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The Boussinesq-type equations describe the propagation of weakly non-linear long waves 
in shallow waters and are widely applied to model water waves in shallow seas and 
harbors. In this paper, we propose a high-order local discontinuous Galerkin method to 
solve the improved Boussinesq equation, coupled with both explicit leap-frog and implicit 
midpoint energy-conserving time discretization. The proposed full-discrete method can 
be shown to conserve the discrete versions of both mass and energy of the continuous 
solution. The error estimate with optimal order of convergence is provided for the semi-
discrete method. Our numerical experiments confirm optimal rates of convergence as well 
as the mass and energy conserving property, and show that the errors of the numerical 
solutions do not grow significantly in time due to the energy conserving property. A 
series of numerical experiments are provided to show that the proposed method has the 
capability to simulate the interaction between two solitary waves, single wave break-up 
and blow-up behavior well.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Minimizing the wave disturbance is essential to the design of harbors. In coastal engineering, conducting experiments in 
water tanks and numerically analyzing appropriate mathematical models are the two most effective methods. The advantage 
of mathematical models is that various physical conditions can be simulated with ease while the assumptions of the models 
can be verified. The Boussinesq-type equation, introduced in 1872 by Joseph Boussinesq [5], describes the propagation of 
weakly non-linear fairly long waves in shallow waters and since then have found wide applications in modeling water waves 
in shallow seas and harbors. The original equation proposed by Boussinesq is:

utt = uxx + uxxxx + (u2)xx. (1.1)

It is known as the “bad” Boussinesq equation since the solution exhibits unrealistic instability for short wavelengths [3]. The 
presence of exponentially growing Fourier components renders linear instability [28]. When the coefficient of the fourth 
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order derivative term is changed to −1, the equation is called the “good” Boussinesq equation as it is linearly stable. 
Manoranjan et al. [28] showed the existence of soliton solutions for the “good” Boussinesq equation.

In this paper, we focus on the study of the so-called improved Boussinesq equation proposed by Bogolyubsky [2]:

utt = uxx + uxxtt + (u2)xx, (1.2)

which has some proven desired properties, such as mass conserving and energy conserving. No instabilities have been 
observed by researchers for the improved Boussinesq equation. Iskandar et al. [20] first studied the improved Boussinesq 
equation numerically. They proposed a three-level iterative scheme using finite difference approximations. In [18], El-Zoheiry 
designed a three-level iterative scheme based on the compact implicit methods for the improved Boussinesq equation. Lin 
et al. [27] developed a B-spline finite element method for the improved Boussinesq equation. In particular, by partitioning 
the space into a set of elements and expressing the solution in terms of linear B-spline basis functions, they obtained a sys-
tem for which many standard numerical integration algorithms are applicable. Their method has the merit that it is simple 
to implement and the nonlinearity can be taken care of easily. All the above methods, however, did not address the con-
servation properties that the theoretical analysis for improved Boussinesq equation has shown. Wang et al. [32] developed 
an energy-conserving finite volume element method for the improved Boussinesq equation. They constructed the second 
order accurate scheme using discrete variational derivative method. More recently, a class of high-order energy-conserving 
schemes based on Fourier pseudospectral methods and Hamiltonian boundary value methods, is proposed for the improved 
Boussinesq equation in [36].

Discontinuous Galerkin (DG) methods will be studied in this paper to solve the improved Boussinesq equation. DG meth-
ods were introduced in 1973 by Reed and Hill [29] to solve steady state linear hyperbolic equations. A major development 
of DG methods was carried out by Cockburn and Shu in a series of papers [13–16]. DG methods have gained extensive 
attentions and their applications include wave propagation problems, optimal control, compressible flows, incompressible 
flows, semiconductor device simulation, Hamilton-Jacobi equations, Maxwell and Magnetohydrodynamics equations, elastic-
ity problem, KdV and other nonlinear dispersive equations, among many others. DG methods can be easily constructed to 
be of high order accuracy, and can be used on arbitrary triangulation, thus very suitable for h − p refinement. Their local 
nature enables parallel computing and therefore enhances the efficiency.

DG methods have been applied to solve partial differential equations (PDEs) with high order spatial derivatives. Such 
DG methods include the interior penalty DG methods [1], local discontinuous Galerkin (LDG) methods [17], ultra-weak DG 
methods [9], hybridizable DG methods [12], among many others. One successful group of such methods is the LDG methods, 
proposed by Cockburn and Shu. The basic idea is to rewrite the original equation into a first order system and discretize it 
in space with DG methods. They showed that the stability of the proposed methods can be achieved with a careful choice of 
numerical fluxes. The LDG methods have been applied to an extensive list of PDEs with high order spatial derivatives and we 
refer any interested reader to the review paper [35]. Recently, LDG method has been used to simulate problems that require 
structure preserving property, such as mass, energy or Hamiltonian conservation. Energy conserving LDG methods have 
been designed for the generalized KdV equation [4,21], the second order wave equation [33,11], Camassa-Holm equation 
[26], the nonlinear Schrödinger equation [19,25], and the two-way wave equation [10], for which the schemes were shown 
to preserve energy exactly in the discrete level, leading to small phase and shape errors in long time simulations.

In this work, we develop novel structure preserving LDG methods to solve the improved Boussinesq equation, which 
can conserve both the mass and energy of the model in the discrete level. The equation is first decoupled into several 
first order differential equations, and the LDG methods are designed based on the first order system. With the choice of 
alternating numerical fluxes, we can show that the proposed methods conserve both mass and energy exactly. We have also 
provided a family of energy conserving numerical fluxes and energy dissipative numerical fluxes. Optimal error estimate is 
derived for the semi-discrete LDG methods. For the temporal discretization, both explicit leap-frog and implicit midpoint 
time discretization, with special treatment of the nonlinear term, are proposed to maintain the mass and energy conserving 
property of the full discrete schemes. Our numerical experiments demonstrate optimal rates of convergence as well as the 
mass and energy conserving property, and show that the errors of the numerical solutions do not grow significantly in time 
due to the energy conserving property. A series of numerical experiments are provided to show that the proposed method 
has the capability to simulate the interaction between two solitary waves, single wave break-up and blow-up behavior well.

The organization of the paper is as follows. In Section 2, we introduce the LDG numerical method and prove the mass 
and energy preserving property for the semi-discrete case. In Section 3, the error estimate of the proposed methods is 
presented. Two different energy-conserving temporal discretizations are presented in Section 4. In Section 5, we perform 
numerical tests to show the order of accuracy, the mass and energy conservation and long time simulation of our scheme, 
and also analyze its performance in various solitary wave examples. Conclusion remarks are presented in Section 6.

2. Local discontinuous Galerkin discretization

2.1. Model problem

We consider the improved Boussinesq equation (1.2) on the domain I = [xl, xr] in this paper. Since we are interested in 
the energy conservation property of this model, it is more convenient to convert the equation into
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{
ut = vx,

vt − vxxt = (u + u2)x,
(2.1)

by introducing the variable v . This also appears in [32,36] to study the conservation property of this model. The system 
(2.1) has the following conserved mass and energy defined by

M =
∫
I

u dx, E =
∫
I

(
v2

2
+ (ut)

2

2
+ u2

2
+ u3

3

)
dx. (2.2)

The initial conditions are given by

u(x,0) = u0(x), ut(x,0) = g(x), for all x ∈ [xl, xr], (2.3)

with periodic boundary conditions

∂ i

∂ i x
u(xl, t) = ∂ i

∂ i x
u(xr, t), for all t ∈ (0,∞), i = 0,1,2. (2.4)

In addition, we also require∫
I

g(x) dx = 0, (2.5)

and this initial condition, along with Eq. (1.2), implies mass conservation 
∫

I u dx = constant for t ≥ 0.

