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Abstract
We present an arbitrary high-order local discontinuous Galerkin (LDG) method with alter-
nating fluxes for solving linear elastodynamics problems in isotropic media. Both the
semi-discrete analysis and fully discrete analysis for a leap-frog LDG method are given
to show that the proposed method simultaneously enjoys the energy conserving property and
optimal convergence rates in both the displacement and stress, when the tensor product poly-
nomials of the degree k are used on Cartesian meshes. Numerical experiments demonstrate
that the proposed method has several advantages including the exact energy conservation,
slow-growing errors in long time simulation, and subtle dependence on the first Lamé param-
eter λ.

Keywords Elastodynamics · Elastic wave propagation · Local discontinuous Galerkin
methods · Energy conservation · Fully discrete convergence analysis

Mathematics Subject Classification 65N12 · 65N15 · 65N30 · 35Q74 · 74H15 · 74S05

1 Introduction

In this paper, we develop and analyze a local discontinuous Galerkin (LDG) method for the
following planar linear elastic wave equations in isotropicmedia over the time interval [0, T ]:

ρut t − ∇ · σ (u) = f in �, (1.1a)
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u(0) = u0, ut (0) = v0, (1.1b)

subject to periodic boundary conditions or Dirichlet/Neumann boundary conditions given
by

u = gD on ∂�D and σ (u)n = gN on ∂�N , (1.2)

with ∂�D ∪ ∂�N = ∂�, where u represents the displacement of the elastic body � ⊆ R
2

and σ is the stress tensor defined as

σ = λ(∇ · u)I2 + 2με(u), with the strain tensor: ε(u) = 1

2
(∇u + ∇uT ). (1.3)

It can be directly verified that the stress and strain tensors have the following relation

σ = Bε := λtr(ε)I2 + 2με, and ε = Aσ = 1

2μ

(
σ − λ

2(λ + μ)
tr(σ )I2

)
, (1.4)

where λ and μ are referred as Lamé parameters assumed to be constants. In this article,
we shall specify the dependence of error bounds on the ratio λ/μ, i.e., analyze the locking
phenomenon. In order to facilitate the analysis, we further assume μ is both bounded below
from 0 and above from ∞, and thus restrict the estimate mainly to λ. We also note that large
heterogeneity ratios of μ do not correspond to physically relevant situations [19]. Without
loss of generality, in the following discussion we assume ρ = 1 and f = 0, and all the results
are readily extendable to the more general case.

The present research is motivated by wide applications of linear elastodynamics in many
practical problems includingmechanic engineering, civil engineering, geophysics, biological
simulation and so on. Especially it is of critical importance in a variety of inverse problems
for non-destructive testing. For example, somemedical imaging techniques like elastography
[29] require accurate simulation of wave propagation through human bodies where it is more
accurately modeled by elastic wave in bone [28]. Another example, seismic inversion, uses
elastic waves propagating within the Earth or along its surface to detect oil or gas field [44].

A large variety of numerical methods have been proposed for elastic wave propagation
problems. For example, finite difference methods have been widely used in computational
elastodynamics [46,50]. The application of finite element methods (FEMs) can be found in
[34] for space-time FEMs, [4,6,21,26] for mixed FEMs and [47] for CutFEMs focusing on
elastodynamics with multiple material. We also refer readers to the spectral method in [36]
as a high-order method. In this paper we focus on discontinuous Galerkin (DG) methods
due to their flexibility for higher-order spatial approximation and hp-adaptivity, scalability
for parallel computation and reduced dispersion errors. In general, there are two groups
of methods to tackle second-order wave equations. Methods in the first group rewrite the
equation into a system of first order hyperbolic equations, then one can apply the standard
DG [15], the interior penalty DG (IPDG) [43], the nodal DG [31], the hybridizable DG
(HDG) [42], the space-time DG [24] and the stagger DG [12] methods for examples. For
elastic wave equations, methods in this group use the velocity–stress and velocity–strain
formulation in general. The second group deals with the second order derivative directly, see
the IPDG [54], and the LDG methods to be discussed in this paper. The displacement-stress
and displacement–strain formulations for elastic wave equations widely appear in this group.
We also refer readers to [35] for a comparison of these two groups of methods including their
applications to different wave propagation problems, analysis and numerical methods.

There have been extensive studies on DG methods for the linear elastic wave equation
in isotropic media (1.1) over the last decade. For instance, the authors in [55] studied a
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high-order DG method for the acoustic–elastic wave propagation problems in terms of a
velocity–strain formulation as well as its parallel implementation. Some hp-adaptive DG
methods can be found in [18,23,40]. In [11] the authors proposed a staggered DG method
for the velocity–stress formulation which can conserve the energy exactly and avoid locking
namely the error bound is independent of λ, and they also gave both the semi-discrete and
fully discrete analysis. In [3] an energy-based DG method is developed and applied to some
realistic problems. The authors in [1] studied DG methods for displacement-stress and dis-
placement formulation with different fluxes. An IPDG method was studied for quasistatic
linear viscoelasticity in [43] where both the semi-discrete and fully discrete analysis are
presented. We also refer readers to [2,17] and the reference therein for the dispersion anal-
ysis of IPDG methods for elastic wave equations. In addition, the authors in [49] studied a
HDGmethodwith a velocity-strain formulation for heterogeneousmedia. A high-order HDG
method and its super-convergence properties were investigated in [42]. Some new analysis
techniques were proposed in [22] for HDG on elasticity which can lead to the optimal error
bound in a simple and concise manner. We also refer readers to [25] for a review of HDG
methods on elasticity and elastodynamics.

LDGmethods can be traced back to [16] as the generalization of the standardDGmethod in
[5] to solveNavier–Stokes problems. The basic idea is to apply the standardDGdiscretization
to amixed formulation of the underling partial differential equations (PDEs).We refer readers
to [8,57] and the references therein for various applications of LDG methods such as elliptic
problems, convection-diffusion problems, the dispersive equations, and so on. Recently, there
have been many studies in designing DG and LDGmethods which can numerically preserve
the energy or Hamiltonian structure of the model in the discrete level, which can lead to small
phase and shape errors in long time simulations. Energy conserving LDGmethods have been
designed for the generalized Korteweg-de Vries equation [7], the acoustic wave equation
[10,13,56], the Degasperis–Procesi equation [32], the Camassa–Holm equation [39], the
nonlinear Schrödinger equation [38], the improved Boussinesq equation [37] and so on.

Usually it is challenging to obtain DG methods for wave equations which are both non-
dissipative (i.e., energy conserving for the physical energy) and have (provable) optimal high
order accuracy at the same time. In [10,56], Xing, Chou and Shu proposed an LDG method
for the second order wave equation in the 1D and 2D cases such that the physical energy
can be exactly conserved. Semi-discrete analysis is also given to show that the LDG method
has the optimal convergence rate. In this paper, we consider the linear elastic wave equations
(1.1) and propose an optimal energy conserving LDG method. The proposed method has
several remarkable advantages. First, fully discrete error analysis is carried out to demonstrate
that it has arbitrary high-order optimal convergence rates in both displacement and stress
tensor. Second, it can exactly conserve the energy in the discrete level. Comparison of the
numerical performance of the proposed LDG method and an IPDG method is also provided
to demonstrate the excellent behavior of energy conserving methods in long time simulation.
The third one is the independence of the solution error of displacement with respect to the
first Lamé parameter λ, which is a desired property for numerical solvers of elastodynamics.

One of the major difficulties of this research lies on the approximation for the stress or
strain which is a symmetric tensor. For the issue of symmetry in elasticity, we refer readers
to [6,21] for the strong enforcement and [4] for the weak enforcement. In the proposed
method, the piecewise tensor product polynomials of the degree k, denoted by Q

k , are used
for approximation in which the symmetry of the stress tensor is strongly enforced. Then the
key obscure part in the analysis is a suitable choice of the projection operator for the stress
tensor such that it can both maintain the symmetry and handle the penalty terms on element
edges. We refer readers to [20,51,58] for various construction of projection operators with
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different purposes in the analysis of LDG methods. The one used in this work is based on
the Gauss-Radau projection such that the resulted tensor is also symmetric. However special
attention should be paid to the extra terms induced by this projection on element edges due
to the penalties of the LDGmethod for which some new super-convergence properties of the
Gauss-Radau projection will be established.

We also note that the proposed method can be considered as a special case of the DG
methods in [1] with the alternating fluxes and without stability terms. In [1], both LDG
and IPDG methods were tested and O(hk) convergence rate was observed on triangular
meshes. In the present work, by choosing a special initial condition constructed by the Gauss-
Radau projection, we analytically proved and numerically validated the optimal O(hk+1)

convergence rate for the displacement and stress, if the polynomial space Q
k are used on

Cartesian meshes. Both theoretical analysis and numerical results indicate this choice of the
initial condition is critical for the LDG method to produce the optimal convergent solutions.
We also remark that the analytical result in [1] is provided on arbitrary meshes, while the
optimal error analysis of LDG methods in this paper is proven for the special Cartesian
meshes. It would be interesting to investigate the optimal error estimate of LDGmethod with
generalized fluxes for elastodynamics on unstructured meshes, following the recent work in
[48] for the acoustic wave equation.

Another contribution of this paper is the fully discrete error analysis for a second-order
leap-frog LDG method. Current analysis for time discretization of LDG methods in the
literature are mainly concentrated on the equations with the first-order time derivative, see
[51,52,58] and the references therein. Those techniques can not be directly applied to the
second-order wave equations, and thus new fundamental estimates are demanded. The fully
discrete analysis for the leap-frog IPDG method can be found in [27] for the second order
acoustic wave equation, and it employs the elliptic projector induced from the coercive
bilinear form of the IPDG method which is not available for the LDG method. By providing
some new estimates, we are able to perform detailed analysis to show the dependence of the
time step �t on the mesh size h and the polynomial degree k to ensure either the stability or
the optimal convergence rate O(hk+1 + �t2). The proposed analysis approach for the fully
discrete scheme can be also readily applied to the LDG methods for the second order wave
equations in the scalar case [10,56].

This paper consists of six additional sections. In the next section, we introduce some basic
notations and develop the LDG method for (1.1). In Sect. 3, we prepare some fundamental
identities and estimates which will be frequently used throughout this paper. In Sect. 4, we
present the semi-discrete error analysis. In Sect. 5, the fully discrete convergence analysis is
given. In Sect. 6, we present a group of numerical examples to demonstrate the features of
the proposed method. Some conclusion remarks are provided in Sect. 7.

2 Local Discontinuous Galerkin Scheme

In this section, we introduce some basic notations and derive the LDG scheme for the equa-
tions of elastodynamics (1.1). We only consider the rectangular domain � ⊆ R

2, and for
simplicity we let � = [0, L1] × [0, L2] in analysis. Although only the 2D situation is con-
sidered in this paper, we emphasize that the proposed method and the analysis techniques are
readily extendable to the 3DCartesian meshes since all the elements and projection operators
are constructed by tensor products. Denote Hk(ω) and Wk,p(0, T ; Hk(ω)) as the standard
Hilbert spaces and Sobolev spaces with temporal dimension, defined on a subdomain ω ⊆ �
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with periodic boundary conditions on�. In the following discussion, for each vector function
v we always assume v = [v1, v2]T is a column vector with the superscript “T ” denoting the

transpose, ∇vi = [∂x1vi , ∂x2vi ], i = 1, 2 is a row vector and ∇v =
[∇v1

∇v2

]
is a 2-by-2

tensor. We employ the notation “:” such that τ 1 : τ 2 = ∑2
i, j=1 τ 1i jτ

2
i j for any two tensors

τ 1 =
[
τ 1i j

]2
i, j=1

and τ 2 =
[
τ 2i j

]2
i, j=1

. Throughout this paper, C denotes a generic positive

constant independent of λ, spatial and temporal step sizes h and�t , whichmay have different
values at different occasions and may depend on μ, μ̄.

