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L2 STABLE DISCONTINUOUS GALERKIN METHODS FOR

ONE-DIMENSIONAL TWO-WAY WAVE EQUATIONS

YINGDA CHENG, CHING-SHAN CHOU, FENGYAN LI, AND YULONG XING

Abstract. Simulating wave propagation is one of the fundamental problems
in scientific computing. In this paper, we consider one-dimensional two-way
wave equations, and investigate a family of L2 stable high order discontinuous
Galerkin methods defined through a general form of numerical fluxes. For these
L2 stable methods, we systematically establish stability (hence energy conser-
vation), error estimates (in both L2 and negative-order norms), and dispersion
analysis. One novelty of this work is to identify a sub-family of the numerical
fluxes, termed αβ-fluxes. Discontinuous Galerkin methods with αβ-fluxes are

proven to have optimal L2 error estimates and superconvergence properties.
Moreover, both the upwind and alternating fluxes belong to this sub-family.
Dispersion analysis, which examines both the physical and spurious modes,
provides insights into the sub-optimal accuracy of the methods using the cen-
tral flux and the odd degree polynomials, and demonstrates the importance of
numerical initialization for the proposed non-dissipative schemes. Numerical
examples are presented to illustrate the accuracy and the long-term behavior
of the methods under consideration.

1. Introduction

Wave propagation is a fundamental form of energy transmission, which arises in
many fields of science, engineering, and industry, and it is significant to geoscience,
petroleum engineering, and electromagnetics. A vast amount of research has been
done for wave simulations, and the commonly used numerical methods range from
finite difference, finite volume to spectral element and finite element methods (see
[15,17,18,24] and references therein, [4,30,35]). Among various numerical methods,
each with their own advantages, here we will confine our attention to discontinuous
Galerkin (DG) methods. DG methods belong to a class of finite element meth-
ods using piecewise polynomial spaces for both the numerical solution and the test
function. They were originally devised to solve hyperbolic conservation laws; e.g.,
see [12, 14, 26]. The methods can be easily designed to have arbitrary order of ac-
curacy. They are flexible with unstructured meshes, and are natural candidates for
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h-p adaptivity. These methods are known to be highly efficient in parallel com-
putation, due to the compact stencils. Importantly, DG methods perform well in
long-term wave simulations [1,8,21], given their excellent dispersive and dissipative
properties.

In this paper, we consider the one-dimensional linear two-way wave problem,

Et = Bx − S1,(1.1a)

Bt = Ex − S2,(1.1b)

where E = E(t, x) and B = B(t, x) are unknown functions, and S1 = S1(t, x) and
S2 = S2(t, x) are both source terms. Note that the system (1.1) is equivalent to
the second-order wave equation. Moreover, Maxwell’s equations can be viewed as
a special case when S2 = 0. As a hyperbolic system, (1.1) can be computed by
DG methods directly, yet the key properties of the methods lie in the choices of
the numerical fluxes. For example, it is known that the use of either an alternating
flux or central flux will give an energy preserving scheme, while the use of the
upwind flux will result in a decreasing discrete energy. Moreover, the L2 error
bounds with alternating and upwind fluxes are optimal, while with central flux,
the accuracy may be sub-optimal. This leads to the question of whether we can
find a general principle of selecting numerical fluxes, and furthermore, understand
the accuracy, stability, energy conservation, and other properties of the resulted
numerical methods.

The goal of this paper is to perform a detailed and systematic investigation for
a general family of L2 stable DG methods. Note that the L2 norm of (E,B) for
system (1.1) is equivalent to the total energy, which many DG methods attempt
to capture [9, 10, 16, 20, 32]. The proposed methods are defined through a group of
numerical fluxes which are certain linear combinations of jumps and averages of the
numerical solutions at the cell interfaces with three parameters α, β1, β2 involved.
In a previous work by Ainsworth and colleagues [3], the same family of fluxes were
considered with emphasis on dispersion analysis. For these L2 stable methods, we
will establish stability and hence the energy conservation, error estimates in both
L2 and negative-order norms, superconvergence, and dispersion analysis.

One novelty of this work is that, in search of DG methods with optimal L2

error estimate, we identify a sub-family of the numerical fluxes, termed αβ-fluxes,
that are determined by a specific relation among α, β1, β2. This relation, which
is satisfied by the widely known upwind and alternating fluxes, was introduced in
[3] to characterize different modes in dispersion analysis for DG methods solving
two-dimensional second-order wave equations. The relation is used in this work to
design a new projection operator, a key component in our proof for the optimal error
estimates. Besides the optimal L2 accuracy, we further prove superconvergence
properties for the DG methods with αβ-fluxes by following the analysis in [34] for
the linear advection equation. Such superconvergence seems to be uniquely enjoyed
by DG methods associated with the αβ-fluxes as suggested numerically.

For the proposed general L2 stable DG methods, we also systematically per-
form the dispersion analysis, and present the negative-order norm error estimates
as well as the related post-processing techniques similar to those in [13, 23]. For
long time wave simulations, it is important to understand the dispersive and dissi-
pative properties of the numerical methods. Our dispersion analysis, which takes
a different viewpoint from [3], examines both the physical and spurious modes. In
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particular, it gives insights into the sub-optimal accuracy of DG methods with the
central flux and the odd degree polynomials, and demonstrates the importance of
numerical initialization for the proposed non-dissipative schemes. Related work on
the dispersion analysis of semi-discrete or fully-discrete DG methods in literature
can be found in [1–3, 21, 22, 27, 28, 33].

The remainder of this paper is organized as follows. In Section 2, we introduce
a general family of L2 stable DG methods for one-dimensional two-way wave equa-
tions, and also define a sub-family of the methods associated with αβ-fluxes. We
provide in Section 2.1 the analysis of L2 stability and energy conserving property,
and this is followed by L2 error estimates in Section 2.2 for the general L2 stable
DG methods. In Section 2.3, we present the superconvergence results and post-
processing techniques. The dispersion analysis is performed in Section 2.4. Section
3 contains numerical examples to illustrate the performance of the proposed meth-
ods, and we conclude with a few remarks in Section 4.

2. L2
stable DG methods

In this section, we will formulate a general family of semi-discrete DG methods
which is L2 stable for the one-dimensional two-way wave equations (1.1). Here we
consider periodic boundary conditions for simplicity. We start with a mesh of the
computational domain Ω = [a, b], a = x 1

2
< x 3

2
< · · · < xN+ 1

2
= b. Each cell is

denoted as Ij = [xj− 1
2
, xj+ 1

2
], with its center xj =

1
2 (xj− 1

2
+ xj+ 1

2
) and the length

hj = xj+ 1
2
− xj− 1

2
. Let h = max1≤j≤N hj . The mesh is assumed to be quasi-

uniform, namely, there exists a positive constant σ, such that h
minj hj

< σ, as the

mesh is refined. We now define a finite dimensional discrete space,

(2.1) V r
h = {v : v|Ij ∈ P r(Ij), j = 1, 2, · · · , N},

which consists of piecewise polynomials of degree up to r with respect to the mesh.
Note that functions in V r

h are allowed to have discontinuities across element inter-
faces. For any v ∈ V r

h , we denote by v+
j+ 1

2

and v−
j+ 1

2

the limit values of v at xj+ 1
2

from the right cell Ij+1 and from the left cell Ij , respectively. We use the usual
notation [v]j+ 1

2
= v+

j+ 1
2

−v−
j+ 1

2

and {v}j+ 1
2
= 1

2 (v
+
j+ 1

2

+v−
j+ 1

2

) to represent the jump

and the average of the function v at xj+ 1
2
for any j.

The semi-discrete DG method for the system (1.1) is formulated as follows: find
Eh(t, ·), Bh(t, ·) ∈ V r

h , such that∫
Ij

(Eh)tφdx+

∫
Ij

Bhφxdx− (FB(Bh, Eh)φ
−)j+ 1

2
+
(
FB(Bh, Eh)φ

+
)
j− 1

2

(2.2a)

=

∫
Ij

S1φdx,∫
Ij

(Bh)tψdx+

∫
Ij

Ehψxdx− (FE(Eh, Bh)ψ
−)j+ 1

2
+ (FE(Eh, Bh)ψ

+)j− 1
2

(2.2b)

=

∫
Ij

S2ψdx,

for all test functions φ, ψ ∈ V r
h , and for all j. By summing up the two equations

in (2.2) over all mesh elements, we can write the DG method in a more compact
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form. We look for Eh(t, ·), Bh(t, ·) ∈ V r
h , such that

(2.3) ah(Eh, Bh;φ, ψ) = S(φ, ψ), ∀φ, ψ ∈ V r
h ,

where

ah(Eh, Bh;φ, ψ) =

∫
Ω

(Eh)tφdx+
∑
j

(∫
Ij

Bhφxdx+ (FB(Bh, Eh)[φ])j− 1
2

)

+

∫
Ω

(Bh)tψdx+
∑
j

(∫
Ij

Ehψxdx+ (FE(Eh, Bh)[ψ])j− 1
2

)
,(2.4)

and S(φ, ψ) =
∫
Ω
S1φ+ S2ψdx.

Both the terms FB and FE in (2.2) are numerical fluxes, and they are single-
valued functions defined on the cell interfaces and should be designed to ensure
numerical stability and accuracy. In the present work, we consider the following
numerical fluxes:

FB(Bh, Eh) = {Bh}+ α[Bh] + β1[Eh],(2.5a)

FE(Eh, Bh) = {Eh} − α[Eh] + β2[Bh].(2.5b)

Here α, β1, β2 are constants that are taken to be O(1), with β1 and β2 being non-
negative. These numerical fluxes were considered in [3], and they are consistent,
that is,

(2.6) FB(B,E) = B, FE(E,B) = E.

The DG methods with fluxes (2.5) define a very general family of L2 stable DG
methods for the system (1.1). Note that the numerical fluxes (2.5) include several
commonly used ones in literature. For example, when α = 0, β1 = β2 = 1

2 , we
have the upwind flux; when α = β1 = β2 = 0, we have the central flux, and the
alternating flux is obtained when α = ± 1

2 , β1 = β2 = 0.
One novelty of this work is that we further identify a sub-family of the numer-

ical fluxes (2.5), named αβ-fluxes, and the corresponding DG methods have some
important provable results in terms of L2 error estimates and superconvergence,
which will be carried out in Sections 2.2 and 2.3.

Definition 2.1. An αβ-flux is a numerical flux (2.5) when α and βi ≥ 0 (i = 1, 2)
satisfy

(2.7) α2 + β1β2 =
1

4
.

When β1 = β2 = β, an αβ-flux can be determined by a single parameter α.

(Here β is non-negative and β =
√

1
4 − α2.) It is easy to see that both the upwind

and alternating fluxes are special cases of this αβ-flux family.

Remark 2.1. One can further generalize the numerical flux in (2.5) as,

FB(Bh, Eh) = {Bh}+ α1[Bh] + β1[Eh],(2.8a)

FE(Eh, Bh) = {Eh}+ α2[Eh] + β2[Bh],(2.8b)

which involves four parameters. In this work, we will only present analysis for the
DG methods with (2.5), and will summarize the L2 stability and error estimates
for the more general DG methods with (2.8) in Remark 2.3 and Remark 2.8. The
parameters β1 and β2 are chosen to be non-negative to ensure that the proposed
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DG methods are stable (see Theorem 2.2). In addition, there is no benefit in terms
of accuracy or stability if we allow α, β1 and β2 to be more general than O(1).

2.1. L2 stability and energy conservation. In this section, we will establish
the L2 stability, which also informs us about the energy conservation property, for
the semi-discrete DG method with the general numerical flux (2.5). It suffices to
consider S1 = S2 = 0.

Theorem 2.2. With S1 = S2 = 0, the semi-discrete DG scheme (2.2) (or (2.3))
with the numerical flux (2.5) and βi ≥ 0, i = 1, 2, satisfies

(2.9)
d

dt
Eh(t) = −

∑
j

(
β1[Eh]

2 + β2[Bh]
2
)
j− 1

2

≤ 0,

where

Eh(t) =
1

2

∫
Ω

(Eh(t, x))
2 + (Bh(t, x))

2dx

is the energy of the system (1.1) at time t.

Proof. We first introduce

H
(1)
j (Bh, Eh;φ) = −

∫
Ij

Bhφxdx+ (FB(Bh, Eh)φ
−)j+ 1

2
− (FB(Bh, Eh)φ

+)j− 1
2
,

H
(2)
j (Eh, Bh;ψ) = −

∫
Ij

Ehψxdx+ (FE(Eh, Bh)ψ
−)j+ 1

2
− (FE(Eh, Bh)ψ

+)j− 1
2
.