2.2. Notations

We partition I = [xl, xr] into J subintervals: xl = x 1
2

< x 3
2

< ... < x J+ 1
2

= xr . For each interval Ii = (xi− 1
2
, xi+ 1

2
), 1 ≤ i ≤ J , 

we define the midpoint xi = (xi− 1
2

+ xi+ 1
2
)/2 and hi = xi+ 1

2
− xi− 1

2
with h = maxi hi . The piecewise polynomial space is 

defined as V k = {v : v|Ii ∈ Pk(Ii), i = 1, · · · , J }, where Pk(Ii) denotes the space of polynomials of degree up to k on Ii . For 
any function uh ∈ V k , u+

h (xi+ 1
2
) and u−

h (xi+ 1
2
) denote the limit values of uh at xi+ 1

2
from the right interval Ii+1 and the left 

interval Ii , respectively. We use the usual notations [uh]i+ 1
2

= u+
h (xi+ 1

2
) − u−

h (xi+ 1
2
) and {uh}i+ 1

2
= 1

2 (u+
h (xi+ 1

2
) + u−

h (xi+ 1
2
))

to represent the jump and the average of the function uh at the cell interfaces, respectively. For shorthand notation, the inner 
product is denoted by (w, v)Ii = ∫

Ii
w vdx for the scalar variables w , v . The L2 norm of v over the element Ii is denoted by 

‖v‖Ii = √
(v, v)Ii . The inner product over the domain I is denoted by (w, v) = (w, v)I , the L2 norm ‖v‖ = √

(v, v) and the 
L∞ norm ‖v‖∞ = maxx∈I |v(x)|.

Three types of projection operators considered in the paper are defined as follows. We use P to denote the standard L2

projection of a function ω into space V k satisfying

(Pω,φ)Ii = (ω,φ)Ii , ∀φ ∈ Pk(Ii).

We use P− to denote the projection of ω into space V k with

(P−ω,φ)Ii = (ω,φ)Ii , ∀φ ∈ Pk−1(Ii),

(P−ω)− = ω−, at xi+ 1
2
.

Similarly, the projection P+ of ω is defined as:

(P+ω,φ)Ii = (ω,φ)Ii , ∀φ ∈ Pk−1(Ii),

(P+ω)+ = ω+, at xi− 1
2
.

For these projections, we have the following approximation property [8]:

∥∥P∗ f − f
∥∥2 + h

∑
i

(
(P∗ f − f )±

i+ 1
2

)2

≤ Ch2k+2, (2.6)

where P∗ = P or P± , and the constant C depends on f but is independent of h.
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2.3. LDG method for the improved Boussinesq equation

The LDG method will be presented in this section. The main idea of LDG methods is to suitably rewrite a higher order 
PDE into a first order system, and then apply the DG method to the system. By introducing auxiliary variables w , r, s, the 
model (2.1) becomes a first order system taking the form of⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ut = w,

w = vx,

r = v − wx,

s = u + u2,

rt = sx.

(2.7)

The LDG scheme for (2.7) can be formulated as follows: we look for uh , vh , wh , sh , rh ∈ V k , such that∫
Ii

(uh)tφ dx =
∫
Ii

whφ dx, (2.8)

∫
Ii

whψ dx = v̂hψ
−|x

i+ 1
2

− v̂hψ
+|x

i− 1
2

−
∫
Ii

vhψx dx, (2.9)

∫
Ii

rhϕ dx =
∫
Ii

vhϕ dx −
⎛⎜⎝ŵhϕ

−|x
i+ 1

2
− ŵhϕ

+|x
i− 1

2
−

∫
Ii

whϕx dx

⎞⎟⎠ , (2.10)

∫
Ii

shξ dx =
∫
Ii

(uh + u2
h)ξ dx, (2.11)

∫
Ii

(rh)tζ dx = ŝhζ
−|x

i+ 1
2

− ŝhζ
+|x

i− 1
2

−
∫
Ii

shζx dx, (2.12)

hold for all test functions φ, ψ , ϕ , ξ , ζ ∈ V k .
The terms v̂h , ŵh , ŝh are numerical fluxes resulting from integration by parts. As shown later in the proof of energy 

conservation, as long as we choose alternating fluxes for the pair {v̂h, ̂wh}, and the pair {v̂h, ̂sh}, the scheme will have the 
desired mass and energy conserving properties. For example we can choose:

v̂h = v−
h , ŵh = w+

h , ŝh = s+
h , (2.13)

or

v̂h = v+
h , ŵh = w−

h , ŝh = s−
h . (2.14)

In the remainder of the paper we use the flux (2.13). All the results presented in this paper can be proved for both fluxes 
(2.13) and (2.14) with similar proofs.

Remark 2.1. One can also define a family of numerical fluxes as:

v̂h = {vh} + α[vh], ŵh = {wh} − α[wh], ŝh = {sh} − α[sh], α ∈
[
−1

2
,

1

2

]
, (2.15)

which are the generalization of the alternating fluxes (2.13) (when α = − 1
2 ) and (2.14) (when α = 1

2 ). This family of numer-
ical fluxes can also be shown to produce energy conserving LDG methods.

If one is interested in an energy dissipative method, it can be obtained with the following choice of numerical fluxes:

v̂h = {vh} + α[vh], ŵh = {wh} − α[wh], ŝh = {sh} − α[sh] + β[vh], α ∈
[
−1

2
,

1

2

]
, β > 0.

Remark 2.2. In the conventional LDG method, there is no need to introduce the extra auxiliary variable sh in Eq. (2.11), 
which could be absorbed in Eq. (2.12). It was introduced here for the purpose of energy conservation.
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2.4. Conservation of mass and energy

As is well known, the important physical quantities, the mass and the energy (2.2), are conserved in Eq. (1.2). Here we 
show that our numerical solution also preserves these quantities at the discrete level.

Proposition 2.1. Let uh and vh be the solutions of the LDG scheme (2.8) – (2.12) with flux (2.13). Then the mass

Mh(t) =
∫
I

uh dx (2.16)

is invariant in time t if periodic boundary condition is imposed for vh.

Proof. To begin with, we show that the periodic boundary condition (2.4) and the requirement on the initial condition (2.5)
leads to v(xl, t) = v(xr, t). Recall that by the definition of v in (2.7), (1.2) can be written into:

ut = vx, (2.17)

vt = ux + uxtt + (u2)x. (2.18)

Integrating (2.18) from 0 to t , we have

v(x, t) = v(x,0) +
t∫

0

ux + uxtt + (u2)x dt.

By the periodic boundary conditions (2.4),

t∫
0

ux(xl, t) + uxtt(xl, t) + (u2)x(xl, t) dt =
t∫

0

ux(xr, t) + uxtt(xr, t) + (u2)x(xr, t) dt,

and from (2.5) we have

v(xr,0) = v(xl,0) +
xr∫

xl

vxdx = v(xl,0) +
xr∫

xl

g(x)dx = v(xl,0).

Therefore,

v(xl, t) = v(xr, t).

