τ +U f

τ . Next, we determine the modified
cell interface values as
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(hθ)
∗,−
τ, j+ 1

2
= max

(

0, ĥ j exp

(
2

ĥ j

(
L̂ j − b∗

τ, j+ 1
2

)
)

+ (hθ)
f ,−
j+ 1

2

)

,

(hθ)
∗,+
τ, j+ 1

2
= max

(

0, ĥ j+1 exp

(
2

ĥ j+1

(
L̂ j+1 − b∗

τ, j+ 1
2

)
)

+ (hθ)
f ,+
j+ 1

2

)

,

(4.33)

where b∗
τ, j+ 1

2
= max

(
b+
τ, j+ 1

2
, b−

τ, j+ 1
2

)
. We let h∗,±

τ, j+ 1
2

= h±
τ, j+ 1

2
and (hu)

∗,±
τ, j+ 1

2
=

(hu)±
τ, j+ 1

2
. Then at the steady state we haveU∗,−

τ, j+ 1
2

= U∗,+
τ, j+ 1

2
since h, hu are both constant

and U f
τ = 0 at the steady state. Lastly, let the choices of left and right fluxes as well as

the source term approximation be the same as for the moving-water schemes. The numeri-
cal methods designed in this way can be shown to preserve the constant water height state
exactly.

Secondly, the isobaric steady state solution (1.6) is considered. Let us denote the equilib-
rium variables as

V̂ j =
(
m̂ j

Ŝ j

)

=

⎛

⎜
⎜
⎝

(hu)τ

(

x−
j+ 1

2

)

hτ (hθ)τ

(

x−
j+ 1

2

)

⎞

⎟
⎟
⎠ , (4.34)

then the equilibrium parts can be determined as

Ue
τ, j (x) =

⎛

⎝

heτ, j (x)
(hu)eτ, j (x)
(hθ)eτ, j (x)

⎞

⎠ =

⎛

⎜
⎜
⎝

hτ, j (x)
m̂ j

Pτ

(
Ŝ j

hτ, j (x)

)

⎞

⎟
⎟
⎠ , (4.35)

and the fluctuation part is defined by U f
τ = Uτ − Ue

τ . Now, if we let h
∗
τ, j+ 1

2
= h∗,±

τ, j+ 1
2

=

max

(

h−
τ, j+ 1

2
, h+

τ, j+ 1
2

)

and set (hu)
∗,±
τ, j+ 1

2
= (hu)±

τ, j+ 1
2
, we can determine the last conser-

vative variable as

(hθ)
∗,−
τ, j+ 1

2
= max

⎛

⎝0,
Ŝ j

h∗
τ, j+ 1

2

+ (hθ)
f ,−
τ, j+ 1

2

⎞

⎠ ,

(hθ)
∗,+
τ, j+ 1

2
= max

⎛

⎝0,
Ŝ j+1

h∗
τ, j+ 1

2

+ (hθ)
f ,−
τ, j+ 1

2

⎞

⎠ . (4.36)

The numerical scheme is completed by using the formulations for the source term as well as
the left and right fluxes found in the moving-water scheme. It then follows that the scheme
exactly preserves the isobaric steady state.

5 Numerical Tests for Moving-Water Well-BalancedMethods

In this section, we present numerical results of our moving-water well-balanced DGmethods
for the one-dimensional Ripa system (1.1), using the well-balanced technique described in
Sect. 4. We implement our scheme using piecewise quadratic polynomials (k = 2) in space,
paired with the third order TVD Runge–Kutta time discretization (2.9). The CFL number

123



   30 Page 28 of 37 Journal of Scientific Computing            (2020) 82:30 

Table 3 L1 errors and orders of accuracy for the test in Sect. 5.1, using the moving-water well-balanced
method

No. of cells h hu hθ

L1 error Order L1 error Order L1 error Order

25 7.3659e−04 6.7798e−03 7.8134e−04

50 1.1235e−04 2.7129 9.0751e−04 2.9013 1.1063e−04 2.8201

100 1.5781e−05 2.8317 1.1708e−04 2.9544 1.8243e−05 2.6004

200 2.0662e−06 2.9331 1.5041e−05 2.9606 2.7879e−06 2.7101

400 2.5592e−07 3.0132 1.8865e−06 2.9951 3.8607e−07 2.8522

is again taken to be 0.1. The constant M in the TVB limiter is taken to be 0, except for
the accuracy test in which no slope limiter was used. The gravitational constant g is fixed
to be 9.812 m/s2. Multiple types of numerical tests have been carried out in this section to
demonstrate the capacity of our proposed moving-water well-balanced methods.