Let Th be a Cartesian mesh of �; namely we cut � into N1 × N2 rectangular elements in
which Ni denotes the partition in the xi direction, i = 1, 2. Define hi = Li/Ni , i = 1, 2. We
assume the mesh Th is shape regular, i.e., there exist constants c andC such that c ≤ h1/h2 ≤
C . Let E ih and Eb

h be the interior and boundary edges, respectively; and let Eh = E ih ∪ Eb
h . On

this mesh Th , we introduce the following broken polynomial spaces:

Vk
h = {vh : vh |K ∈ [Qk(K )]2, ∀K ∈ Th},

�k
h = {τ h : τ h |K ∈ [Qk(K )]2×2, τ T

h = τ h, ∀K ∈ Th},
where Q

k(K ) is the space of tensor product of one-dimensional polynomials with degree
no more than k. Note that the symmetry of the stress tensor is incorporated in the piecewise
polynomial space �k

h . For each edge e ∈ E ih , we let K−
e and K+

e be the elements below and
above e if e is horizontal, or be the elements left and right to e if e is vertical. By this set up,
for each vh ∈ Vk

h , we define v
±
h |e = (vK±

e
)|e, namely the limit values of vh at e from the

left/bottom elements or from the right/top elements, respectively. Similarly, we can define
τ±
h |e. Note that if e ∈ Eb

h , we employ the same notation, but the related neighbor elements
outside the domain are then defined as the corresponding elements on the other side of the
domain due to periodic boundary conditions. Also, we define (·, ·)ω as the standard L2 inner
product over any subdomain ω ⊆ �.

Based on these preparations, we now proceed to derive the LDGmethod for the Eq. (1.1).
For this purpose, we rewrite (1.1a) in the mixed formulation:

ut t − ∇ · σ = f, (2.1a)

Aσ = 1

2
(∇u + ∇uT ). (2.1b)

Multiplying (2.1a) by vh ∈ Vk
h and using the integration by parts on every K , we have

∫
K
ut t · vhdX −

∫
K

(∇ · σ ) · vhdX =
∫
K
ut t · vhdX +

∫
K

(∇vh) : σdX −
∫

∂K
vTh σnds = 0.

(2.2)

Similarly, multiplying (2.1b) by τ h ∈ �k
h , applying integration by parts on each element K

and using the symmetry of τ h , we have

∫
K
Aσ : τ h =

∫
K

−(∇ · τ h) · udX +
∫

∂K
uT τ hnds. (2.3)

Then we introduce the following bilinear forms for any v ∈ [
H1(K )

]2
and symmetric

τ ∈ [
H1(K )

]2×2
:
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aK (τ , v) =
∫
K
(∇v) : τdX , bK (τ , v) =

∫
K
(∇ · τ ) · vdX , cK (τ , v) =

∫
∂K

vT τnds,

(2.4)

and the corresponding bilinear forms on the whole domain:

ah(τ , v) =
∑
K∈Th

∫
K
(∇v) : τdX , bh(τ , v) =

∑
K∈Th

∫
K
(∇ · τ ) · vdX ,

ch(τ , v) =
∑
K∈Th

∫
∂K

vT τnds, c̊h(τ , v) = ch(τ , v) −
∫

∂�

vT τnds,
(2.5)

where c̊h includes only the contribution from the interior edges and excludes the boundary
terms. For the case of periodic boundary conditions, the proposed LDG method is to find
uh ∈ Vk

h and σ h ∈ �k
h such that

((uh)t t , vh)� + ah(σ h, vh) − ch(σ̂ h, vh) = 0 ∀vh ∈ Vk
h, (2.6a)

(Aσ h, τ h)� + bh(τ h,uh) − ch(τ h, ûh) = 0 ∀τ h ∈ �k
h, (2.6b)

where the hatted terms σ̂ h and ûh are the so called the numerical fluxes defined on edges. In
this paper, we shall consider the simple alternating fluxes:

σ̂ h = σ+
h , ûh = u−

h , or σ̂ h = σ−
h , ûh = u+

h . (2.7)

Without loss of generality, we shall focus on the first two in (2.7) in this paper. One can also
define a family of numerical fluxes as:

σ̂ h = ασ+
h + (1 − α)σ−

h , ûh = (1 − α)u+
h + αu−

h α ∈ [0, 1] , (2.8)

which are the generalization of the alternating fluxes (2.7) (when α = 0 or 1) as studied in
[41]. This family of numerical fluxes can also be shown to produce energy conserving LDG
methods. The optimal error estimate based on this general family may be obtained via the
introduction of more sophisticated global projection as studied in [41] for one dimensional
problem, and will be explored elsewhere. We also refer readers to [1] for studies on the DG
methods with these fluxes on elastodynamics.

Now we recall the Gauss-Radau projection [10,14,20] in order to handle the initial con-

ditions and also for the convergence analysis. Consider an interval Ii = [xi−
1
2

1 , x
i+ 1

2
1 ], then

a one-dimensional projection operator P±
1 : Hk+1(Ii ) → P

k(Ii ) is defined as

(P±
1 w, v)Ii = (w, v)Ii , ∀v ∈ P

k−1(Ii ), and

P+
1 w(x

i− 1
2

1 ) = w(x
i− 1

2
1 ) or P−

1 w(x
i+ 1

2
1 ) = w(x

i+ 1
2

1 ). (2.9)

Similarly, we can define the projection P±
2 on an interval J j in the x2 direction. Then a

two-dimensional projection operator P± on a rectangle Ki j = Ii ⊗ J j is defined as a tensor
product P± := P±

1 ⊗ P±
2 . The optimal approximation results of P± for scalar functions

w ∈ Hk+1(K ) can be found in [14,20], i.e.,

‖w − P±w‖L2(K ) ≤ Chk+1‖w‖Hk+1(K ). (2.10)

Moreover, we can define projection operators for vector and tensor spaces: P± :[
Hk+1(Ki j )

]2 → [
Q

k(Ki j )
]2

and �± : [
Hk+1(Ki j )

]2×2 → [
Q

k(Ki j )
]2×2

such that
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P±v =
[
P±v1
P±v2

]
, ∀ v =

[
v1
v2

]
, and �±τ =

[
P±τ11 P±τ12
P±τ21 P±τ22

]
∀ τ =

[
τ11 τ12
τ12 τ22

]
.

(2.11)

Applying (2.10) to each entry of the matrices in (2.11), we have that for each element K ∈ Th
and any v ∈ [

Hk+1(K )
]2

and τ ∈ [
Hk+1(K )

]2×2
, there holds

‖v − P±v‖L2(K ) ≤ Chk+1‖v‖Hk+1(K ) and ‖τ − �±τ‖L2(K ) ≤ Chk+1‖τ‖Hk+1(K ),

(2.12)

where C is a constant only depending on the geometry of the mesh. Now, we can choose the
initial conditions to the LDG method (2.6) as

uh(0) = P−u0 and (uh(0))t = P−v0 = P−ut (0). (2.13)

Without causing any confusion, the variable in “(·)” only denotes time, and we ignore the
spatial variables. Here we emphasize that the super-script “−” should be consistent with the
choice of the numerical fluxes in (2.7).

Finally, we introduce the following norms for tensor functions σ , ε ∈ [
L2(ω)

]2×2
, defined

on a subdomain ω ⊆ �:

‖σ‖2A,ω =
∫

ω

Aσ : σdX , and ‖ε‖2B,ω =
∫

ω

Bε : εdX . (2.14)

Define the potential energy density as

G(u) = λ

2
(∇ · u)2 + με(u) : ε(u) = 1

2
Aσ : σ , (2.15)

then the total energy corresponding to the elastodynamics is defined as the integration of the
kinetic and potential energy over the whole domain:

E(t) =
∫

�

1

2
u2t + G(u)dX = 1

2

(
‖ut‖2L2(�)

+ ‖σ‖2A,�

)
. (2.16)

It is well known that the total energy in (2.16) will be conserved during the dynamics if
traction free, homogeneous Dirichlet or periodic boundary conditions are imposed for which
we refer readers to [3] for the derivation. One of the advantages of the proposed LDGmethod
is to exactly conserve this energy in the discrete level.

Remark 2.1 When the Dirichlet boundary condition or Neumann boundary conditions are
given, we need to slightly modify the numerical fluxes on the boundary. To describe the
modification, we denote the left and bottom boundary by ∂�− and the right and top boundary
by ∂�+.When theDirichlet boundary condition, sayu = gD , is given, we keep the numerical
fluxes u−

h and σ+
h on ∂�− unchanged, but change them to u+

h and σ−
h on ∂�+. Thus we have

the boundary integration
∫
∂�∩∂�D

ûTh τ hnds = ∫
∂�∩∂�D

gTDτ hnds in (2.6b), which can be
moved to the right hand side of the resulting linear system.Similarly, if theNeumannboundary
condition σ = gN is imposed, we keep u−

h and σ+
h on ∂�+ unchanged but flip them to u+

h
and σ−

h on ∂�−. It leads to the boundary integration
∫
∂�∩∂�N

vTh σ̂ hnds = ∫
∂�∩∂�N

vTh gNds
moved to the right hand side of (2.6a). This approach can also be applied to handle the mixed
type boundary conditions. In a summary, we can take the numerical fluxes on boundary to
be

σ̂ h = σ h = σ∓
h on ∂�D ∩ ∂�±, σ̂ h = σ±

h on ∂�N ∩ ∂�±,

ûh = u±
h on ∂�D ∩ ∂�±, ûh = uh = û∓

h on ∂�N ∩ ∂�±.
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Thus, the proposed LDG method for the mixed boundary condition is to find uh ∈ Vk
h and

σ h ∈ �k
h such that

((uh)t t , vh)� + ah(σ h, vh) − c̊h(σ̂ h, vh) −
∫

∂�D

vTh σ̂ hnds −
∫

∂�N

vTh gNds = 0 ∀vTh ∈ Vk
h,

(2.17a)

(Aσ h, τ h)� + bh(τ h,uh) − c̊h(τ h, ûh) −
∫

∂�D

gTDτ hnds −
∫

∂�N

ûTh τ hnds = 0 ∀τ h ∈ �k
h .

(2.17b)

3 Some Preliminary Estimates

In this section, we recall and prepare a group of fundamental estimates and identities which
will be frequently used in the analysis of this paper. We begin with the following norm
equivalence and identities.

Lemma 3.1 For any tensor τ ∈ [
L2(ω)

]2×2
with ω being a subdomain of �, there holds

√
2μ‖τ‖A,ω ≤ ‖τ‖L2(ω) ≤ √

2(λ + μ)‖τ‖A,ω (3.1)

Proof Using the second identity in (1.4) and the inequality (tr(τ ))2 ≤ 2(τ 211+τ 222) ≤ 2‖τ‖2,
we have

‖τ‖2A,ω =
∫

ω

Aτ : τdX = 1

2μ

(∫
ω

τ 2dX − λ

2(λ + μ)

∫
ω

(tr(τ ))2dX

)

≥ 1

2(λ + μ)
‖τ‖2L2(ω)

which yields the right hand side of (3.1). Using the identity again, we have

‖τ‖2A,ω =
∫

ω

Aτ : τdX = 1

2μ

(∫
ω

τ 2dX − λ

2(λ + μ)

∫
ω

tr(τ ))2dX

)
≤ 1

2μ
‖τ‖2L2(ω)

which yields the left hand side of (3.1). ��
Lemma 3.2 For any tensor polynomials vh ∈ Vk

h and τ h ∈ �k
h , there holds

ah(τ h, vh) + bh(τ h, vh) − ch((τ h)
+, vh) − ch(τ h, (vh)−) = 0, (3.2a)

ch(τ h, vh) − ch((τ h)
+, vh) − ch(τ h, (vh)−) = 0. (3.2b)

Proof First, on each element K , the integration by parts yields aK (τ h, vh) = −bK (τ h, vh)+
cK (τ h, vh). Therefore, (3.2a) is actually equivalent to (3.2b), and thus we only need to prove
(3.2b). We consider one edge e ∈ Eh . The contributions of all the terms in (3.2b) on this edge
e is∫

e
(vTh )−τ−

h n − (vTh )+τ+
h n − (vTh )+τ−

h n + (vTh )+τ+
h n − (vTh )−τ−

h n + (vTh )+τ−
h nds = 0.