With periodic boundary conditions and the specific definition of the general nu-
merical flux in (2.5), as well as the identity [φψ] = {ψ}[φ] + {φ}[ψ], the following
holds for any φ, ψ ∈ V r

h :∑
j

(H
(1)
j (ψ, φ;φ) +H

(2)
j (φ, ψ;ψ)) =

∑
j

(
[φψ]−FE(φ, ψ)[ψ]−FB(ψ, φ)[φ]

)
j− 1

2

= −
∑
j

(
β1[φ]

2 + β2[ψ]
2
)
j− 1

2

.(2.10)

Using the definition of ah in (2.4), one further has

ah(φ, ψ;φ, ψ) =

∫
Ω

(φtφ+ ψtψ)dx−
∑
j

(
H

(1)
j (ψ, φ;φ) +H

(2)
j (φ, ψ;ψ)

)

=
1

2

d

dt

∫
Ω

(φ2 + ψ2)dx+
∑
j

(
β1[φ]

2 + β2[ψ]
2
)
j− 1

2

.(2.11)

Now in the semi-discrete DG method with S1 = S2 = 0, we take φ = Eh in (2.2a)
and ψ = Bh in (2.2b), and get ah(Eh, Bh;Eh, Bh) = 0. This, combined with the
general result in (2.11), gives the L2 stability in (2.9). �

Note that all flux choices with βi ≥ 0, i = 1, 2, produce L2 stable numerical
solutions. In particular, the semi-discrete DG method with either the central or
alternating, or the more general flux (2.5) with β1 = β2 = 0, preserves the energy of
the system. On the other hand, with the commonly used upwind flux (α = 0, β1 =
β2 = 1

2 ), the L2 energy decays with time, as expected.
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Remark 2.3. For the source free problem, it can be shown that the semi-discrete
DG scheme (2.2) (or (2.3)) with the more general numerical flux (2.8) and βi ≥ 0,
i = 1, 2, (α1 + α2)

2 ≤ 4β1β2, satisfies

d

dt
Eh(t) = −

∑
j

(
β1[Eh]

2 + β2[Bh]
2 + (α1 + α2)[Eh][Bh]

)
j− 1

2

≤ 0.

2.2. L2 error estimates. In this section, we will establish error estimates in the
L2 norm for the semi-discrete DG schemes up to a given time T < ∞ with various
choices of numerical fluxes. The following projections, defined from Hr+1(Ω) onto
V r
h , will be used in the analysis.

(1) L2 projection Ph: Phw ∈ V r
h , such that for all j,

(2.12)

∫
Ij

Phw v dx =

∫
Ij

w v dx, ∀v ∈ P r(Ij).

(2) Gauss-Radau projection P−
h : P−

h w ∈ V r
h , such that for all j,

(2.13)

∫
Ij

P−
h w v dx =

∫
Ij

w v dx, ∀v ∈ P r−1(Ij),

and (P−
h w)−

j+ 1
2

= w−
j+ 1

2

.

(3) Gauss-Radau projection P+
h : P+

h w ∈ V r
h , such that for all j,

(2.14)

∫
Ij

P+
h w v dx =

∫
Ij

w v dx, ∀v ∈ P r−1(Ij),

and (P+
h w)+

j− 1
2

= w+
j− 1

2

.

These projections are commonly used in analyzing DG methods for one-dimensional
problems, and the following approximation property can be easily established [11]:

(2.15) ‖w − πhw‖2 + h
∑
j

((w − πhw)
±
j+ 1

2

)2 ≤ C�h
2r+2‖w‖2Hr+1 .

Here πh = Ph, P
−
h or P+

h , and w − πhw gives the projection error associated with
the projection πh. In (2.15), ‖·‖ and ‖·‖Hr+1 stand for the L2 norm and Hr+1 norm
in Ω, respectively. The constant C� depends on r but not on h or w. Throughout
the paper, C� will be used to denote a generic constant which may depend on r and
mesh parameter σ. We also use C to denote another generic constant, independent
of h, but it may depend on r, mesh parameter σ, and some Sobolev norms of the
exact solution of (1.1) up to time T . Both C and C� may take different values
at different occurrences. In the analysis, the following inverse equality will also be
needed [11],

(2.16) h2

∫
Ij

(vx)
2dx+ h

(
(v+

j− 1
2

)2 + (v−
j+ 1

2

)2
)
≤ C�

∫
Ij

v2dx, ∀v ∈ V r
h .

Now we define the numerical error eh of the semi-discrete DG method,

eh =

(
eB
eE

)
:=

(
B
E

)
−
(

Bh

Eh

)
.

This error function can be further decomposed into two parts, eh = ηh + ζh, where

ηh =

(
ηB
ηE

)
:=

(
B
E

)
−πh

(
B
E

)
, ζh =

(
ζB
ζE

)
:= πh

(
B
E

)
−
(

Bh

Eh

)
.
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Here πh is some linear operator from Hr+1(Ω) × Hr+1(Ω) onto V r
h × V r

h , and it
will be specified in the analysis. It is often, but not necessarily, a projection, and
will be judiciously chosen in the error estimates when different numerical fluxes are
used in the scheme.

In the analysis, a specifically designed operator Πh turns out to be crucial. It is
defined as

Πh

(
B
E

)
=

(
ΠB

h (B,E)
ΠE

h (E,B)

)
(2.17)

=

(
P+
h (( 12 + α)B + β1E) + P−

h (( 12 − α)B − β1E)
P+
h (( 12 − α)E + β2B) + P−

h (( 12 + α)E − β2B)

)
,

for any parameter α, β1, β2 ∈ R. The properties of Πh will be summarized in the
following lemma.

Lemma 2.4. For any given α, β1, β2 ∈ R, Πh in (2.17), as an operator from
Hr+1(Ω)×Hr+1(Ω) onto V r

h × V r
h , has the following properties:

(i)

∫
Ij

ηBφxdx = 0,

∫
Ij

ηEψxdx = 0, ∀φ, ψ ∈ V r
h , ∀j,(2.18)

(ii)

∥∥∥∥
(

B
E

)
−Πh

(
B
E

)∥∥∥∥(2.19)

≤ C� (1 + |α|+max(|β1|, |β2|))hr+1(‖B‖Hr+1 + ‖E‖Hr+1).

If we further assume α2 + β1β2 = 1
4 , then

(iii) Πh defines a projection, namely Π2
h = Πh,(2.20)

(iv) FB(ηB, ηE)j− 1
2
= 0, FE(ηE , ηB)j− 1

2
= 0, ∀j.(2.21)

Proof. First of all, Πh is linear, and it is also onto V r
h × V r

h since P+
h and P−

h are
invariant on V r

h .
The equalities in (i) are straightforward results from the definitions and the

linearity of P±
h in (2.13) and (2.14), and the proof will be omitted. In order to

show the results in (ii), we only need to estimate ‖B−ΠB
h (B,E)‖ due to similarity

to the other term:

‖B −ΠB
h (B,E)‖ = ‖(I − P+

h )((
1

2
+ α)B + β1E) + (I − P−

h )((
1

2
− α)B − β1E)‖

≤ C�(1 + |α|+ |β1|)hr+1(‖B‖Hr+1 + ‖E‖Hr+1).(2.22)

In the last inequality, we have applied the approximation property of P±
h in (2.15).

Here and below I denotes the identity operator.
From now on, we assume α2 + β1β2 = 1

4 , and will establish the properties

(iii)–(iv). To show Πh is a projection, namely Π2
h = Πh, we follow the definition of

Πh and get

(2.23) Π2
h

(
B
E

)
=

⎛
⎜⎜⎜⎜⎝

P+
h (( 12 + α)ΠB

h (B,E) + β1Π
E
h (E,B))

+P−
h (( 12 − α)ΠB

h (B,E)− β1Π
E
h (E,B))

P+
h (( 12 − α)ΠE

h (E,B) + β2Π
B
h (B,E))

+P−
h (( 12 + α)ΠE

h (E,B)− β2Π
B
h (B,E))

⎞
⎟⎟⎟⎟⎠ .
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Now we will show the first component on the right of (2.23) is indeed ΠB
h (B,E).

With the definition of Πh, we have

P+
h

(
(
1

2
+ α)ΠB

h (B,E) + β1Π
E
h (E,B)

)

=(P+
h )2
(
(
1

4
+ α+ α2 + β1β2)B + β1E

)
+ P+

h P−
h

(
(
1

4
− α2 − β1β2)B

)
.

We then utilize that P+
h is a projection, namely (P+

h )2 = P+
h , and the relation

α2 + β1β2 = 1
4 , to get

P+
h

(
(
1

2
+ α)ΠB

h (B,E) + β1Π
E
h (E,B)

)
= P+

h

(
(
1

2
+ α)B + β1E

)
.(2.24)

With similar arguments, we obtain

P−
h

(
(
1

2
− α)ΠB

h (B,E)− β1Π
E
h (E,B)

)
= P+

h

(
(
1

2
− α)B − β1E

)
.(2.25)

Combining (2.24) and (2.25), we conclude that the first component of (2.23) is
indeed ΠB

h (B,E). Similarly, one can show that the second component of (2.23) is
ΠE

h (E,B).
Finally, we will prove (iv). Due to similarity we will only show FB(ηB, ηE) = 0.

Here the subscript j− 1
2 is omitted for the simplicity of notation. With the linearity

and the consistency of the numerical flux, we have

FB(ηB, ηE) = FB(B,E)−FB(Π
B
h (B,E),ΠE

h (E,B))

= B −FB(Π
B
h (B,E),ΠE

h (E,B)).(2.26)

Based on definitions of ΠB
h and ΠE

h as well as the jump [·] and average {·}, one has

FB(Π
B
h (B,E),ΠE

h (E,B)) = {ΠB
h (B,E)}+ α[ΠB

h (B,E)] + β1[Π
E
h (E,B)]

=

(
P+
h

(
(
1

2
+ α)((

1

2
+ α)B + β1E) + β1((

1

2
− α)E + β2B)

))+

+

(
P+
h

(
(
1

2
− α)((

1

2
+ α)B + β1E)− β1((

1

2
− α)E + β2B)

))−

+

(
P−
h

(
(
1

2
+ α)((

1

2
− α)B − β1E) + β1((

1

2
+ α)E − β2B)

))+

+

(
P−
h

(
(
1

2
− α)((

1

2
− α)B − β1E)− β1((

1

2
+ α)E − β2B)

))−
.

Let each row of the right-hand side of this equation be denoted as Λi, i = 1, . . . , 4.
With the property of P±

h , particularly (P+
h w)+ = w, (P−

h w)− = w at a grid point
where w ∈ Hr+1(Ω) is single-valued, we can simplify the sum of the first and the
fourth terms:

Λ1 + Λ4 = (
1

2
+ α)((

1

2
+ α)B + β1E) + β1((

1

2
− α)E + β2B)(2.27)

+ (
1

2
− α)((

1

2
− α)B − β1E)− β1((

1

2
+ α)E − β2B)

= 2(
1

4
+ α2 + β1β2)B.
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L2 STABLE DG METHODS FOR 1D TWO-WAY WAVE EQUATIONS 9

Moreover, one can easily show that

(2.28) Λ2 = (
1

4
− α2 − β1β2)(P

+
h B)−, Λ3 = (

1

4
− α2 − β1β2)(P

−
h B)+.

Combining (2.26), (2.27) and (2.28), we have

FB(ηB, ηE) = B −FB(Π
B
h (B,E),ΠE

h (E,B)) = B −
4∑

i=1

Λi

= (
1

4
− α2 − β1β2)

(
((I − P+

h )B)− + ((I − P−
h )B)+

)
.(2.29)

Finally, using the relation α2 + β1β2 = 1
4 , we can conclude FB(ηB , ηE) = 0. �

Now we are ready to state and establish the L2 error estimates of the proposed
DG methods.

Theorem 2.5. For the semi-discrete DG method (2.2) (or (2.3)) with the numer-
ical flux (2.5), βi ≥ 0, i = 1, 2, and the L2 type initialization with Bh(0, ·) =
PhB(0, ·), Eh(0, ·) = PhE(0, ·), the following error estimates hold when the exact
solutions have sufficient regularity.

(i) In general, when min(β1, β2) > 0, we have

(2.30) ‖eh‖ ≤ Chr+ 1
2

(
max
i=1,2

1 + |α|+ βi√
βi

+ h
1
2

)
≤ Chr+ 1

2 ,

and when β1β2 = 0, we have

(2.31) ‖eh‖ ≤ C(1 + |α|+max(β1, β2))h
r.

