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ABSOLUTELY STABLE LOCAL DISCONTINUOUS GALERKIN

METHODS FOR THE HELMHOLTZ EQUATION WITH LARGE

WAVE NUMBER

XIAOBING FENG AND YULONG XING

Abstract. Two local discontinuous Galerkin (LDG) methods using some non-
standard numerical fluxes are developed for the Helmholtz equation with the
first order absorbing boundary condition in the high frequency regime. It
is shown that the proposed LDG methods are absolutely stable (hence well-
posed) with respect to both the wave number and the mesh size. Optimal order
(with respect to the mesh size) error estimates are proved for all wave numbers
in the preasymptotic regime. To analyze the proposed LDG methods, they are
recasted and treated as (non-conforming) mixed finite element methods. The
crux of the analysis is to establish a generalized inf-sup condition, which holds
without any mesh constraint, for each LDG method. The generalized inf-sup

conditions then easily infer the desired absolute stability of the proposed LDG
methods. In return, the stability results not only guarantee the well-posedness
of the LDG methods but also play a crucial role in the derivation of the error
estimates. Numerical experiments, which confirm the theoretical results and
compare the proposed two LDG methods, are also presented in the paper.

1. Introduction

This paper is the third installment in a series [10, 11] which devote to developing
absolutely stable discontinuous Galerkin (DG) methods for the following prototyp-
ical Helmholtz problem with large wave number:

−∆u − k2u = f in Ω ⊂ Rd, d = 2, 3,(1.1)

∂u

∂nΩ
+ iku = g on Γ = ∂Ω,(1.2)

where i =
√
−1 denotes the imaginary unit. k ∈ R+ is a given positive (large)

number and known as the wave number. (1.2) is the so-called first order absorbing
boundary condition [9].

We recall that [10, 11] focused on designing and analyzing h- and hp-interior
penalty discontinuous Galerkin (IPDG) methods which are absolutely stable (with
respect to wave number k and mesh size h) and optimally convergent (with respect

1991 Mathematics Subject Classification. 65N12, 65N15, 65N30, 78A40 .
Key words and phrases. Helmholtz equation, time harmonic waves, local discontinuous

Galerkin methods, stability, error estimates .
The work of the first author was partially supported by the NSF grants DMS-0710831 and

DMS-1016173. The research of the second author was partially sponsored by the Office of Ad-
vanced Scientific Computing Research; U.S. Department of Energy. The work of the second
author was performed at the ORNL, which is managed by UT-Battelle, LLC under Contract No.
DE-AC05-00OR22725.

c©XXXX American Mathematical Society

1



2 XIAOBING FENG AND YULONG XING

to h). The main ideas of [10, 11] are to introduce some novel interior penalty terms
in the sesquilinear forms of the proposed IPDG methods and to use a non-standard
analytical tool, which is based on a Rellich identity technique, to prove the desired
stability and error estimates. The numerical experiment results shown that the ab-
solutely stable IPDG methods significantly outperform the standard finite element
and finite difference methods, which are known only to be stable under stringent
mesh constraints hk . 1 or hk2 . 1 (cf. [8, 16]), for the Helmholtz problem. More-
over, the numerical experiment results also shown that these IPDG methods are
capable to correctly track the phases of the highly oscillatory waves even when the
mesh violates the “rule-of-thumb” condition (i.e., 6 − 10 grid points must be used
in a wave length). The main difficulty of analyzing the Helmholtz type problems is
caused by the strong indefiniteness of the Helmholtz equation which in turn makes
it hard to establish stability estimates for its numerical approximations. The loss of
stability in the case of large wave numbers results in an additional pollution error
(besides the interpolation error) in the global error bounds. Extensive research has
been done to address the question whether it is possible to reduce the pollution
effect, we refer the reader to Chapter 4 of [15] and the references therein for an
detailed exposition in this direction.

Motivated by the success of [10, 11], the primary objective of this paper is to
extend the work of [10, 11] to the local discontinuous Galerkin (LDG) formulation,
which is known to be more “physical” and flexible than the IPDG formulation on
designing DG schemes [1, 5]. As it is well-known now, the key step for constructing
LDG methods is to design the numerical fluxes. As soon as the numerical fluxes are
selected, for a large class of coercive elliptic and parabolic second order problems,
there is a general framework for carrying out convergence analysis of LDG methods
[1]. Unfortunately, this general framework does not apply to the Helmholtz type
problems which is extremely noncoercive/indefinite for large wave number k. Nev-
ertheless, when designing the numerical fluxes for our LDG methods, we borrow
the idea of [1] by establishing the connection between our LDG methods and the
IPDG methods of [10, 11] although it turns out that the IPDG methods of [10, 11]
do not have exactly equivalent LDG formulations due to the non-standard penalty
terms used in [10, 11]. This then leads to the construction of our first LDG method.
It is proved and numerically verified that this LDG method is absolutely stable and
optimally convergent for the scalar variable. However, it is sub-optimal for the
vector/flux variable. To improve the approximation accuracy for the vector/flux
variable, we design another set of numerical fluxes which result in the construction
of our second LDG method. It is proved that the second LDG method is also ab-
solutely stable and gives a better approximation for the vector/flux variable than
the first method. On the other hand, it is computationally more expensive than
the first LDG method, which is expected.

To analyze the proposed LDG methods, we take an opposite approach to that
advocated in [1], that is, instead of converting LDG methods to their “equivalent”
IPDG methods in the primal form, we recast and treat our LDG methods as non-
conforming mixed finite element methods. To avoid using the standard techniques
such as Schatz argument (cf. [2, 8]) or Babuška’s inf-sup condition argument [16]
to derive error estimates (and to prove stability), both approaches would certainly
lead to stringent mesh constraints, our main idea is to establish a generalized inf-sup
condition, which holds without any mesh constraint, for each LDG method. The
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generalized inf-sup conditions then immediately infer the desired absolute stability
of the proposed LDG methods. In return, the stability results not only guarantee
the well-posedness of the LDG methods but also play a crucial role in the derivation
of the (optimal) error estimates.

It should be pointed out that a lot of work has recently been done on develop-
ing DG methods using piecewise plane wave functions, oppose to simpler piecewise
polynomial functions as done in this paper, for the Helmholtz type problems. How-
ever, to the best of our knowledge, none of these plane wave DG method is proved
to be absolutely stable with respect to wave number k and mesh size h. We refer
the reader to [12, 14, 17] and the references therein for more discussions in this
direction. We also refer to [10, 11] for more discussions and references on other
discretization techniques for the Helmholtz type problems.

This paper consists of four additional sections. In Section 2, we introduce the
notations used in this paper and present the derivations of our two LDG methods.
In Section 3, we present a detailed stability analysis for both LDG methods. The
main task of the section is to prove a generalized inf-sup condition for each proposed
LDG method. Similar to [10, 11], a nonorthodox test function trick is the key to
get the job done. In Section 4, a non-standard two-step error estimate procedure
is used to derive error estimates for the proposed LDG methods. Once again, the
stability estimates established in Section 3 play a crucial role. Finally, Section 5
contains some numerical experiments which are designed to verify the theoretical
error bounds proved in Section 4 and to compare the performance of the proposed
two LDG methods.

2. Formulation of local discontinuous Galerkin methods

The standard space, norm and inner product notation are adopted in this paper.
Their definitions can be found in [1, 2, 4, 19]. In particular, (·, ·)Q and 〈·, ·〉Σ for
Σ ⊂ ∂Q denote the L2-inner product on complex-valued L2(Q) and L2(Σ) spaces,
respectively. (·, ·) := (·, ·)Ω and 〈·, ·〉 := 〈·, ·〉∂Ω. Throughout the paper, C is used
to denote a generic positive constant which is independent of h and k. We also use
the shorthand notation A . B and B & A for the inequality A ≤ CB and B ≥ CA.
A ≃ B is a shorthand notation for the statement A . B and B . A.

Assume that Ω ⊂ Rd (d = 2, 3) is a bounded and strictly star-shaped domain with
respect to a point xΩ ∈ Ω. We now recall the definition of star-shaped domains.

Definition 2.1. Q ⊂ Rd is said to be a star-shaped domain with respect to xQ ∈ Q
if there exists a nonnegative constant cQ such that

(2.1) (x − xQ) · nQ ≥ cQ ∀x ∈ ∂Q.

Q ⊂ Rd is said to be strictly star-shaped if cQ is positive.

Let Th be a family of partitions of Ω parameterized by h > 0. For any tri-
angle/tetrahedron K ∈ Th, we define hK := diam(K) and h := maxK∈Th

hK .
Similarly, for each edge/face e of K ∈ Th, define he := diam(e). We assume that
the elements of Th satisfy the minimal angle condition. We also define

EI
h := set of all interior edges/faces of Th,

EB
h := set of all boundary edges/faces of Th on Γ = ∂Ω,

Eh := EI
h ∪ EB

h .
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Let e be an interior edge shared by two elements K1 and K2 whose unit outward
normal vectors are denoted by n1 and n2. For a scalar function v, let vi = v|∂Ki

,
and define

{v} =
1

2
(v1 + v2), [v] = vK − vK′ , [[v]] = v1n1 + v2n2 on e ∈ EI

h ,

where K is K1 or K2, whichever has the bigger global labeling and K ′ is the other.
For a vector field v, let vi = v|∂Ki

and define

{v} =
1

2
(v1 + v2), [v] = vK − vK′ , [[v]] = v1 · n1 + v2 · n2 on e ∈ EI

h.

As it is well-known now (cf. [1]) that the first step for formulating an LDG
method is to rewrite the given PDE as a first order system by introducing an
auxiliary variable. For the Helmholtz problem (1.1)–(1.2) we have

σ = ∇u in Ω,(2.2)

−divσ − k2u = f in Ω,(2.3)

∂u

∂nΩ
+ iku = g on Γ,(2.4)

Clearly, the vector-valued function (often called the flux variable) σ is the auxiliary
variable.

Then, multiplying (2.2) and (2.3) by test functions τ and v, respectively, and
integrating both equations over an element K ∈ Th yields

∫

K

σ · τ dx = −
∫

K

u divτ dx +

∫

∂K

unK · τ ds,(2.5)

∫

K

σ · ∇v dx − k2

∫

K

uv dx =

∫

K

fv dx +

∫

∂K

σ · nKv ds,(2.6)

where nK denotes the unit outward normal vector to ∂K. The above equations
form the weak formulation one uses to define LDG methods for the Helmholtz
problem (1.1)–(1.2).