(3.3)

Summing (3.3) yields (3.2b), and this finishes the proof. ��
Now, we present a group of super-convergence properties of the projections �+ and P−.
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Lemma 3.3 There exists a constant C such that for each element K and any v ∈ [
Hk+2(�)

]2
,

τ ∈ [
Hk+2(�)

]2×2
,

|bK (τ h, v − P−v) − cK (τ h, (v − P−v)−)| ≤ Chk+1‖v‖Hk+2(K )‖τ h‖L2(K ), ∀τ h ∈ �k
h,

(3.4a)

|aK (τ − �+τ , vh) − cK ((τ − �+τ )+, vh)| ≤ Chk+1‖τ‖Hk+2(K )‖vh‖L2(K ), ∀vh ∈ Vk
h .

(3.4b)

Proof We note that (3.4a) directly follows from the property (3.3) of [10] or Lemma 3.6
of [14]. Here we only show (3.4b), and the argument is similar to Lemma 3.6 of [14]. Let
vh = [

vh,1, vh,2
]T and τ = [τ 1, τ 2]T with column vectors τ h,i = [τi1, τi2]T , i = 1, 2.

For each K ∈ Th , q = [q1, q2]T ∈ [
Hk+1(K )

]2
and v ∈ Q

k(K ), we define the following
functional

D+
K (q, v) =

∫
K

∇v · (q − P+q)dX −
∫

∂K
v(q − (P+q)+) · nds. (3.5)

We can easily see

aK (τ − �+τ , vh) − cK ((τ − �+τ )+, vh) = D+
K (τ 1, vh,1) + D+

K (τ 2, vh,2), (3.6)

since τ is symmetric. Let eb1 and et1 be the bottom and top edges of K in the x1 direction,
and similarly let eb2 and et2 be the right and left edges of K in the x2 direction. Then, by the
definition of P+ and P+ = P+

1 ⊗ P+
2 , we actually have the following decomposition

D+
K (τ i , vh,i ) = D1

K (τi1, vh,i ) + D2
K (τi2, vh,i ), i = 1, 2, (3.7)

in which Dl
K (q, v), l = 1, 2 are defined locally:

D1
K (q, v) =

∫
K

∂x1v(q − P+q)dX −
∫
eb2∪et2

v(q − P+
2 q)n1dx2, D2

K (q, v)

=
∫
K

∂x2v(q − P+q)dX −
∫
eb1∪et1

v(q − P+
1 q)n2dx1,

where n1 = 1 on et2, n1 = −1 on eb2 and n2 = 1 on et1, n2 = −1 on eb1.
Now, let’s consider the reference element K̂ = (−1, 1) × (−1, 1). We proceed to prove

Dl
K̂
(q̂, v̂) = 0, l = 1, 2, ∀q̂ ∈ P

k+1(K̂ ), v̂ ∈ Q
k(K̂ ). (3.8)

Without loss of generality, we only show (3.8) for l = 1. Since P+ is Qk-polynomial pre-
serving, we know that (3.8) is true for q̂ ∈ Q

k(K̂ ), and thus we only need to show it for
q̂ = x̂ k+1

1 and x̂ k+1
2 . First, for q̂ = x̂ k+1

1 , since ∂x̂1 v̂ is a polynomial with the degree at most
k − 1, we have

∫
K̂ ∂x̂1v(q̂ − P+q̂)d X̂ = ∫

K̂ ∂x̂1v(x̂ k+1
1 − P+

1 x̂ k+1
1 )dx̂1dx̂2 = 0. Besides, on

êb2 ∪ êt2, due to q̂ = x̂ k+1
1 , we clearly have P+

2 q̂ = q̂. Therefore, D1
K̂
(x̂ k+1

1 , v̂) = 0 for each

v ∈ Q
k(K̂ ). Second, for q̂ = x̂ k+1

2 , we apply integration by parts to the first term in D1
K̂

and obtain D1
K̂
(q̂, v̂) = − ∫

K̂ v̂∂x̂1(q̂ − P+q̂)d X̂ . Clearly ∂x̂1(x̂
k+1
2 − P+ x̂ k+1

2 ) = 0. Thus,

D1
K̂
(x̂ k+1

2 , v̂) = 0 for each v̂ ∈ Q
k(K̂ ) which finishes the proof of (3.8).

Then, on K̂ , by inverse and trace inequalities, we have |Dl
K̂
(q̂, v̂)| ≤ C‖v̂‖L2(K̂ )

‖q̂
‖Hk+2(K̂ )

, l = 1, 2, ∀q̂ ∈
[
Hk+2(K̂ )

]2
. Since Dl

K̂
(q̂, v̂) vanishes on

[
P
k+1(K̂ )

]2
, the
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Bramble–Hilbert lemma further yields

|Dl
K̂
(q̂, v̂)| ≤ C‖v̂‖L2(K̂ )

|q̂|Hk+2(K̂ )
, l = 1, 2. (3.9)

Thus, for each K = (xi−1/2
1 , xi+1/2

1 ) × (x j−1/2
2 , x j+1/2

2 ) with h1 = xi+1/2
1 − xi−1/2

1 and

h2 = x j+1/2
2 − x j−1/2

2 , the affine mapping from K̂ to K yields D+
K (q, v) = h2D1

K̂
(q̂1, v̂) +

h1D2
K̂
(q̂2, v̂). Using (3.9), we obtain

D+
K (q, v) ≤ h2|D1

K̂
(q̂1, v̂)| + h1|D2

K̂
(q̂2, v̂)|

≤ Ch‖v̂‖L2(K̂ )
|q̂|Hk+2(K̂ )

≤ Chk+1‖v‖L2(K )|q|Hk+2(K )

Combining this with (3.6), we obtain the desired result. ��

4 The Semi-discrete Method: Energy Conservation and Error Estimate

In this section, we analyze the semi-discrete LDG scheme (2.6). We begin with the energy
conservation property for the total energy defined in (2.16). We denote the continuous energy
of the elastodynamics by

Eh(t) =
∫

�

1

2
(uh)2t + G(uh)dX = 1

2

(
‖(uh)t‖2L2(�)

+ ‖σ h‖2A,�

)
, (4.1)

and proceed to prove the following energy conservation and stability results.

Theorem 4.1 If the periodic boundary condition is imposed, the continuous energy of the
numerical solutions of the LDG scheme (2.6) is conserved for all the time.

Proof First, putting uh and σ h into (2.16) and differentiating it with respect to time, we have

E ′
h(t) =

∫
�

(uh)t · (uh)t t + A(σ h)t : σ hdX . (4.2)

For the second term in the right side of (4.2), we take temporal derivative of (2.6b) and
choose the test function τ h = σ h , which leads to

((Aσ h)t , σ h)� + bh(σ h, (uh)t ) − ch(σ h, (u
−
h )t ) = 0.

For the first term in the right side of (4.2), we test (2.6a) by the vh = (uh)t and have

((uh)t t , (uh)t )� + ah(σ h, (uh)t ) − ch(σ
+
h , (uh)t ) = 0.

We add the two identities above to obtain

E ′
h(t) = −bh(σ h, (uh)t ) + ch(σ h, (u

−
h )t ) − ah(σ h, (uh)t ) + ch(σ

+
h , (uh)t ) (4.3)

which vanishes due to Lemma 3.2. ��
Remark 4.1 The above analysis focuses on the periodic boundary condition, which could
also be viewed as the analysis on the interior domain. The stability analysis for the case of
mixed boundary conditions is more complicated. For the mixed boundary conditions, taking
temporal derivative of (2.17b) and letting vh = (uh)t in (2.17a) we obtain

((Aσ h)t , σ h)� + bh(σ h, (uh)t ) − c̊h(σ h, (ûh)t ) −
∫

∂�D

(gTD)tσ hnds −
∫

∂�N

(ûTh )tσ hnds = 0,

((uh)t t , (uh)t )� + ah(σ h, (uh)t ) − c̊h(σ̂ h, (uh)t ) −
∫

∂�D

(uh)Tt σ̂ hnds −
∫

∂�N

(uh)Tt gNds = 0.
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Adding these two identities together, we note all the edge terms cancel with each other due
to (3.3). So we have

E ′
h(t) = −

∫
∂�

(uh)Tt σ hnds +
∫

∂�D

(uh)Tt σ hnds +
∫

∂�N

(uh)Tt gNds +
∫

∂�D

(gD)Tt σ hnds

+
∫

∂�N

(uh)Tt σ hnds

=
∫

∂�N

(uh)Tt gNds +
∫

∂�D

(gD)Tt σ hnds,

(4.4)

and E ′
h(t) = 0 if gD = gN = 0. Namely, for the homogeneous mixed boundary condi-

tions, the energy conservation property also holds, and so does the stability. In addition,
by the homogenization techniques, the stability also holds for the pure Dirichlet boundary
conditions. However, if the mixed boundary condition is imposed and either of gD or gN is
non-zero, the situation becomes complicated. Integrating (4.4) from 0 to T we can obtain the
energy identity involving the energy transfer on the boundary

Eh(T ) = Eh(0) +
∫ T

0

∫
∂�N

(uh)Tt gNds dt +
∫ T

0

∫
∂�D

(gD)Tt σ hnds dt . (4.5)

A similar identity can be also found in [42] for acoustic wave equations. In [1], a stabilization
term was added to the numerical fluxes so that one could bound the boundary terms on the
right side of (4.5) and obtain the stability.

In the following discussion on the error analysis, we shall focus on the interior domain and
consider the periodic boundary condition. The analysis for the mixed boundary conditions
will be left for future research. In order to estimate the semi-discrete solution errors, we
decompose the errors in the following way:

eu = u − uh = ηu + ξu, where ηu = u − P−u, ξu = P−u − uh, (4.6a)

eσ = σ − σ h = ησ + ξσ , where ησ = σ − �+σ , ξσ = �+σ − σ h . (4.6b)

We first show some estimates related to the chosen initial conditions (2.13).