(ii) When an αβ-flux with α2 + β1β2 = 1
4 is used in the DG method (2.2) (or

(2.3)), we have

(2.32) ‖eh‖ ≤ C (1 + |α|+max(β1, β2))h
r+1.

The generic constant C above is independent of h. It may depend on the mesh
parameter σ, and the Hr+1 norm of B, E, Bt, and Et up to time T .

Proof. With the numerical flux (2.5) being consistent, the proposed scheme is con-
sistent, therefore the exact solutions E and B satisfy

ah(E,B;φ, ψ) = S(φ), ∀φ, ψ ∈ V r
h .

This, together with the numerical scheme (2.3) and the linearity of ah with respect
to each argument, gives the error equation

(2.33) ah(eE , eB;φ, ψ) = 0, ∀φ, ψ ∈ V r
h .

We now take φ = ζE and ψ = ζB in (2.33) and obtain

(2.34) ah(ζE, ζB; ζE , ζB) = −ah(ηE , ηB ; ζE , ζB).

Since ζE , ζB are in V r
h , one can use (2.11) to rewrite the term on the left,

(2.35) ah(ζE, ζB; ζE, ζB) =
1

2

d

dt

∫
Ω

(
ζ2E + ζ2B

)
dx+

∑
j

(
β1[ζE ]

2 + β2[ζB]
2
)
j− 1

2

.
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10 YINGDA CHENG, CHING-SHAN CHOU, FENGYAN LI, AND YULONG XING

For the term on the right in (2.34), based on the definition of ah, we have

− ah(ηE , ηB; ζE , ζB)(2.36)

= −
∫
Ω

(ηE)tζEdx−
∑
j

(∫
Ij

ηB(ζE)ydx+ (FB(ηB, ηE)[ζE])j− 1
2

)

−
∫
Ω

(ηB)tζBdx−
∑
j

(∫
Ij

ηE(ζB)xdx+ (FE(ηE , ηE)[ζB])j− 1
2

)
.

In the following, we will estimate (2.36) for the DGmethods with different numerical
fluxes as stated in (i) and (ii), separately. One of the keys is to properly choose the
operator πh to define ηh and ζh.

For the methods in (i), we take πh as the L2 projection, namely,

πh

(
B
E

)
=

(
PhB
PhE

)
.

Therefore, ζE and ζB will be zero at t = 0, and

−ah(ηE , ηB ; ζE , ζB) = −
∑
j

(
FB(ηB , ηE)[ζE ] + FE(ηE , ηB)[ζB]

)
j− 1

2

.(2.37)

When min(β1, β2) > 0, we also have

−
∑
j

(
FB(ηB, ηE)[ζE] + FE(ηE , ηB)[ζB]

)
j− 1

2

(2.38)

≤ 1

2

∑
j

(
β1[ζE ]

2 + β2[ζB]
2
)
j− 1

2

+
1

2

∑
j

( 1

β1
(FB(ηB, ηE))

2 +
1

β2
(FE(ηE , ηB))

2
)
j− 1

2

≤ 1

2

∑
j

(
β1[ζE ]

2 + β2[ζB]
2
)
j− 1

2

+ C�

(
max
i=1,2

(1 + |α|+ βi)
2

βi

)
h2r+1(‖B‖2Hr+1 + ‖E‖2Hr+1),

with the approximation property (2.15) applied. Combining (2.34)–(2.38), we ob-
tain

d

dt

∫
I

(
ζ2E + ζ2B

)
dx ≤ C�

(
max
i=1,2

(1 + |α|+ βi)
2

βi

)
h2r+1(‖B‖2Hr+1 + ‖E‖2Hr+1).

This, along with the fact that ζE and ζB are zero at t = 0, and α, β1, β2 are of
O(1), implies

(2.39) ‖ζE(·, t)‖2 + ‖ζB(·, t)‖2 ≤ C

(
max
i=1,2

(1 + |α|+ βi)
2

βi

)
h2r+1 ≤ Ch2r+1.

Here the constant C depends on the mesh parameter σ, and ‖B‖Hr+1 and ‖E‖Hr+1

up to time T .
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On the other hand, if β1β2 = 0, at least one of the jump terms in (2.35) vanishes,
we use inverse inequality (2.16) and the approximation result (2.15) to get

−
∑
j

(
FB(ηB , ηE)[ζE ] + FE(ηE , ηB)[ζB]

)
j− 1

2

(2.40)

≤

⎛
⎝ 1

h

∑
j

(
(FB(ηB , ηE))

2 + (FE(ηE , ηB))
2
)
j− 1

2

⎞
⎠

1
2

×

⎛
⎝h∑

j

([ζE ]
2 + [ζB]

2)j− 1
2

⎞
⎠

1
2

≤ C�(1 + |α|+max(β1, β2))h
r(‖B‖Hr+1 + ‖E‖Hr+1)

(
‖ζE‖2 + ‖ζB‖2

) 1
2 .

Combining (2.34)–(2.37) and (2.40), we get

d

dt

(
‖ζE‖2 + ‖ζB‖2

) 1
2 ≤ C� (1 + |α|+max(β1, β2))h

r(‖B‖Hr+1 + ‖E‖Hr+1),

and therefore

(2.41) ‖ζE(·, t)‖+ ‖ζB(·, t)‖ ≤ C(1 + |α|+max(β1, β2))h
r,

where the constant C depends on the mesh parameter σ, and ‖B‖Hr+1 and ‖E‖Hr+1

up to time T .
We now can apply the triangle inequality ‖eh‖ ≤ ‖ηh‖ + ‖ζh‖ and the approx-

imation property of πh = Ph in (2.15) to conclude the estimates in (2.30) and
(2.31).

We next turn to the DG method in (ii) with an αβ-flux, namely, the flux in (2.5)
with α, β1, β2 satisfying α2+β1β2 = 1

4 and βi ≥ 0, i = 1, 2. For this case, we choose
πh to be the projection Πh defined in (2.17). Based on Lemma 2.4, (2.36) becomes

− ah(ηE , ηB; ζE , ζB) = −
∫
Ω

(ηE)tζEdx−
∫
Ω

(ηB)tζBdx

(2.42)

≤ C�(1 + |α|+max(β1, β2))h
r+1(‖Bt‖Hr+1 + ‖Et‖Hr+1)

(
‖ζE‖2 + ‖ζB‖2

) 1
2 .

Here we have applied the approximation property in (2.19). Combining (2.34)–
(2.37) and (2.42), as well as the initial error,∥∥∥∥Πh

(
B
E

)
−
(

Bh

Eh

)∥∥∥∥
t=0

(2.43)

=

∥∥∥∥Πh

(
B
E

)
−
(

B
E

)
+

(
B
E

)
−
(

PhB
PhE

)∥∥∥∥
t=0

≤ C�(1 + |α|+max(β1, β2))h
r+1(‖B‖Hr+1 + ‖E‖Hr+1)|t=0,

we obtain

‖ζE(·, t)‖+ ‖ζB(·, t)‖ ≤ C�(1 + |α|+max(β1, β2))h
r+1 + ‖ζE(·, 0)‖+ ‖ζB(·, 0)‖

≤ C(1 + |α|+max(β1, β2))h
r+1.

Here the constant C depends on the mesh parameter σ, and ‖Bt‖Hr+1 and ‖Et‖Hr+1

up to time T , and it also depends on ‖B‖Hr+1 and ‖E‖Hr+1 at t = 0.
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Finally, we apply the triangle inequality and the approximation property of πh =
Πh in Lemma 2.4 to conclude the estimate in (2.32) when an αβ-flux is used in the
proposed method. �

In Theorem 2.5, the initialization is through L2 projection. Some other initializa-
tion strategies can also be used without changing the orders of accuracy established
for the proposed methods. Among the general numerical flux (2.5), some lead to
sub-optimal estimates. One such example, with which the accuracy is confirmed
to be sharp numerically, is the central flux (α = β1 = β2 = 0) with k being odd.
On the other hand, our analysis shows that αβ-fluxes will result in DG methods
with optimal accuracy (this is with respect to the approximation property of V r

h );
note again that this family of numerical fluxes include the upwind and alternating
fluxes. With a close examination of the proof, one will see that the condition to
define the αβ-fluxes, namely α2 + β1β2 = 1

4 can, indeed, be further relaxed with-
out compromising the optimal accuracy of the DG methods. This generalization is
summarized in the next theorem.

Theorem 2.6. Consider the numerical flux (2.5), where α, β1, β2 satisfy

(2.44) α2 + β1β2 =
1

4
+ chδ ≥ 0, βi ≥ 0, i = 1, 2,

where c is a constant independent of h,

(2.45) δ ≥ 1

2
when min(β1, β2) > 0; δ ≥ 1 when β1β2 = 0.

When such numerical flux is used in the semi-discrete DG method (2.2) (or (2.3))
with the L2-type initialization Bh(0, ·) = PhB(0, ·), Eh(0, ·) = PhE(0, ·), the method
will have optimal error estimate as follows:

(2.46) ‖eh‖ ≤
{

C
(

(1+|α|+max(β1,β2))
min(β1,β2,1)

)
hr+1, min(β1, β2) > 0,

C (1 + |α|+max(β1, β2))h
r+1, β1β2 = 0.

The generic constant C above is independent of h. It may depend on c, the mesh
parameter σ, and the Hr+1-norm of B, E, Bt, and Et up to time T .

Proof. The proof will be based on some modification of that for Theorem 2.5 and
of some results in Lemma 2.4. We briefly illustrate the main steps in the following.

Step 1. First, we consider the operator Πh defined in (2.17) with α, β1, β2 satisfying
(2.44)-(2.45). Although this operator is no longer a projection, it still has the
properties (i)−(ii) in Lemma 2.4. The property (iv) in Lemma 2.4 is now replaced
by

(iv′) FB(ηB, ηE)j− 1
2
= C�h

r+ 1
2+δ‖B‖Hr+1 ,(2.47)

FE(ηE , ηB)j− 1
2
= C�h

r+ 1
2+δ‖E‖Hr+1 , ∀j,

and this is a direct result of (2.29) and its counterpart for FE(ηE , ηB)j− 1
2
, together

with the approximation property of P±
h in (2.15).

Step 2. For the error estimate, we can follow the arguments in the beginning of the
proof of Theorem 2.5 and get (2.34)–(2.36). We then define ηh and ζh by specifying
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πh as the operator Πh in (2.17), and get

−ah(ηE , ηB ; ζE, ζB) =−
∫
Ω

(ηE)tζE + (ηB)tζBdx

−
∑
j

(
FB(ηB , ηE)[ζE ] + FE(ηE , ηE)[ζB]

)
j− 1

2

.(2.48)

The first term on the right-hand side has been estimated in (2.42),

−
∫
Ω

(ηE)tζE + (ηB)tζBdx

(2.49)

≤ C�(1 + α+max(β1, β2))h
r+1(‖Bt‖Hr+1 + ‖Et‖Hr+1)

(
‖ζE‖2 + ‖ζB‖2

) 1
2 .

As for the second term on the right, based on (2.38)–(2.40) and (2.47), we get
(2.50)

−
∑
j

((FB(ηB , ηE)[ζE ] + (FE(ηE , ηB)[ζB])j− 1
2

≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

β
2

∑
j

([ζE ]
2
j− 1

2

+ [ζB]
2
j− 1

2

)

+C�

(
max
i=1,2

(1+|α|+βi)
2

βi

)
h2r+1+2δ(‖B‖2Hr+1+‖E‖2Hr+1), min(β1, β2)>0,

C�(1 + |α|+max(β1, β2))h
r+δ(‖B‖Hr+1 + ‖E‖Hr+1)

(
‖ζE‖2 + ‖ζB‖2

) 1
2 ,

β1β2 = 0.

Now we can combine (2.34)–(2.36), (2.48)–(2.50), the choice of the parameter δ
in (2.45), and the initial error in (2.43) to conclude the optimal error estimate
(2.46). �
Remark 2.7. When the wave problem in (1.1) is free of the source terms, one can
further show that the constant C in the error estimates in Theorems 2.5 and 2.6
will depend on time T at most linearly; see also Figures 3.1 and 3.2 in Section 3.

Remark 2.8. With the more general numerical flux (2.8) with βi ≥ 0, i = 1, 2, it

can be shown that ||eh|| ≤ Chr+ 1
2 when 4β1β2 > (α1 + α2)

2, and ||eh|| ≤ Chr

when 4β1β2 = (α1 + α2)
2. The DG methods with the αβ-fluxes defined in (2.5)

and (2.7), or its generalization as in (2.44), are still all we have identified to be L2

optimal through the current framework using a local projection operator (2.17) in
the analysis; see also the brief comment in Section 4 on a global projection operator.