This implies that in the numerical scheme, we also need to impose periodic boundary conditions for vh .
Setting φ = ψ = 1 in Eqs. (2.8)-(2.9), we obtain:

d

dt
Mh(t) = d

dt

xr∫
xl

uh dx =
n∑

i=1

(
v̂h(xi+ 1

2
) − v̂h(xi− 1

2
)
)

= v̂h(xn+ 1
2
) − v̂h(x 1

2
) = 0,

by applying the periodic boundary condition for vh , and this concludes the proof. �
Proposition 2.2. Let uh and vh be the solutions of the scheme (2.8) – (2.12) with flux (2.13). The energy Eh(t) defined as

Eh(t) =
∫
I

(
v2

h

2
+ ((uh)t)

2

2
+ u2

h

2
+ u3

h

3

)
dx (2.19)

is invariant in time t.

Proof. Summing up the scheme (2.8) – (2.12) over all cells i = 1, 2, ..., J , we get

((uh)t, φ)I − (wh, φ)I = 0, (2.20)

(wh,ψ)I + (vh,ψx)I +
J∑

v̂h[ψ]i+ 1
2

= 0, (2.21)

i=1
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(rh,ϕ)I − (vh,ϕ)I − (wh,ϕx)I −
J∑

i=1

ŵh[ϕ]i+ 1
2

= 0, (2.22)

(sh, ξ)I − (uh + u2
h, ξ)I = 0, (2.23)

((rh)t, ζ )I + (sh, ζx)I +
J∑

i=1

ŝh[ζ ]i+ 1
2

= 0, (2.24)

by using the periodic boundary conditions. Taking the time derivative of Eq. (2.22), adding the resulting equation to 
Eq. (2.21) and choosing the test functions ψ = (wh)t , ϕ = −vh yield

0 = (wh, (wh)t)I + (vh, (wh)xt)I +
J∑

i=1

v̂h[(wh)t]i+ 1
2

− ((rh)t, vh)I + ((vh)t, vh)I + ((wh)t, (vh)x)I +
J∑

i=1

̂(wh)t[vh]i+ 1
2

= (wh, (wh)t)I − ((rh)t, vh)I + ((vh)t , vh)I , (2.25)

where the last equality comes from the choice of the alternating flux (2.13). Next, setting ζ = vh in Eq. (2.24), ψ = sh in 
Eq. (2.21), φ = sh in Eq. (2.20), and summing them up, we have

0 = ((uh)t , sh)I + (vh, (sh)x)I +
J∑

i=1

v̂h[sh]i+ 1
2

+ ((rh)t, vh)I + (sh, (vh)x)I +
J∑

i=1

ŝh[vh]i+ 1
2

= ((uh)t , sh)I + ((rh)t, vh)I , (2.26)

where the last equality again follows from the choice of the alternating flux (2.13).
Summing up (2.25) and (2.26), we get

((uh)t, sh)I + ((wh)t, wh)I + ((vh)t, vh)I = 0,

which leads to

d

dt
Eh(t) = d

dt

∫
I

(
v2

h

2
+ ((uh)t)

2

2
+ u2

h

2
+ u3

h

3

)
dx

= ((vh)t, vh)I + ((uh)tt, (uh)t)I + ((uh)t, uh + u2
h)I

= ((vh)t, vh)I + ((wh)t, wh)I + ((uh)t, sh)I

= 0.

This concludes the proof. �
3. Error estimate

In this section, we derive an optimal error estimate for the energy conserving LDG method proposed in Section 2. We 
define the following errors associated with a function f by

e f = f − fh = η f + ζ f , η f = f − P∗ f , ζ f = P∗ f − fh,

which from left to right, respectively denote the error between the exact solution f and the numerical solution fh , the 
projection error between f and a particular projection P∗ of f , and the error between the numerical solution and the 
projection of f . f could be each of these functions u, v , w , r, s. The standard L2 projection, i.e., P∗ = P , is used for 
functions u, w , r, s, and the Radau projection P∗ = P− is used for the function v . Below we list the main error estimate 
result.

Proposition 3.1. Let u, v, w, s, r be the exact solutions of the Eqs. (2.7), and uh, vh, wh, sh, rh be the numerical solutions of the 
semi-discrete LDG method (2.8) – (2.12), with the numerical fluxes defined in (2.13) and the initial conditions defined as

uh(x,0) = P u(x,0), vh(x,0) = P−v(x,0). (3.1)
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When the exact solution is sufficiently smooth, there holds the following error estimates:

(
∥∥eu

∥∥2 + ∥∥ev
∥∥2 + ∥∥ew

∥∥2
)

1
2 ≤ Chk+1, (3.2)

where the constant C depends on k, u and the final time T , but is independent of h.

Before we present the detailed proof of this proposition, some useful lemmas and remarks are provided below.

Remark 3.1. For the initial projection defined in (3.1), one can follow the proof in [33] to show the following estimate:∥∥ζ u(0)
∥∥ = 0,

∥∥ζ v(0)
∥∥ = 0,

∥∥ζ w(0)
∥∥ ≤ Chk+1. (3.3)

Remark 3.2. To deal with the nonlinear term, we would like to make an a priori error estimate assumption that

‖u − uh‖ ≤ h,

following the setup in [34,23], where the same technique was used to treat the nonlinearity in the KdV and Keller-Segel 
models. This assumption can be easily verified, and we refer to [34,23] for the explanation and proof. This assumption 
implies that

‖u − uh‖∞ ≤ C,
∥∥ζ u

∥∥∞ ≤ C .

The following lemma is one of the key ideas to derive the optimal error estimate.

Lemma 3.1. Suppose (vh, wh) ∈ V k
h × V k

h satisfies the equation (2.9) with the flux v̂h = v−
h , the L2 projections P is used for the 

variable w and the Radau projection P− is used for v, then there exists a positive constant C , which is independent of h, such that

‖ζ v
x ‖ + h−1/2|[ζ v ]| ≤ C‖ζ w‖. (3.4)

Remark 3.3. This Lemma provides an important relationship between the error of the auxiliary variable and the primary 
variable, and was proven in [24, Lemma 2.4]. Similar result on the variable (instead of the error)

‖vh,x‖ + h−1/2|[vh]| ≤ C‖wh‖,
appeared first in [31]. This provides a direct link between the DG polynomial wh and the derivative, jump of vh .

With these, we can now present the proof of our main result.

Proof. By subtracting the LDG methods (2.20)-(2.24) from the corresponding weak formulation satisfied by the exact solu-
tions, we can derive the error equations

(eu
t , φ) − (ew , φ) = 0, (3.5)

(ew ,ψ) + (ev ,ψx) +
J∑

i=1

ev,−[ψ]i+ 1
2

= 0, (3.6)

(er,ϕ) − (ev ,ϕ) − (ew ,ϕx) −
J∑

i=1

ew,+[ϕ]i+ 1
2

= 0, (3.7)

(es, ξ) − (u + u2 − uh − u2
h, ξ) = 0, (3.8)

(er
t , ζ ) + (es, ζx) +

J∑
i=1

es,+[ζ ]i+ 1
2

= 0. (3.9)

In Eqs. (3.5), (3.6) and (3.9), taking the test functions φ = ψ = ζ s and ζ = ζ v , and summing them up leads to

(eu
t , ζ s) + (er

t , ζ
v) = −(ηv , ζ s

x ) −
J∑

i=1

ηv,−[ζ s]i+ 1
2

− (ζ v , ζ s
x ) −

J∑
i=1

ζ v,−[ζ s]i+ 1
2

− (ηs, ζ v)x −
J∑

ηs,+[ζ v ]i+ 1
2

− (ζ s, ζ v
x ) −

J∑
ζ s,+[ζ v ]i+ 1

2

i=1 i=1
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= −(ηv , ζ s
x ) −

J∑
i=1

ηv,−[ζ s]i+ 1
2

− (ηs, ζ v
x ) −

J∑
i=1

ηs,+[ζ v ]i+ 1
2
. (3.10)