Next, we define LDG spaces as follows

Vh := {v ∈ L2(Ω); Re(v)|K , Im(v) ∈ Pr(K) ∀K ∈ Th},
Σh := {τ ∈ (L2(Ω))d; Re(τ )|K , Im(τ ) ∈ (Pℓ(K))d ∀K ∈ Th},

where Pr(K) (r ≥ 1) stands for the set of all polynomials of degree less than or
equal to r on K.

Finally, we are ready to define the following general LDG formulation: Find
(uh,σh) ∈ Vh × Σh such that for all K ∈ Γh there hold

∫

K

σh · τ h dx = −
∫

K

uh divτh dx +

∫

∂K

ûK nK · τh ds,(2.7)

∫

K

σh · ∇vh dx − k2

∫

K

uhvh dx =

∫

K

fvh dx +

∫

∂K

σ̂K · nKvh ds(2.8)

for any (vh, τh) ∈ Vh × Σh. Where the quantities ûK and σ̂K , which are called
numerical fluxes, are respectively approximations to σ = ∇u and u on the bound-
ary ∂K of K. As it is well-known now that the most important issue for all LDG
methods is how to choose the numerical fluxes. The different choices of the numer-
ical fluxes obviously lead to different LDG methods. It is easy to understand that
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these numerical fluxes must be chosen carefully in order to ensure the stability and
accuracy of the resulted LDG methods.

In this paper, we shall only consider the linear element case (i.e., r = ℓ = 1) and
propose two sets of numerical fluxes (ûK , σ̂K), which lead to two LDG methods.
Our choices of numerical fluxes are inspired by the interior penalty discontinuous
Galerkin (IPDG) methods proposed by Feng and Wu [10] and are identified with the
help of the unified DG framework of [1] which bridges the primal DG formulations
(e.g. IPDG methods) and the flux DG formulations (i.e., LDG methods).

(1) LDG method #1: Set

σ̂K = {∇huh} − iβ[[uh]], ûK = {uh} + iδ[[∇huh]] on e ∈ EI
h ,

σ̂K = −ikuhnK + gnK , ûK = uh on e ∈ EB
h .

(2) LDG method #2: Set

σ̂K = {σh} − iβ[[uh]], ûK = {uh} + iδ[[σh]] on e ∈ EI
h,

σ̂K = −ikuhnK + gnK , ûK = uh on e ∈ EB
h .

Where β and δ are positive constants to be specified later and ∇h denotes the
piecewisely defined gradient operator over Th, that is, ∇h|K = ∇|K ∀K ∈ Th.

For the reader’s convenience, we now briefly sketch the derivation of the primal
DG formulation corresponding to our LDG method #1 by adapting the derivation
given in the general framework of [1].

Substituting the numerical fluxes of LDG method #1 into (2.7) and (2.8), sum-
ming the resulting equations over all element K ∈ Th and using the following
integration by parts identity

(uh, divτh)Ω = −(∇huh, τh)Ω +
∑

e∈EI
h

(

〈{uh}, [[τh]]〉e

+ 〈[[uh]], {τh}〉e
)

+ 〈uh,nK · τ h〉Γ ,

we get

(σh, τh)Ω − (∇huh, τh)Ω(2.9)

−
∑

e∈EI
h

(

iδ 〈[[∇huh]], [[τh]]〉e − 〈[[uh]], {τh}〉e
)

= 0,

(σh,∇hvh)Ω − k2(uh, vh)Ω −
∑

e∈EI
h

〈{∇huh} − iβ[[uh]], [[vh]]〉e(2.10)

+ ik 〈uh, vh〉Γ = (f, vh)Ω + 〈g, vh〉Γ .

Setting τ = ∇vh in (2.9) and subtracting the resulting equation from (2.10) then
leads to the following formulation:

(2.11) Ah(uh, vh) − k2(uh, vh)Ω = F (vh) ∀vh ∈ Vh,
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where

Ah(uh, vh) := (∇huh,∇hvh)Ω + ik 〈uh, vh〉Γ
+

∑

e∈EI
h

i
(

δ 〈[[∇huh]], [[∇hvh]]〉e + β 〈[[uh]], [[vh]]〉e
)

−
∑

e∈EI
h

(

〈[[uh]], {∇hvh}〉e + 〈{∇huh}, [[vh]]〉e
)

.

F (vh) := (f, vh)Ω + 〈g, vh〉Γ .

Hence, (2.11) is the corresponding primal (i.e., IPDG) formulation of our LDG
method #1. Comparing (2.11) with the IPDG formulation of [10], we see that all
the interior penalty terms of (2.11) also appear in the IPDG formulation of [10]. In
fact, it is exactly by reversing the order of the above derivation that leads to the
discovery of the numerical fluxes of LDG method #1.

3. Stability analysis

From their constructions, it is easy to see that both LDG methods proposed in
the previous section are consistent schemes for the Helmholtz problem (1.1)–(1.2).
For coercive elliptic (and parabolic) problems, the stability of such a numerical
scheme can be proved easily as demonstrated in [1] (the same statement is true
for their corresponding PDE stability analysis). However, the Helmholtz problem
(1.1)–(1.2) is an indefinite problem and it becomes notoriously non-coercive for large
wave number k. Deriving its stability estimates (i.e., a priori estimates of its PDE
solution), particularly wave-number-dependent estimates, has been proved not to be
an easy job (cf. [6, 7, 13, 18] and the references therein). Numerically, such a quest
has been known to be even harder because of the lower order of the smoothness
and the inflexibility of (piecewise) approximation functions (cf. [6, 16, 18] and
the references therein). The stability of the numerical methods in all the above
quoted references was proved under some very restrictive mesh constraints. An
open question was then raised by Zienkiewicz [20] which asks whether it is possible
to construct an absolutely stable (and optimally convergent) numerical method
(i.e., no restriction on the mesh size h and the wave number k) for the Helmholtz
equation. Almost a decade later Feng and Wu [10, 11] were able to design for the
first time such numerical methods, which happen to belong to the IPDG family, for
the Helmholtz problem (1.1)–(1.2).

The goal of this section is to show that in the case of the linear element (i.e.,
r = ℓ = 1) the LDG method #1 and #2 proposed in the previous section have
the same stability property as the IPDG methods of [10, 11] do, that is, the LDG
method #1 and #2 are absolutely stable for all mesh size h > 0 and all wave number
k > 0 without imposing any constraint on them. To establish this result, unlike the
approach used and advocated in the general framework of [1] which converts an LDG
method into its equivalent primal method and then analyzes the latter using the
standard finite element Galerkin techniques, we shall directly fit the LDG method
#1 and #2 into the (nonconforming) mixed method framework as done in [16] and
adapting the mixed method techniques to prove the desired stability result. It is
well-known that the key ingredient for the mixed method approach is to establish
the inf-sup or Babuška-Brezzi condition for the (augmented) sesquilinear forms for
each method. However, we are not able to prove such an inf-sup condition for either
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method without imposing mesh constraints (which we believe is not possible). To
overcome the difficulty, our main idea is to prove a generalized (and weaker) inf-sup
condition which holds for all h, k > 0. It turns out that this generalized inf-sup
condition is sufficient for us to establish the desired absolute stability for the LDG
method #1 and #2. To prove the generalized inf-sup condition, the key technique
we use is a special test function technique which was first introduced and developed
in [10].

3.1. Absolute stability of LDG method #1. We first recast the LDG method
#1 as the following nonconforming mixed method, which is easily obtained by
adding (2.9) and (2.10). Find (uh,σh) ∈ Vh × Σh such that

(3.1) Ah(uh,σh; vh, τh) = F (vh, τh) ∀(vh, τh) ∈ Vh × Σh,

where

Ah(wh,χh; vh, τh) = (χh,∇hvh)Ω − k2(wh, vh)Ω + ik 〈wh, vh〉Γ(3.2)

−
∑

e∈EI
h

〈{∇hwh} − iβ[[wh]], [[vh]]〉e

−
∑

e∈EI
h

(

iδ 〈[[∇hwh]], [[τh]]〉e − 〈[[wh]], {τh}〉e
)

+ (χh, τ h)Ω − (∇hwh, τh)Ω.

F (vh, τ h) := (f, vh)Ω + 〈g, vh〉Γ .(3.3)

3.1.1. A generalized inf-sup condition. The goal of this subsection is to show
that the sesquilinear form Ah defined in (3.2) satisfies a generalized inf-sup con-
dition, which will play a vital role for us to establish the absolute stability of the
LDG method #1 in the next subsection.

Proposition 3.1. There exists an h- and k-independent constant c1 > 0 such that
for any (wh,χh) ∈ Vh × Σh

sup
(vh,τh)∈Vh×Σh

vh 6=0

Re Ah(wh,χh; vh, τh)

‖vh‖DG
(3.4)

+ sup
(vh,τh)∈Vh×Σh

vh 6=0

Im Ah(wh,χh; vh, τh)

‖vh‖DG
≥ c1

γ1
‖wh‖DG,

where

γ1 := 1 + k +

√

β

δ
+ max

e∈EI
h

(k2 + 1

βhe
+

1

h2
e

+
1

βh3
e

)

,(3.5)

‖wh‖DG :=
(

k2‖wh‖2
L2(Ω) + k2‖wh‖2

L2(Γ) + cΩ‖∇hwh‖2
L2(Γ) + |wh|21,h

)
1
2

,(3.6)

|wh|1,h :=
(

∑

K∈Th

‖∇wh‖2
L2(K)

)
1
2

.

Proof. The main idea of the proof is that for a fixed (wh,χh) ∈ Vh×Σh we need to
pick up two sets of special functions (vh, τ h) ∈ Vh × Σh, which, as expected, must
depend on (wh,χh) ∈ Vh × Σh, such that both quotients in (3.4) can be bounded
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from below by ‖wh‖DG. When that is done, the inf-sup constant c1/γ1 will be
revealed in the process. Since the proof is very long, we divide it into four steps.

Step 1: Taking the first test function.
We first choose the test function (vh, τh) = (wh,−∇hwh) to get

Ah(wh,χh; vh, τh) = Ah(wh,χh; wh,−∇hwh)

= (∇hwh,∇hwh)Ω − k2(wh, wh)Ω + ik 〈wh, wh〉Γ
+

∑

e∈EI
h

(

iδ 〈[[∇hwh]], [[∇hwh]]〉e − 〈[[wh]], {∇hwh}〉e
)

−
∑

e∈EI
h

〈{∇hwh} − iβ[[wh]], [[wh]]〉e .