Lemma 4.1 Under the initial conditions (2.13) with σ 0 = σ (u0), the following estimates
hold

ξu(0) = 0, and (ξu)t (0) = 0, (4.7a)

‖ξσ (0)‖A,� ≤ C
√

λ + μ
(‖σ 0‖Hk+1(�) + ‖u0‖Hk+2(�)

)
hk+1. (4.7b)

Proof The two terms in (4.7a) directly follow from the definition in (2.13). Now we proceed
to analyze (4.7b). We subtract the LDG scheme (2.6b) from the one for the exact solutions,
and then write the following equation

(Aeσ , τ h)� + bh(τ h, eu) − ch(τ h, e
−
u ) = 0, (4.8)

at t = 0. The super-convergence property (3.4a) yields ∀τ h ∈ �k
h

(Aeσ , τ h)� = −bh(τ h, eu) + ch(τ h, e
−
u ) = −bh(τ h, ηu) + ch(τ h, η

−
u )

≤ Chk+1‖u0‖Hk+2(�)‖τ h‖L2(�).
(4.9)
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Applying the decomposition eσ = ησ + ξσ , the approximation (2.12) and norm equivalence
(3.1), we obtain

(Aξσ , τ h)� ≤ −(Aησ , τ h)� + Chk+1‖u0‖Hk+2(�)‖τ h‖L2(�)

≤ 1

2μ
‖ησ ‖L2(�)‖τ h‖L2(�) + Chk+1‖u0‖Hk+2(�)‖τ h‖L2(�)

≤ Chk+1 (‖σ 0‖Hk+1(�) + ‖u0‖Hk+2(�)

) ‖τ h‖L2(�).

(4.10)

Taking τ h = ξσ and using the norm equivalence (3.1), we have

‖ξσ ‖A,� ≤ C
√

λ + μ
(‖σ 0‖Hk+1(�) + ‖u0‖Hk+2(�)

)
hk+1. (4.11)

��
Next, we show the following optimal error estimate in the energy norm.

Theorem 4.2 Under the initial conditions (2.13), at any time t the following estimates hold

‖(eu)t‖L2(�) ≤ C
√

λ + μ
(‖u‖W 1,∞(0,T ;Hk+2(�)) + ‖σ‖W 1,∞(0,T ;Hk+2(�))

)
hk+1(t + 1),

(4.12a)

‖eσ ‖A,� ≤ C
√

λ + μ
(‖u‖W 1,∞(0,T ;Hk+2(�)) + ‖σ‖W 1,∞(0,T ;Hk+2(�))

)
hk+1(t + 1).

(4.12b)

Proof First of all, since the exact solutions u and σ satisfy the weak form (2.6), we have

((eu)t t , vh)� + ah(eσ , vh) − ch(e
+
σ , vh) = 0, ∀vh ∈ Vk

h, (4.13a)

(Aeσ , τ h)� + bh(τ h, eu) − ch(τ h, e
−
u ) = 0, ∀τ h ∈ Wk

h . (4.13b)

Using the decomposition (4.6), we obtain

((ξu)t t , vh)� + ((ηu)t t , vh)� + ah(ξσ , vh) + ah(ησ , vh) − ch(ξ
+
σ , vh) − ch(η

+
σ , vh) = 0,

(4.14a)

(Aησ , τ h)� + (Aξσ , τ h)� + bh(τ h, ηu) + bh(τ h, ξu) − ch(τ h, η
−
u ) − ch(τ h, ξ

−
u ) = 0.

(4.14b)

Consider the two equations in (4.14). Taking the time derivative of (4.14b), choosing the
test function vh = (ξu)t , τ h = ξσ respectively, and then adding the resulted two equations
together, we obtain

((ξu)t t , (ξu)t )� + ((ηu)t t , (ξu)t )� + ((Aησ )t , ξσ )� + ((Aξσ )t , ξσ )�

= −ah(ξσ , (ξu)t ) + ch(ξ
+
σ , (ξu)t ) − bh(ξσ , (ξu)t ) + ch(ξσ , (ξ−

u )t )

− ah(ησ , (ξu)t ) + ch(η
+
σ , (ξu)t ) − bh(ξσ , (ηu)t ) + ch(ξσ , (η−

u )t ).

(4.15)

We note that the first line in the right hand side of (4.15) vanishes due to (3.2a). We then
obtain

1

2

d

dt

(
‖(ξu)t‖2L2(�)

+ ‖ξσ ‖2A,�

)
= −((ηu)t t , (ξu)t )� − ((Aησ )t , ξσ )�

− (−bh(ξσ , (ηu)t ) + ch(ξσ , (η−
u )t )

) + (−ah(ησ , (ξu)t )

+ ch(η
+
σ , (ξu)t )).

(4.16)

123



Journal of Scientific Computing            (2021) 87:13 Page 13 of 33    13 

We denote each term in the right hand side of (4.16) by I, II, III and IV, respectively, and we
proceed to estimate them individually. For I, using (2.12), we have

I = −((ηu)t t , (ξu)t )� ≤ ‖(ηu)t t‖L2(�)‖(ξu)t‖L2(�)

≤ Chk+1‖σ‖L∞(0,T ;Hk+1(�))‖(ξu)t‖L2(�), (4.17)

where we have used ‖(ηu)t t‖L2(�) = ‖ηut t ‖L2(�) ≤ Chk+1‖ut t‖L∞(0,T ;Hk+1(�)) =
Chk+1‖σ‖L∞(0,T ;Hk+1(�)). For II, using (2.12) again together with the norm equivalence
(3.1), we obtain

II = −((Aησ )t , ξσ )� = −(Aξσ , (ησ )t )�

≤ C
√

λ + μhk+1‖σ‖W 1,∞(0,T ;Hk+1(�))‖ξσ ‖A,�,
(4.18)

where we have used ‖(ησ )t‖L2(�) = ‖ησ t ‖L2(�) ≤ Chk+1‖σ‖W 1,∞(0,T ;Hk+1(�)). Moreover,
for III, the super-convergence property (3.4a) yields

III ≤ Chk+1‖u‖W 1,∞(0,T ;Hk+2(�))‖ξσ ‖L2(�)

≤ C
√

λ + μhk+1‖u‖W 1,∞(0,T ;Hk+2(�))‖ξσ ‖A,�

(4.19)

where in the last inequality we have also used the norm equivalence (3.1). For IV, we apply
the super-convergence property (3.4b) to obtain

IV ≤ Chk+1‖σ‖L∞(0,T ;Hk+2(�))‖(ξu)t‖L2(�). (4.20)

Combining (4.17)–(4.20) with (4.16) yields

1

2

d

dt

(
‖(ξu)t‖2L2(�)

+ ‖ξσ ‖2A,�

)

≤ C
√

λ + μhk+1 (‖u‖W 1,∞(0,T ;Hk+2(�)) + ‖σ‖W 1,∞(0,T ;Hk+2(�))

)
(‖(ξu)t‖L2(�) + ‖ξσ ‖A,�

)
,

which leads to

1

2

d

dt

(
‖(ξu)t‖2L2(�)

+ ‖ξσ ‖2A,�

)1/2
≤ C

√
λ + μhk+1 (‖u‖W 1,∞(0,T ;Hk+2(�)) + ‖σ‖W 1,∞(0,T ;Hk+2(�))

)
.

(4.21)

Integrating (4.21) from 0 to t and using the estimates for the initial conditions yields
(
‖(ξu)t‖2L2(�)

+ ‖ξσ ‖2A,�

)1/2 ≤ C
√

λ + μ
(‖u‖W 1,∞(0,T ;Hk+2(�)) + ‖σ‖W 1,∞(0,T ;Hk+2(�))

)
hk+1(t + 1).

(4.22)

Then the desired results follow from (4.22) and the estimates for (ηu)t and ησ .
��

Remark 4.2 We note that if, as a direct generation of [10], the “mixed” Gauss-Radau projec-
tion (P+

1 ⊗ P2, P1 ⊗ P+
2 ) is applied to the stress tensor, the term III above should vanish;

but the resulted tensor polynomial is not symmetric. To keep the symmetry, we apply the
same Gauss-Radau projection to each entry of the stress tensor such that the resulted ten-
sor polynomial is also symmetric. However since III does not vanish anymore, we need the
super-convergence property (3.4a) to prove the estimate in (4.19).

In the next theorem, we show an optimal estimate for the L2 error of the displacement u.
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Theorem 4.3 Under the initial conditions (2.13), the following estimate holds

max
t∈[0,T ] ‖eu(t)‖L2(�) ≤ Chk+1

√
λ + μ(T 2 + 1)

(‖u‖W 1,∞(0,T ;Hk+2(�)) + ‖σ‖W 1,∞(0,T ;Hk+2(�))

)
.

(4.23)

Proof First of all, for any fixed time t0 ≤ T , we define the following errors

Eu(t) =
∫ t0

t
eu(s)ds, Eη

u(t) =
∫ t0

t
ηu(s)ds, Eξ

u(t) =
∫ t0

t
ξu(s)ds, (4.24)

Eσ (t) =
∫ t0

t
eσ (s)ds, Eη

σ (t) =
∫ t0

t
ησ (s)ds, Eξ

σ (t) =
∫ t0

t
ξσ (s)ds. (4.25)

We have the following estimates for these errors:

‖Eξ
u(t)‖L2(�) ≤ T ‖ξu‖L∞(0,T ;L2(�)), (4.26a)

‖Eη
u(t)‖L2(�) ≤ CThk+1‖u‖L∞(0,T ;Hk+1(�)), (4.26b)

‖Eη
σ (t)‖A,� ≤ CThk+1‖σ‖L∞(0,T ;Hk+1(�)), (4.26c)

‖Eξ
σ (t)‖A,� ≤ C

√
λ + μT (T + 1)hk+1 (‖u‖W 1,∞(0,T ;Hk+2(�)) + ‖σ‖W 1,∞(0,T ;Hk+2(�))

)
,

(4.26d)

where in the last inequality we have used the estimate of ξσ from (4.22). Noticing that
d
dt E

ξ
u = −ξu, we get

((eu)t t , E
ξ
u)� = ((ξu)t t , E

ξ
u)� + ((ηu)t t , E

ξ
u)�

= d

dt
((ξu)t , E

ξ
u)� + ((ξu)t , ξu)� + ((ηu)t t , E

ξ
u)�.

Taking the test function vh = Eξ
u(t) in (4.13a) and utilizing this identity, we have

((ξu)t , ξu)� + ah(ξσ , Eξ
u) − ch((ξσ )+, Eξ

u) = − d

dt
((ξu)t , E

ξ
u)�

− ((ηu)t t , E
ξ
u)� − ah(ησ , Eξ

u) + ch((ησ )+, Eξ
u).

Next, integrating (4.13b), choosing τ h = ξσ , and using Eσ = Eξ
σ + Eη

σ and Eu = Eξ
u + Eη

u ,
we have

(AEξ
σ , ξσ )� + bh(ξσ , Eξ

u) − ch(ξσ , (Eξ
u)−) = −(AEη

σ , ξσ )� − bh(ξσ , Eη
u) + ch(ξσ , (Eη

u)−).

Now, adding the two identities above and using the identity (3.2a), we have
1

2

d

dt
(‖ξu‖2L2(�)

− ‖Eξ
σ ‖2A,�) = − d

dt
((ξu)t , E

ξ
u)� − ((ηu)t t , E

ξ
u)� − ah(ησ , Eξ

u) + ch((ησ )+, Eξ
u)

− (AEη
σ , ξσ )� − bh(ξσ , Eη

u) + ch(ξσ , (Eη
u)−).

(4.27)

Next we proceed to estimate the right hand side of (4.27), after integrating it from 0 to t0.
The super-convergence (3.4b) and (4.26a) lead to∫ t0

0
−ah(ησ , Eξ

u) + ch((ησ )+, Eξ
u)ds ≤

∫ t0

0
Chk+1‖σ‖Hk+2(�)‖Eξ

u‖L2(�)ds

≤ CT 2hk+1‖σ‖L∞(0,T ;Hk+2(�))‖ξu‖L∞(0,T ;L2(�)).