2.3. Superconvergence and accuracy enhancement. In this subsection, we
study the superconvergence properties of the DG methods with αβ-fluxes. For the
general L2 stable DG methods, post-processing techniques are presented to gain
extra accuracy.

Superconvergence property is observed in the numerical solutions of some DG
schemes, and theoretical analysis has been carried out in the literature; see [6,
34] for recent work on one-dimensional linear advection equation. For the DG
methods with αβ-fluxes and under suitable initial discretization, we will establish
the (r + 2)-th order superconvergence rate of the DG approximation towards a
special projection of the exact solution in the L2 norm as well as in a specially
defined L∞ type norm (see (2.52)), and of the L2 norm of the cell average of the
solution errors.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



14 YINGDA CHENG, CHING-SHAN CHOU, FENGYAN LI, AND YULONG XING

The first step to obtain the superconvergence property is to carefully choose the
numerical initial conditions. Related to this, we have the following lemma.

Lemma 2.9. Based on the initial condition E(0, ·), B(0, ·), there exist numerical
initial discretizations, denoted by Eh(0, ·), Bh(0, ·), such that the following proper-
ties are satisfied at time t = 0:

(ζB)t = 0, (ζE)t = 0,

‖ζB‖ ≤ Chr+2, ‖ζE‖ ≤ Chr+2.(2.51)

Here πh is taken as Πh in (2.17) to define ζh = (ζB, ζE)
�.

We would like to comment that the construction of such initial discretization
is highly non-trivial and we refer to [34] for the details on how to compute it, as
well as the proof of Lemma 2.9. On the other hand, this special initialization is
sufficient yet not always necessary for the numerical solutions by DG methods with
αβ-flux to display the type of superconvergence properties summarized in the next
theorem; see Section 3 for some numerical examples. Now we are ready to state
the main theorem.

Theorem 2.10. For the semi-discrete DG method (2.2) (or (2.3)) with an αβ-flux
(2.7) and a numerical initial discretization as prescribed in Lemma 2.9, when the
exact solutions have sufficient regularity, the following estimates will hold at the
time t = T ,

⎛
⎝ 1

N

N∑
j=1

(
|ζE(yj)|2 + |ζB(yj)|2

)⎞⎠
1
2

≤ Chr+2,(2.52)

‖ēB‖+ ‖ēE‖ ≤ Chr+2,(2.53)

‖ζB‖+ ‖ζE‖ ≤ Chr+2.(2.54)

Here πh is taken as Πh in (2.17) to define ζh = (ζB, ζE)
�, and yj is any point in

the cell Ij with the same reference position, i.e., yj = xj + ahj with a independent
of j. The constant C is independent of h, and may depend on r, α, β and some
Sobolev norms of the exact solution E and B up to time T .

The proof follows the framework introduced by Yang and Shu [34], where they
prove similar results for the linear scalar hyperbolic equation with the upwind flux.
We extend their results to the linear hyperbolic system and for a more general
choice of numerical fluxes. As the main structure of the proof follows that in [34],
we shall only highlight the main steps and point out the key differences (mostly
related to the use of the αβ-flux) in the following analysis.

Proof. Step 1. Let ζ̄q define the cell average of ζq in each cell Ij , namely, ζ̄q|Ij =
1
hj

∫
Ij
ζqdx, ∀j = 1, · · · , N , where q can be either E or B, then we have

‖ζE − ζ̄E‖Ij + ‖ζB − ζ̄B‖Ij ≤ Chj

(
‖(ζE)x‖Ij + ‖(ζB)x‖Ij

)
(2.55)

based on Friedrichs’ inequality. Here ‖ · ‖Ij denotes the L2 norm in Ij .
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For the DG method with an αβ-flux and the projection πh = Πh as defined in
(2.17), the error equations take the form

∫
Ij

(eE)tφdx+

∫
Ij

ζBφxdx− (FB(ζB, ζE)φ
−)j+ 1

2
+
(
FB(ζB, ζE)φ

+
)
j− 1

2

= 0,

(2.56a)

∫
Ij

(eB)tψdx+

∫
Ij

ζEψxdx− (FE(ζE, ζB)ψ
−)j+ 1

2
+ (FE(ζE, ζB)ψ

+)j− 1
2
= 0,

(2.56b)

for all test functions φ, ψ ∈ V r
h , and for all j. Utilizing the relation α2 + β1β2 = 1

4 ,
we can obtain

∫
Ij

(
−β2eE + (

1

2
+ α)eB

)
t

φdx

−
∫
Ij

(
(
1

2
+ α)ζE − β2ζB

)
x

φdx−
(
((
1

2
+ α)[ζE ]− β2[ζB])φ

+

)
j− 1

2

= 0,

(2.57)

∫
Ij

(
(
1

2
+ α)eE + β1eB

)
t

ψdx

−
∫
Ij

(
β1ζE + (

1

2
+ α)ζB

)
x

ψdx−
(
(β1[ζE ] + (

1

2
+ α)[ζB])ψ

−
)

j+ 1
2

= 0.

(2.58)

When 1
2 + α 	= 0, we can see that

(2.59) det

[
1
2 + α β1

−β2
1
2 + α

]
=

1

2
+ α 	= 0,

and then

‖(ζE)x‖Ij + ‖(ζB)x‖Ij

(2.60)

≤ C

(∥∥∥∥((12 + α)ζE − β2ζB)x

∥∥∥∥
Ij

+

∥∥∥∥(β1ζE + (
1

2
+ α)ζB)x

∥∥∥∥
Ij

)

≤ C

(∥∥∥∥Ph

(
−β2eE + (

1

2
+ α)eB

)
t

∥∥∥∥
Ij

+

∥∥∥∥Ph

(
(
1

2
+ α)eE + β1eB

)
t

∥∥∥∥
Ij

)

≤ C
(
‖Ph(eB)t‖Ij + ‖Ph(eE)t‖Ij

)
≤ C

(
‖(eB)t‖Ij + ‖(eE)t‖Ij

)
.

Here the first inequality is due to (2.59), and the second inequality is derived from
(2.57) and (2.58) with essentially the same analysis as in [34, Lemma 3.6]. When
1
2 + α = 0, the same result ‖(ζE)x‖Ij + ‖(ζB)x‖Ij ≤ C(‖(eB)t‖Ij + ‖(eE)t‖Ij ) can
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be concluded if we work with the next two equalities instead∫
Ij

(
(
1

2
− α)eE − β1eB

)
t

φdx

−
∫
Ij

(
−β1ζE + (

1

2
− α)ζB

)
x

φdx−
(
(−β1[ζE ] + (

1

2
− α)[ζB])φ

−
)

j+ 1
2

= 0,

(2.61)

∫
Ij

(
β2eE + (

1

2
− α)eB

)
t

ψdx

−
∫
Ij

(
(
1

2
− α)ζE + β2ζB

)
x

ψdx−
(
((
1

2
− α)[ζE ] + β2[ζB])ψ

+

)
j− 1

2

= 0.

(2.62)

One can further estimate ‖(eB)t‖ and ‖(eE)t‖ following a similar analysis as in
Theorem 2.5 to bound ‖eB‖ and ‖eE‖. We skip the details and only state the
result:

‖(eB)t‖+ ‖(eE)t‖ ≤ Chr+1.(2.63)

With this and (2.55), (2.60), we have

‖ζE − ζ̄E‖+ ‖ζB − ζ̄B‖ ≤ Chr+2.(2.64)

Step 2. Next, we proceed to estimate ζh(yj) as well as ‖ζ̄h‖. For any point yj
in the cell Ij , we can construct a unique set of r + 1 quadrature points in Ij ,
denoted as {x̂i

j}0≤i≤r, which includes yj(= x̂i
j for some index i) and at the same

time is accurate for the integration of polynomials of degree 2r over Ij . Let the
corresponding weights on a reference element [−1, 1] be {wi}0≤i≤r. In addition, let
χi
j ∈ V r

h be a piecewise polynomial of degree r, which is non-zero only in Ij and

satisfies χi
j(x

i′

j ) = δi,i′ . Here δi,i′ is the Kronecker delta function. With this, we

have ζh(yj) = ζh(x̂
i
j) = 2

wihj

∫
Ij
ζhχ

i
jdx = 2

wihj

∫
Ω
ζhχ

i
jdx. From now on, we will

use the notation (u, v) =
∫
Ω
uvdx.

Let’s consider the following dual problem:

(φj)t − (φj)x = 0, (x, t) ∈ [a, b]× (0, T ],

φj(x, T ) = χi
j(x), x ∈ [a, b],

φj(a, t) = φj(b, t), t ∈ (0, T ].

We now introduce the following projections of φj :

P
(1)
h φj =

(
1

2
− α− β2

)
P+
h φj +

(
1

2
+ α+ β2

)
P−
h φj ,(2.65)

P
(2)
h φj =

(
1

2
+ α− β1

)
P+
h φj +

(
1

2
− α+ β1

)
P−
h φj ,(2.66)

which mimic the definition of Πh in (2.17).
Following [34], we have

(2.67) (eE(T ), χ
i
j) = (eE , φj)(T ) = (eE , φj)(0)+

∫ T

0

(
((eE)t, φj)+ (eE , (φj)t)

)
dt
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L2 STABLE DG METHODS FOR 1D TWO-WAY WAVE EQUATIONS 17

and

((eE)t, φj) + (eE , (φj)t) = ((eE)t, φj − P
(1)
h φj)−H(ζB, P

(1)
h φj ;FB(ζB, ζE))

+ (ηE , (φj)x) + (ζE, (φj)x),

where

H(ζB, P
(1)
h φj ;FB(ζB, ζE))(2.68)

= (ζB, (P
(1)
h φj)x) +

∑
l

(
FB(ζB, ζE)[P

(1)
h φj ]

)
l− 1

2

= −((ζB)x, P
(1)
h φj)−

∑
l

[
ζBP

(1)
h φj

]
l− 1

2

+
∑
l

(
FB(ζB, ζE)[P

(1)
h φj ]

)
l− 1

2

= −((ζB)x, φj)−
∑
l

[
ζBP

(1)
h φj

]
l− 1

2

+
∑
l

(
FB(ζB, ζE)[P

(1)
h φj ]

)
l− 1

2

= (ζB, (φj)x) +
∑
l

(
[ζBφj ]− [ζBP

(1)
h φj ] + FB(ζB, ζE)[P

(1)
h φj ]

)
l− 1

2

,

and the jump terms can be reorganized as

− [ζBP
(1)
h φj ] + FB(ζB, ζE)[P

(1)
h φj ](2.69)

= −[ζB]{P (1)
h φj}+ (α[ζB] + β1[ζE ])[P

(1)
h φj ]

= −[ζB]({P (1)
h φj} − α[P

(1)
h φj ]) + β1[ζE ][P

(1)
h φj ],

[ζBφj ] = [ζB]({φj} − (α+ β2)[φj ]) + {ζB}[φj ] + (α+ β2)[ζB][φj ](2.70)

= [ζB]({φj} − (α+ β2)[φj ]) + ({ζB}+ (α+ β2)[ζB])[φj ].

Similarly,

(eB(T ), χ
i
j) = (eB, φj)(0) +

∫ T

0

(
((eB)t, φj) + (eB, (φj)t)

)
dt,(2.71)

((eB)t, φj) + (eB, (φj)t) = ((eB)t, φj − P
(2)
h φj)

−H(ζE , P
(2)
h φj ;FE(ζE , ζB)) + (ηB, (φj)x) + (ζB, (φj)x),

where

H(ζE, P
(2)
h φj ;FE(ζE , ζB)) = (ζE, (φj)x)

+
∑
l

(
[ζEφj ]− [ζEP

(2)
h φj ] + FE(ζE , ζB)[P

(2)
h φj ]

)
l− 1

2

and

− [ζEP
(2)
h φj ]+FE(ζE , ζB)[P

(2)
h φj ](2.72)

= −[ζE ]({P (2)
h φj}+ α[P

(2)
h φj ]) + β2[ζB][P

(2)
h φj ],

[ζEφj ] = [ζE ]({φj}+ (α− β1)[φj ]) + ({ζE} − (α− β1)[ζE ])[φj ].(2.73)
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18 YINGDA CHENG, CHING-SHAN CHOU, FENGYAN LI, AND YULONG XING

Using the definitions of P
(1)
h and P

(2)
h in (2.65)-(2.66), as well as some simple algebra

similar to the proof of Lemma 2.4, we can show

{P (1)
h φj} − α[P

(1)
h φj ]− β2[P

(2)
h φj ] =

(
1

2
− α− β2

)
φ+
j +

(
1

2
+ α+ β2

)
φ−
j ,

{P (2)
h φj}+ α[P

(2)
h φj ]− β1[P

(1)
h φj ] =

(
1

2
+ α− β1

)
φ+
j +

(
1

2
− α+ β1

)
φ−
j .