Taking the real and imaginary parts yields

Re Ah(wh,χh; wh,−∇hwh)(3.7)

= |wh|21,h − k2‖wh‖2
L2(Ω) − 2 Re

∑

e∈EI
h

〈[[wh]], {∇hwh}〉e ,

Im Ah(wh,χh; wh,−∇hwh)(3.8)

=
∑

e∈EI
h

(

δ‖[[∇hwh]]‖2
L2(e) + β‖[[wh]]‖2

L2(e)

)

+ k‖wh‖2
L2(Γ).

Step 2: Taking the second test function.
Inspired by the special test function technique of [10], we now choose another

test function (vh, τ h) = (α · ∇hwh,−∇hwh) with α := x − xΩ (see Definition 2.1)
and use the fact that ∇hvh = ∇hwh to get

Ah(wh,χh; vh, τh) = Ah(wh,χh;α · ∇hwh,−∇hwh)

= (∇hwh,∇hwh)Ω − k2(wh,α · ∇hwh)Ω + ik 〈wh,α · ∇hwh〉Γ
+

∑

e∈EI
h

(

iδ 〈[[∇hwh]], [[∇hwh]]〉e − 〈[[wh]], {∇hwh}〉e
)

−
∑

e∈EI
h

〈{∇hwh} − iβ[[wh]], [[α · ∇hwh]]〉e .

Taking the real part immediately gives (note that vh = α · ∇hwh)

Re Ah(wh,χh; vh,−∇hwh)(3.9)

= |wh|21,h − k2(wh, vh)Ω − k Im 〈wh, vh〉Γ −
∑

e∈EI
h

β Im 〈[[wh]], [[vh]]〉e

−
∑

e∈EI
h

Re
(

〈[[wh]], {∇hwh}〉e + 〈{∇hwh}, [[vh]]〉e
)

.

Step 3: Deriving an upper bound for k2‖wh‖2
L2(Ω).

To bound (3.7) from below, we need to get an upper bound for the term k2‖wh‖2
L2(Ω)

on the right hand side of (3.7). This will be done by carefully and judicially com-
bining (3.8) and (3.9) with some other differential identities, which we now explain.
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Using the integral identity

(3.10) 2‖wh‖2
L2(K) =

∫

∂K

α · nK |wh|2 ds − 2 Re(wh, vh)K − (d − 2)‖wh‖2
L2(K),

and (3.7), (3.9) we get

2k2‖wh‖2
L2(Ω) = 2 ReAh(wh,χh, vh,−∇hwh)(3.11)

+ (d − 2)ReAh(wh,χh; wh,−∇hwh)

+ 2k Im 〈wh, vh〉Γ − 2|wh|21,h − (d − 2)|wh|21,h

+ 2 Re
∑

e∈EI
h

(

〈[[wh]], {∇hwh}〉e + 〈{∇wh}, [[vh]]〉e
)

+ 2(d − 2)Re
∑

e∈EI
h

〈[[wh]], {∇hwh}〉e

+
∑

e∈EI
h

(

2β Im 〈[[wh]], [[vh]]〉e + k2
∑

K∈Th

∫

∂K

α · nK |wh|2 ds
)

.

By the elementary identity |a|2 − |b|2 = Re(a + b)(ā − b̄) for any two complex
numbers a and b we have

(3.12)
∑

K∈Th

∫

∂K

α ·nK |wh|2 ds = 2 Re
∑

e∈EI
h

〈α · ne{wh}, [wh]〉e +
〈

α · nΩ, |wh|2
〉

Γ
.

Next, using the local Rellich identity (see [10, Lemma 4.1])

(d − 2)‖∇wh‖2
L2(K) + 2 Re(∇wh,∇vh)K =

∫

∂K

α · nK |∇vh|2 ds

and the fact that ∇hvh = ∇hwh, we get

d|wh|21,h = (d − 2)|wh|21,h + 2 Re
∑

K∈Th

(∇wh,∇vh)K(3.13)

= Re
∑

K∈Th

∫

∂K

α · nK |∇vh|2 ds

= 2 Re
∑

e∈EI
h

〈α · ne{∇hwh}, [∇hwh]〉e +
∑

e∈EB
h

〈

α · ne, |∇hwh|2
〉

e
.
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Substituting (3.12) and (3.13) into (3.11) we get

2k2‖wh‖2
L2(Ω) = 2 ReAh(wh,χh; vh,−∇hwh)(3.14)

+ (d − 2)Re Ah(wh,χh; wh,−∇hwh)

+ 2k2 Re
∑

e∈EI
h

〈α · ne{wh}, [wh]〉e + k2
〈

α · nΩ, |wh|2
〉

Γ

+ 2k Im 〈wh, vh〉Γ −
∑

e∈EB
h

〈

α · ne, |∇hwh|2
〉

e

− 2 Re
∑

e∈EI
h

(

〈α · ne{∇hwh}, [∇hwh]〉e − 〈{∇hwh}, [[vh]]〉e
)

+ 2(d − 1)Re
∑

e∈EI
h

〈[[wh]], {∇hwh}〉e + 2 Im
∑

e∈EI
h

β 〈[[wh]], [[vh]]〉e .

To get an upper bound for k2‖wh‖2
L2(Ω), we need to bound the terms on the

right-hand side of (3.14), which we now bound as follows.

2k2 Re
∑

e∈EI
h

〈α · ne{wh}, [wh]〉e ≤ Ck2
∑

e∈EI
h

h
− 1

2
e ‖wh‖L2(Ke∪K′

e)‖[wh]‖L2(e)(3.15)

≤ k2

2
‖wh‖2

L2(Ω) + C
∑

e∈EI
h

k2

βhe
β‖[wh]‖2

L2(e).

k2
〈

α · nΩ, |wh|2
〉

Γ
≤ Ck2‖wh‖2

L2(Γ).(3.16)

It follows from the star-shaped assumption on Ω that

2k Im 〈wh, vh〉Γ −
∑

e∈EB
h

〈

α · ne, |∇hwh|2
〉

e
(3.17)

≤ Ck
∑

e∈EB
h

‖wh‖L2(e)‖∇hwh‖L2(e) − cΩ

∑

e∈EB
h

‖∇hwh‖2
L2(e)

≤ Ck2‖wh‖2
L2(Γ) −

cΩ

2
‖∇hwh‖2

L2(Γ).

By the trace inequality [2], we also have

2d Re
∑

e∈EI
h

〈[[wh]], {∇hwh}〉e(3.18)

. 2d
∑

e∈EI
h

h
− 1

2
e

∑

K=Ke,K′
e

‖∇hwh‖L2(K)‖[wh]‖L2(e)

≤ 1

4
|wh|21,h + C

∑

e∈EI
h

1

βhe
β‖[wh]‖2

L2(e).
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− 2 Re
∑

e∈EI
h

(

〈α · ne{∇hwh}, [∇hwh]〉e − 〈{∇hwh}, [[vh]]〉e
)

(3.19)

= 2 Re
∑

e∈EI
h





d−1
∑

j=1

∫

e

(

(α · τ j
e){∇hwh · ne}

−(α · ne){∇hwh · τ j
e}

)

∇h[wh] · τ j
e

]

.
∑

e∈EI
h

d−1
∑

j=1

h
− 1

2
e

∑

K=Ke,K′
e

‖∇hwh‖L2(K)‖[∇hwh · τ j
e]‖L2(e)

≤ 1

4
|wh|21,h + C

∑

e∈EI
h

1

βhe

d−1
∑

j=1

β‖[∇hwh · τ j
e]‖2

L2(e).

By the definition of vh := α · ∇hwh, we get

2 Im
∑

e∈EI
h

β 〈[[wh]], [[vh]]〉e = 2 Im
∑

e∈EI
h

β 〈[wh], [vh]〉e(3.20)

= 2 Im
∑

e∈EI
h

β

〈

[wh],
[

(α · ne)∇hwh · ne +

d−1
∑

j=1

(α · τ j
e)∇hwh · τ j

e

]

〉

e

≤ C
∑

e∈EI
h

β‖[wh]‖L2(e)‖[∇hwh · ne]‖L2(e)

+ C
∑

e∈EI
h

β‖[wh]‖L2(e)

d−1
∑

j=1

‖[∇hwh · τ j
e]‖L2(e)

≤ C

√

β

δ

∑

e∈EI
h

(

β‖[wh]‖2
L2(e) + δ‖[∇hwh · ne]‖2

L2(e)

)

+ Cβ
∑

e∈EI
h

(

‖[wh]‖2
L2(e) +

d−1
∑

j=1

‖[∇hwh · τ j
e]‖2

L2(e)

)

,

where {τ j
e}d−1

j=1 denotes an orthogonal tangential frame on the edge/face e, and we

have used the decomposition α = (α · ne)ne +
∑d−1

j=1(α · τ j
e)τ

j
e.
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Now substituting estimates (3.15)–(3.19) into (3.14) we obtain

2k2‖wh‖2
L2(Ω) ≤ 2 ReAh(wh,χh; vh,−∇hwh)(3.21)

+ (d − 2)Re Ah(wh,χh; wh,−∇hwh)

+ Ck2‖wh‖2
L2(Γ) −

cΩ

2
‖∇hwh‖2

L2(Γ) +
k2

2
‖wh‖2

L2(Ω)

+ C
∑

e∈EI
h

k2

βhe
β‖[wh]‖2

L2(e) − 2 Re
∑

e∈EI
h

〈[[wh]], {∇hwh}〉e

+
1

4
|wh|21,h + C

∑

e∈EI
h

1

βhe

d−1
∑

j=1

β‖[∇h · τ j
e]‖2

L2(e)

+
1

4
|wh|21,h + C

∑

e∈EI
h

1

βhe
β‖[wh]‖2

L2(e)

+ C
∑

e∈EI
h

√

β

δ

(

β‖[wh]‖2
L2(e) + δ‖[∇hwh · ne]‖2

L2(e)

)

+ C
∑

e∈EI
h

(

β‖[wh]‖2
L2(e) +

d−1
∑

j=1

β‖[∇hwh · τ j
e]‖2

L2(e)

)

.