(4.28)
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Similarly, using the super-convergence (3.4a) with (4.26b) and the estimate of ξσ from (4.22),
we have

∫ t0

0
−bh(ξσ , Eη

u) + ch(ξσ , (Eη
u)−)ds

≤ C(λ + μ)T 2(T + 1)h2k+2‖u‖L∞(0,T ;Hk+2(�))

(‖u‖W 1,∞(0,T ;Hk+2(�)) + ‖σ‖W 1,∞(0,T ;Hk+2(�))

)
.

(4.29)

Noticing Eξ
u(t0) = 0 and using the second condition in (4.7a), we obtain

∫ t0

0
− d

dt
((ξu)t , E

ξ
u)�ds = −((ξu)t (t0), E

ξ
u(t0))� + ((ξu)t (0), E

ξ
u(0))� = 0. (4.30)

Besides, applying integration by parts of time over [0, t0] and the identities d
dt E

ξ
u = −ξu,

Eξ
u(t0) = 0, we get

∫ t0

0
−(

(ηu)t t , E
ξ
u
)
�
ds = ( − (ηu)t (t0), E

ξ
u(t0)

)
�

+ (
(ηu)t (0), E

ξ
u(0)

)
�

+
∫ t0

0

(
(ηu)t , ξu

)
�
ds

=
∫ t0

0

(
(ηu)t , ξu

)
�
ds + (

(ηu)t (0), E
ξ
u(0)

)
�

≤ CT ‖(ηu)t‖L∞(0,T ;L2(�))‖ξu‖L∞(0,T ;L2(�))

+ ‖(ηu)t (0)‖L2(�)‖Eξ
u(0)‖L2(�)

≤ Chk+1T ‖u‖W 1,∞(0,T ;Hk+1(�))‖ξu‖L∞(0,T ;L2(�)),

(4.31)

where in the last inequality we have also used (4.26a). Then, by (4.26c) and (4.22), we have

∫ t0

0
−(AEη

σ , ξσ )�ds ≤
∫ t0

0
‖Eη

σ ‖A,�‖ξσ ‖A,�ds

≤ C
√

λ + μT 2(T + 1)h2k+2‖σ‖L∞(0,T ;L2(�))

(‖u‖W 1,∞(0,T ;Hk+2(�)) + ‖σ‖W 1,∞(0,T ;Hk+2(�))

)
.

(4.32)

Now integrating (4.27) from 0 to t0, putting (4.28)–(4.32) into the resulted equation and using
(4.7a), we have

‖ξu(t0)‖2L2(�)
+ ‖Eξ

σ (0)‖2A,�

≤ C(h2k+2(λ + μ)(T 2 + T 3)F1(u, σ ) + hk+1(T 2 + T )F2(u, σ )‖ξu‖L∞(0,T ;L2(�))),

(4.33)

where F1(u, σ ) = (‖u‖W 1,∞(0,T ;Hk+2(�)) + ‖σ‖W 1,∞(0,T ;Hk+2(�))

)2 and F2(u, σ ) =
‖u‖W 1,∞(0,T ;Hk+1(�))+‖σ‖L∞(0,T ;Hk+1(�)). ApplyingYoung’s inequality to (4.33), we have

‖ξu(t0)‖2L2(�)
≤ Ch2k+2(λ + μ)(T 2 + T 3)F1(u, σ ) + C2h2k+2(T 2 + T )2(F2(u, σ ))2

+1

4
‖ξu‖2L∞(0,T ;L2(�))

. (4.34)

We note that (4.34) is true for any t0 ∈ [0, T ]. Sowe can take t0 to bewhere ‖ξu‖L∞(0,T ;L2(�))

is achieved. Then the desired result follows together with the optimal error estimate for ηu.
��
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5 Fully Discrete Methods: Energy Conservation, Stability and Error
Estimate

In this section, we discuss some fully discrete energy conserving schemes for the linear elas-
todynamics (1.1), and analyze their optimal convergence property. The spatial discretization
is given by the LDG methods (2.6). Note that in (2.6b) we can always represent σ h in terms
of uh locally on each element and put it into (2.6a) to obtain a system of ordinary differential
equations for uh in the form of

M(Uh)t t (t) = AUh(t), (5.1)

where M is the mass matrix and Uh is the vector solution to the LDG spatial discretization
(2.6). Here we shall focus on the time discretization. In the following discussion, we always
let 0 = t0 ≤ t1 ≤ · · · ≤ tN = T be a partition of the entire time interval [0, T ] with the
uniform time step �t = tn − tn−1 = T /N , n = 1, 2, ..., N .

5.1 A Second-order Scheme

We first consider the second-order fully-discrete leap-frog method which can inherit the
property of energy conservation from the semi-discrete scheme. The leap-frog LDG method
is to find a sequence of approximationsunh ∈ Vk

h and σ n
h ∈ �k

h tou
n := u(tn) and σ n := σ (tn)

satisfying the equations(
un+1
h − 2unh + un−1

h

�t2
, vh

)
�

+ ah(σ
n
h, vh) − ch((σ

n
h)

+, vh) = 0, ∀vh ∈ Vk
h,

(5.2a)

(Aσ n
h, τ h)� + bh(τ h,unh) − ch(τ h, (unh)

−) = 0, ∀τ h ∈ �k
h, (5.2b)

together with two initial conditions

u0h = P−u0, and u1h = P−u0 + �tP−v0 + �t2

2
P−ut t (0), (5.2c)

where ut t (0) can be computed by ∇ · σ (u0). Note that the choice of u1h involves the first
three terms of the related Taylor expansion. For higher-order temporal discretization, more
terms should be involved in the initial condition, see the discussion in Sect. 5.2. Next, we
begin with presenting the exact conservation of a discrete energy which approximates the
continuous energy E(t) in (2.16).

Theorem 5.1 For the leap-frog LDG method (5.2), the following energy conserves for all
integers n ≥ 0

En+1
h = 1

2�t2
‖un+1

h − unh‖2L2(�)
+ Gn+1

h , where Gn+1
h := 1

2
(Aσ n+1

h , σ n
h)�

1

2
(Aσ n

h, σ
n+1
h )�. (5.3)

Proof In (5.2a), we take vh = (
un+1
h − un−1

h

)
/(2�t) and obtain

(
un+1
h − 2unh + un−1

h

�t2
,
un+1
h − un−1

h

2�t

)
�

+ ah

(
σ n
h,

un+1
h − un−1

h

2�t

)
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−ch

(
(σ n

h)
+,

un+1
h − un−1

h

2�t

)
= 0. (5.4)

Then, we take the difference of (5.2b) at time step tn+1 and tn−1, and choose τ h = σ n
h/(2�t),

which leads to(
Aσ n+1

h − Aσ n−1
h

2�t
, σ n

h

)
�

+ bh

(
σ n
h,

un+1
h − un−1

h

2�t

)
− ch

(
σ n
h,

(un+1
h )− − (un−1

h )−

2�t

)
= 0.

(5.5)

Now we note that (un+1
h − 2unh + un−1

h ,un+1
h − un−1

h )� = ‖un+1
h − unh‖2L2(�)

− ‖unh −
un−1
h ‖2

L2(�)
. By the definition of Gn

h in (5.3), the sum of the Eqs. (5.4) and (5.5) yields

1

�t

(
En+1
h − En

h

)
= 1

�t

(‖un+1
h − unh‖2L2(�)

2�t2
+ Gn+1

h −
‖unh − un−1

h ‖2
L2(�)

2�t2
− Gn

h

)

= − 1

2�t

(
ah(σ

n
h,u

n+1
h − un−1

h ) + bh(σ
n
h,u

n+1
h − un−1

h )

−ch((σ
n
h)

+,un+1
h − un−1

h ) − ch(σ
n
h, (u

n+1
h )− − (un−1

h )−)
)

= 0,

where the last equality holds due to the identity (3.2a). Therefore, the energy conservation
property (5.3) follows. ��

In order to analyze the stability and solution errors of the fully discrete LDG scheme (5.2),
we need the following trace and inverse inequalities [53]

‖p‖L2(∂K ) ≤ Ct

√
(k + 1)(k + 2)h−1/2‖p‖L2(T ), ∀p ∈ Q

k(T ), (5.6a)

‖∇ p‖L2(T ) ≤ Ci (2 + √
k(k + 1))h−1‖p‖L2(T ), ∀p ∈ Q

k(T ), (5.6b)

where the constants Ct and Ci only depend on the mesh regularity. Then we can prove the
following CFL condition for the stability of the fully discrete LDG scheme (5.2).

Theorem 5.2 The leap-frog LDG scheme (5.2) is stable if the CFL condition

�t <
CSh

(2 + √
k(k + 1) + (k + 1)(k + 2))

√
λ + μ

(5.7)

is satisfied for some constant CS only depending on the mesh regularity.

Proof In (5.2a), we take vh = un+1
h − un−1

h and obtain

‖un+1
h − unh‖L2(�)

�t2
− ‖unh − un−1

h ‖L2(�)

�t2
+ ah(σ

n
h,u

n+1
h − un−1

h ) − ch((σ
n
h)

+,un+1
h − un−1

h ) = 0.

(5.8)

In addition, we take the difference of (5.2b) at time step tn and tn+1, and choose τ h =
σ n+1
h + σ n

h to obtain

(Aσ n+1
h − Aσ n

h, σ
n+1
h + σ n

h)� + bh(σ
n+1
h + σ n

h,u
n+1
h

−unh) − ch(σ
n+1
h + σ n

h, (u
n+1
h )− − (unh)

−) = 0. (5.9)
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Using the identity (3.2a), we have

ah(σ
n
h,u

n+1
h − un−1

h ) − ch((σ
n
h)

+,un+1
h − un−1

h )

= −bh(σ
n
h,u

n+1
h − un−1

h ) + ch(σ
n
h, (u

n+1
h )− − (un−1

h )−). (5.10)

Putting (5.10) into (5.8) and adding it to (5.9), we obtain

‖un+1
h − unh‖2L2(�)

�t2
−

‖unh − un−1
h ‖2

L2(�)

�t2
+ (Aσ n+1

h , σ n+1
h )L2(�) − (Aσ n

h, σ
n
h)L2(�)

+bh(σ
n+1
h ,un+1

h − unh) − bh(σ
n
h,u

n
h − un−1

h ) + ch(σ
n+1
h , (un+1

h )− − (unh)
−)

−ch(σ
n
h, (u

n
h)

− − (un−1
h )−) = 0. (5.11)

Now summing (5.11) from 1 to any integer M ≤ N , we arrive at

‖uM+1
h − uM

h ‖2
L2(�)

�t2
+ (Aσ M+1

h , σ M+1
h )L2(�) −

‖u1h − u0h‖2L2(�)

�t2
− (Aσ 1

h, σ
1
h)L2(�)

+bh(σ
M+1
h ,uM+1

h − uM
h ) + ch(σ

M+1
h , (uM+1

h )− − (uM
h )−)

−bh(σ
1
h,u

1
h − u0h) − c(σ 1

h, (u
1
h)

− − (u0h)
−) = 0. (5.12)

Then by Hölder’s inequality with the inverse and trace inequalities in (5.6), we have

bh(σ
M+1
h ,uM+1

h − uM
h ) ≤ Ci (2 + √

k(k + 1))h−1‖σ M+1
h ‖L2(�)‖uM+1

h − uM
h ‖L2(�),

(5.13)

ch(σ
M+1
h , (uM+1

h )− − (uM
h )−) ≤ C2

t (k + 1)(k + 2)h−1‖σ M+1
h ‖L2(�)‖uM+1

h − uM
h ‖L2(�).