Then the sum of (2.69) and (2.72) becomes

− [ζEP
(2)
h φj ] + FE(ζE , ζB)[P

(2)
h φj ]− [ζBP

(1)
h φj ] + FB(ζB, ζE)[P

(1)
h φj ](2.74)

= −[ζB ]
(
{P (1)

h φj} − α[P
(1)
h φj ]− β2[P

(2)
h φj ]

)
− [ζE ]

(
{P (2)

h φj}+ α[P
(2)
h φj ]− β1[P

(1)
h φj ]

)
= −[ζB ] ({φj} − (α+ β2)[φj ])− [ζE ] ({φj}+ (α− β1)[φj ]) .

This, together with (2.70) and (2.73), further gives

[ζEφj ]− [ζEP
(2)
h φj ] + FE(ζE, ζB)[P

(2)
h φj ] + [ζBφj ]− [ζBP

(1)
h φj ](2.75)

+ FB(ζB, ζE)[P
(1)
h φj ]

= ({ζB}+ (α+ β2)[ζB])[φj ] + ({ζE} − (α− β1)[ζE])[φj ].

Now we combine (2.67), (2.71), (2.75), and get

(eE(T ), χj) + (eB(T ), χj) = (eE , φj)(0) + (eB, φj)(0)

(2.76)

+

∫ T

0

(
((eE)t, φj − P

(1)
h φj) + (ηE , (φj)x)−

∑
l

(
({ζB}+ (α+ β2)[ζB])[φj ]

)
l− 1

2

+ ((eB)t, φj − P
(2)
h φj)+(ηB, (φj)x)−

∑
l

(
({ζE} − (α− β1)[ζE])[φj ]

)
l− 1

2

)
dt

= (eE , φj)(0) + (eB, φj)(0) +

∫ T

0

(
((eE)t, φj − P

(1)
h φj) + ((eB)t, φj − P

(2)
h φj)

)
dt

+

∫ T

0

(
(ηE , (φj)t) + (ηB, (φj)t)

)
dt,

For the last equality, we have used
∫ T
0

∑
l

(
({ζB} + (α + β2)[ζB])[φj ]

)
l− 1

2

dt = 0

and
∫ T
0

∑
l

(
({ζE} − (α − β1)[ζE ])[φj ]

)
l− 1

2

dt = 0 which are due to the fact that

[φj ]l− 1
2
= 0 except for a finite number of t. We further apply integration by parts

to the last term of the right-hand side of (2.76), and get

(ζE(T ), χ
i
j) + (ζB(T ), χ

i
j) = (ζE, φj)(0) + (ζB, φj)(0)(2.77)

+

∫ T

0

(
((eE)t, φj − P

(1)
h φj) + ((eB)t, φj − P

(2)
h φj)

)
dt

−
∫ T

0

(((ηE)t, φj) + ((ηB)t, φj)) dt.
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L2 STABLE DG METHODS FOR 1D TWO-WAY WAVE EQUATIONS 19

Using the characteristic lines of φj , Yang and Shu [34] performed a detailed analysis
to bound some terms similar to those on the right-hand sides of (2.77). Following
similar techniques, we can show∑

j

(Πj
1)

2 ≤ Ch2r+5, where Πj
1 := (ζE, φj)(0) + (ζB, φj)(0),

∑
j

(Πj
2)

2 ≤ Ch2r+5, where Πj
2 :=

∫ T

0

(
((ηE)t, φj) + ((ηB)t, φj)

)
dt,

∑
j

(Πj
3)

2 ≤ Ch2r+5, where Πj
3 :=

∫ T

0

(
((eE)t, φj − P

(1)
h φj)

+ ((eB)t, φj − P
(2)
h φj)

)
dt.

We refer the readers to [34] for more details. Now we gather all the estimates and
obtain ∑

j

∣∣(ζE , χi
j) + (ζB, χ

i
j)
∣∣2 ≤ Ch2r+5.(2.78)

Step 3. Next, we consider another dual problem

(ψj)t + (ψj)x = 0, (x, t) ∈ [a, b]× (0, T ],

ψj(x, T ) = χi
j(x), x ∈ [a, b],

ψj(a, t) = ψj(b, t), t ∈ (0, T ],

and with a very similar analysis, we obtain∑
j

∣∣(ζE , χi
j)− (ζB, χ

i
j)
∣∣2 ≤ Ch2r+5.(2.79)

The estimates in (2.78)-(2.79) readily imply∑
j

∣∣(ζE , χi
j)
∣∣2 , ∑

j

∣∣(ζB, χi
j)
∣∣2 ≤ Ch2r+5.

This means that, for any yj in the cell Ij , we have

1

N

∑
j

|ζB(yj)|2 =
1

N

∑
j

∣∣∣∣ 2

wihj
(ζB, χ

i
j)

∣∣∣∣
2

≤ Ch2r+4,(2.80)

1

N

∑
j

|ζE(yj)|2 ≤ Ch2r+4.(2.81)

This leads to the superconvergence property (2.52).

Finally, we can carry out the analysis just as above, yet replacing χi
j in the two

dual problems at time T by the indicator function of the cell Ij . This will yield

(2.82) ‖ζ̄B‖+ ‖ζ̄E‖ ≤ Chr+2,

hence the estimate for the solution error eh in (2.53). The superconvergence esti-
mate (2.54) then follows from (2.64) and (2.82). �

Remark 2.11. The superconvergence results are proven for αβ-fluxes (2.7). When
the numerical fluxes do not satisfy (2.7), we have tested the corresponding DG
methods numerically, and no such superconvergence property has been observed.
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Finally, we discuss an approach to gain extra accuracy through post-processing
techniques using a specially designed convolution kernel. In [13], post-processing
techniques are devised to enhance the accuracy for DG solutions on uniform meshes,
and they are based on error estimates of even higher order accuracy in negative-
order norms, namely,

(2.83) ||u||−l = sup
0�=φ∈C∞

0 (Ω)

∫
Ω
u(x)φ(x)dx

||φ||l
,

for the numerical solutions. In particular, the computed DG solutions at the final

time T are convoluted with a specially chosen kernel, K
2(r+1),r+1
h , and this will give

the post-processed solutions, E∗
h and B∗

h,

(2.84) E∗
h = K

2(r+1),r+1
h � Eh(T, ·), B∗

h = K
2(r+1),r+1
h � Bh(T, ·).

The kernel is a linear combination of B-splines functions of order r + 1, scaled by
the mesh size h, and it is translation-invariant. More details can be found in [31]
about the kernel. Following essentially the same proof as in [13] (see also [23]), we
have the following estimates.

Theorem 2.12. For the semi-discrete DG method (2.2) (or (2.3)) with the nu-
merical flux (2.5), βi ≥ 0, i = 1, 2, in addition to the L2-type initialization with
Bh(0, ·) = PhB(0, ·), Eh(0, ·) = PhE(0, ·), if the numerical solutions Eh and Bh are
(r+m)-th order accurate in L2 norm and the exact solutions together with the source
terms, S1 and S2, have sufficient regularity, then the post-processed solutions, E∗

h

and B∗
h, will have the following error estimates,

(2.85) ||E − E∗
h||, ||B −B∗

h|| ≤ Ch2r+min(1,m).

The positive constant C is independent of h. It may depend on r, α, β and some
Sobolev norms of the exact solution E and B up to time T .

In both [13] and [23], the analysis is carried out for homogeneous problems.
Yet the analysis can be extended directly to the case with smooth source terms,

for instance, by redefining ΘM on p. 588 in [13] as ΘM =
(
u0 − Phu0, ϕ(0)

)
+∫ T

0
(S, ϕ−χ)dt, where S is the source term in the problem, also refer to [13] for the

notation in this definition.

2.4. Dispersion analysis. In this subsection, we perform dispersion analysis of
the proposed general L2 stable DG methods. The dispersion and dissipation errors
of semi-discrete DG methods have been analyzed for scalar linear conservation law
[1,21,22,28], and for second-order wave equations [3]. A recent study [2] compares
the dispersive behavior of finite element methods, spectral element methods, and
DG methods with central flux for the one-way wave equation. As for fully discrete
schemes, in [33], Runge-Kutta DG and Lax-Wendroff DG methods are analyzed
for linear advection equation. In [27], Runge-Kutta DG methods with the upwind
flux are considered for Maxwell’s system, and their accuracy in both dispersion and
dissipation errors was studied numerically.

In the analysis below, we shall consider the DG scheme (2.2) with flux choice
(2.5) and assume S1 = S2 = 0. As is usually done for the dispersion analysis, we
use a uniform mesh, i.e., hj = h for all j. To carry out the analysis, we assume
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L2 STABLE DG METHODS FOR 1D TWO-WAY WAVE EQUATIONS 21

that the initial condition takes the form

E(0, x) = E0e
ikx,(2.86a)

B(0, x) = B0e
ikx,(2.86b)

then the exact solution is given by

E(t, x) =
E0 +B0

2
ei(kx+kt) +

E0 −B0

2
ei(kx−kt),(2.87a)

B(t, x) =
E0 +B0

2
ei(kx+kt) − E0 −B0

2
ei(kx−kt).(2.87b)

Clearly, it is composed of two waves ei(kx+wt) with the dispersion relation w = ±k.
Now given k, we want to identify the corresponding numerical dispersion relation

for the DG methods, where the numerical solution would be composed of waves
of the form ei(kx+w̃t). Below we will discuss the cases of piecewise P 0, P 1, P 2

polynomial spaces, while for higher order polynomials the derivation becomes more
cumbersome and is not included in this paper. In all cases, we shall consider the
small wavenumber limit, i.e., kh → 0, and perform asymptotic expansion with
respect to kh. Compared with [3], our analysis below includes the P 2 polynomial
case, and it also provides detailed discussion about both the physical and spurious
modes. The specific form of the spurious modes are particularly important to the
numerical solutions of non-dissipative (energy-conserving) schemes, i.e., schemes
with β1 = β2 = 0, verifying their sensitivity to initial data. As in error estimates,
the parameters α, β1, β2 in the numerical flux (2.5) are assumed to be constants of
O(1), and β1 ≥ 0, β2 ≥ 0.

2.4.1. P 0 polynomials. For the case of piecewise constant polynomial space, we
assume Eh|Ij = Ej , Bh|Ij = Bj . From (2.2), we can obtain the following relation(

Ej

Bj

)
t

= A1

(
Ej−1

Bj−1

)
+A2

(
Ej

Bj

)
+A3

(
Ej+1

Bj+1

)
,

where A1, A2, A3 are 2× 2 matrices. From the assumption of the wave taking the
form Ej(t) = Ê(t)eikxj , Bj(t) = B̂(t)eikxj , the above relation is transformed into(

Ê

B̂

)
t

= G

(
Ê

B̂

)
,

where G = A1e
−ikh + A2 + A3e

ikh is the amplification matrix. In particular, G is
given by

G =
1

h

(
2β1(cos(kh)− 1) 2α(cos(kh)− 1) + i sin(kh)
−2α(cos(kh)− 1) + i sin(kh) 2β2(cos(kh)− 1)

)
.

The matrix G has two eigenvalues λ1, λ2, and we compute

w̃1,2 =
λ1,2

i
=± k + i

(β1 + β2)k
2

2
h±
(
−4 + 3(4α2 − (β1 − β2)

2)
)
k3

24
h2

− i
(β1 + β2)k

4

24
h3 +O(k(kh)4)

in the limit of kh → 0. When β1+β2 > 0, this demonstrates a first order dissipation
error and in general a second order dispersion error in the numerical solution. If
β1 = β2 = 0, the scheme is non-dissipative, and the two eigenvalues of G are
always real. This can also be verified directly from the analytical form of the
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amplification matrix G. In this case, the leading dispersion error is of second order

unless α = ±
√

1
3 , for which the method can be pushed to have fourth order accuracy

in dispersion analysis. This particular parameter choice is also reported in [3].