On noting that (3.8) provides upper bounds for terms ‖[∇hwh·ne]‖2
L2(e), ‖[wh]‖2

L2(e)

and k2‖wh‖2
L2(Γ) in terms of Im Ah(wh,χh; wh,−∇hwh), using these bounds in

(3.21) we get

2k2‖wh‖2
L2(Ω) +

k2

2
‖wh‖2

L2(Γ) +
cΩ

2
‖∇hwh‖2

L2(Γ)(3.22)

≤ 2 ReAh(wh,χh; vh,−∇hwh) + (d − 2)ReAh(wh,χh; wh,−∇hwh)

+
1

2
|wh|21,h +

k2

2
‖wh‖2

L2(Ω) − 2 Re
∑

e∈EI
h

〈{∇hwh}, [[wh]]〉e

+ C
∑

e∈EI
h

( 1

βhe
+ 1

)

d−1
∑

j=1

β‖[∇hwh · τ j
e]‖2

L2(e)

+ M1 Im Ah(wh,χh; wh,−∇hwh),

where

M1 := C
(

1 + k +

√

β

δ
+ max

e∈EI
h

k2 + 1

βhe

)

.(3.23)

To bound the jumps of the tangential derivatives ‖[∇hwh · τ j
e]‖2

L2(e) in (3.21),

we appeal to the inverse inequality

(3.24) ‖[∇hwh · τ j
e]‖2

L2(e) ≤ Ch−2
e ‖[wh]‖2

L2(e),
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and using (3.8) and (3.7) to get

2k2‖wh‖2
L2(Ω) +

k2

2
‖wh‖2

L2(Γ) +
cΩ

2
‖∇hwh‖2

L2(Γ)

≤ 2 ReAh(wh,χh; vh,−∇hwh) + (d − 2)ReAh(wh,χh; wh,−∇hwh)

+
k2

2
‖wh‖2

L2(Ω) + M2 Im Ah(wh,χh; wh,−∇hwh)

− 2 Re
∑

e∈EI
h

〈{∇hwh}, [[wh]]〉e +
1

2
|wh|21,h

≤ 2 ReAh(wh,χh; vh,−∇hwh) + (d − 1)ReAh(wh,χh; wh,−∇hwh)

+
3k2

2
‖wh‖2

L2(Ω) + M2 Im Ah(wh,χh; wh,−∇hwh) − 1

2
|wh|21,h,

where

M2 = M1 + max
e∈EI

h

( C

h2
e

+
C

βh3
e

)

(3.25)

= C
(

1 + k +

√

β

δ
+ max

e∈EI
h

(k2 + 1

βhe
+

1

h2
e

+
1

βh3
e

))

.

Using the linearity of the sesquilinear form Ah we have

k2‖wh‖2
L2(Ω) + k2‖wh‖2

L2(Γ) + cΩ‖∇hwh‖2
L2(Γ) + |wh|21,h(3.26)

≤ 4 Re Ah(wh,χh; vh,−∇hwh) + 2(d − 1)ReAh(wh,χh; wh,−∇hwh)

+ 2M2 Im Ah(wh,χh; wh,−∇hwh)

= Re Ah(wh,χh; w̃h,−∇hwh) + 2M2 Im Ah(wh,χh; wh,−∇hwh).

with w̃h = 4vh + 2(d − 1)wh.

Step 4: Finishing up.
By the definition of ‖ · ‖DG in (3.6) and the fact that ∇hvh = ∇hwh we have

‖vh‖2
DG = k2‖α · ∇hwh‖2

L2(Ω) + k2‖α · ∇hwh‖2
L2(Γ)(3.27)

+ cΩ‖∇hwh‖2
L2(Γ) + |wh|21,h

≤ Ck2‖∇hwh‖2
L2(Ω) + Ck2‖∇hwh‖2

L2(Γ)

+ cΩ‖∇hwh‖2
L2(Γ) + |wh|21,h

≤ C(1 + k2)
(

|wh|21,h + cΩ‖∇hwh‖2
L2(Γ)

)

≤ C(1 + k2)‖wh‖2
DG.

Thus, it follows from the triangle inequality that

‖w̃h‖DG ≤ 4‖vh‖DG + 2(d − 1)‖wh‖DG ≤ C(1 + k)‖wh‖DG.(3.28)
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Now from (3.26) and (3.28) we have

Re Ah(wh,χh; w̃h,−∇hwh)

‖w̃h‖DG
+

Im Ah(wh,χh; wh,−∇hwh)

‖wh‖DG
(3.29)

≥ ReAh(wh,χh; w̃h,−∇hwh)

C(1 + k)‖wh‖DG
+

Im Ah(wh,χh; wh,−∇hwh)

‖wh‖DG

≥ 1

2M2
· Re Ah(wh,χh; w̃h,−∇hwh) + 2M2 Im Ah(wh,χh; wh,−∇hwh)

‖wh‖DG

≥ c1

γ1
‖wh‖DG

for some constant c1 > 0 and γ1 is defined by (3.5). Hence, (3.4) holds. The proof
is complete. �

Remark 3.1. (a) We note that γ1 depends on both h and k.
(b) The generalized inf-sup condition is a weak estimate because it does not pro-

vide a control for the variable χh. As a comparison, we recall that the standard
inf-sup condition for the sesquilinear form Ah should be

sup
(vh,τh)∈Vh×Σh

∣

∣Ah(wh,χh; vh, τ h)
∣

∣

‖(vh, τ h)‖ ≥ c1‖(wh,χh)‖ ∀(wh,χh) ∈ Vh × Σh

for some positive constant c1 = c1(k, β, δ, Ω). Where

‖(wh,χh)‖ :=
(

k2‖wh‖2
L2(Ω) + ‖χh‖2

L2(Ω)

)
1
2 .

However, the above standard inf-sup condition can be proved only under the mesh
constraint h = O(k−2) and we believe that it does not hold without a mesh con-
straint.

3.1.2. Stability estimates. The goal of this subsection is to establish the absolute
stability for the LDG method #1 using the generalized inf-sup condition proved in
the previous subsection.

Theorem 3.1. Let (uh,σh) ∈ V h × Σh solve (3.1). Define

(3.30) M(f, g) := ‖f‖Ω + ‖g‖L2(Γ).

Then there hold the following stability estimates:

‖uh‖DG . γ1k
−1 M(f, g).(3.31)

‖σh‖L2(Ω) . γ1k
−1

(

1 + (δ + k−1)
(

max
K∈Th

h−1
K

)

)

M(f, g).(3.32)

Proof. By Schwarz inequality we have

|F (vh,χh)| ≤ ‖f‖L2(Ω)‖vh‖L2(Ω) + ‖g‖L2(Γ)‖vh‖L2(Γ)(3.33)

≤ Ck−1M(f, g)
(

k2‖vh‖2
L2(Ω) + k2‖vh‖2

L2(Γ)

)
1
2 .

≤ Ck−1M(f, g)‖vh‖DG.
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Let (wh,χh) = (uh,σh) in (3.4). By equation (3.1) and (3.33) we get

c1

γ1
‖uh‖DG ≤ sup

(vh,τh)∈Vh×Σh

Re Ah(uh,σh; vh, τh)

‖vh‖DG

+ sup
(vh,τ h)∈Vh×Σh

Im Ah(uh,σh; vh, τh)

‖vh‖DG

= sup
(vh,τh)∈Vh×Σh

Re F (vh, τ h)

‖vh‖DG
+ sup

(vh,τh)∈Vh×Σh

Im F (vh, τh)

‖vh‖DG

≤ 2 sup
(vh,τh)∈Vh×Σh

∣

∣F (vh, τ h)
∣

∣

‖vh‖DG

≤ Ck−1M(f, g).

Hence (3.31) holds.
To show (3.32), setting (vh, τh) = (0,σh) in (3.1) and using the trace and

Schwarz inequalities yields

‖σh‖2
L2(Ω) = (∇huh,σh)Ω +

∑

e∈EI
h

(

iδ 〈[[∇huh]], [[σh]]〉e − 〈[[uh]], {σh}〉e
)

≤ ‖∇huh‖2
L2(Ω) +

1

4
‖σh‖2

L2(Ω) + C
∑

e∈EI
h

∑

K=Ke,K′
e

h−1
K

(

δ‖∇huh‖L2(K)

+ ‖uh‖L2(K)

)

‖σh‖L2(K)

≤ ‖∇huh‖2
L2(Ω) +

1

2
‖σh‖2

L2(Ω)

+ C
∑

e∈EI
h

∑

K=Ke,K′
e

h−2
K

(

δ2‖∇huh‖2
L2(K) + ‖uh‖2

L2(K)

)

.

Thus,

‖σh‖2
L2(Ω) .

(

1 + δ2
(

max
K∈Th

h−2
K

)

)

|uh|21,h +
(

max
K∈Th

h−2
K

)

‖uh‖2
L2(Ω).

The desired estimate (3.32) follows from combining the above inequality with (3.31).
The proof is complete. �

An immediate consequence of the stability estimates is the following unique
solvability theorem.

Theorem 3.2. There exists a unique solution to the LDG method (3.1) for all
k, h, δ, β > 0.

Proof. Since problem (3.1) is equivalent to a linear system, hence, it suffices to
show the uniqueness. But the uniqueness follows immediately from the stability
estimates as the zero sources imply that any solution must be a trivial solution. �

3.2. Absolute stability of LDG method #2. In this subsection, we consider
the LDG method #2. By adding (2.7) and (2.8) with the given numerical fluxes,
we then recast the LDG method #2 as the following nonconforming mixed method:
Find (uh,σh) ∈ Vh × Σh such that

(3.34) Bh(uh,σh; vh, τ h) = F (vh, τh) ∀(vh, τh) ∈ Vh × Σh,
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where F is defined in (3.3) and

Bh(wh,χh; vh, τh) = (χh,∇hvh)Ω − k2(wh, vh)Ω + ik 〈wh, vh〉Γ(3.35)

−
∑

e∈EI
h

〈{χh} − iβ[[wh]], [[vh]]〉e

−
∑

e∈EI
h

(

iδ 〈[[χh]], [[τh]]〉e − 〈[[wh]], {τh}〉e
)

+ (χh, τh)Ω − (∇hwh, τh)Ω.

3.2.1. A generalized inf-sup condition. The goal of this subsection is to show
that the sesquilinear form Bh defined in (3.35) for the LDG method #2 satisfies
another generalized inf-sup condition. To the end, we introduce the following space
notation:

Sh := {(wh,χh) ∈ Vh × Σh; (wh,χh) satisfies (3.37)},(3.36)

where

(χh, τh)Ω − (∇hwh, τh)Ω(3.37)

−
∑

e∈EI
h

(

iδ 〈[[χh]], [[τ h]]〉e − 〈[[wh]], {τh}〉e
)

= 0 ∀(vh, τh) ∈ Vh × Σh.