5.1 Tests for Accuracy

In this subsection, we will check the accuracy of our moving-water well-balanced scheme
for smooth solutions. The same setup of the initial conditions and boundary conditions, as
in Sect. 3.1, is used here. We run the numerical simulation until time t = 0.02, while the
numerical solution is still smooth. Table3 contains the L1 errors and numerical orders for the
moving-water well-balanced DG method. It is easy to observe that the expected high order
accuracy is obtained by the proposed methods.

5.2 Tests for theWell-Balanced Property

The following tests are chosen to verify that the proposed DGmethods preserve the moving-
water steady states (1.8) when a non-flat bottom topography b(x) exists. For these examples,
the errors are calculated by comparing the numerical results to the initial conditions.

We present the test cases of both sub-critical and trans-critical flows. These tests are
extensions of widely used numerical experiments for verifying the performance of numerical
schemes for the shallow water equations in [19,29–31]. The bottom function is given by:

b(x) =
{
0.2 − 0.05(x − 10)2, if 8 ≤ x ≤ 12,

0, otherwise,
(5.1)

for a channel of length 25m. Two types of moving-water steady states solutions, correspond-
ing to sub-critical and trans-critical flows, will be investigated below.

(a) Sub-critical flow The initial conditions are given by
⎧
⎪⎨

⎪⎩

m = 4.42
√
5

E = 22.06605 · 5
θ = 5

(5.2)

with the boundary conditions of m = 4.42
√
5 at the upstream and h = 2 at the down-

stream.
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Table 4 L1 and L∞ errors for the well-balanced tests of different moving-water equilibria, at time t = 1 with
200 uniform cells

Test L1 error L∞ error

h hu hθ h hu hθ

(5.2) 3.9850e−13 6.0707e−13 4.0459e−13 1.5654e−13 4.2100e−13 1.5965e−13

(5.3) 7.2879e−14 3.0429e−13 7.2849e−14 8.0269e−14 1.8407e−13 7.6161e−14

Fig. 12 Numerical solutions for sub-critical flow (5.2) at time t = 1 with 200 and 800 uniform cells. The
steady state is preserved for both mesh sizes when the moving-water well-balanced scheme is used

(b) Trans-critical flow The initial conditions are given by:
⎧
⎪⎨

⎪⎩

m = 1.53
√
5

E = 11.09098731433671 · 5
θ = 5

(5.3)

with theboundary conditions ofm = 1.53
√
5at the upstreamandh = 0.405737258401203

at the downstream. The flowmoves from subsonic to supersonic at x = 10, which occurs
at the peak of the bottom topography function.

For both test cases, the moving-water steady state solutions should be preserved exactly.
We run both cases until time the stopping time of t = 1, using a coarse mesh of 200
uniform cells and a finer mesh of 800 cells for comparison. The L1 and L∞ errors in
Table4 demonstrate the well-balanced property is maintained up to round-off error when
using the moving-water preserving method. The numerical results are presented in Figs. 12
and 13. For comparison, we also compute these moving-water steady states using the still-
water well-balanced methods presented in Sect. 2. Figures14 and 15 display the difference
between the numerical solution and the initial conditions. It can be seen from the plots that
the moving-water steady states are not preserved by the still-water preserving method.