2.4.2. P 1 polynomials. The procedure is similar for piecewise linear polynomials.
By choosing the basis functions on each element Ij to be φ1 = −ξ + 1

2 , φ2 = ξ+ 1
2 ,

with ξ =
x−xj

h , the numerical solution on Ij can be written as Eh = E1
jφ1 +E2

jφ2,

Bh = B1
jφ1 + B2

jφ2. Similar derivations as in the P 0 case result in the following
ODE: ⎛

⎜⎜⎜⎝
Ê1

Ê2

B̂1

B̂2

⎞
⎟⎟⎟⎠

t

= G

⎛
⎜⎜⎜⎝

Ê1

Ê2

B̂1

B̂2

⎞
⎟⎟⎟⎠ ,

where the amplification matrix is given by

G =
1

h

⎛
⎜⎜⎝

−2β1(2 + eikh) β1(2 + 4e−ikh) 1− 4α− (1 + 2α)eikh

2β1(1 + 2eikh) β1(−4− 2e−ikh) 2(−1 + α+ (1 + 2α)eikh)
1 + 4α+ (−1 + 2α)eikh 2(1− α− (1 + 2α)e−ikh) −2β2(2 + eikh)

−2(1 + α+ (−1 + 2α)eikh) −1 + 4α+ (1 + 2α)e−ikh 2β2(1 + 2eikh)

2(1 + α+ (−1 + 2α)e−ikh)
−1− 4α+ (1− 2α)e−ikh

β2(2 + 4e−ikh)
β2(−4− 2e−ikh)

⎞
⎟⎟⎠ .

The matrix G has four distinct eigenvalues λi, i = 1, . . . , 4. We perform an
asymptotic analysis as kh → 0, and obtain the following results. Four cases are
discussed depending on the values of α, β1, β2.

Case 1. If α2 + β1β2 	= 0, then

w̃1,2 =
λ1,2

i
= ± k + i

(β1 + β2)k
4

288(α2 + β1β2)
h3(2.88a)

∓ k5

17280(α2 + β1β2)2
(−20α2 + 96α4 − 5β2

1 − 5β2
2

− 30β1β2 + 192α2β1β2 + 96β2
1β

2
2)h

4 +O(k(kh)5)

w̃3,4 =
λ3,4

i
= (6i(β1 + β2)± 6

√
4α2 − (β1 − β2)2)

1

h
+O(1).(2.88b)

Clearly, w̃1,2 correspond to the physical modes, and w̃3,4 are the spurious modes.
If β1 + β2 > 0, the leading error in the physical modes is a third order dissipation
error. The spurious modes, on the other hand, get damped exponentially fast in
time, due to the leading imaginary part of w̃3,4 being positive and proportional
to O( 1h ). If β1 = β2 = 0, although the leading error in the physical modes is of
higher order, i.e., at least fourth order depending on the value of α, the spurious
modes will be O( 1h ) oscillatory. Therefore, any contribution to the spurious modes
from the initial data will always be present over time, rendering the numerical
solution highly dependent upon the initial approximation; see Tables 3.3 and 3.4
for numerical verification. We notice that the proposed αβ-fluxes always belong to
Case 1.
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Case 2. If α = β1 = 0, β2 	= 0, then

w̃1,2 = ±k ± k3

24
h2 + i

k4

72β2
h3 +O(k(kh)4),(2.89a)

w̃3 = i
3k2

4β2
h+ i

k4

12β2
(

9

16β2
2

− 3

4
)h3 +O(k(kh)4),(2.89b)

w̃4 = i
12β2

h
+O(1).(2.89c)

The leading error in the physical modes w̃1,2 is a second order dispersion error,
inferior to Case 1. This shall be held accountable for the sub-optimal order of
accuracy illustrated in Table 3.8. For the spurious modes, w̃3 corresponds to a
stationary wave that is not moving with time in the O(1) leading order, but gets
damped on the first order of h. On the other hand, w̃4 will be damped exponentially
fast due to the leading O( 1h ) term, and is less significant than w̃3.

Case 3. If α = β2 = 0, β1 	= 0, then

w̃1,2 = ±k ± k3

24
h2 + i

k4

72β1
h3 +O(k(kh)4),(2.90a)

w̃3 = i
3k2

4β1
h+ i

k4

12β1
(

9

16β2
1

− 3

4
)h3 +O(k(kh)4),(2.90b)

w̃4 = i
12β1

h
+O(1).(2.90c)

The discussion is similar to Case 2, and is omitted.

Case 4. If α = β1 = β2 = 0, then

w̃1,2 = ±(k +
k3

48
h2 − 7k5

15360
h4) +O(k(kh)6),(2.91a)

w̃3,4 = ±(3k − 5k3

16
h2 +

83k5

5120
h4) +O(k(kh)6).(2.91b)

In fact, one can show that each w̃ in this case is always real, showing no dissipation
error. For the physical modes w̃1,2, the leading error is a second order dispersion
error, inferior to Case 1. This shall be held accountable for the sub-optimal order
of accuracy for the DG methods with the central flux demonstrated numerically in
Table 3.7 and predicted in Theorem 2.5. More interestingly, the spurious modes
w̃3,4 consist of two waves traveling three times the actual wave speed, and they are
not damped with time. The numerical solution, just as in Case 1 with β1 = β2 = 0,
will be sensitive to the initial approximation.

2.4.3. P 2 polynomials. For the piecewise P 2 polynomial case, we choose the basis
functions on each element Ij to be φ1 = 2ξ(ξ− 1

2 ), φ2 = −4(ξ2− 1
4 ), φ3 = 2ξ(ξ+ 1

2 )

where ξ =
x−xj

h . Similar derivations show that there are six eigenvalues of the
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amplification matrix, and

w̃1,2 = ± k + i
(β1 + β2)k

6

7200
h5

(2.92a)

± k7

252000
(−15 + 56α2 + 7β2

1 + 7β2
2 + 70β1β2)h

6 +O(k(kh)7),

w̃3,4 =
(
3i(β1 + β2) + 3

√
4α2 − (β1 − β2)2

(2.92b)

±
√
6(10 + 6α2 − 3β2

1 − 3β2
2 + i(3β1 + 3β2)

√
4α2 − (β1 − β2)2)

) 1
h
+O(1),

w̃5,6 =
(
3i(β1 + β2)− 3

√
4α2 − (β1 − β2)2

(2.92c)

±
√
6(10 + 6α2 − 3β2

1 − 3β2
2 − i(3β1 + 3β2)

√
4α2 − (β1 − β2)2)

) 1
h
+O(1);

w̃1,2 are the physical modes, while w̃3,4,5,6 are the spurious modes. For the physical
modes, when β1+β2 > 0, we observe fifth order dissipation error; otherwise, a sixth
order dispersion error is dominant. We can verify by basic algebraic manipulations
that the imaginary part of the leading term of w̃3,4,5,6 is positive and proportional
to O( 1h ), and this implies that all these spurious modes will decay exponentially
with time. We also notice that unlike piecewise linear polynomials, there is no
need to distinguish the case of different α, β1, β2 values. In fact, we believe this
is why the central flux gives sub-optimal accuracy order for the DG methods with
piecewise P 1 polynomial spaces, but optimal accuracy order for the P 2 polynomial
case in actual simulations.

3. Numerical examples

We perform numerical tests to verify the theoretical results obtained in previ-
ous sections, and further demonstrate the behavior of the proposed methods. In
particular, we consider

Example 3.1. Equation (1.1) with S1(t, x) = S2(t, x) = 0 and the following
smooth initial condition

E(0, x) = sin(x), B(0, x) = −1

3
sin(x).

The exact solution is given by

E(t, x) =
1

3
sin(x+ t) +

2

3
sin(x− t), B(t, x) =

1

3
sin(x+ t)− 2

3
sin(x− t).

Example 3.2. Equation (1.1) with

S1(t, x) =
(
1− esin(t) − cos(t)

)
sin(x), S2(t, x) =

(
sin(t)− cos(t)esin(t)

)
cos(x)

and zero initial condition E(0, x) = B(0, x) = 0.

The exact solution is given by

E(t, x) = sin(t) sin(x), B(t, x) = (esin(t) − 1) cos(x).
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In our simulations, we use a ninth order strong-stability-preserving (SSP) Runge-
Kutta method [19] with Δt = O(h) for Example 3.1 and a third order TVD Runge-
Kutta method [29] with Δt = O(h3) for Example 3.2 to eliminate the error from
the temporal discretization. We remark that the time discretization described in
[7] can also be used to solve Example 3.2 without the need to reduce greatly the
timestep size in the presence of the source terms.

3.1. Convergence study. We measure the L2 norm of eh, L
2 and L∞ norms of ζh,

the error in cell averages eave = ‖ēB‖+‖ēE‖, and the L2 error of the post-processed
numerical solution

e∗h =

(
e∗B
e∗E

)
:=

(
B
E

)
−
(

B∗
h

E∗
h

)

at t = 15. The projection Πh in (2.17) is used to define ζh. To compute the L∞ norm
of ζh, we sample 20 points in each cell Ij uniformly, and compute the maximum
absolute value of ζh at all these points. Here, we examine the superconvergence
property of ζh in the L∞ norm as it implies the estimate in (2.52). Unless otherwise
noted, the initial condition of the numerical solution is approximated by the L2

projection. Uniform meshes are used in all numerical tests.
We start with the source free problem, Example 3.1, and first consider the αβ-

fluxes with several sets of values for α, β1, β2. Tables 3.1, 3.2, 3.3, 3.5, 3.6 list the
numerical errors and orders for five sets of the αβ-fluxes. We notice that except for
Table 3.3 with flux choice α = −0.5, β1 = β2 = 0 (which is also an alternating flux),
all other cases demonstrate optimal convergence orders of r+1, 2r+1, r+2, 2r+1
for eh, e

∗
h, ζh, eave, respectively. This is in accordance with the theoretical results

obtained in Sections 2.2 and 2.3. In particular, the convergence rate for the cell
average is higher than the (r + 2)-th order predicted in Theorem 2.10.

When we restrict our attention to Table 3.3, however, we notice significantly
different error behaviors. The convergence orders for eh, e

∗
h still remain r + 1 and

2r + 1, but the order for ζh is reduced to r + 1 and the order for eave is oscillating
around r+2 with mesh refinement. The error terms ζh and eave are also noticeably
bigger than their counterparts in Tables 3.1, 3.2, 3.5 and 3.6. We notice that this
order reduction does not violate Theorem 2.10, because we have used the L2 projec-
tion to approximate the initial condition instead of the sophisticated initialization
prescribed by Lemma 2.9. To verify this claim, we perform a numerical experiment
by changing the initial approximation to Πh(B,E) as defined in (2.17), and list
the numerical errors and orders in Table 3.4. The projection Πh is closer to the
suggested initial condition in Lemma 2.9 than the L2 projection, and therefore this
results in significantly reduced errors in ζh and eave. In particular, the order of ζh
is observed to be r+2, and the order of eave is now oscillating about 2r+1. From
these computations, we can draw the conclusion that for this non-dissipative scheme
with an αβ flux where β1 = β2 = 0, the superconvergence properties are sensitive
to the initialization. This is natural due to the lack of dissipation in the numerical
scheme, and is also verified by the dispersion analysis in Section 2.4. When compar-
ing Table 3.3 with Tables 3.5 and 3.6, we observe that dissipation in the numerical
schemes can dramatically increase the superconvergence property even if the initial
condition is simply approximated by the L2 projection. The impact of the numer-
ical initialization on superconvergence of DG solutions for one-dimensional linear
scalar hyperbolic equations has been previously reported in [6, 34].
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We then consider numerical results computed by DG methods with three fluxes
that do not belong to the αβ-flux family. In those cases, the operator Πh does not
generate functions closer to the numerical solutions than E,B themselves, so we
only list the errors for eh, e

∗
h, eave. Table 3.7 contains the numerical results for the

central flux with α = β1 = β2 = 0. We observe sub-optimal r-th order accuracy
for odd polynomials P 1 and P 3, and optimal (r + 1)-th order accuracy for even
polynomials P 2 in the L2 error of the numerical solution. The convergence orders
for the post-processed solutions are 2r, 2r+2, 2r, respectively, for P 1, P 2, P 3. As for
the error for cell averages eave, the convergence orders are all above r+1, and seem
to oscillate with mesh refinement. Although this flux is energy-conserving similarly
to the alternating flux presented in Tables 3.3 and 3.4, the loss of L2 convergence
rate is an indication of the importance of choosing the correct parameters α, β1, β2

in the numerical fluxes for the optimal convergence rate.
In Table 3.8, we test the numerical flux with α = β1 = 0, β2 = 0.1. This is

neither an αβ-flux, nor energy-conserving. The errors behave very similarly to the
central flux, i.e., only sub-optimal orders are observed for P 1 and P 3 polynomi-
als. On the other hand, Table 3.9 for the numerical flux with α = 0, β1 = β2 =√
0.25− 0.4992 ≈ 0.0316 shows quite different behavior. By using non-zero values

in both β1 and β2, this dissipative scheme demonstrates optimal L2 convergence
rate of (r+1)-th order for all polynomial cases. Although this flux does not belong
to the αβ-fluxes family nor its variant in (2.44), and is not backed up by convergence
theory in Section 2.2, we do observe orders of r + 1, 2r + 1, 2r + 1 for eh, e

∗
h, eave,

respectively.
Next, we turn our attention to Example 3.2 with the source term. We provide

results for numerical errors and orders in Tables 3.10, 3.11, 3.12 for upwind, alter-
nating and central flux. They demonstrate similar behaviors in accuracy orders as
their counterparts for the source free problem in Tables 3.1, 3.4, 3.7. We want to
emphasize that this example has zero initial condition, and that’s why the behavior
of the alternating flux in this case is similar to Table 3.4, but not to Table 3.3.