(5.14)

Therefore, by Young’s inequality together with the norm equivalence (3.1), we have

|bh(σ M+1
h ,uM+1

h − uM
h ) + ch(σ

M+1
h , (uM+1

h )− − (uM
h )−)|

≤ (Ci + C2
t )

2(2 + √
k(k + 1) + (k + 1)(k + 2))2�t22(λ + μ)

2h2
‖σ M+1

h ‖2A,�

+1

2

‖uM+1
h − uM

h ‖2
L2(�)

�t2
. (5.15)

Putting (5.15) into (5.12) yields

1

2

‖uM+1
h − uM

h ‖2
L2(�)

�t2
+

(
1 − (Ci + C2

t )
2(2 + √

k(k + 1) + (k + 1)(k + 2))2�t2(λ + μ)

h2

)

‖σ M+1
h ‖2A,� ≤ ‖u1h − u0h‖L2(�)

�t2
+ ‖σ 1

h‖A,� + bh(σ
1
h,u

1
h − u0h) + ch(σ

1
h, (u

1
h)

− − (u0h)
−).

(5.16)

Let

(Ci + C2
t )

2(2 + √
k(k + 1) + (k + 1)(k + 2))2�t2(λ + μ)

h2
≤ 1 − ε (5.17)

with ε being a positive number. Without loss of generality, we can let ε = 1/2 and thus finish
the proof. ��
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We note that the dependence of the constant in (5.7) on the polynomial degree k is (2 +√
k(k + 1) + (k + 1)(k + 2)) ≈ O(k2). The numerical results in Sect. 6 indicate that this

detailed formula of both k and λ, μ is sharp. Next, we proceed to estimate the fully discrete
solution errors. For this purpose, without causing confusion, we denote δt t as both the discrete
and continuous second-order temporal differential operator

δt tunh = un+1
h − 2unh + un−1

h

2�t
and δt tun = ut t (tn), (5.18)

and denote δt as the first-order temporal differential operator

δtξ
n
u := ξnu − ξn−1

u

�t
and δtη

n
u := ηnu − ηn−1

u

�t
.

In particular, we have δtξ
1
u = 1

�t (P
−u1 − u1h) and δtη

1
u = 1

�t ((u
1 − u0) − P−(u1 − u0)).

Similar to (4.6), we introduce the following decomposition at discrete time steps

enu = un − unh = ξnu + ηnu, where ηnu = un − P−un, ξnu = P−un − unh, (5.19a)

enσ = σ n − σ n
h = ξnσ + ηnσ , where ηnσ = σ n − �+σ n, ξnσ = �+σ n − σ n

h . (5.19b)

In addition, we introduce a discrete energy error:

En
h = ‖δtξnu ‖L2(�) + ‖ξnσ ‖A,�. (5.20)

Next, we show a group of estimates for the initial conditions (5.2c).

Lemma 5.1 Under the initial conditions (5.2c), the following estimates hold

‖δtξ1u‖L2(�) ≤ C�t2‖σ‖W 1,∞(0,T ;L2(�)), (5.21a)

‖δtη1u‖L2(�) ≤ Chk+1‖u‖W 1,∞(0,T ;Hk+1(�)), (5.21b)

‖ξ1σ ‖A,� ≤ C
√

λ + μ(hk+1‖u‖L∞(0,T ;Hk+2(�)) + (�t3h−1 + hk+1)‖σ‖W 1,∞(0,T ;Hk+1(�))),

(5.21c)

‖η1σ ‖A,� ≤ Chk+1‖σ‖L∞(0,T ;Hk+1(�)). (5.21d)

Proof For (5.21b), by Taylor expansions, there exists some θ1 ∈ (0,�t) such that u1 =
u(�t) = u0 + �tut (θ1). Then, the estimate (2.12) leads to

‖δtη1u‖L2(�) = ‖ut (θ1) − P−ut (θ1)‖L2(�) ≤ Chk+1‖u‖W 1,∞(0,T ;Hk+1(�)). (5.22)

For (5.21a), also by Taylor expansions, there exists some θ2 ∈ (0,�t) such that

u1 = u(�t) = u0 + �tut (0) + �t2

2
ut t (0) + �t3

6
ut t t (θ2). (5.23)

Then, the boundedness of P− yields

‖δtξ1u‖L2(�) = �t2

6
‖P−ut t t (θ2)‖L2(�) ≤ C

�t2

6
‖ut t t (θ2)‖L2(�) ≤ C�t2‖σ‖W 1,∞(0,T ;L2(�)).

(5.24)

In addition, we note that (5.21d) directly follows from the estimate (2.12).
For (5.21c), by the Taylor expansion (5.23) and the estimate similar to (5.24) together

with the trace and inverse inequality, we have

bh(τ h,P−u1 − u1h) ≤ Ch−1‖τ h‖L2(�)‖P−u1 − u1h‖L2(�)
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≤ Ch−1�t3‖τ h‖L2(�)‖σ‖W 1,∞(0,T ;L2(�)). (5.25)

ch(τ h, (P−u1 − u1h)
−)) ≤ Ch−1‖τ h‖L2(�)‖P−u1 − u1h‖L2(�)

≤ Ch−1�t3‖τ h‖L2(�)‖σ‖W 1,∞(0,T ;L2(�)). (5.26)

Putting (5.25) and (5.26) together, we obtain

|bh(τ h,P−u1 − u1h) − ch(τ h, (P−u1 − u1h)
−)| ≤ Ch−1�t3‖τ h‖L2(�)‖σ‖W 1,∞(0,T ;L2(�)).

(5.27)

Besides, by the super-convergence property (3.4a), we have

|bh(τ h,P−u1 − u1) − ch(τ h, (P−u1 − u1)−)| ≤ Chk+1‖τ h‖L2(�)‖u‖L∞(0,T ;Hk+2(�)).

(5.28)

Combining (5.27) and (5.28), we arrive at

(A(σ 1 − σ 1
h), τ h)� = b(τ h,u1 − u1h) − c(τ h, (u1 − u1h)

−)

≤ C(hk+1‖u‖L∞(0,T ;Hk+2(�)) + h−1�t3‖σ‖W 1,∞(0,T ;L2(�)))‖τ h‖L2(�).
(5.29)

Applying the similar argument to derive (4.10) from (4.9), we can obtain (5.21c) from (5.21d)
and (5.29). ��

We also need the following estimate for the discrete temporal derivative of projection
errors.

Lemma 5.2 There holds

‖δt tηnu‖L2(�) ≤ Chk+1‖u‖W 2,∞(0,T ;Hk+1(�)) + C�t2‖σ‖W 2,∞(0,T ;L2(�)). (5.30)

Proof By Taylor’s expansion, there exist θ1 ∈ (tn, tn+1) and θ2 ∈ (tn−1, tn) such that

un+1 = u(tn+1) = u(tn) + �tut (tn) + �t2

2
ut t (tn) + �t3

6
ut t t (tn) + �t4

24
ut t t t (θ1), (5.31)

un−1 = u(tn−1) = u(tn) − �tut (tn) + �t2

2
ut t (tn) − �t3

6
ut t t (tn) + �t4

24
ut t t t (θ2). (5.32)

Then we have

δt tP−un = P−un+1 − 2P−un + P−un−1

�t2
= P−untt + �t2

24
(P−ut t t t (θ1) + P−ut t t t (θ2)).

(5.33)

Therefore, applying the optimal approximation and boundedness of the projection operator
P−, we finally get

‖δt tηnu‖L2(�) = ‖δt tP−un − untt‖L2(�)

≤ ‖P−untt − untt‖L2(�) + �t2

24
‖P−ut t t t (θ1) + P−ut t t t (θ2)‖L2(�)

≤ Chk+1‖ut t (tn)‖Hk+1(�) + �t2

24
(‖σ t t (θ1)‖L2(�) + ‖σ t t (θ2)‖L2(�))

(5.34)

which finishes the proof. ��
We then present the super-convergence results involving two adjacent time steps.
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Lemma 5.3 For any vh ∈ Vk
h and τ h ∈ �k

h , there holds

|bh(τ h, η
n+1
u − ηnu) − ch(τ h, (η

n+1
u )− − (ηnu)

−)

≤ C�thk+1‖u‖W 1,∞(0,T ;Hk+2(�))‖τ h‖L2(�), (5.35a)

|ah(ηn+1
σ − ηnσ , vh) − ch((η

n+1
σ )+ − (ηnσ )+, vh)

≤ C�thk+1‖σ‖W 1,∞(0,T ;Hk+2(�))‖vh‖L2(�). (5.35b)

Proof Without loss of generality, we only need to prove (5.35a). Again, by the Taylor’s
expansion, there exists θ ∈ (tn, tn+1) such that un+1 = un + �tut (θ). Then, we can write
ηn+1
u − ηnu = (un+1 − un) − P−(un+1 − un) = �t(ut (θ) − P−ut (θ)). Therefore, using

(3.4a), we obtain

|bh(τ h, η
n+1
u − ηnu) − ch(τ h, (η

n+1
u )− − (ηnu)

−)|
= �t |bh(τ h,ut (θ) − P−ut (θ)) − ch(τ h, (ut (θ) − P−ut (θ))−)|

≤ C�thk+1‖ut (θ)‖Hk+2(�)‖τ h‖L2(�)

(5.36)

which finishes the proof. ��

Similarly, we have the following estimate on the difference of the inner product at two
adjacent time steps.

Lemma 5.4 For any vh ∈ Vk
h and τ h ∈ �k

h , there holds

|(ηn+1
u − ηnu, vh)�| ≤ C�thk+1‖u‖W 1,∞(0,T ;Hk+1(�))‖vh‖L2(�), (5.37a)

|(ηn+1
σ − ηnσ , τ h)A,�| ≤ C�thk+1‖σ‖W 1,∞(0,T ;Hk+1(�))‖τ h‖A,�. (5.37b)

With all these preparations, nowwe are ready to show the following optimal error estimate
for the discrete energy error defined in (5.20).

Lemma 5.5 Given �t small enough such that (5.7) is satisfied, then for every integer 1 ≤
n ≤ N there holds

(En
h )2 ≤ C∗√λ + μ�t(�t2 + hk+1)

(‖u‖W 2,∞(0,T ;Hk+2(�)) + ‖σ‖W 2,∞(0,T ;Hk+2(�))

) n∑
i=1

E i
h

+(C∗)2(λ + μ)(�t2 + hk+1)2(‖u‖W 2,∞(0,T ;Hk+2(�)) + ‖σ‖W 2,∞(0,T ;Hk+2(�)))
2.

(5.38)

Proof First of all, by subtracting (5.2a) from the equation for the exact solution, using the
decomposition (5.19) and taking vh = ξn+1

u − ξn−1
u , we obtain the identity

‖ξn+1
u − ξnu ‖2

L2(�)

�t2
−

‖ξnu − ξn−1
u ‖2

L2(�)

�t2
+ ah(ξ

n
σ , ξn+1

u − ξn−1
u ) − ch((ξ

n
σ )+, ξn+1

u − ξn−1
u )

= −(δt tη
n
u, ξ

n+1
u − ξn−1

u )� − ah(η
n
σ , ξn+1

u − ξn−1
u ) + ch((η

n
σ )+, ξn+1

u − ξn−1
u ). (5.39)

Similarly, by subtracting (5.2b) from the equation for the exact solutions at tn+1 and tn , using
the decomposition (5.19), applying τ h = ξn+1

σ + ξnσ and taking the difference of the resulted
two equations, we have
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‖ξn+1
σ ‖2A,� − ‖ξnσ ‖2A,� + bh(ξ

n+1
σ + ξnσ , ξn+1

u − ξnu ) − ch(ξ
n+1
σ + ξnσ , (ξn+1

u )− − (ξnu )−)

= −(Aηn+1
σ − Aηnσ , ξn+1

σ + ξnσ )� − bh(ξ
n+1
σ + ξnσ , ηn+1

u − ηnu)

−ch(ξ
n+1
σ + ξnσ , (ηn+1

u )− − (ηnu)
−). (5.40)

We then estimate the right hand sides of (5.39) and (5.40). For the first term in (5.39), Lemma
5.2 yields

− (δt tη
n
u, ξ

n+1
u − ξn−1

u )� ≤ C
(
hk+1‖u‖W 2,∞(0,T ;Hk+1(�)) + �t2‖σ‖W 2,∞(0,T ;L2(�))

)
‖ξn+1

u − ξn−1
u ‖L2(�).