Next, by taking the time derivative of Eq. (3.7), adding the resulting equation to Eq. (3.6) and choosing the test functions 
ϕ = ζ v , φ = −ζ w

t , one obtains

(er
t , ζ

v) − (ew , ζ w
t ) = (ev

t , ζ v) + (ηw
t , ζ v

x ) +
J∑

i=1

ηw,+
t [ζ v ]i+ 1

2
+ (ζ w

t , ζ v
x ) +

J∑
i=1

ζ
w,+

t [ζ v ]i+ 1
2

+ (ηv , ζ w
xt ) +

J∑
i=1

ηv,−[ζ w
t ]i+ 1

2
+ (ζ v , ζ w

xt ) +
J∑

i=1

ζ v,−[ζ v ]i+ 1
2

= (ev
t , ζ v) + (ηw

t , ζ v
x ) +

J∑
i=1

ηw,+
t [ζ v ]i+ 1

2
+ (ηv , ζ w

xt ) +
J∑

i=1

ζ v,−[ζ w
t ]i+ 1

2
. (3.11)

Combine (3.10) and (3.11), we have

(eu
t , ζ s) + (ew , ζ w

t ) + (ev
t , ζ v) = −(ηv , ζ s

x ) −
J∑

i=1

ηv,−[ζ s]i+ 1
2

− (ηs, ζ v
x ) −

J∑
i=1

ηs,+[ζ v ]i+ 1
2

− (ηw
t , ζ v

x ) −
J∑

i=1

ηw,+
t [ζ v ]i+ 1

2
− (ηv , ζ w

xt ) −
J∑

i=1

ηv,−[ζ w
t ]i+ 1

2
. (3.12)

By the choice of the projections of u, v , w , s, r, we have

(eu
t , ζ s) + (ew , ζ w

t ) + (ev
t , ζ v) = −

J∑
i=1

ηs,+[ζ v ]i+ 1
2

−
J∑

i=1

ηw,+
t [ζ v ]i+ 1

2
,

which leads to

(ζ u
t , ζ s) + 1

2

d

dt
(
∥∥ζ w

∥∥2 + ∥∥ζ v
∥∥2

) = −(ηu
t , ζ s) − (ηw , ζ w

t ) − (ηv
t , ζ v) −

J∑
i=1

ηs,+[ζ v ]i+ 1
2

−
J∑

i=1

ηw,+
t [ζ v ]i+ 1

2

= −(ηv
t , ζ v) −

J∑
i=1

ηs,+[ζ v ]i+ 1
2

−
J∑

i=1

ηw,+
t [ζ v ]i+ 1

2
, (3.13)

where the last equality comes from the L2 projection property: (ηu, f ) = (ηw , f ) = 0 for any f ∈ V k . Note that

(ζ u
t , ζ s) = (es − ηs, ζ u

t ) = (es, ζ u
t ) = (u + u2 − uh − u2

h, ζ u
t )

= (ζ u + ηu, ζ u
t ) + (u2 − u2

h, ζ u
t ) = (ζ u, ζ u

t ) + (u2 − u2
h, ζ u

t ), (3.14)

the error equation (3.13) becomes

1

2

d

dt
(
∥∥ζ u

∥∥2 + ∥∥ζ w
∥∥2 + ∥∥ζ v

∥∥2
) = −(u2 − u2

h, ζ u
t ) − (ηv

t , ζ v) −
J∑

i=1

ηs,+[ζ v ]i+ 1
2

−
J∑

i=1

ηw,+
t [ζ v ]i+ 1

2
. (3.15)

We now focus on the terms on the right hand side. One can show that

−
J∑

i=1

ηs,+[ζ v ]i+ 1
2

≤ Ch
J∑

i=1

(ηs,+
i+ 1

2
)2 + Ch−1

J∑
i=1

([ζ v ]i+ 1
2
)2 ≤ Ch2k+2 + C

∥∥ζ w
∥∥2

, (3.16)

from the projection error (2.6) and the approximation (3.4) in Lemma 3.1. Similarly, we have

−
J∑

i=1

ηw,+
t [ζ v ]i+ 1

2
≤ Ch2k+2 + C

∥∥ζ w
∥∥2

. (3.17)

Using the fact that



X. Li et al. / Journal of Computational Physics 401 (2020) 109002 9
ζ u
t = P ut − (uh)t = P w − wh = ζ w ,

the first term −(u2 − u2
h, ζ u

t ) can be estimated by:

− (u2 − u2
h, ζ u

t ) = −(u2 − u2
h, ζ w) = −(2u(u − uh) − (u − uh)

2, ζ w)

= −(2uζ u + 2uηu − (ζ u)2 − 2ζ uηu − (ηu)2, ζ w)

= −(2uζ u, ζ w) − (2uηu, ζ w) + ((ζ u)2, ζ w) + 2(ζ uηu, ζ w) + ((ηu)2, ζ w)

≤ C |u|∞(
∥∥ζ u

∥∥ + ∥∥ηu
∥∥)

∥∥ζ w
∥∥ + C

∥∥ζ u
∥∥∞ (

∥∥ζ u
∥∥2 + ∥∥ζ w

∥∥2
) + C

∥∥ηu
∥∥∞

∥∥ζ w
∥∥ (

∥∥ζ u
∥∥ + ∥∥ηu

∥∥)

≤ C
∥∥ζ u

∥∥2 + C
∥∥ζ w

∥∥2 + Ch2k+2, (3.18)

where the last equality comes from the assumption in Remark 3.2. Combining the results in Eqs. (3.13) – (3.18), we have

d

dt
(
∥∥ζ u

∥∥2 + ∥∥ζ v
∥∥2 + ∥∥ζ w

∥∥2
) ≤ C(

∥∥ζ u
∥∥2 + ∥∥ζ v

∥∥2 + ∥∥ζ w
∥∥2 + h2k+2).

By using Gronwall’s inequality and recalling the property of initial conditions in Remark 3.1, we obtain that

(
∥∥ζ u

∥∥2 + ∥∥ζ v
∥∥2 + ∥∥ζ w

∥∥2
)

1
2 ≤ Chk+1.

The optimal error estimate (3.2) follows from this and the optimal projection error shown in (2.6). This concludes the 
proof. �
4. Temporal discretization

Energy conserving spatial discretization was presented in Section 2. In this section, we develop fully discrete methods 
which maintain the mass and energy conserving property, by presenting two different energy-conserving temporal dis-
cretizations. Both the explicit leap-frog and the implicit midpoint methods, with special attention paid to the discretization 
of the nonlinear term, will be considered.

Let 0 = t0 < t1 < ... < tN = T be a partition of the interval [0, T ] with time step �tn = tn+1 − tn . A uniform time step 
�tn = τ is considered in this paper, and for the implicit temporal discretization in section 4.2, nonuniform time step can 
also be used. The following notations

un
h = uh( · , tn), u

n+ 1
2

h = 1

2
(un+1

h + un
h), δt un

h = un+1
h − un−1

h

2τ
, δ+

t un
h = un+1

h − un
h

τ
,

are introduced to ease the presentation.