Table 3.1. Example 3.1. Numerical errors and orders at t = 15
computed with an αβ-flux, α = 0, β1 = β2 = 0.5. This is also
known as the upwind flux.

space N eh e∗h ζh ζh eave

L2 error order L2 error order L2 error order L∞ error order L2 error order
20 6.53E-03 4.84E-03 4.78E-03 6.22E-03 6.69E-03

P1 40 1.30E-03 2.32 6.05E-04 3.00 6.02E-04 2.99 7.70E-04 3.01 8.48E-04 2.98
80 3.03E-04 2.11 7.55E-05 3.00 7.54E-05 3.00 9.58E-05 3.01 1.06E-04 2.99
160 7.44E-05 2.03 9.42E-06 3.00 9.43E-06 3.00 1.20E-05 3.00 1.33E-05 3.00
20 1.24E-04 7.07E-06 6.50E-06 1.10E-05 6.68E-06

P2 40 1.56E-05 3.00 1.85E-07 5.25 3.22E-07 4.33 7.67E-07 3.84 2.11E-07 4.99
80 1.94E-06 3.00 5.22E-09 5.15 1.87E-08 4.11 5.39E-08 3.83 6.60E-09 5.00
160 2.43E-07 3.00 1.54E-10 5.18 1.15E-09 4.03 3.55E-09 3.92 2.06E-10 5.00
20 2.52E-06 7.49E-08 6.28E-08 2.45E-07 3.39E-09

P3 40 1.57E-07 4.00 3.08E-10 7.92 1.96E-09 5.00 7.67E-09 5.00 2.67E-11 6.99
80 9.85E-09 4.00 1.31E-12 7.88 6.12E-11 5.00 2.40E-10 5.00 2.09E-13 7.00
160 6.15E-10 4.00 5.96E-15 7.75 1.91E-12 5.00 7.49E-12 5.00 1.44E-15 7.18
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Table 3.2. Example 3.1. Numerical errors and orders at t = 15
computed with an αβ-flux, α = 0.4, β1 = β2 = 0.3.

space N eh e∗h ζh ζh eave

L2 error order L2 error order L2 error order L∞ error order L2 error order
20 5.40E-03 2.97E-03 2.91E-03 3.98E-03 4.07E-03

P1 40 1.21E-03 2.15 3.67E-04 3.02 3.65E-04 2.99 4.96E-04 3.01 5.12E-04 2.99
80 2.95E-04 2.04 4.56E-05 3.01 4.56E-05 3.00 6.19E-05 3.00 6.41E-05 3.00
160 7.33E-05 2.01 5.67E-06 3.01 5.70E-06 3.00 7.74E-06 3.00 8.01E-06 3.00
20 1.22E-04 5.20E-06 5.02E-06 1.41E-05 4.05E-06

P2 40 1.52E-05 3.00 1.26E-07 5.36 2.75E-07 4.19 8.22E-07 4.10 1.27E-07 4.99
80 1.91E-06 3.00 3.37E-09 5.23 1.65E-08 4.05 4.98E-08 4.05 3.98E-09 5.00
160 2.39E-07 3.00 9.63E-11 5.13 1.02E-09 4.01 3.07E-09 4.02 1.24E-10 5.00
20 2.45E-06 7.40E-08 5.29E-08 1.44E-07 2.06E-09

P3 40 1.54E-07 4.00 3.01E-10 7.94 1.65E-09 5.00 4.54E-09 4.99 1.62E-11 6.99
80 9.63E-09 4.00 1.23E-12 7.94 5.16E-11 5.00 1.42E-10 5.00 1.26E-13 7.00
160 6.02E-10 4.00 5.51E-15 7.80 1.61E-12 5.00 4.45E-12 5.00 7.91E-16 7.32

Table 3.3. Example 3.1. Numerical errors and orders at t = 15
computed with an αβ-flux, α = −0.5, β1 = β2 = 0. This is also
known as the alternating flux.

space N eh e∗h ζh ζh eave

L2 error order L2 error order L2 error order L∞ error order L2 error order
20 3.96E-03 2.40E-04 3.48E-03 8.41E-03 3.10E-04

P1 40 1.67E-03 1.25 2.74E-05 3.13 8.82E-04 1.98 2.15E-03 1.97 7.49E-05 2.05
80 2.93E-04 2.51 3.25E-06 3.08 2.20E-04 2.00 5.38E-04 2.00 6.71E-06 3.48
160 8.94E-05 1.71 4.13E-07 2.98 5.57E-05 1.98 1.36E-04 1.98 9.03E-07 2.89
320 1.54E-05 2.54 5.10E-08 3.02 1.39E-05 2.01 3.39E-05 2.01 2.42E-08 5.22
20 1.65E-04 2.38E-06 8.21E-05 2.33E-04 4.81E-06

P2 40 1.65E-05 3.32 3.80E-08 5.97 1.01E-05 3.02 3.07E-05 2.92 4.78E-07 3.33
80 2.07E-06 2.99 6.20E-10 5.94 1.34E-06 2.92 4.00E-06 2.94 4.44E-09 6.75
160 2.27E-07 3.19 1.11E-11 5.80 1.69E-07 2.99 5.04E-07 2.99 3.17E-10 3.81
20 2.73E-06 7.25E-08 1.21E-06 3.74E-06 4.65E-08

P3 40 1.76E-07 3.96 2.90E-10 7.97 6.75E-08 4.17 1.32E-07 4.83 2.64E-09 4.14
80 8.52E-09 4.37 1.14E-12 7.99 4.06E-09 4.05 7.96E-09 4.05 8.67E-11 4.93
160 6.60E-10 3.69 4.82E-15 7.88 2.48E-10 4.03 5.06E-10 3.98 2.52E-12 5.10

Table 3.4. Example 3.1. Numerical errors and orders at t = 15
computed with an αβ-flux, α = −0.5, β1 = β2 = 0 (alternating
flux). We use the special projection Πh(B,E) as the initial condi-
tion.

space N eh e∗h ζh ζh eave

L2 error order L2 error order L2 error order L∞ error order L2 error order
20 4.41E-03 2.81E-04 2.76E-04 5.48E-04 3.06E-04

P1 40 1.11E-03 1.99 3.18E-05 3.15 4.97E-05 2.47 9.76E-05 2.49 3.63E-05 3.08
80 2.77E-04 2.00 3.85E-06 3.04 4.65E-06 3.42 1.05E-05 3.21 4.24E-06 3.10
160 6.98E-05 1.99 4.78E-07 3.01 6.53E-07 2.83 1.39E-06 2.92 5.33E-07 2.99
320 1.74E-05 2.00 5.96E-08 3.00 6.16E-08 3.41 1.37E-07 3.35 6.51E-08 3.03
20 1.12E-04 2.37E-06 7.85E-06 2.03E-05 6.92E-07

P2 40 1.42E-05 2.98 3.82E-08 5.96 2.58E-07 4.92 7.61E-07 4.74 5.27E-09 7.04
80 1.76E-06 3.01 6.32E-10 5.92 2.63E-08 3.30 8.90E-08 3.10 4.95E-10 3.41
160 2.21E-07 2.99 1.18E-11 5.75 9.60E-10 4.77 3.27E-09 4.76 5.03E-12 6.62
20 2.25E-06 7.25E-08 9.19E-08 1.85E-07 3.76E-09

P3 40 1.40E-07 4.01 1.14E-12 7.99 3.01E-09 4.93 7.64E-09 4.60 2.36E-11 7.31
80 8.73E-09 4.00 1.14E-12 7.99 5.58E-11 5.76 2.15E-10 5.15 3.14E-13 6.23
160 5.46E-10 4.00 4.96E-15 7.84 2.99E-12 4.22 7.52E-12 4.84 5.97E-15 5.72
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Table 3.5. Example 3.1. Numerical errors and orders at t = 15
computed with an αβ-flux, α = −0.5, β1 = 0, β2 = 0.5.

space N eh e∗h ζh ζh eave

L2 error order L2 error order L2 error order L∞ error order L2 error order
20 5.00E-03 2.57E-03 2.34E-03 3.13E-03 3.31E-03

P1 40 1.13E-03 2.14 3.16E-04 3.02 2.93E-04 3.00 3.94E-04 2.99 4.16E-04 2.99
80 2.75E-04 2.04 3.91E-05 3.01 3.66E-05 3.00 4.94E-05 3.00 5.20E-05 3.00
160 6.82E-05 2.01 4.86E-06 3.01 4.58E-06 3.00 6.18E-06 3.00 6.50E-06 3.00
20 1.14E-04 4.79E-06 4.84E-06 1.27E-05 3.45E-06

P2 40 1.42E-05 3.01 1.14E-07 5.40 2.77E-07 4.13 7.76E-07 4.03 1.08E-07 4.99
80 1.77E-06 3.00 2.97E-09 5.26 1.69E-08 4.03 4.79E-08 4.02 3.39E-09 5.00
160 2.20E-07 3.00 8.35E-11 5.15 1.05E-09 4.01 2.97E-09 4.01 1.06E-10 5.01
20 2.28E-06 7.37E-08 5.64E-08 1.96E-07 1.66E-09

P3 40 1.42E-07 4.01 2.99E-10 7.95 1.76E-09 5.00 6.09E-09 5.01 1.29E-11 7.00
80 8.84E-09 4.00 1.21E-12 7.95 5.49E-11 5.00 1.90E-10 5.00 1.02E-13 6.99
160 5.52E-10 4.00 5.41E-15 7.81 1.71E-12 5.00 5.92E-12 5.00 5.96E-16 7.41

Table 3.6. Example 3.1. Numerical errors and orders at t = 15
computed with an αβ-flux, α = −0.499, β1 = β2 =

√
0.25− α2 ≈

0.0316.

space N eh e∗h ζh ζh eave

L2 error order L2 error order L2 error order L∞ error order L2 error order
20 4.49E-03 4.72E-04 4.35E-04 7.24E-04 5.77E-04

P1 40 1.12E-03 2.01 5.22E-05 3.18 5.34E-05 3.03 8.74E-05 3.05 7.04E-05 3.03
80 2.79E-04 2.00 6.13E-06 3.09 6.65E-06 3.00 1.08E-05 3.02 8.71E-06 3.02
160 6.98E-05 2.00 7.43E-07 3.04 8.31E-07 3.00 1.34E-06 3.01 1.08E-06 3.01
20 1.14E-04 2.67E-06 4.34E-06 1.09E-05 5.18E-07

P2 40 1.42E-05 3.00 4.73E-08 5.82 2.73E-07 3.99 6.84E-07 4.00 1.55E-08 5.07
80 1.78E-06 3.00 9.03E-10 5.71 1.70E-08 4.00 4.26E-08 4.00 4.778E-10 5.02
160 2.22E-07 3.00 1.94E-11 5.54 1.06E-09 4.00 2.66E-09 4.00 1.48E-11 5.01
20 2.25E-06 7.27E-08 2.25E-07 5.74E-07 7.37E-09

P3 40 1.42E-07 3.98 2.91E-10 7.97 4.45E-09 5.63 7.69E-09 6.22 2.10E-10 5.14
80 8.79E-09 4.02 1.15E-12 7.99 1.01E-10 5.48 3.36E-10 4.52 1.28E-12 7.35
160 5.50E-10 4.00 4.89E-15 7.87 1.70E-12 5.90 5.04E-12 6.06 1.75E-15 9.52

Table 3.7. Example 3.1. Numerical errors and orders at t = 15
computed with the central flux, α = β1 = β2 = 0.