We note that it is easy to check that (wh,χh) ∈ Sh implies that it satisfies (2.7)
with ûK being defined by the LDG method #2.

Lemma 3.1. For any (wh,χh) ∈ Sh, there holds the following estimates:

|wh|1,h ≤
√

17

16
‖χh‖L2(Ω)(3.38)

+ C
(

∑

e∈EI
h

( 1

he
‖[[wh]]‖2

L2(e) +
δ2

he
‖[[χh]]‖2

L2(e)

))
1
2

,

‖χh −∇hwh‖L2(Ω) ≤ C
(

∑

e∈EI
h

( 1

he
‖[[wh]]‖2

L2(e) +
δ2

he
‖[[χh]]‖2

L2(e)

))
1
2

.(3.39)
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Proof. On noting that (wh,χh) satisfies (3.37), setting τ h = ∇hwh in (3.37), we
get

|wh|21,h = Re(χh,∇hwh)Ω

− Re
∑

e∈EI
h

(

iδ 〈[[χh]], [[∇hwh]]〉e − 〈[[wh]], {∇hwh}〉e
)

≤ 1

2
|wh|21,h +

1

2
‖χh‖2

L2(Ω)

+
∑

e∈EI
h

δh
− 1

2
e

∑

K=Ke,K′
e

‖[[χh]]‖L2(e)‖∇hwh‖L2(K)

+
∑

e∈EI
h

h
− 1

2
e

∑

K=Ke,K′
e

‖[[wh]]‖L2(e)‖∇hwh‖L2(K)

≤ 1

2
|wh|21,h +

1

2
‖χh‖2

L2(Ω) +
1

34
|wh|21,h

+ C
∑

e∈EI
h

( 1

he
‖[[wh]]‖2

L2(e) +
δ2

he
‖[[χh]]‖2

L2(e)

)

.

Therefore,

|wh|21,h ≤ 17

16
‖χh‖2

L2(Ω) + C
∑

e∈EI
h

( 1

he
‖[[wh]]‖2

L2(e) +
δ2

he
‖[[χh]]‖2

L2(e)

)

,

which gives (3.38).
The estimate (3.39) follows from the same derivation by setting τh = χh−∇hwh

in (3.37). The proof is complete. �

We now are ready to state a generalized inf-sup condition for the sesquilinear
form Bh.

Proposition 3.2. There exits constant c2 > 0 such that for any (wh,χh) ∈ Sh

there holds

sup
(vh,τh)∈Vh×Σh

ReBh(wh,χh; vh, τh)

‖(vh, τh)‖DG

(3.40)

+ sup
(vh,τh)∈Vh×Σh

Im Bh(wh,χh; vh, τh)

‖(vh, τh)‖DG

≥ c2

γ2
‖(wh,χh)‖DG ,

where

γ2 := k + max
e∈EI

h

(k2 + 1

βhe
+

β + δ

he
+

δ

h3
e

+
1

βh3
e

)

,(3.41)

‖(wh,χh)‖DG :=
(

k2‖wh‖2
L2(Ω) + k2‖wh‖2

L2(Γ)(3.42)

+ ‖χh‖2
L2(Ω) + cΩ‖∇hwh‖2

L2(Γ)

)
1
2

.

Proof. Since the proof follows the same lines as that of Proposition 3.1, we shall
only highlight the main steps and point out the differences.

Step 1: Taking the first test function.
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We first choose the test function (vh, τh) = (wh,χh) to get

Bh(wh,χh; vh, τh) = Bh(wh,χh; wh,χh)

= (χh,χh)Ω − k2(wh, wh)Ω + ik 〈wh, wh〉Γ
−

∑

e∈EI
h

〈{χh} − iβ[[wh]], [[wh]]〉e

−
∑

e∈EI
h

(

iδ 〈[[χh]], [[χh]]〉e − 〈[[wh]], {χh}〉e
)

+ (χh,∇hwh)Ω − (∇hwh,χh)Ω.

Taking the real and imaginary parts yields

Re Bh(wh,χh; wh,χh) = ‖χh‖2
L2(Ω) − k2‖wh‖2

L2(Ω),(3.43)

Im Bh(wh,χh; wh,χh) = k‖wh‖2
L2(Γ)(3.44)

+
∑

e∈EI
h

(

−δ‖[[χh]]‖2
L2(e) + β‖[[wh]]‖2

L2(e)

)

+ 2 Im(χh,∇hwh)Ω +
∑

e∈EI
h

2 Im 〈[[wh]], {χh}〉e .

On noting that (wh,χh) satisfies (3.37), setting τ h = χh in (3.37), we get

‖χh‖2
L2(Ω) − (∇hwh,χh)Ω =

∑

e∈EI
h

(

iδ‖[[χh]]‖2
L2(e) − 〈[[wh]], {χh}〉e

)

,

Taking the imaginary part yields

Im(χh,∇hwh)Ω +
∑

e∈EI
h

Im 〈[[wh]], {χh}〉e =
∑

e∈EI
h

δ‖[[χh]]‖2
L2(e).

Hence, (3.44) becomes

Im Bh(wh,χh; wh,χh) = k‖wh‖2
L2(Γ)(3.45)

+
∑

e∈EI
h

(

δ‖[[χh]]‖2
L2(e) + β‖[[wh]]‖2

L2(e)

)

.

Step 2: Taking the second test function.
Next, we choose another test function (vh, τ h) = (α · ∇hwh,χh), which is dif-

ferent from the one used in the proof of Proposition 3.1, and use the fact that
∇hvh = ∇hwh to get

Bh(wh,χh; vh, τ h) = Bh(wh,χh,α · ∇hwh,χh)

= (χh,χh)Ω − k2(wh,α · ∇hwh)Ω + ik 〈wh,α · ∇hwh〉Γ
+

∑

e∈EI
h

iβ 〈[[wh]], [[α · ∇hwh]]〉e −
∑

e∈EI
h

〈{χh}, [[α · ∇hwh]]〉e

−
∑

e∈EI
h

iδ 〈[[χh]], [[χh]]〉e +
∑

e∈EI
h

〈[[wh]], {χh}〉e

+ 2i Im(χh,∇hwh).
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Taking the real part immediately gives (vh = α · ∇hwh)

Re Bh(wh,χh; vh,χh)(3.46)

= ‖χh‖2
L2(Ω) − k2 Re(wh, vh)Ω − k Im 〈wh, vh〉Γ

+
∑

e∈EI
h

(

Re〈{χh}, [[wh]] − [[vh]]〉e − β Im 〈[[wh]], [[vh]]〉e
)

.

Step 3: Deriving an upper bound for k2‖wh‖2
L2(Ω).

To bound (3.43) from below, we again need to get an upper bound for the term
k2‖wh‖2

L2(Ω) on the right hand side of (3.43).

Using the integral identity (3.10), (3.12), (3.43) and (3.46), we have

2k2‖wh‖2
L2(Ω) = 2 ReBh(wh,χh; vh,χh)(3.47)

+ (d − 2)ReBh(wh,χh; wh,χh) − d‖χh‖2
L2(Ω)

+ 2k Im 〈wh, vh〉Γ + k2
〈

α · nΩ, |wh|2
〉

Γ

+ 2k2 Re
∑

e∈EI
h

〈α · ne{wh}, [wh]〉e + 2 Re
∑

e∈EI
h

〈{χh}, [[vh]]〉e

+ 2(d − 1)Re
∑

e∈EI
h

〈{χh}, [[wh]]〉e + 2 Im
∑

e∈EI
h

β 〈[[wh]], [[vh]]〉e

+ d|wh|21,h −
∑

e∈EB
h

〈

α · ne, |∇hwh|2
〉

e

− 2 Re
∑

e∈EI
h

〈α · ne{∇hwh}, [∇hwh]〉e

± 2 Re
∑

e∈EI
h

〈α · ne{χh}, [∇hwh]〉e .

We note that by (3.13) the sum of the second and third lines to the last is zero,
and the contribution of the last line is obviously zero. These terms are purposely
added in order to get sharper upper bounds when they are combined with the terms
preceding them.

We now need to bound the terms on the right-hand side of (3.47). Some of these
have been obtained in the proof of the Proposition 3.1, and the others are derived
as follows.

2(d − 1)Re
∑

e∈EI
h

〈{χh}, [[wh]]〉e(3.48)

. 2(d − 1)
∑

e∈EI
h

h
− 1

2
e

∑

K=Ke,K′
e

‖χh‖L2(K)‖[wh]‖L2(e)

≤ 1

16
‖χh‖2

L2(Ω) + C
∑

e∈EI
h

1

βhe
β‖[wh]‖2

L2(e).
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2 Re
∑

e∈EI
h

〈{χh}, [[vh]]〉e − 2 Re
∑

e∈EI
h

〈α · ne{χh}, [∇hwh]〉e(3.49)

= 2 Re
∑

e∈EI
h





d−1
∑

j=1

∫

e

(

(α · τ j
e){χh · ne}

−(α · ne){χh · τ j
e}

)

∇h[wh] · τ j
e

]

.
∑

e∈EI
h

d−1
∑

j=1

h
− 1

2
e

∑

K=Ke,K′
e

‖χh‖L2(K)‖[∇hwh · τ j
e]‖L2(e)

≤ 1

16
‖χh‖2

L2(Ω) + C
∑

e∈EI
h

1

βhe

d−1
∑

j=1

β‖[∇hwh · τ j
e]‖2

L2(e).

It follows from (3.38) and (3.39) that

2 Re
∑

e∈EI
h

〈α · ne{χh −∇hwh}, [∇hwh]〉e(3.50)

≤
∑

e∈EI
h

h−1
e

∑

K=Ke,K′
e

‖χh −∇hwh‖L2(K)‖∇hwh‖L2(K)

≤ C max
e∈EI

h

h−2
e ‖χh −∇hwh‖2

L2(Ω) +
1

17
‖∇hwh‖L2(Ω)

≤ C
∑

e∈EI
h

( 1

h3
e

‖[[wh]]‖2
L2(e) +

δ2

h3
e

‖[[χh]]‖2
L2(e)

)

+
1

16
‖χh‖2

L2(Ω) + C
∑

e∈EI
h

( 1

he
‖[[wh]]‖2

L2(e) +
δ2

he
‖[[χh]]‖2

L2(e)

)

≤ 1

16
‖χh‖2

L2(Ω) + C
∑

e∈EI
h

( 1

h3
e

‖[[wh]]‖2
L2(e) +

δ2

h3
e

‖[[χh]]‖2
L2(e)

)

.