5.3 Tests of Small Perturbations

The tests in this subsection are selected to demonstrate that small perturbations to themoving-
water steady states are well captured by the proposed moving-water well-balanced DG
scheme. Similar tests have been presented in [30,35] for the shallow water equations. We
will consider two perturbation sizes to the sub-critical and trans-critical moving-water steady
states.
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Fig. 13 Numerical solutions for trans-critical flow (5.3) at time t = 1 with 200 and 800 uniform cells. The
steady state is preserved for both mesh sizes even with the flow changing from sub-critical to super-critical
when the moving-water well-balanced scheme is implemented

Fig. 14 The difference between the solutions h, hu, hθ for the sub-critical flow problem (5.2) at time t = 1
and the corresponding steady state solutions. Both the moving-water and still-water scheme results are plotted

Fig. 15 The same as Fig. 14, except for the trans-critical flow problem (5.3)

The initial conditions are given by the sub-critical and trans-critical flow (5.2) and (5.3)
in Sect. 5.2, with an added perturbation to h and hθ in the interval [5.75, 6.25]. That is, if we
denote the moving-water steady state initial conditions in Sect. 5.2 as

(
heq , (hu)eq , (hθ)eq

)
,

the initial conditions of the perturbed tests are given by

(a) Larger perturbation

(
h, (hu), (hθ)

)
(x, 0) = (

heq , (hu)eq , (hθ)eq
)
(x, 0) + [0.05, 0, 0.25]χ[5.75,6.25] . (5.4)
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Fig. 16 Water height h of the well-balanced methods for the larger perturbation test of sub-critical flow (5.2)
at time t = 0.75 with mesh sizes of 200 and 800 uniform cells. The bottom row contains zoomed in images
of the waves of h

(b) Smaller perturbation

(
h, (hu), (hθ)

)
(x, 0) = (

heq , (hu)eq , (hθ)eq
)
(x, 0) + [0.0001, 0, 0.0005]χ[5.75,6.25] .

(5.5)

The value χ[5.75,6.25] is defined to be 1 in the region [5.75, 6.25] and 0 everywhere else in
the domain.

It is expected that the perturbation will split into twowaves traveling in opposite directions
away from their point of origin. We run the test until the stopping time of t = 0.75. At this
time, the downstream moving wave will have passed the bump of the bottom topography
function. The numerical results for the large perturbation of the sub-critical flow problem are
shown in Figs. 16 and 17, where we compare the results of moving-water well-balanced DG
method on mesh sizes of 200 and 800 uniform cells. One can observe that the propagation of
these small perturbations is well captured by our methods, and there are no visible numerical
oscillations in the solutions. We demonstrate the numerical results of the larger perturbation
for the trans-critical flow problem in Figs. 18 and 19, and similar observations can be found.
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Fig. 17 Numerical solutions of hu and hθ for the larger perturbation test of sub-critical flow problem (5.2) at
time t = 0.75 with mesh sizes of 200 and 800 uniform cells

Fig. 18 Water height h of the well-balanced methods for the larger perturbation test of trans-critical flow (5.3)
at time t = 0.75 with mesh sizes of 200 and 800 uniform cells. The bottom row contains zoomed in images
of the waves of h
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Fig. 19 Numerical solutions of hu and hθ for the larger perturbation test of trans-critical flow problem (5.3)
at time t = 0.75 with mesh sizes of 200 and 800 uniform cells

Fig. 20 The difference between the solutions h, hu, hθ for the smaller perturbation of the sub-critical flow
problem (5.2) at time 0.75 and the corresponding steady state solutions. A uniform mesh of 200 cells has been
used for both the still-water and moving-water schemes

Next, we present the numerical results from the smaller perturbation tests, and compare
the performance of the moving-water and still-water preserving schemes on a mesh of 200
uniform cells. Figure20 contains plots of the difference between the solutions h, hu, hθ at the
final time 0.75 and the corresponding steady states for the sub-critical flow problem. It can be
seen that the still-water preserving DG scheme does not handle perturbations to the moving-
water steady state nearly as well as the moving-water preserving scheme. Similar results have
been observed for the trans-critical flow problem, see Fig. 21. These results demonstrate the
importance of moving-water preserving method in capturing the propagation of these small
perturbations.