space N eh e∗h eave
L2 error order L2 error order L2 error order

20 3.97E-02 2.29E-02 3.27E-02
P 1 40 1.75E-02 1.18 5.77E-03 1.99 8.08E-03 2.02

80 8.43E-03 1.05 1.44E-03 2.00 2.01E-03 2.00
160 4.18E-03 1.01 3.61E-04 2.00 5.03E-04 2.00
20 7.91E-05 2.44E-06 2.40E-07
40 9.53E-06 3.05 3.86E-08 5.98 1.62E-08 3.89

P 2 80 1.18E-06 3.02 6.05E-10 6.00 1.00E-09 4.02
160 1.47E-07 3.00 9.62E-12 6.00 4.18E-11 4.58
320 1.84E-08 3.00 1.48E-13 5.98 1.46E-12 4.84
20 1.69E-05 7.39E-08 1.03E-08
40 1.26E-07 7.07 3.56E-10 7.70 9.38E-10 3.46

P 3 80 6.57E-08 0.94 3.67E-12 6.60 1.46E-10 2.68
160 1.05E-08 2.64 5.08E-14 6.08 1.56E-12 6.56
320 1.38E-09 2.93 8.82E-16 5.85 2.08E-13 2.90
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Table 3.8. Example 3.1. Numerical errors and orders at t = 15
computed with the flux using α = β1 = 0., β2 = 0.1.

space N eh e∗h eave
L2 error order L2 error order L2 error order

20 4.30E-02 2.78E-02 3.77E-02
P 1 40 2.47E-02 0.80 8.58E-03 1.70 1.18E-02 1.68

80 1.38E-02 0.83 2.52E-03 1.77 3.56E-03 1.72
160 7.01E-03 0.98 6.75E-04 1.90 9.79E-04 1.86
20 7.74E-05 2.93E-06 1.04E-06
40 9.66E-06 3.00 5.37E-08 5.77 1.62E-08 3.89

P 2 80 1.21E-06 3.00 1.07E-09 5.64 6.73E-10 5.15
160 1.51E-07 3.00 2.42E-11 5.47 2.52E-11 4.74
320 1.89E-08 3.00 6.10E-13 5.31 8.86E-13 4.83
20 1.74E-05 8.13E-08 2.26E-08
40 3.37E-06 2.36 5.70E-10 7.16 4.57E-10 5.63

P 3 80 6.83E-07 2.30 8.69E-12 6.04 1.22E-11 5.22
160 1.15E-07 2.58 1.67E-13 5.70 6.58E-13 4.22
320 1.53E-08 2.90 3.07E-15 5.76 1.96E-14 5.07

Table 3.9. Example 3.1. Numerical errors and orders at t = 15
computed with the flux using α = 0, β1 = β2 =

√
0.25− 0.4992 ≈

0.0316.

space N eh e∗h eave
L2 error order L2 error order L2 error order

20 2.65E-02 2.18E-02 2.97E-02
40 8.56E-03 1.63 4.88E-03 2.16 6.33E-03 2.23

P 1 80 2.82E-03 1.60 9.09E-04 2.42 1.16E-03 2.45
160 8.20E-04 1.78 1.37E-04 2.73 1.85E-04 2.65
320 2.16E-04 1.92 1.82E-05 2.91 2.54E-05 2.87
640 5.48E-05 1.98 2.31E-06 2.98 3.26E-06 2.96
20 7.73E-05 2.74E-06 9.44E-07

P 2 40 9.58E-06 3.01 4.78E-08 5.84 1.75E-08 5.75
80 1.19E-06 3.00 8.92E-10 5.74 4.49E-10 5.29
160 1.49E-07 3.00 1.85E-11 5.59 1.30E-11 5.11
20 9.08E-06 7.77E-08 1.75E-08

P 3 40 9.78E-07 3.22 4.12E-10 7.56 2.27E-10 6.27
80 8.64E-08 3.50 2.88E-12 7.16 2.42E-12 6.55
160 6.24E-09 3.79 2.16E-14 7.06 2.28E-14 6.73
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Table 3.10. Example 3.2. Numerical errors and orders at t = 15
computed with an αβ-flux, α = 0, β1 = β2 = 0.5. This is also
known as the upwind flux.

space N eh e∗h ζh ζh eave

L2 error order L2 error order L2 error order L∞ error order L2 error order
20 6.19E-03 3.74E-03 3.45E-03 4.97E-03 3.57E-03

P1 40 1.31E-03 2.24 4.68E-04 3.00 4.35E-04 2.99 6.19E-04 3.01 4.70E-04 2.93
80 3.09E-04 2.09 5.83E-05 3.00 5.45E-05 3.00 7.72E-05 3.01 6.01E-05 2.97
160 7.58E-05 2.03 7.28E-06 3.00 6.82E-06 3.00 9.63E-06 3.00 7.59E-06 2.99
20 1.26E-04 5.74E-06 7.71E-06 1.67E-05 3.87E-06

P2 40 1.56E-05 3.02 1.45E-07 5.31 4.45E-07 4.11 1.12E-06 3.91 1.24E-07 4.96
80 1.93E-06 3.01 4.04E-09 5.17 2.72E-08 4.03 7.17E-08 3.96 3.93E-09 4.98
160 2.41E-07 3.00 1.19E-10 5.09 1.69E-09 4.01 4.54E-09 3.98 1.24E-10 4.99
20 2.48E-06 9.40E-08 9.28E-08 3.17E-07 2.33E-08

P3 40 1.54E-07 4.01 3.48E-10 8.08 2.82E-09 5.04 9.44E-09 5.07 5.69E-11 8.68
80 9.57E-09 4.01 1.35E-12 8.01 8.82E-11 5.00 2.95E-10 5.00 1.99E-13 8.16
160 5.97E-10 4.00 5.90E-15 7.84 2.76E-12 5.00 9.21E-12 5.00 1.04E-15 7.58

Table 3.11. Example 3.2. Numerical errors and orders at t = 15
computed with an αβ-flux, α = −0.5, β1 = β2 = 0 (alternating
flux).

space N eh e∗h ζh ζh eave

L2 error order L2 error order L2 error order L∞ error order L2 error order
20 6.11E-03 3.72E-03 3.45E-03 4.95E-03 3.62E-03

P1 40 1.31E-03 2.22 4.65E-04 3.00 4.33E-04 2.99 6.85E-04 2.85 4.53E-04 3.00
80 3.12E-04 2.07 5.82E-05 3.00 5.40E-05 3.00 7.80E-05 3.13 5.65E-05 3.00
160 7.80E-05 2.00 7.27E-06 3.00 6.76E-06 3.00 1.01E-05 2.95 7.07E-06 3.00
20 1.27E-04 4.44E-06 1.25E-05 3.23E-05 4.73E-06

P2 40 1.61E-05 2.98 1.21E-07 5.19 2.94E-07 5.40 6.67E-07 5.60 1.25E-07 5.24
80 1.99E-06 3.01 3.64E-09 5.06 3.58E-08 3.04 9.41E-08 2.83 4.22E-09 4.89
160 2.51E-07 2.99 1.13E-10 5.02 8.69E-10 5.36 2.33E-09 5.33 1.15E-10 5.20
20 2.59E-06 9.25E-08 1.36E-07 2.97E-07 2.59E-08

P3 40 1.61E-07 4.00 3.38E-10 8.10 4.56E-09 4.89 1.16E-08 4.68 9.24E-11 8.13
80 1.01E-08 4.00 1.27E-12 8.05 7.04E-11 6.02 2.13E-10 5.77 9.48E-13 6.61
160 6.29E-10 4.00 5.32E-15 7.90 4.55E-12 3.95 1.04E-11 4.36 1.60E-14 5.89

Table 3.12. Example 3.2. Numerical errors and orders at t = 15
computed with the central flux, α = β1 = β2 = 0.

space N eh e∗h eave
L2 error order L2 error order L2 error order

20 5.82E-02 1.90E-02 1.61E-02
P 1 40 2.71E-02 1.10 4.74E-03 2.00 4.09E-03 1.98

80 1.33E-02 1.03 1.18E-03 2.00 1.03E-03 1.99
160 6.61E-03 1.01 2.96E-04 2.00 2.57E-04 2.00
20 8.12E-05 2.19E-06 5.42E-07
40 1.01E-05 3.01 3.45E-08 5.98 8.51E-09 5.99

P 2 80 1.25E-06 3.00 5.41E-10 6.00 1.27E-10 6.07
160 1.57E-07 3.00 8.46E-12 6.00 2.21E-12 5.85
20 1.04E-05 9.94E-08 2.50E-08
40 1.66E-06 2.65 4.64E-10 7.74 2.76E-10 6.50

P 3 80 2.17E-07 2.93 3.56E-12 7.03 5.27E-12 5.71
160 2.73E-08 2.99 4.38E-14 6.35 3.37E-14 7.29
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3.2. Time history of L2 error and energy. In this subsection, we study the time
history of the L2 error of the numerical solutions with various α, β1, β2 values for the
source free problem Example 3.1. Such numerical investigation has been previously
performed in [5, 32] for KdV equations and second-order wave equations, and is
important for long time wave propagation problems. Without loss of generality, we
only consider P 1, P 2 polynomials on a fixed uniform mesh of N = 40.

Figure 3.1 plots the simulation results of P 1 polynomials up to t = 1000. In
particular, the left subfigure shows the time history of L2 error for three αβ-fluxes.
We can see that the flux with α = 0.5, β1 = β2 = 0 performs the best. This
flux is energy-conserving and has the least amount of numerical dissipation among
the three. The L2 error oscillates around a certain value relating to the initial
discretization and does not seem to grow much with time. The other two αβ-fluxes
contain numerical dissipation due to the nonzero values of β1, β2, and we can see
a clear linear growth of the error as a function of time. In the right subfigure, we
compare three energy-conserving fluxes with β1 = β2 = 0. They all demonstrate
linear growth with respect to time. The alternating flux with α = −0.5, β1 =
β2 = 0 belongs to the αβ-fluxes family and has the smallest error among the three.
The central flux, although energy-conserving, produces rather large errors. This is
expected due to the sub-optimal order of the DG method with the central flux.
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Figure 3.1. Example 3.1. Evolution of the L2 error as a function
of time with the indicated fluxes. P 1 polynomials. N = 40.

Figure 3.2 plots the simulation results of P 2 polynomials up to t = 3000 for
four flux choices. They all give comparable numerical errors. The two energy-
conserving fluxes with β1 = β2 = 0 give the least amount of error growth with
respect to time. Compared to Figure 3.1, the error computed with central flux is
reduced significantly due to the optimal order of accuracy for P 2 polynomials.

In Figure 3.3, we plot the evolution of the energy as a function of time for three
choices of αβ-fluxes. We can see for both P 1 and P 2 polynomials, the energy-
conserving flux gives the optimal behavior of conservation as expected from Theo-
rem 2.2.
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Figure 3.2. Example 3.1. Evolution of the L2 error as a function
of time with the indicated fluxes. P 2 polynomials. N = 40.

4. Conclusion

In this paper, we focus on a general family of L2 stable high order DGmethods for
one-dimensional two-way wave equations, as our initial effort to design and analyze
accurate and stable methods suitable for long time wave simulation. Theoretical
results in terms of stability, accuracy, superconvergence, and dispersion analysis are
established systematically.

One novelty of this work is to identify a sub-family of the methods, which have
provable optimal L2 error estimates and superconvergence properties. The anal-
ysis relies on a new local projection operator. What is more interesting and may
be somewhat more challenging is whether some of the new findings around DG
methods with provable optimal L2 accuracy and superconvergence can be extended
to higher dimensions. We hope our continuing effort will provide some answers
to this in the near future. The dispersion analysis in this work also advances our
understanding to the numerical performance of some of the proposed methods, and
such analysis can be extended to high dimensions, with the algebra expected to be
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Figure 3.3. Example 3.1. Evolution of the total energy as a func-
tion of time with the indicated fluxes. N = 40.

more involved. Note that in [3], dispersion analysis with a different viewpoint was
carried out for DG methods with general numerical fluxes (2.5) when the methods
are applied to two-dimensional second-order wave equations in their first-order form
on tensor product meshes.

A preliminary investigation shows that the L2 stable numerical fluxes (2.5) with
the choice of β1 = β2 = 0, and α ∈ [−1/2, 0) ∪ (0, 1/2] also give optimal DG
methods for the one-dimensional two-way wave equations (1.1), with the use of a
global projection operator similar to that in [25]. We will leave the detailed study
of this case to a future work.
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