Similar to the derivation of (3.20), we have

2 Im
∑

e∈EI
h

β 〈[[wh]], [[vh]]〉e = 2 Im
∑

e∈EI
h

β 〈[wh], [α · ∇hwh]〉e(3.51)

≤ C
∑

e∈EI
h

βh
− 1

2
e

∑

K=Ke,K′
e

‖[wh]‖L2(e)‖∇hwh‖L2(K)

≤ C
∑

e∈EI
h

β2h−1
e ‖[wh]‖2

L2(e) +
1

17
‖∇hwh‖2

L2(Ω)

≤ 1

16
‖χh‖2

L2(Ω) + C
∑

e∈EI
h

(β2 + 1

he
‖[[wh]]‖2

L2(e) +
δ2

he
‖[[χh]]‖2

L2(e)

)

.
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Now substituting estimates (3.48)–(3.51), together with (3.15), (3.16) and (3.17),
into (3.47) we obtain

2k2‖wh‖2
L2(Ω) ≤ 2 Re Bh(wh,χh; vh,χh)(3.52)

+ (d − 2)ReBh(wh,χh; wh,χh) − d‖χh‖2
L2(Ω)

+ Ck2‖wh‖2
L2(Γ) −

cΩ

2

∑

e∈EB
h

‖∇hwh‖2
L2(e) +

k2

2
‖wh‖2

L2(Ω)

+ C
∑

e∈EI
h

k2

βhe
β‖[wh]‖2

L2(e) +
1

16
‖χh‖2

L2(Ω) + C
∑

e∈EI
h

1

βhe
β‖[wh]‖2

L2(e)

+
17

16
d‖χh‖2

L2(Ω) + Cd
∑

e∈EI
h

(β2 + 1

he
‖[[wh]]‖2

L2(e) +
δ2

he
‖[[χh]]‖2

L2(e)

)

+
1

16
‖χh‖2

L2(Ω) + C
∑

e∈EI
h

1

βhe

d−1
∑

j=1

β‖[∇hwh · τ j
e]‖2

L2(e)

+
1

16
‖χh‖2

L2(Ω) + C
∑

e∈EI
h

( 1

h3
e

‖[[wh]]‖2
L2(e) +

δ2

h3
e

‖[[χh]]‖2
L2(e)

)

+
1

16
‖χh‖2

L2(Ω) + C
∑

e∈EI
h

(β2 + 1

he
‖[[wh]]‖2

L2(e) +
δ2

he
‖[[χh]]‖2

L2(e)

)

.

On noting that (3.45) provides upper bounds for terms ‖[[χh]]‖2
L2(e), ‖[wh]‖2

L2(e)

and k2‖wh‖2
L2(Γ) in terms of Im Bh(wh,χh; wh,χh), and the jumps of the tangential

derivatives ‖[∇hwh · τ j
e]‖2

L2(e) in (3.52) can be bounded by the inverse inequality

(3.24), we get

2k2‖wh‖2
L2(Ω) +

k2

2
‖wh‖2

L2(Γ) +
cΩ

2

∑

e∈EB
h

‖∇hwh‖2
L2(e)(3.53)

≤ 2 Re Bh(wh,χh; vh,χh) + (d − 2)Re Bh(wh,χh; wh,χh)

+ M3 Im Bh(wh,χh; wh,χh) +
k2

2
‖wh‖2

L2(Ω)+
(1

4
+

d

16

)

‖χh‖2
L2(Ω)

≤ 2 Re Bh(wh,χh; vh,χh) + (d − 1)Re Bh(wh,χh; wh,χh)

+ M3 Im Bh(wh,χh; wh,χh) +
3k2

2
‖wh‖2

L2(Ω) −
1

2
‖χh‖2

L2(Ω),

where

M3 = C
(

k + max
e∈EI

h

(k2 + 1

βhe
+

β + δ

he
+

δ

h3
e

+
1

βh3
e

))

.(3.54)

Using the linearity of the sesquilinear form Bh, we have

k2‖wh‖2
L2(Ω) + k2‖wh‖2

L2(Γ) + ‖χh‖2
L2(Ω) + cΩ‖∇hwh‖2

L2(Γ)

≤ 4 ReBh(wh,χh; vh,χh) + 2(d − 1)ReBh(wh,χh; wh,χh)

+ 2M3 Im Bh(wh,χh; wh,χh)

= Re Bh(wh,χh; w̃h,χh) + 2M3 Im Bh(wh,χh; wh,χh),
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where w̃h = 4vh + 2(d − 1)wh and vh = α · ∇hwh.

Step 4: Finishing up.
It follows from the inverse inequality (3.24) that

k2‖vh‖2
L2(Ω) + k2‖vh‖2

L2(Γ) ≤ Ck2
(

max
K∈Th

h−2
K ‖wh‖2

L2(Ω) + cΩ‖∇hwh‖2
L2(Γ)

)

.

Then by the definition of the norm ‖(wh,χh)‖DG in (3.42) and the fact that ∇hvh =
∇hwh, we get

‖(w̃h,χh)‖DG ≤ 4 ‖(vh,χh)‖DG + 2(d − 1) ‖(wh,χh)‖DG

≤ C
(

max
K∈Th

h−1
K + k + 1

)

‖(wh,χh)‖DG .

Therefore,

Re Bh(wh,χh; w̃h,χh)

‖(w̃h,χh)‖DG

+
Im Bh(wh,χh; wh,χh)

‖(wh,χh)‖DG

(3.55)

≥ Re Bh(wh,χh; w̃h,χh)

C
(

maxK∈Th
h−1

K + k + 1
)

‖(wh,χh)‖DG

+
Im Bh(wh,χh; wh,χh)

‖(wh,χh)‖DG

≥ 1

2M3

Re Bh(wh,χh; w̃h,χh) + M3 Im Bh(wh,χh; wh,χh)

‖(wh,χh)‖DG

≥ c2

γ2
‖(wh,χh)‖DG ,

for some constant c2 > 0 and γ2 defined by (3.41). Hence, (3.40) holds and the
proof is complete. �

3.2.2. Stability estimates. The generalized inf-sup condition proved in the last
subsection immediately infers the following (absolute) stability and well-posedness
theorems for the LDG method #2.

Theorem 3.3. Let (uh,σh) ∈ V h × Σh solve (3.34). Then there holds

‖(uh,σh)‖DG . γ2k
−1 M(f, g).(3.56)

Proof. On noting that any solution (uh,σh) of (3.34) belongs to the set Sh, the
desired estimate (3.3) follows readily from (3.40) with (wh,χh) = (uh,σh), (3.34)
and (3.33). The proof is complete. �

Theorem 3.4. The LDG method (3.34) has a unique solution for all k, h, δ, β > 0.

Since the proof of the above theorem is a verbatim copy of that of Theorem 3.2,
we omit it.

4. Error estimates

The goal of this section is to derive error estimates for the LDG method #1 and
#2. Following the idea of [10], this will be done in two steps. First, we introduce an
elliptic projection of the solution (u,σ) using a corresponding coercive sesquilinear
form of Ah (resp. Bh) and derive error bounds for the projection. We note that
the error analysis for the elliptic projections has an independent interest in itself
(cf. [3]). Second, we bound the error between the projection and the LDG solution
using the stability estimates obtained in Section 3. Since the error analysis for the
two LDG methods are similar, we shall give more details of the error analysis for
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the LDG method #1 but shall be brief for the LDG method #2. Throughout this
section, we let for j = 1, 2

Hj(Th) =
∏

K∈Th

Hj(K), h = max
K∈Th

hK ≈ max
e∈Eh

he, β = β0 h−1, δ = δ0 h

for some positive constants β0 and δ0.

4.1. Error estimates for the LDG method #1.

4.1.1. Elliptic projection and its error estimates. For any (w,χ) ∈ H2(Th)×
H1(Th)d, we define the elliptic projection (w̃h, χ̃h) ∈ Vh × Σh of (w,χ) by

ah(w̃h, χ̃h; vh, τ h) = ah(w,χ; vh, τh) ∀(vh, τ h) ∈ Vh × Σh,(4.1)

where

ah(wh,χh; vh, τh) : = Ah(wh,χh; vh, τ h) + k2(wh, vh)Ω(4.2)

= (χh,∇hvh)Ω + ik 〈wh, vh〉Γ
−

∑

e∈EI
h

〈

{∇hwh} − iβ0h
−1[[wh]], [[vh]]

〉

e

−
∑

e∈EI
h

(

iδ 〈[[∇hwh]], [[τ h]]〉e − 〈[[wh]], {τh}〉e
)

+ (χh, τ h)Ω − (∇hwh, τh)Ω.

To derive error bounds for the above elliptic projection, we first notice that

ah(wh,χh; vh,−∇hvh) = (∇hwh,∇hvh)Ω + ik 〈wh, vh〉Γ
−

∑

e∈EI
h

〈

{∇hwh} − iβ0h
−1[[wh]], [[vh]]

〉

e

+
∑

e∈EI
h

(

iδ 〈[[∇hwh]], [[∇hvh]]〉e − 〈[[wh]], {∇hvh}〉e
)

=: Ah(wh, vh).

As a result, w̃h ∈ Vh satisfies

Ah(w̃h, vh) = Ah(w, vh) ∀vh ∈ Vh.(4.3)

Moreover, since

ah(wh,χh; 0, τh) = (χh, τh)Ω − (∇hwh, τ h)Ω

−
∑

e∈EI
h

(

iδ 〈[[∇hwh]], [[τ h]]〉e − 〈[[wh]], {τh}〉e
)

,

we have that χ̃h ∈ Σh satisfies

(χ̃h, τ h)Ω = (∇hw̃h, τ h)Ω(4.4)

+
∑

e∈EI
h

(

iδ 〈[[∇hw̃h −∇hw]], [[τ h]]〉e − 〈[[w̃h − w]], {τ h}〉e
)

+ (χ, τh)Ω − (∇hw, τ h)Ω ∀τ h ∈ Σh.
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Lemma 4.1. For any w, v ∈ H2(Th), there exists a k- and h-independent constant
C such that

|Ah(w, v)| ≤ C|||w||||1,h|||v|||1,h.(4.5)

Moreover, for any ǫ ∈ (0, 1), there exists a constant cǫ > 0 such that

ReAh(vh, vh) + (1 − ǫ + cǫ) ImAh(vh, vh) ≥ (1 − ǫ)‖vh‖2
1,h,(4.6)

where

‖w‖1,h :=
(

‖∇hw‖2
L2(Ω) + k‖w‖2

L2(Γ)(4.7)

+
∑

e∈EI
h

(

β‖[w]‖2
L2(e) + δ‖[[∇hw]]‖2

L2(e)

))
1
2

,

|||w|||1,h :=
(

‖w‖2
1,h +

∑

e∈EI
h

β−1‖{∇hw · ne}‖2
L2(e)

)
1
2

.(4.8)

Since the proof of the above lemma is elementary, we omit it. We now recall the
following stability estimate for u (cf. [7, 10]):

‖u‖H2(Ω) . (k−1 + k)M(f, g),

which is needed to prove the next lemma and will be used several times in the rest
of this section.