4.1. Explicit leap-frog method

The second order explicit leap-frog method is known to conserve the discrete energy. When coupled with the LDG 
method (2.8)–(2.11), the fully discrete explicit leap-frog local discontinuous Galerkin (ELF-LDG) scheme takes the following 
form: we are looking for the solutions un+1

h , vn+1
h , wn+1

h , sn+1
h , and rn+1

h ∈ V k , for n = 1, 2, ..., N − 1, such that∫
Ii

δt un
hφ dx =

∫
Ii

un+1
h − un−1

h

2τ
φ dx =

∫
Ii

wn
hφ dx, (4.1)

∫
Ii

wn
hψ dx = v̂n

hψ
−|x

i+ 1
2

− v̂n
hψ

+|x
i− 1

2
−

∫
Ii

vn
hψx dx, (4.2)

∫
Ii

rn
hϕ dx =

∫
Ii

vn
hϕ dx −

⎛⎜⎝ŵn
hϕ

−|x
i+ 1

2
− ŵn

hϕ
+|x

i− 1
2

−
∫
Ii

wn
hϕx dx

⎞⎟⎠ , (4.3)

∫
Ii

sn
hξ dx =

∫
Ii

(
un

h + 1

3

(
(un+1

h )2 + un+1
h un−1

h + (un−1
h )2

))
ξ dx, (4.4)

∫
δtrn

hζ dx =
∫

rn+1
h − rn−1

h

2τ
ζ dx = ŝn

hζ
−|x

i+ 1
2

− ŝn
hζ

+|x
i− 1

2
−

∫
sn

hζx dx, (4.5)
Ii Ii Ii
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hold for all test functions φ, ψ , ϕ , ξ , ζ ∈ V k . It is easy to verify that the explicit leap-frog method with this nonlinear term 
treatment is second order accurate in time.

The leap-frog method is a multi-step method, which requires numerical initial conditions for the first two time steps. 
Below we briefly mention how these two numerical initial conditions are provided in our numerical experiments. At the 
first time step t0 = 0, the exact initial conditions of u(x, 0) and ut(x, 0) are given in (2.3). The equation ut = vx leads to 
v(x, 0) = v(xl, 0) + ∫ x

xl
ut(s, 0)ds = v(xl, 0) + ∫ x

xl
g(s)ds. Since the constant term v(xl, 0) won’t affect the computation, we 

assume

v(x,0) =
x∫

xl

g(s)ds,

and define our numerical initial conditions of uh and vh as

u0
h = P u(x,0), v0

h = P∗v(x,0), (4.6)

where P is the standard L2 projection and P∗ could be either the L2 projection P or the Radau projection P± . In the 
numerical section, we will analyze the effect of different choice of P∗ towards the accuracy. At the second time step t1 = τ , 
we consider the Taylor expansion of u(x, τ ) and v(x, τ ) at t = 0 via

u(x, τ ) = u(x,0) + τut(x,0) + τ 2

2
utt(x,0) + O (τ 3),

v(x, τ ) = v(x,0) + τ vt(x,0) + τ 2

2
vtt(x,0) + O (τ 3),

which leads to the following choice of numerical initial conditions

u1
h = u0

h + τu0
h,t + τ 2

2
u0

h,tt, v1
h = v0

h + τ v0
h,t + τ 2

2
v0

h,tt, (4.7)

where u0
h,t , u0

h,tt , v0
h,t , and v0

h,tt are all computed via the numerical methods (2.8)-(2.12) with the initial condition (4.6).

Next, we provide some details related to the implementation of the ELF-LDG method (4.1)-(4.5). Note that un+1
h appears 

on the right hand side of Eq. (4.4), but this won’t affect the explicit property of the ELF-LDG scheme, as illustrated below.
Let Uh be the vectors containing the degree of freedom for the piecewise polynomial solution uh , and denote Un

h =
Uh(tn). Similarly, we can define V n

h , W n
h , Rn

h and Sn
h . The ELF-LDG method (4.1)-(4.5) can be rewritten in the matrix form as

Un+1
h = 2τ W n

h + Un−1
h ,

W n
h = Mv V n

h ,

Rn
h = V n

h − Mw W n
h , (4.8)

Sn
h = f s(Un−1

h , Un
h, Un+1

h ),

Rn+1
h = 2τ Ms Sn

h + Rn−1
h ,

where Mv , Mw and Ms are matrices depending on the polynomial basis functions and the choices of the numerical fluxes 
v̂h , ŵh , ŝh , respectively. The nonlinear function f s comes from the discretization of the nonlinear term. The combination of 
the second and third equations leads to the following relation between Rn

h and V n
h :

Rn
h = K vr V n

h , V n
h = K −1

vr Rn
h, (4.9)

where K vr = I − Mw Mv . Therefore, the system (4.8) can be reduced to

Un+1
h = 2τ Mv V n

h + Un−1
h ,

V n+1
h = 2τ K −1

vr Ms fs(Un−1
h , Un

h, Un+1
h ) + V n−1

h . (4.10)

Note that one can evaluate Un+1
h first, and then compute V n+1

h , in an explicit way. The matrices K vr and Mv are both sparse 
block matrices, hence their multiplication with coefficient vectors can be implemented efficiently. The evaluation of V n+1

h
involves a linear solver with the matrix K vr , and one can perform an LU decomposition of K vr at the initial time to save 
computational cost. The existence of the solution sequences {Un

h }N
n=0 and {V n

h }N
n=0 can be easily observed.

The conservation of continuous mass and energy of the semi-discrete LDG methods was shown in Section 2.4. Below, we 
prove that the fully discrete ELF-LDG methods can conserve the discrete mass and energy exactly.
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Proposition 4.1. Let un
h, vn

h and wn
h be the solutions of the fully discrete ELF-LDG methods (4.1)-(4.5). The discrete mass and energy 

defined as

Mn
h =

∫
I

un
hdx, En

h =
∫
I

(
un

hun+1
h

2
+ vn

h vn+1
h

2
+ wn

h wn+1
h

2
+ (un+1

h )3 + (un
h)

3

6

)
dx, (4.11)

are invariant for all n.

Proof. We start with the conservation of the discrete mass Mn
h . Choose φ = 1 and ψ = 1 in (4.1) and (4.2), and sum up over 

all cells. With periodic boundary condition, this leads to Mn+1
h = Mn−1

h . From the evaluation of u1
h and v1

h in (4.7), we can 
easily conclude that M0

h = M1
h , therefore, the conservation of the discrete mass

Mn
h = M0

h,

can be observed.
Next, we consider the conservation of the discrete energy En

h . Apply the operator δt on the equation (4.3), choose the 
test function ϕ = vn

h , and sum up over all cells to obtain

(δtrn
h, vn

h)I = (δt vn
h, vn

h)I + (δt wn
h, vn

h,x)I +
J∑

i=1

̂δt wn
h[vn

h]i+ 1
2
. (4.12)

Choosing the test function ψ = δt wn
h in the equation (4.2) yields

(wn
h, δt wn

h)I + (vn
h, δt wn

x,h)I +
J∑

i=1

v̂n
h[δt wn

h]i+ 1
2

= 0. (4.13)

By subtracting (4.13) from (4.12), we obtain

(δtrn
h, vn

h)I = (δt vn
h, vn

h)I + (wn
h, δt wn

h)I −
J∑

i=1

[vn
hδt wn

h] +
J∑

i=1

v̂n
h[δt wn

h]i+ 1
2

+
J∑

i=1

̂δt wn
h[vn

h]i+ 1
2
. (4.14)