(5.41)

For the rest of the two terms in (5.39), we apply the super-convergence property (3.4b) to
obtain

− ah(η
n
σ , ξn+1

u − ξn−1
u ) + ch((η

n
σ )+, ξn+1

u − ξn−1
u ) ≤ Chk+1‖σ‖L∞(0,T ;Hk+2(�))‖ξn+1

u − ξn−1
u ‖L2(�).

(5.42)

Similarly for the first term in the right hand side of (5.40), we have

− (Aηn+1
σ − Aηnσ , ξn+1

σ + ξnσ )� ≤ C�thk+1‖σ‖W 1,∞(0,T ;Hk+1(�))

(‖ξn+1
σ ‖A,� + ‖ξnσ ‖A,�

)
.

(5.43)

For the remaining two terms in (5.40), by (5.35a) with the norm equivalence (3.1), we have

bh(ξ
n+1
σ + ξnσ , ηn+1

u − ηnu) − ch(ξ
n+1
σ + ξnσ , (ηn+1

u )− − (ηnu)
−)

≤ C
√

λ + μ�thk+1‖u‖W 1,∞(0,T ;Hk+2(�))

(‖ξn+1
σ ‖A,� + ‖ξnσ ‖A,�

)
.

(5.44)

Now, we put (5.41) and (5.42) into (5.39) and put (5.43) and (5.44) into (5.40), and apply
the arguments in (5.10)–(5.11) to the left side of the sum of (5.39) and (5.40). Under the
notations in (5.20), this procedure yields

‖δtξn+1
u ‖2L2(�)

+ ‖ξn+1
σ ‖2A,� − ‖δtξnu ‖2L2(�)

− ‖ξnσ ‖2A,�

+bh(ξ
n+1
σ , ξn+1

u − ξnu ) + ch(ξ
n+1
σ , (ξn+1

u )− − (ξnu )−) − bh(ξ
n
σ , ξnu − ξn−1

u )

−ch(ξ
n
σ , (ξnu )− − (ξn−1

u )−)

≤ C
√

λ + μ�t(�t2 + hk+1)
(‖u‖W 2,∞(0,T ;Hk+2(�)) + ‖σ‖W 2,∞(0,T ;Hk+2(�))

)
· (‖δtξn+1

u ‖L2(�) + ‖δtξnu ‖L2(�) + ‖ξn+1
σ ‖A,� + ‖ξnσ ‖A,�

)
. (5.45)

Summing (5.45) from n = 1 to any integer M ≤ N , we get

‖δtξM+1
u ‖2L2(�)

+ ‖ξM+1
σ ‖2A,� − ‖δtξ1u‖2L2(�)

− ‖ξ1σ ‖2A,�

+bh(ξ
M+1
σ , ξM+1

u − ξM
u ) + ch(ξ

M+1
σ , (ξM+1

u )− − (ξM
u )−) − bh(ξ

1
σ , ξ1u − ξ0u )

−ch(ξ
1
σ , (ξ1u )− − (ξ0u )−)

≤ C
√

λ + μ�t(�t2 + hk+1)
(‖u‖W 2,∞(0,T ;Hk+2(�))

+‖σ‖W 2,∞(0,T ;Hk+2(�))

) ·
M+1∑
i=1

(
‖δtξ iu‖L2(�) + ‖ξ iσ ‖A,�

)
. (5.46)

Using the same arguments as in (5.13)–(5.15), for �t satisfying (5.7) we have

|bh(ξM+1
σ , ξM+1

u − ξM
u ) + ch(ξ

M+1
σ , (ξM+1

u )− − (ξM
u )−)|

≤ (Ci + C2
t )

2(2 + √
k(k + 1) + (k + 1)(k + 2))2�t2(λ + μ)

2h2
‖ξM+1

σ ‖2A,�
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+1

2

‖ξM+1
u − ξM

u ‖2
L2(�)

�t2

≤ 1

2

(
‖ξM+1

σ ‖2A,� + ‖δtξM+1
u ‖2L2(�)

)
. (5.47)

Taking M = 0 in (5.47), and utilizing (5.21a) and (5.21c) lead to

bh(ξ
1
σ , ξ1u − ξ0u ) + ch(ξ

1
σ , (ξ1u )− − (ξ0u )−) ≤ 1

2

(
‖ξ1σ ‖2A,� + ‖δtξ1u‖2L2(�)

)

≤ C(λ + μ)(hk+1‖u‖L∞(0,T ;Hk+2(�)) + (�t3h−1 + hk+1)‖σ‖W 1,∞(0,T ;Hk+1(�)))
2

≤ C(λ + μ)(�t2 + hk+1)2(‖u‖L∞(0,T ;Hk+2(�)) + ‖σ‖W 1,∞(0,T ;Hk+1(�)))
2, (5.48)

where we have used (5.7) again in the last inequality. Now putting (5.47) and (5.48) back
into (5.46) and using (5.21a), (5.21c) again, we finally obtain the desired result. ��

Finally, we have the following optimal discrete error estimates.

Theorem 5.3 Given �t small enough such that (5.7) is satisfied, then for each n ≤ N there
holds

‖enu‖L2(�) ≤ C∗(T 2 + 1)
√

λ + μ(�t2 + hk+1)
(‖u‖W 2,∞(0,T ;Hk+2(�)) + ‖σ‖W 2,∞(0,T ;Hk+2(�))

)
,

(5.49a)

‖enσ ‖L2(�) ≤ C∗(T + 1)
√

λ + μ(�t2 + hk+1)
(‖u‖W 2,∞(0,T ;Hk+2(�)) + ‖σ‖W 2,∞(0,T ;Hk+2(�))

)
,

(5.49b)

where C∗ inherits from (5.38).

Proof For simplicity’s sake, we let γ = C∗√λ + μ(�t2 + hk+1)(‖u‖W 2,∞(0,T ;Hk+2(�)) +
‖σ‖W 2,∞(0,T ;Hk+2(�))). First of all, let’s show the following estimate for every n ≤ N :

En
h ≤ (n − 1)�tγ + γ. (5.50)

We proceed by mathematical induction. Clearly (5.50) holds for n = 1 because of (5.21a)
and (5.21c). We assume (5.50) is true for all n ≤ M , and we shall prove it for n = M + 1.
Using (5.38), we have

(EM+1
h )2 ≤ �tγ

M+1∑
i=1

E ih + γ 2 ≤ �tγ EM+1
h + �tγ

(
(M − 1)M

2
�tγ + Mγ

)
+ γ 2.

(5.51)

Solving the quadratical inequality (5.51) for EM+1
h , we have

EM+1
h ≤ �tγ + √

(2M2 − 2M + 1)�t2 + 4M�t + 4γ

2

≤ �tγ + ((2M − 1)�t + 2)γ

2
≤ M�tγ + γ

(5.52)

which gives (5.50) by mathematical induction. We note that (5.50) together with the optimal
projection error (2.12) already yields (5.49b). Furthermore, we note that (5.50) leads to

‖ξnu ‖L2(�) − ‖ξn−1
u ‖L2(�) ≤ ‖ξnu − ξn−1

u ‖L2(�) ≤ (n − 1)�t2γ + �tγ. (5.53)

Summing (5.53) from n = 1 to any integer M ≤ N , we obtain

‖ξM
u ‖L2(�) − ‖ξ0u‖L2(�) ≤ M(M − 1)

2
�t2γ + M�tγ ≤ 1

2
T 2γ + Tγ (5.54)
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which yields (5.49a) together with the optimal projection error estimate (2.12). ��
Remark 5.1 We note that the fully discrete error estimates of LDG methods in the litera-
ture mainly focus on the problems with the first order time derivative [51,52,58], and their
techniques can not be directly applied in the case of the second time derivative. As for the
second-order wave equations, the fully discrete analysis for the leap-frog IPDG method can
be found in [27], and it employs the elliptic projector induced from the coercive bilinear form
of the IPDG method which is not available for the LDG method. Roughly speaking, one of
the major difficulties is on the identity in (5.45) since the right hand side involves the error
terms at three successive steps which can not be completely “absorbed” by the left hand side
if the Young’s inequality is applied, which is the essential reason we instead estimate the
summation in Lemma 5.5. An implicit energy conserving temporal discretization was intro-
duced in [30] to extend the result in [27]. Their method does not require any CFL condition
depending on the mesh size, and the optimal fully discrete error estimate was also provided.

5.2 A High-Order Scheme

In this section, following [10,45,46] we describe a high-order time stepping method for the
LDG scheme (2.6). Let’s start with the following identity:

u(t + �t) − 2u(t) + u(t − �t) = �t2
∫ 1

−1
(1 − |ξ |)ut t (t + ξ�t)dξ. (5.55)

Note that the Taylor expansion yields the following approximation

ut t (t + ξ�t) ≈ ut t (t) + ξ�tut t t (t) + ξ2�t2

2
ut t t t (t). (5.56)

Putting (5.56) into (5.55), we obtain u(t + �t) − 2u(t) + u(t − �t) ≈ �t2ut t (t) +
�t4

12 ut t t t (t). By (5.1) we have (Uh)t t (t) = M−1AUh(t) and (Uh)t t t t (t) = M−1A(Uh)t t (t) =
(M−1A)2Uh(t). Therefore, this approximation motivates the following forth-order scheme

Un+1
h − 2Un

h + Un−1
h

�t2
= M−1AUn

h + �t2

12
(M−1A)2Un

h . (5.57)

Similar to (5.2), we can also rewrite (5.57) in the form of a second-order predictor step and
corrector step:

(wh, vh)� + ah(σ
n
h, vh) − ch((σ

n
h)

+, vh) = 0, ∀vh ∈ Vk
h, (5.58a)

(Aσ n
h, τ h)� + bh(τ h,unh) − ch(τ h, (unh)

−) = 0, ∀τ h ∈ �k
h, (5.58b)

with wh = u∗
h−2unh+un−1

h
�t2

and

(
un+1
h , vh

)
�

= (
u∗
h, vh

)
�

+ �t4

12

(
ah(σ̃

n
h, vh) − ch((σ̃

n
h)

+, vh)
) = 0, ∀vh ∈ Vk

h,

(5.58c)

(Aσ̃ n
h, τ h)� + bh(τ h,wh) − ch(τ h, (wh)

−) = 0, ∀τ h ∈ �k
h, (5.58d)

where the initial conditions are given by

u0h = P−u0, and u1h = P−u0 + �tP−v0 + �t2

2
P−∇ · σ (u0) + �t3

6
P−∇ · σ (v0).

(5.58e)
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Note that in (5.56) the further higher-order terms are dropped on the right hand side. If a
further higher-order scheme is desired, more terms have to be kept. Besides if only the first
term on the right of (5.56) is used for approximation, the second-order leap-frog scheme is
obtained. The analysis for this forth-order scheme will be left for future work.