Proposition 4.1. Let u ∈ H2(Ω) be the solution to problem (1.1)-(1.2) and
σ = ∇u. Let (ũh, σ̃h) ∈ Vh × Σh denote the elliptic projection of (u,σ) defined by
(4.1). Then there hold the following error estimates:

‖u − ũh‖1,h + k
1
2 ‖u − ũh‖L2(Γ) . (1 + kh)

1
2 kh,(4.9)

‖u − ũh‖L2(Ω) . (1 + kh)kh2,(4.10)

‖σ − σ̃h‖L2(Ω) . (1 + kh)
1
2 kh.(4.11)

Proof. Since the proof of (4.9) and (4.10) is essentially same as that of [10, Lemma
5.2], we omit it to save the space and refer the reader to [10] for the details.

To show (4.11), on noting that (4.4) and the identity (σ, τh) = (∇hu, τh) imply

(σ − σ̃h, τh)Ω = (∇hu −∇hũh, τh)Ω −
∑

e∈EI
h

(

iδ0h 〈[[∇h(u − ũh)]][[τ h]]〉e(4.12)

− 〈[[u − ũh]], {τh}〉e
)

∀τ h ∈ Σh.
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For any χh ∈ Σh, we set τ h = χh − σ̃h. Then by (4.12), the trace inequality,
Schwarz inequality we get

‖σ − σ̃h‖2
L2(Ω) = (σ − σ̃h,σ − χh)Ω + (σ − σ̃h, τh)Ω

= (σ − σ̃h,σ − χh)Ω + (∇h(u − ũh), τh)Ω

−
∑

e∈EI
h

(

iδ0h 〈[[∇h(u − ũh)]], [[τ h]]〉e − 〈[[u − ũh]], {τh}〉e
)

≤ ‖σ − σ̃h‖L2(Ω)‖σ − χh‖L2(Ω) + ‖∇h(u − ũh)‖L2(Ω)‖τh‖L2(Ω)

+ C
(

∑

e∈EI
h

δ0h‖[[∇h(u − ũh)]]‖2
L2(e) + β0h

−1‖[u − ũh]‖2
L2(e)

+ ε
∑

e∈EI
h

h‖τh‖2
L2(e)

)

≤ 1

4
‖σ − σ̃h‖2

L2(Ω) +
1

4
‖τh‖2

L2(Ω) + ‖σ − χh‖2
L2(Ω) + C‖u − ũh‖2

1,h

≤ 1

2
‖σ − σ̃h‖2

L2(Ω) +
5

4
‖σ − χh‖2

L2(Ω) + C‖u − ũh‖2
1,h.

Hence, it follows from the above inequality, (4.9), and the polynomial approximation
theory (cf. [2]) that

‖σ − σ̃h‖L2(Ω) ≤ C‖u − ũh‖1,h + 2 inf
χh∈Σh

‖σ − χh‖L2(Ω)

. (1 + kh)
1
2 hk + (k + k−1)h

. (1 + kh)
1
2 hk,

which gives (4.11). The proof is complete. �

4.1.2. Global error estimates for the LDG method #1. In the preceding
subsection we have derived the error bounds for (u − ũh,σ − σ̃h). By the decom-
position u − uh = (u − ũh) + (ũh − uh) and σ − σh = (σ − σ̃h) + (σ̃h − σh) and
the triangle inequality, it suffices to get error bounds for (ũh − uh, σ̃h − σh). We
shall accomplish this task by exploiting the linearity of the Helmholtz equation and
using the stability estimate for the LDG method #1 obtained in Section 3.1.

First, on noting that (u,σ) satisfies

Ah(u,σ; vh, τh) = F (vh, τh) ∀(vh, τh) ∈ Vh × Σh.(4.13)

Subtracting (3.1) from (4.13) yields the following error equation (or Galerkin or-
thogonality):

Ah(u − uh,σ − σh; vh, τh) = 0 ∀(vh, τh) ∈ Vh × Σh.(4.14)

Next, to proceed we introduce the notation

u − uh = eh + qh, eh := u − ũh, qh := ũh − uh,

σ − σh = ψh + φh, ψh := σ − σ̃h, φh := σ̃h − σh.
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Then by (4.14) and the definitions of the sesquilinear form ah and the elliptic
projection we have

Ah(qh,φh; vh, τh) = −Ah(eh,ψh; vh, τh)(4.15)

= −ah(eh,ψh; vh, τh) + k2(eh, vh)

= k2(eh, vh), ∀(vh, τh) ∈ Vh × Σh.

The above equation implies that (qh,φh) ∈ Vh × Σh is the LDG solution to the
Helmholtz problem with source terms f = k2eh and g = 0. Then an application of
the stability estimates of Theorem 3.1 immediately yields the following lemma.

Proposition 4.2. There hold the following estimates for (qh,φh):

‖qh‖DG . γ1(1 + kh)k2h2,(4.16)

‖φh‖L2(Ω) . γ1(1 + kh + δ0kh2)(1 + kh)kh.(4.17)

Combining Proposition 4.1 and 4.2, using the triangle inequality and the stan-
dard duality argument give the following error estimates for (uh,σh).

Theorem 4.1. Let u ∈ H2(Ω) be the solution to problem (1.1)–(1.2) and σ := ∇u,
and (uh,σh) be the solution to problem (3.1). Then there hold the following error
estimates for (uh,σh):

‖u − uh‖1,h + k
1
2 ‖u − uh‖L2(Γ) .

(

(1 + kh)
1
2 + γ1(1 + kh)kh

)

kh,(4.18)

‖u − uh‖L2(Ω) . (1 + γ1)(1 + kh)kh2,(4.19)

‖σ − σh‖L2(Ω) .
(

(1 + kh)
1
2 + γ1(1 + kh)(1 + kh + δ0kh2)

)

kh.(4.20)

4.2. Error estimates for the LDG method #2. The error analysis for the
LDG method #2 essentially follows the same lines as that for the LDG method #1
given in the previous subsection. However, there are three main differences which
we now explain. First, the sesquilinear form ah needs to be replaced by another
sesquilinear form bh in the definition of the elliptic projection (4.1), where bh is
defined by

bh(wh,χh; vh, τh) : = Bh(wh,χh; vh, τh) + k2(wh, vh)Ω(4.21)

= (χh,∇hvh)Ω + ik 〈wh, vh〉Γ
−

∑

e∈EI
h

〈{χh} − iβ[[wh]], [[vh]]〉e

−
∑

e∈EI
h

(

iδ 〈[[χh]], [[τh]]〉e − 〈[[wh]], {τh}〉e
)

+ (χh, τh)Ω − (∇hwh, τ h)Ω.

Second, due to strong coupling between ũh and σ̃h, the error estimates for the
new elliptic projection (ũh, σ̃h) must be derived differently. To the end, we need
the following lemma, which replaces Lemma 4.1.

Lemma 4.2. Let β = β0h
−1 and δ = δ0h for some positive constants β0 and δ0.

(i) There exists an h- and k-independent constant c3 > 0 such that the sesquilin-
ear form bh satisfies the following generalized inf-sup condition: for any fixed
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(wh,χh) ∈ Vh × Σh

sup
(vh,τh)∈Vh×Σh

Re bh(wh,χh; vh, τh)

|||(vh, τ h)|||DG
(4.22)

+ sup
(vh,τh)∈Vh×Σh

Im bh(wh,χh; vh, τh)

|||(vh, τ h)|||DG
≥ c3|||(wh,χh)|||DG.

(ii) There exists an h- and k-independent constant C > 0 such that for any
(w,χ), (v, τ ) ∈ H2(Th) × H1(Th)d, there holds

|bh(w,χ; v, τ )| ≤ C|||(w,χ)|||1,h|||(v, τ )|||1,h,(4.23)

where

|||(w,χ)|||DG :=
(

‖w‖2
1,h + ‖χ‖2

L2(Ω)

)
1
2

,(4.24)

|||(w,χ)|||1,h :=
(

|||(w,χ)|||2DG +
∑

e∈EI
h

β−1‖{χ}‖2
L2(e)

)
1
2

.(4.25)

The proof of (i) is based on evaluating the first quotient on the left-hand side of
(4.22) at (vh, τh) =

(

(1+C1)wh, C1χh−∇hwh

)

and evaluating the second quotient
at (vh, τh) = (C2wh, C2χh) for some sufficiently large positive constants C1 and C2.
The proof of (ii) is a straightforward application of Schwarz and trace inequalities.
We skip the rest of the derivation to save space.

The above generalized inf-sup condition, the boundedness of the sesquilinear
form bh, and the duality argument (cf. [2]) readily infer the following error estimates
for the new elliptic projection (ũh, σ̃h). We omit the proof since it is standard.

Proposition 4.3. Under the assumptions of Proposition 4.1, there hold the fol-
lowing estimates:

‖u − ũh‖1,h + ‖σ − σ̃h‖L2(Ω) . kh,(4.26)

‖u − ũh‖L2(Ω) . k2h2.(4.27)

The third difference is that the new error function (qh,φh) now satisfies

Bh(qh,φh; vh, τh) = k2(eh, vh) ∀(vh, τh) ∈ Vh × Σh.(4.28)

As a result, by Theorem 3.3 and (3.38) we get

|qh|1,h + ‖(qh,φh)‖DG . γ2(1 + kh)k2h2,(4.29)

which replaces estimates (4.16) and (4.17).
After having established Proposition 4.3 and (4.29), once again, by the triangle

inequality we arrive at the following error estimates for the solution (uh,σh) to the
LDG method #2.