5.4 Riemann Problems

In this subsection, we consider three Riemann problems that contain discontinuities in the ini-
tial conditions, to demonstrate the performance of our proposed methods when the solutions
contain discontinuity.
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Fig. 21 The difference between the solutions h, hu, hθ for the smaller perturbation of the trans-critical flow
problem (5.3) at time 0.75 and the corresponding steady state solutions. A uniform mesh of 200 cells has been
used for both the still-water and moving-water schemes

Fig. 22 Numerical solution for the Riemann problem (5.6) at time t = 0.04 with 200 and 1600 cells using the
moving-water well-balanced method

First, we consider a problem with no initial velocity, a flat bottom (b(x) = 0), and the
following initial conditions for x ∈ [−1, 1]:

h(x, 0) =
{
5, when x < 0,

1, when x ≥ 0,
u(x, 0) = 0, θ(x, 0) =

{
3, when x < 0,

5, when x ≥ 0.
(5.6)

Transmissive boundary conditions are employed for all variables. We run the simulation
until time t = 0.04, and both shock and rarefaction waves appear in this test. Figure22
displays the numerical results of our methods with 200 uniform cells, and we also include
the numerical results of 1600 cells as the “reference” solutions for comparison. One can
observe that the numerical solutions agree well with the “reference” solutions, and both
the shock and rarefaction wave are captured well by the moving-water well-balanced DG
methods.

Second, we consider a dam break problem over a flat bottom, in which all initial conditions
are non-zero. The initial conditions in the computational domain [−1, 1] are set as

(
h(x, 0), u(x, 0), θ(x, 0)

) =
{

(2, 0.5, 1), when |x | < 0.5,

(1, 0.75, 1.55), otherwise,
(5.7)

with b(x) = 0. Transmissive boundary conditions are employed for all variables. We run the
simulation until time t = 0.075, and six waves including both shock and rarefaction waves
appear. Figure23 displays the numerical results of our methods with 200 uniform cells, and
the “reference” solutions obtained with refined 1600 uniform cells. Again, one can observe
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Fig. 23 Numerical solution for the Riemann problem (5.7) at time t = 0.075 with 200 and 1600 cells using
the moving-water well-balanced method

that the numerical solutions agree well with the “reference” solutions, and all these waves
are captured well by the moving-water well-balanced DG methods.

Lastly, we consider a dam break problem over a non-flat and discontinuous bottom topog-
raphy. We set our computational domain to be [0, 600] in which the bottom function and
initial conditions are defined as:

b(x) =
{
8, when |x − 300| < 75,

0, otherwise,
(5.8)

and

(
h, u, θ

)
(x, 0) =

{(
20 − b(x), 1, 10

)
, when x < 300,

(
15 − b(x), 5, 5

)
, when x ≥ 300.

(5.9)

Transmissive boundary conditions are employed for all variables. The simulation is ran until
the stopping time t = 3, and the solution demonstrate a complicated structure, due to the
interaction of the waves with the discontinuous bottom function. The conservative variables
(h, hu, hθ) as well as velocity u, temperature θ , and pressure p = 1

2 gθh
2 are displayed

in Fig. 24. The numerical results of both 200 and 1600 uniform cells are presented in these
figures.We can observe that the numerical solutions agreewell with the “reference” solutions.
All these waves, including the shocks near x = 375, are captured well by the moving-water
well-balanced DG methods.

6 Concluding Remarks

In this paper, well-balanced DG methods for the shallow water equations with horizontal
temperature gradients, also known as the Ripa model, are designed and tested. We present
two types of well-balanced methods, one for the the simpler still-water equilibrium (1.5) and
the other for more complicatedmoving-water equilibrium (1.8), and show that the former one
is a special case of the latter. We also demonstrated the same framework can be extended to
design well-balancedmethods for the isobaric steady state (1.6) and the constant water height
steady state (1.7), with different definitions of Ue

τ (x) and U∗,±
τ, j+ 1

2
following the equilibria

to be preserved. The proposed method is an extension of the well-balanced method [30] for
the shallow water equations, but with several improvements to simplify the algorithms. To
achieve the well-balanced property, special attention was paid to the approximation of the
source term and the construction of the numerical fluxes. Numerical examples were given
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Fig. 24 Numerical solution for the Riemann problem (5.9) at time t = 3 with 200 and 1600 cells using the
moving-water well-balanced method. Both the water surface h + b, momentum hu, hθ , and the velocity u, θ ,
pressure p are shown

to demonstrate the accuracy, well-balanced property, perturbations to steady states, and non-
oscillatory behavior near discontinuities. This approach is rather general and can be applied
to design well-balanced methods for other hyperbolic balance laws.
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