6 Numerical Examples

In this section, we present some numerical results to demonstrate the theoretical estimates
above and to further investigate the long time behavior of the proposed LDG method. In
addition, we shall also compare the performance of the LDG method with that of the IPDG
method in some experiments. The IPDG method we have used is taken from [54]: find
uh ∈ Vk

h such that
∫

�

(uh)t t · vhdX +
∫

�

σ (uh) : ε(vh)dX −
∫
Eh

({σ (uh)} : [vh ⊗ n] + {σ (vh)} : [uh ⊗ n]) ds

+ch−1
∫
Eh

(μ[uh ⊗ n] : [vh ⊗ n] + λ[uh · n][vh · n]) ds = 0, ∀vh ∈ Vk
h,

(6.1)

in which ⊗ denotes the Kronecker product. Here for each e ∈ Eh with the neighborhood
elements K− and K+, we define {q} := 1

2 (qK− + qK+), [w⊗n] := wK− ⊗nK− +wK+ ⊗
nK+ and [w · n] := wK− · nK− + wK+ · nK+ .

6.1 Time Stepping Constants

Note that (5.1) leads to the ODE system (Uh)t t (t) = M−1AUh(t). Now we let �max be
maximum amplitude of the eigenvalues ofM−1A. By the general stability analysis of ODEs,
we expect �t2�max to be bounded by certain CFL constant such that the numerical scheme
is stable. Then (5.7) suggests

h2�max

�(k, λ, μ)
≤ const. (6.2)

where�(k, λ, μ) := (2+√
k(k + 1)+ (k+1)(k+2))2(λ+μ). As suggested by [3], a good

choice of �(k, λ, μ) should make the ratio in (6.2) be exactly a constant. To investigate this
issue on the proposed�(k, λ, μ), we follow the numerical experiments in [3] to compute this
ratio by varying k and λwith fixingμ = 1. Numerical results indicate that the scaled quantity
h2�max changes very little as h changes; sowe simply focus on h = 2/40. In particular, in the
computation for Fig. 1a and b, we first fix polynomial degree k = 1, 2, 3, and then compute
h2�max and �(k, λ, μ) by varying λ = 10, 20, . . . , 100, 200, . . . , 2000. In Fig. 1c, we first
fix λ = 10, 200, 2000 and then compute h2�max and�(k, λ, μ) by varying k = 1, 2, 3, 4, 5.
In Fig. 1a and c, we can observe that the points can be approximated by a line passing through
the original point. Also Fig. 1b indicates that h2�max/�(k, λ, μ) ≈ const. which is bounded
by 1.We believe these results suggest that our theoretical estimate in (5.7) for the dependence
of the stability constant on k and λ is sharp. Furthermore, our extensive numerical results on
different mesh size, λ and μ also indicate CS = 2 in (5.7) to guarantee the stability. Besides,
we also find that it is sufficient to exclude temporal errors in computation when choosing
CS ≈ 0.1.

123



   13 Page 26 of 33 Journal of Scientific Computing            (2021) 87:13 

102 104 106 108
102

103

104

105

106

107

108

k=1
k=2
k=3

(a) Φ(k, λ, μ) versus h2Λmax with various

λ

101 102 103
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k=1
k=2
k=3

(b) h2Λmax/Φ(k, λ, μ) versus λ

102 103 104 105 106 107 108
102

103

104

105

106

107

108

=10
=200
=2000

(c) Φ(k, λ, μ) versus h2Λmax with various

k

Fig. 1 Numerical estimates for the stability constants, for the example in Sect. 6.1

6.2 A StandingWave

In this subsection, we apply the LDGmethod to (1.1) with the exact solution being a standing
wave:

u =
[

cos(ωπ t) cos(πx) sin(π y)
− cos(ωπ t) sin(πx) cos(π y)

]
(6.3)

in which the force term f = 0, ω = √
2μ, and λ and μ can be chosen arbitrarily. The domain

is given by � = [−1, 1] × [−1, 1] and the initial conditions are computed accordingly.
Starting from this subsection, the numerical results for k = 1 are generated by the leap-frog
LDG method while the results for k = 2 and k = 3 are generated by the forth-order scheme
introduced in Sect. 5.2.

First of all, we fix λ = 10, μ = 1, and T = 1. Then we compute the solution errors
for k = 1, 2, 3 in terms of the L2 norm for u and the energy norm ‖ · ‖A,� for σ . We also
compare the errors for the initial conditions constructed by theGauss-Radau projection (5.2c)
and the standard L2 projection. The results at t = 0.5 and t = 1 are presented in Figs. 2
and 3 , and the corresponding convergence rates are estimated and indicated on the graph.
From Fig. 2 for u, we can observe that both the solutions computed by the initial conditions
with the Gauss-Radau projection and the L2 projection converge optimally. We can also see
that the errors from the Gauss-Radau projection are slightly smaller than the errors from the
L2 projection, and this difference becomes gradually large as the time evolves. However the
Fig. 3 indicates that the solution errors of the stress σ by the Gauss-Radau projection are
much smaller than those by the L2 projection. In addition, while the convergence rates for the
Gauss-Radau projection are optimal which agrees with the analysis in the previous sections,
the convergence rates for the L2 projection are only suboptimal, i.e., hk if theQk polynomial
spaces are used. This phenomenon was also observed in [10] for the energy conserving LDG
method applied to the scalar second-order wave equations. We also note that the authors
in [1] actually have proved the hk convergence rate for the energy-conserving LDG method
applied to elastodynamics system if the Lagrange interpolation is used for constructing initial
conditions. The essential difference in the analysis is the employment of trace inequalities
on element edges which causes the loss of accuracy. However some earlier studies [9,33] on
LDGmethods suggest that the choice of the initial conditions do not have much effect on the
solution errors. We expect that this may be due to the energy conservation property of our
method which can not dissipate the initial error.

Next, we perform the same computation but with the approximation space Pk instead of
Q

k , and compare their numerical results in Figs. 4, 5. This experiment is to test whether the
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Fig. 2 Comparison of errors for u of the standing wave example between initial conditions constructed by L2

and Gauss-Radau projections: t = 0.5 (left) and t = 1 (right)

standard polynomial space Pk can achieve the same accuracy and convergence order, since it
is just a subspace of Qk with fewer degrees of freedom and can make the computation more
efficient. Figure 4 shows that the errors of the displacement u using P

k space can converge
optimally but they are much larger than those using Q

k , and this difference becomes more
significant as the degree k increases. Furthermore, the comparison for the stress σ is presented
in Fig. 5, where one can observe that the errors using Pk are not only much larger than those
usingQk , but also loss order of convergence. In particular, while the errors ofQ1 and P1 have
almost the same numerical behavior, the errors of P2 and P

3 loss about 0.7 and 1 order of
convergence, respectively, i.e., the numerical results of Pk also become worse as k increases.
We emphasize that this actually agrees with the observation in [10] for the second order
acoustic wave equations.

Furthermore, we also investigate the numerical behavior of the proposed LDG method as
the Young’s module ν → 1

2 , i.e., the ratio of the Lamé parameter λ/μ → ∞, and use the
results of the standard IPDG method as the reference for comparison. Note that the exact
solution (6.3) only depends on μ, and thus to simplify the investigation, we fix μ = 1 and
vary λ = 2, 22, . . . , 213. The numerical results generated at t = 1 are presented in Figs. 6
and 7 . We clearly observe that the errors of u for the LDG method are independent with the
growth of λ, while the errors of the IPDG method grow and are much larger than those of
the LDG method when λ = 213. As for σ , the errors of both the LDG and IPDG methods
grow as λ increases, but the errors of the LDG method are much smaller than those of the
IPDG method. We emphasize that it is particularly critical to compute more accurate stress
tensor for the linear elasticity system which shows the advantage of the LDG method. In
addition, the dashed reference lines in Fig. 7 indicate the growth rate λ1/2 as suggested by the
theoretical estimate in Theorem 5.3. We can see that the numerical results match this growth
rate quite well; hence we believe the dependence on λ for the error of σ in Theorem 5.3 is
sharp. However Theorem 5.3 also indicates the dependence for the error of u should be still
λ1/2, and this is actually worse than the numerical results. How to prove this independence
shown by Fig. 6 is an interesting topic left for future research.
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Fig. 3 Comparison of errors for σ of the standing wave example between initial conditions constructed by L2

and Gauss-Radau projections: t = 0.5 (left) and t = 1 (right)
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Fig. 6 Errors of LDG and IPDGmethods for u versus increasing λ of the standing wave example: k = 1 (left),
k = 2 (middle) and k = 3 (right)
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Fig. 7 Errors of LDG and IPDG methods for σ versus increasing λ of the standing wave example: k = 1
(left), k = 2 (middle) and k = 3 (right)

6.3 A TravelingWave

In this subsection, we use the following traveling wave function as an example to investigate
the behavior of the LDG method in long time simulation:

u =
[− cos(ωπ t + κπx) sin(κπ y)

− sin(ωπ t + κπx) cos(κπ y)

]
(6.4)

in which the force term f = 0, ω = √
2κ2λ + 4κ2μ, and κ , λ, μ can be chosen arbitrarily.

According to our extensive numerical experiments, larger frequency κ gives larger long
time errors. Here we focus on κ = 3. We also consider the computation domain � =
[−1, 1] × [−1, 1], and the initial conditions are computed accordingly.

The numerical results are presented in Figs. 8 and 9 . From the first and third plots in
these two figures, we can clearly observe that the errors of the IPDG method for both u and
σ are about 100 times larger than those of the LDG method at some long time point, such
as t ≥ 100. Furthermore, the second and forth plots in Figs. 8 and 9 indicate that the growth
of errors are all linear with respect to time for both IPDG and LDG methods. This actually
agrees with our estimates in Theorems 5.3 and 4.2 for σ but not for u. We also emphasize the
slope of the LDG method is much smaller than the one of the IPDG method. In particular,
when k = 3, both the errors of u and σ are actually almost independent of the evolution
for the LDG method, namely they stay almost unchanged. The related sharp analysis for the
growth of the errors of u with respect to time needs future research. In addition, we plot the
wave shape in Fig. 10 for y = 0.6 and y = 0.8 at T = 1000 when k = 2. We note that there
is apparently some visible dispersion error for the IPDG method, but the wave of the LDG
method matches with the exact solution very well. All these computations indeed show the
advantages of the LDG methods in long time simulation.
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Fig. 8 Long time errors for u of the traveling wave example: left two plots are for k = 2 where the first one
uses log-scale for the y-axis and right two plots are for k = 3 where the first one uses log-scale for the y-axis
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Fig. 9 Long time errors for σ of the traveling wave example: left two plots are for k = 2 where the first one
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Fig. 10 Wave shape of u of the traveling wave example, at y = 0.6 (left) and y = 0.8 (right) for k = 2 when
t = 1000

7 Conclusion Remarks

In this paper, we have presented and analyzed an LDGmethod to solve elastic wave propaga-
tion problems. The proposed method has the features to conserve the energy exactly through
the dynamics and, at the same, to achieve optimal O(hk+1 + �t2) convergence rates with
the Qk spatial discretization and leap-frog temporal discretization. Numerical experiments
demonstrate that the proposedmethod has several advantages including the exact energy con-
servation, slow-growing errors in long time simulation, and subtle dependence on the first
Lamé parameter λ. Numerical comparison with the results of IPDG methods also indicates
the effectivity of the proposed method in the long time simulation. Note that the proof of the
optimal error estimate requires Cartesian meshes which may not be applicable for compli-
cated boundary or interface geometry. Recently, optimal error estimate of DG methods with
generalized fluxes for wave equations on unstructured meshes was carried out by one of the
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authors in [48], and we will leave the detailed study of its extension to elastodynamics to a
future work.

Data Availability Statement The datasets generated during and/or analyzed during the current study are
available from the corresponding author on reasonable request.
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