Theorem 4.2. Let u ∈ H2(Ω) be the solution to problem (1.1)–(1.2) and σ := ∇u,
and (uh,σh) be the solution to problem (3.34). Then there hold the following error
estimates for (uh,σh):

‖u − uh‖1,h + k
1
2 ‖u − uh‖L2(Γ)(4.30)

+ ‖σ − σh‖L2(Ω) .
(

1 + γ2(1 + kh)kh)
)

kh,

‖u − uh‖L2(Ω) . (1 + γ2(1 + kh))k2h2.(4.31)
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Remark 4.1. (4.29) shows that φh := σ̃h − σh has an optimal order (in h) error
bound for the LDG method #2, while (4.17) shows that φh only has a sub-optimal
order error bound for the LDG method #1. We believe that this is the main reason
why in practice the LDG method #2 gives a better approximation to the flux variable
σ than the LDG method #1 does although both methods have the same asymptotic
rate of convergence in h.

5. Numerical experiments

In this section we shall provide some numerical results of the two proposed LDG
methods. Our tests are done for the following 2-d Helmholtz problem:

−∆u − k2u = f :=
sin(kr)

r
in Ω,(5.1)

∂u

∂nΩ
+ iku = g on ΓR := ∂Ω.(5.2)

Here Ω is the unit square [−0.5, 0.5]× [−0.5, 0.5], and g is chosen so that the exact
solution is given by

(5.3) u =
cos(kr)

k
− cos k + i sink

k
(

J0(k) + iJ1(k)
)J0(kr)

in polar coordinates, where Jν(z) are Bessel functions of the first kind.
Assume T1/m be the regular triangulation that consists of 2m2 right-angled

equicrural triangles of size h = 1/m, for any positive integer m. See Figure 1
for the sample triangulation T1/4 and T1/10.
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Figure 1. The computational domain and sample meshes. Left:
T1/4 that consists of right-angled equicrural triangles of size h = 1

4 ;

Right: T1/10 with h = 1
10 .

5.1. Sensitivity with respect to the parameters δ and β. In this subsection,
we examine the sensitivity of the error of the LDG solutions in H1-seminorm with
respect to the parameters δ and β.

The LDG method #1 is considered first. We start by fixing δ = 0.1he and
testing the sensitivity in the parameter β. With two wave numbers k = 5 and
50, we compute the solutions of the LDG method #1 with different values of β:
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0.001h−1
e , 0.01h−1

e , h−1
e and 1. The relative errors, defined by the errors in the

H1-seminorm divided by the exact solution in the H1-seminorm, are shown in the
left graph of Figure 2. We observe that the relative errors have similar behaviors
and decay as mesh size h becomes smaller. This shows that the errors are not
sensitive to the parameter β. Next, we fix β = 0.001h−1

e , and repeat the test with
different δ. The right graph of Figure 2 shows the relative errors with parameters
δ = 0.001he, 0.1he, 10he and 0.1, and wave numbers k = 5 and 50. We observe that
the errors have similar behaviors for small values δ = 0.001he and 0.1he. Larger δ
results in larger error.

The sensitivity tests of the LDG method #2 are shown in Figure 3, similar
behaviors are also observed.
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Figure 2. Relative error in the H1-seminorm of the LDG method
#1 with different parameters for two wave numbers k = 5 and 50.
Left: δ = 0.1he is fixed, β = 0.001h−1

e , 0.01h−1
e , h−1

e and 1; Right:
β = 0.001h−1

e is fixed, δ = 0.001he, 0.1he, 10he and 0.1.

5.2. Errors of the LDG solutions. In this subsection, we fix the parameters and
investigate the changes of the numerical errors as functions of the mesh size.

We start from the LDG method #1. As suggested by the sensitivity tests in the
previous subsection, we pick

(5.4) δ = 0.1he, β = 0.001h−1
e .

The relative error of the LDG method, and the finite element interpolation are
shown in the left graph of Figure 4, with four different wave numbers k = 5, 10,
50 and 100. The relative error of the LDG solution stays around 100% before a
critical mesh size is reached, then decays at a rate greater than −1 in the log-log
scale but converges as fast as the finite element interpolation (with slope −1) for
small h. The critical mesh size decreases as k increases.

The right graph of Figure 4 contains the relative error when we fix kh = 1 and
hk = 0.5. It indicates that unlike the error of the finite element interpolation the
error of the LDG is not controlled by the magnitude of kh, which suggests that there
is a pollution contribution in the total error. The left graph of Figure 5 contains
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Figure 3. Relative error in the H1-seminorm of the LDG method
#2 with different parameters for two wave numbers k = 5 and 50.
Left: δ = 0.1he is fixed, β = 0.001h−1

e , 0.01h−1
e , h−1

e and 1; Right:
β = 0.001h−1

e is fixed, δ = 0.001he, 0.1he, 10he and 0.1.

the relative error of the LDG method with the mesh size satisfying k3h2 = 1 for
different values of h. The error does not increase with respect to k.

The LDG method #2 has also been tested using the same parameters in (5.4).
Similar behaviors have been observed as shown in Figure 5 and 6.
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Figure 4. Left: relative error of the LDG method #1 (solid
line) and the finite element interpolation (dotted line) in the H1-
seminorm for k = 5, 10, 50 and 100; Right: relative error of the
LDG method #1 in the H1-seminorm for k = 1, · · · , 200, kh = 1
and kh = 0.5.

At the end, we look closely at the situation with a large relative error when
kh > 1. The LDG method #1 solution with parameters δ = 0.1he, β = 0.001h−1

e ,
k = 100 and h = 1/45 has a large relative error of size 0.9392. The surface plots
of the finite element interpolation and the LDG solution are given in Figure 7. It



LDG METHODS FOR THE HELMHOLTZ EQUATION 31

k

R
el

at
iv

e
er

ro
r

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

k3h2=1

1/h

R
el

at
iv

e
er

ro
r

100 101 102 10310-3

10-2

10-1

100

101

k=5

k=10

k=50

k=100

Figure 5. Left: relative error of the LDG method #1 in the H1-
seminorm with k3h2 = 1; Right: relative error of the LDG method
#2 (solid line) and the finite element interpolation (dotted line) in
the H1-seminorm for k = 5, 10, 50 and 100.
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Figure 6. Relative error of the LDG method #2 in the H1-
seminorm. Left: kh = 1 and kh = 0.5 Right: k3h2 = 1.

shows that the LDG solution has the correct shape/phase although its amplitude
is smaller.

5.3. Comparison between the two LDG methods. Two different LDG meth-
ods are proposed in this paper. The first one is derived following the IPDG method
proposed in [10], and the second one has a more standard numerical flux formula-
tion and is supposed to have a better approximation for the vector/flux variable.
In this subsection, we provide a comparison between these two methods, in terms
of the error and computational cost.

We start by revisiting the test examples of Subsection 5.1. Instead of computing
the relative error of uh in the H1-seminorm, we compute the relative error of σh in
the L2-norm for the LDG method #2. The numerical results are presented in Figure



32 XIAOBING FENG AND YULONG XING

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

−20

−15

−10

−5

0

5

x 10
−3

Figure 7. Left: surface plots of the finite element interpolation
(left) and the LDG method #1 solution (right) with parameters
δ = 0.1he, β = 0.001h−1

e , k = 100 and h = 1/45.

8, which show that although the solution is still not sensitive to the parameter β,
better approximation to σ is achieved for larger δ. It confirms our prediction that
the LDG method #2 gives a better approximation for the vector/flux variable.
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Figure 8. Relative error of σh in L2-norm of the LDG method
#2 with different parameters for two wave numbers k = 5 and 50.
Left: δ = 0.1he is fixed, β = 0.001h−1

e , 0.01h−1
e , h−1

e and 1; Right:
β = 0.001h−1

e is fixed, δ = 0.001he, 0.1he, 10he and 0.1.

Table 1 provides a detailed comparison of these two methods for different mesh
sizes h, with the parameters δ = 0.1he, β = 0.001h−1

e and k = 10. It shows that
the computational cost of the LDG method #2 is about twice larger than that of
the LDG method #1. Also, as expected, the error of the vector/flux variable of the
LDG method #2 is smaller than that of the LDG method #1, and both methods
demonstrate a first order rate of convergence.

5.4. Comparison between LDG and finite element solutions. We have shown
the performance and comparison of the two LDG methods in previous subsections.
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Table 1. Comparison of the two LDG methods with parameters
δ = 0.1he and β = 0.001h−1

e .

1/h |u − uh|H1 order ‖σ − σh‖L2 order CPU time (s)
5 4.1059E-01 5.4715E-01 0.0641
10 1.6915E-01 1.2794 2.4712E-01 1.1467 0.2381

LDG #1 20 7.6089E-02 1.1525 1.1804E-01 1.0659 0.9671
40 3.6648E-02 1.0539 5.7114E-02 1.0474 3.9380
80 1.8151E-02 1.0137 2.8319E-02 1.0121 15.8194
160 9.0379E-03 1.0060 1.4004E-02 1.0159 69.1861

5 2.4711E-01 2.2184E-01 0.1057
10 1.4040E-01 0.8156 7.6775E-02 1.5308 0.4368

LDG #2 20 6.6992E-02 1.0675 3.3630E-02 1.1909 1.8356
40 3.2693E-02 1.0350 1.5710E-02 1.0981 7.9357
80 1.6165E-02 1.0161 7.7418E-03 1.0209 34.5688
160 8.0949E-03 0.9978 3.9127E-03 0.9845 157.6018
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Figure 9. The traces of the LDG #1 solution (left) and the finite
element solution (right) in the xz-plane, for k = 100 and h =
1/50 (top), 1/120 (middle) and 1/200 (bottom), respectively. The
dotted lines are the traces of the exact solution.

In this subsection, we provide a brief comparison between the LDG solution and
the P1 conforming finite element solution.



34 XIAOBING FENG AND YULONG XING

We consider the Helmholtz problem (5.1)-(5.2) with wave number k = 100. With
mesh size h = 1/50, 1/120 and 1/200, we plot the traces of the LDG method #1
solution with parameters (5.4) in xz-plane in the left column of Figure 9. The exact
solution is also provided as a reference. The traces of the finite element solution
are shown in the right column of Figure 9. It is clear that the LDG method #1
has a better approximation to the exact solution. Larger phase error in the finite
element solution is observed in all three cases. Also, the LDG solution has a better
approximation for the amplitude of the exact solution.
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