Setting ψ = φ = sn
h in the equations (4.2) and (4.1) leads to

(δt un
h, sn

h)I + (vn
h, sn

x,h)I +
J∑

i=1

v̂n
h[sn

h]i+ 1
2

= (δt un
h, sn

h)I − (sn
h, vn

h,x)I −
J∑

i=1

[sn
h vn

h]i+ 1
2

+
J∑

i=1

v̂n
h[sn

h]i+ 1
2

= 0, (4.15)

and choosing ζ = vn
h in the equation (4.5) gives

(δtrn
h, vn

h)I + (sn
h, vn

h,x)I +
J∑

i=1

ŝn
h[vn

h]i+ 1
2

= 0. (4.16)

Sum up (4.15) and (4.16) to get

(δt un
h, sn

h)I + (δtrn
h, vn

h)I −
J∑

i=1

[sn
h vn

h]i+ 1
2

+
J∑

i=1

v̂n
h[sn

h]i+ 1
2

+
J∑

i=1

ŝn
h[vn

h]i+ 1
2

= 0. (4.17)

Combining the equations (4.14) and (4.17), we have

(δt vn
h, vn

h)I + (wn
h, δt wn

h)I + (δt un
h, sn

h)I +
J∑

i=1

(
−[vn

hδt wn
h] + v̂n

h[δt wn
h] + ̂δt wn

h[vn
h]i+ 1

2

)
i+ 1

2

+
J∑

i=1

(
−[sn

h vn
h] + v̂n

h[sn
h]i+ 1

2
+ ŝn

h[vn
h]

)
i+ 1

2

= 0,

and by the choice of numerical fluxes (2.13) or (2.14), this becomes

(δt vn
h, vn

h)I + (wn
h, δt wn

h)I + (δt un
h, sn

h)I = 0. (4.18)

It is easy to observe that
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(δt vn
h, vn

h)I = 1

2τ

∫
I

(vn+1
h vn

h − vn
h vn−1

h )dx,

(δt wn
h, wn

h)I = 1

2τ

∫
I

(vn+1
h vn

h − vn
h vn−1

h )dx,

(δt un
h, sn

h)I = (δt un
h, un

h)I +
(

δt un
h,

1

3

(
(un+1

h )2 + (un+1
h )(un−1

h ) + (un−1
h )2

))
I

= 1

2τ

∫
I

(un+1
h un

h − un
hun−1

h )dx +
∫
I

(
(un+1

h )3 + (un
h)

3

6τ
− (un

h)
3 + (un−1

h )3

6τ

)
dx,

therefore, the equation (4.18) reduces to

En+1
h = En

h,

which completes the proof. �
Remark 4.1. The nonlinear term u2 is approximated by 

(
(un+1

h )2 + (un+1
h )(un−1

h ) + (un−1
h )2

)
/3 in the equation (4.4), which 

is crucial in the proof of energy conservation. One may also approximate it by un
h(un+1

h + un
h + un−1

h )/3, which will leads to 
an energy conservation method with the newly defined energy

Ên
h =

∫
I

(
un

hun+1
h

2
+ vn

h vn+1
h

2
+ wn

h wn+1
h

2
+ un

hun+1
h (un+1

h + un
h)

6

)
dx.

We have tried both approaches numerically, and no obvious difference has been observed in their numerical performance.

4.2. Implicit midpoint method

In this subsection, we present an energy conserving implicit midpoint rule temporal discretization. The fully discrete 
scheme implicit midpoint rule local discontinuous Galerkin (IMR-LDG) scheme takes the following form: we are looking for 
the solutions un+1

h , vn+1
h , wn+1

h , sn+1
h , and rn+1

h ∈ V k , for n = 1, 2, ..., N − 1, such that∫
Ii

δ+
t un

hφ dx =
∫
Ii

un+1
h − un

h

τ
φ dx =

∫
Ii

w
n+ 1

2
h φ dx, (4.19)

∫
Ii

w
n+ 1

2
h ψ dx = ̂

v
n+ 1

2
h ψ−|x

i+ 1
2

− ̂

v
n+ 1

2
h ψ+|x

i− 1
2

−
∫
Ii

v
n+ 1

2
h ψx dx, (4.20)

∫
Ii

r
n+ 1

2
h ϕ dx =

∫
Ii

v
n+ 1

2
h ϕ dx − ̂

w
n+ 1

2
h ϕ−|x

i+ 1
2

+ ̂

w
n+ 1

2
h ϕ+|x

i− 1
2

+
∫
Ii

w
n+ 1

2
h ϕx dx, (4.21)

∫
Ii

s
n+ 1

2
h ξ dx =

∫
Ii

(
u

n+ 1
2

h + 1

3

(
(un+1

h )2 + (un+1
h )(un

h) + (un
h)

2
))

ξ dx, (4.22)

∫
Ii

δ+
t rn

hζ dx =
∫
Ii

rn+1
h − rn

h

τ
ζ dx = ̂

s
n+ 1

2
h ζ−|x

i+ 1
2

− ̂

s
n+ 1

2
h ζ+|x

i− 1
2

−
∫
Ii

s
n+ 1

2
h ζx dx, (4.23)

hold for all test functions φ, ψ , ϕ , ξ , ζ ∈ V k . Recall that ωn+ 1
2 = (ωn + ωn+1)/2, where ω = uh, vh, · · · . Easy to verify that 

the implicit midpoint rule method with this nonlinear term treatment is second order accurate in time.
Next, we provide details related to the implementation of the IMR-LDG method (4.19)-(4.23). One can define Un

h , V n
h , 

W n
h , Rn

h and Sn
h as before. Denote ωn+ 1

2
h = 1

2 (ωn+1
h + ωn

h) for ω = U , V , W , R or S . The IMR-LDG method (4.19)-(4.19) can 
be rewritten in the matrix form as

U
n+ 1

2
h = τ

2
W

n+ 1
2

h + Un
h,

W
n+ 1

2 = Mv V
n+ 1

2 ,
h h
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R
n+ 1

2
h = V

n+ 1
2

h − Mw W
n+ 1

2
h , (4.24)

S
n+ 1

2
h = f s′(Un

h, U
n+ 1

2
h ),

R
n+ 1

2
h = τ

2
Ms S

n+ 1
2

h + Rn
h,

where the nonlinear function f s′ comes from the discretization of the nonlinear term, and the matrices Mv , Mw and Ms

were discussed in Section 4.1. Again, the combination of the second and third equations leads to

R
n+ 1

2
h = K vr V

n+ 1
2

h , V
n+ 1

2
h = K −1

vr R
n+ 1

2
h . (4.25)

Therefore, the system (4.24) can be reduced to

U
n+ 1

2
h = τ

2
Mv V

n+ 1
2

h + Un
h, (4.26)

V
n+ 1

2
h = τ

2
K −1

vr Ms fs′(Un
h, U

n+ 1
2

h ) + V n
h . (4.27)

We can plug the first equation into the second one to derive one nonlinear equation involving V
n+ 1

2
h . To solve this nonlinear 

equation, one could use Newton’s method or fixed point iteration. Since iterative method is used, a stopping criterion of

‖(V
n+ 1

2
h )(k) − (V

n+ 1
2

h )(k−1)‖ ≤ ε is used in the numerical implementation, where ε is the control error and is taken as 10−15

in our tests. The existence of the solution sequences {Un
h }N

n=0 and {V n
h }N

n=0 can be established via the fixed point theorem.
The next proposition show that the fully discrete IMR-LDG methods can conserve the discrete mass and energy exactly.

Proposition 4.2. Let un
h, vn

h and wn
h be the solutions of the fully discrete IMR-LDG methods (4.19)-(4.23). The discrete mass and energy 

defined as

Mn
h =

∫
I

un
hdx, Ẽn

h =
∫
I

(
(un

h)
2

2
+ (vh)

2

2
+ (wn

h)
2

2
+ (un

h)
3

3

)
dx, (4.28)

are invariant for all n.

The proof of this proposition is similar to that of Proposition 4.1, and is omitted here to save space.

4.3. Fourth order temporal discretization via extrapolation

Both temporal discretizations presented in the previous subsections are second order accurate. The Richardson extrap-
olation technique [39] is a practical method to achieve higher order numerical accuracy using lower order methods. The 
main idea is to combine the numerical solutions with various time step sizes in a particular way to obtain higher order ac-
curate resolution. One advantage of this extrapolation technique is the preservation of the numerical stability of underlying 
lower-order methods.

In this paper, we use the extrapolation technique to derive fourth order accurate temporal discretization using the for-
mula

un
E = 4

3
u2n

h

(τ

2

)
− 1

3
un

h(τ ),

where un
h(τ ) stands for the solution uh(x, tn) = uh(x, n ∗ τ ) evaluated with the time step size τ , and u2n

h (τ/2) stands for the 
solution uh(x, t2n) = uh(x, n ∗ τ ) evaluated with the time step size τ/2. Both the explicit and implicit fourth order temporal 
discretizations can be derived based on the explicit leap-frog and implicit midpoint rule methods.

5. Numerical experiments

In this section, we provide some numerical results of the proposed LDG methods with both implicit and explicit temporal 
discretizations. We first perform the accuracy tests on the methods with different initial projections and observe how that 
affects the order of accuracy. Errors of mass and energy are calculated to verify the mass and energy conservation property 
of our scheme, and we also studied the long time behavior of these methods. Examples of two solitary waves moving on 
a collision course, a solitary wave breaking up and solution blow-up are simulated to demonstrate the performance of our 
methods.
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5.1. Accuracy test

The single solitary wave can be described by a special solution [3] of the improved Boussinesq equation (1.2):

u(x, t) = α sech2

(√
α

6

x − βt − x0

β

)
, (5.1)

where α is the amplitude of the solitary wave, β is the velocity, x0 is the initial wave center and β =
√

1 + 2α
3 . To test the 

accuracy of our algorithm, we calculate the initial conditions by setting t = 0 in Eq. (5.1) and its derivative with respect to 
t:

u(x,0) = α sech2

(√
α

6

x − x0

β

)
,

ut(x,0) = 2α

√
α

6
sech2

(√
α

6

x − x0

β

)
tanh

(√
α

6

x − x0

β

)
.

We perform two sets of simulations using the ELF-LDG and IMR-LDG (both with 4th order temporal discretization via 
extrapolation) schemes with the choice of numerical fluxes (2.13). In the first simulation we use L2 initial projection for 
both u and v , and in the second simulation, we use L2 initial projection for u and P− initial projection for v (to match the 
fluxes (2.13), see (4.6) for details). In both simulations, we set:

α = 0.5, x0 = 0, −100 < x < 100, t ∈ [0,1].
One could use the exact solution as the boundary conditions; however, in practice, periodic boundary conditions turn out to 
be a good approximation and therefore is used in the simulations because the solution almost vanishes at the boundaries.

Errors in L2 and L∞ norms are calculated. Tables 5.1 and 5.2 present the numerical order of accuracy for the ELF-LDG 
scheme with P 0, P 1, P 2 and P 3 basis for u and v with different choices of projections in evaluating the numerical initial 
conditions. Numerical results of the IMR-LDG scheme are given in Tables 5.3 and 5.4. As seen in these tables, when L2

projections are applied to obtain the initial conditions of both uh and vh , only k-th order accuracy in uh is obtained with 
basis functions in Pk for k = 1, 2, 3. In contrast, optimal order of accuracy can be obtained for all four cases when the initial 
projection of v is changed to P− .

Based on these tables and other numerical tests we have done, we find that the effects of initial projection on the order 
of convergence are closely related to the choice of fluxes. When the fluxes (2.13) are chosen, if we use L2 initial projection 
for u and P+ initial projection for v , only suboptimal order of u can be obtained for P 1, P 2 and P 3 basis. When the fluxes 
(2.14) are chosen, the optimal order of accuracy can be obtained with P+ initial projection for v while suboptimal order 
of accuracy is obtained with P− initial projection for v . The same phenomena was also observed by us in [33,11], where 
energy conserving LDG methods were developed and studied for the second order linear wave equations. The improved 
Boussinesq equation studied here can be viewed as a generalization of the second order wave equation with the additional 
nonlinear term and fourth order derivative term, therefore our proposed methods are the extension of the energy conserving 
LDG methods studied in [33,11], with additional techniques introduced to numerically approximate the nonlinear term and 
fourth order derivative term, while keeping the energy conservation property.

5.2. Mass, energy conservation and long time behavior

In this test, we consider the single solitary wave problem, with the same setup as in section 5.1. The parameters α = 0.5, 
x0 = 0, −40 < x < 40, h = 0.5, τ = 0.05 are used in this example. The test is run until the final stopping time T = 250.

First, we plot the time history of the error of mass and energy (i.e., MN
h − M0

h and E N
h − E0

h) of our methods in Fig. 5.1, 
where we can observe that the mass and energy are both exactly preserved by our methods up to the machine error at the 
level of 10−14.

We also show the time history of the numerical error in L2 and L∞ norms to check the long time behavior of our 
methods. Fig. 5.2 provides the time history of the error eu of both ELF-LDG and IMR-LDG methods, with P 0, P 1 and P 2

polynomial basis. Fig. 5.3 presents the time history of the errors eu , ev and ew when P 3 polynomial basis is used. From 
these figures, we can observe that the errors of ELF-LDG and IMR-LDG methods are similar when the same time step is 
used, although we would like to comment that, by design, IMR-LDG method allows larger time step. The error of ELF-LDG 
method tends to be more oscillating than that of IMR-LDG method. For all cases except the P 0 one, numerical errors do 
not grow significantly in time, which is consistent with our observations of energy conserving methods for other wave 
equations.
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Table 5.1
Numerical error and convergence orders of u and w of ELF-LDG scheme in the single solitary wave example. L2 projection for both u0 and v0.

J N u v

‖eu‖2 C2 ‖eu‖∞ C∞ ‖ev‖2 C2 ‖ev‖∞ C∞
P 0 200 100 9.3230E−02 ∗ 6.3510E−02 ∗ 1.0936E−01 ∗ 8.3849E−02 ∗

400 200 4.7135E−02 0.9840 3.4033E−02 0.9001 5.4858E−02 0.9953 4.1718E−02 1.0071
800 400 2.3658E−02 0.9945 1.7407E−02 0.9673 2.7428E−02 1.0001 2.0590E−02 1.0187
1600 800 1.1846E−02 0.9979 8.8129E−03 0.9820 1.3708E−02 1.0006 1.0235E−02 1.0084

P 1 200 100 2.3293E−02 ∗ 2.3803E−02 ∗ 7.2707E−03 ∗ 1.0541E−02 ∗
400 200 1.2475E−02 0.9008 1.2039E−02 0.9835 1.7859E−03 2.0255 2.6515E−03 1.9911
800 400 6.4414E−03 0.9537 6.0270E−03 0.9982 4.4008E−04 2.0208 6.5169E−04 2.0246
1600 800 3.2697E−03 0.9782 3.0116E−03 1.0009 1.0909E−04 2.0123 1.6170E−04 2.0109

P 2 200 100 1.6790E−03 ∗ 1.4164E−03 ∗ 3.4423E−04 ∗ 4.8748E−04 ∗
400 200 4.0062E−04 2.0673 3.2527E−04 2.1225 4.2580E−05 3.0151 5.9007E−05 3.0464
800 400 9.8736E−05 2.0206 8.0494E−05 2.0147 5.2808E−06 3.0113 7.3468E−06 3.0057
1600 800 2.4593E−05 2.0053 2.0076E−05 2.0034 6.5712E−07 3.0065 9.0978E−07 3.0135

P 3 200 100 1.4156E−04 ∗ 2.0905E−04 ∗ 1.6208E−05 ∗ 2.6062E−05 ∗
400 200 1.8608E−05 2.9274 2.8671E−05 2.8662 1.0092E−06 4.0054 1.6892E−06 3.9475
800 400 2.3676E−06 2.9745 3.6732E−06 2.9645 6.2806E−08 4.0062 1.0402E−07 4.0214
1600 800 2.9792E−07 2.9904 4.6234E−07 2.9900 3.9149E−09 4.0039 6.4758E−09 4.0057

Table 5.2
Numerical error and convergence orders of u and w of ELF-LDG scheme in the single solitary wave example. L2 projection for u0 and P− projection for v0.

J N u v

‖eu‖2 C2 ‖eu‖∞ C∞ ‖ev‖2 C2 ‖ev‖∞ C∞
P 0 200 100 7.4327E−02 ∗ 4.5375E−02 ∗ 1.7425E−01 ∗ 1.0903E−01 ∗

400 200 3.7242E−02 0.9970 2.2867E−02 0.9886 8.6718E−02 1.0068 5.4373E−02 1.0038
800 400 1.8631E−02 0.9992 1.1442E−02 0.9989 4.3211E−02 1.0049 2.7141E−02 1.0024
1600 800 9.3165E−03 0.9998 5.7186E−03 1.0007 2.1563E−02 1.0028 1.3566E−02 1.0005

P 1 200 100 4.9784E−03 ∗ 6.6124E−03 ∗ 8.2028E−03 ∗ 1.0899E−02 ∗
400 200 1.2552E−03 1.9877 1.7168E−03 1.9455 1.9907E−03 2.0429 2.7786E−03 1.9717
800 400 3.1448E−04 1.9970 4.3265E−04 1.9885 4.8881E−04 2.0259 6.8834E−04 2.0132
1600 800 7.8660E−05 1.9992 1.0837E−04 1.9972 1.2102E−04 2.0140 1.7078E−04 2.0110

P 2 200 100 2.4070E−04 ∗ 2.9805E−04 ∗ 3.7750E−04 ∗ 5.1371E−04 ∗
400 200 3.0407E−05 2.9847 3.7439E−05 2.9929 4.6416E−05 3.0238 6.2733E−05 3.0336
800 400 3.8111E−06 2.9961 4.7477E−06 2.9792 5.7447E−06 3.0143 7.7004E−06 3.0262
1600 800 4.7671E−07 2.9990 5.9413E−07 2.9984 7.1428E−07 3.0077 9.5320E−07 3.0141

P 3 200 100 1.1264E−05 ∗ 1.5191E−05 ∗ 1.7196E−05 ∗ 2.6429E−05 ∗
400 200 7.1039E−07 3.9870 1.0075E−06 3.9144 1.0666E−06 4.0110 1.7418E−06 3.9235
800 400 4.4502E−08 3.9967 6.3418E−08 3.9897 6.6283E−08 4.0082 1.0824E−07 4.0082
1600 800 2.7833E−09 3.9990 3.9577E−09 4.0021 4.1292E−09 4.0047 6.7114E−09 4.0115

5.3. Two solitary waves

In this example, we consider the case when two solitary waves move towards each other and collide. The initial condi-
tions are given by

u(x,0) = α1 sech2

(√
α1

6

x − x1

β1

)
+ α2 sech2

(√
α2

6

x − x2

β2

)
,

and

ut(x,0) =2α1

√
α1

6
sech2

(√
α1

6

x − x1

β1

)
tanh

(√
α1

6

x − x1

β1

)

+ 2α2

√
α2

6
sech2

(√
α2

6

x − x2

β2

)
tanh

(√
α2

6

x − x2

β2

)
,

where β1 =
√

1 + 2α1
3 , β2 = −

√
1 + 2α2

3 . The first solitary wave is initially located at x = x1 with the amplitude α1, and 
moves to the right with speed β1. The other one is initially located at x = x2 with the amplitude α2, and moves to the left 
with speed |β2|.
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Table 5.3
Numerical error and convergence orders of u and w of IMR-LDG scheme in the single solitary wave example. L2 projection for both u0 and v0.

J N
u v

‖eu‖2 C2 ‖eu‖∞ C∞ ‖ev‖2 C2 ‖ev‖∞ C∞
P 0 200 100 9.3230E−02 ∗ 6.3510E−02 ∗ 1.0936E−01 ∗ 8.3849E−02 ∗

400 200 4.7135E−02 0.9840 3.4033E−02 0.9001 5.4858E−02 0.9953 4.1718E−02 1.0071
800 400 2.3658E−02 0.9945 1.7407E−02 0.9673 2.7428E−02 1.0001 2.0590E−02 1.0187
1600 800 1.1846E−02 0.9979 8.8129E−03 0.9820 1.3708E−02 1.0006 1.0235E−02 1.0084

P 1 200 100 2.3293E−02 ∗ 2.3803E−02 ∗ 7.2707E−03 ∗ 1.0541E−02 ∗
400 200 1.2475E−02 0.9008 1.2039E−02 0.9835 1.7859E−03 2.0255 2.6515E−03 1.9911
800 400 6.4414E−03 0.9537 6.0270E−03 0.9982 4.4008E−04 2.0208 6.5169E−04 2.0246
1600 800 3.2697E−03 0.9782 3.0116E−03 1.0009 1.0909E−04 2.0123 1.6170E−04 2.0109

P 2 200 100 1.6790E−03 ∗ 1.4164E−03 ∗ 3.4423E−04 ∗ 4.8748E−04 ∗
400 200 4.0062E−04 2.0673 3.2527E−04 2.1225 4.2580E−05 3.0151 5.9007E−05 3.0464
800 400 9.8736E−05 2.0206 8.0494E−05 2.0147 5.2808E−06 3.0113 7.3467E−06 3.0057
1600 800 2.4593E−05 2.0053 2.0076E−05 2.0034 6.5712E−07 3.0065 9.0977E−07 3.0135

P 3 200 100 1.4156E−04 ∗ 2.0907E−04 ∗ 1.6208E−05 ∗ 2.6065E−05 ∗
400 200 1.8608E−05 2.9274 2.8674E−05 2.8662 1.0092E−06 4.0054 1.6896E−06 3.9474
800 400 2.3676E−06 2.9745 3.6735E−06 2.9645 6.2806E−08 4.0062 1.0407E−07 4.0211
1600 800 2.9792E−07 2.9904 4.6237E−07 2.9900 3.9149E−09 4.0039 6.4817E−09 4.0050

Table 5.4
Numerical error and convergence orders of u and w of IMR-LDG scheme in the single solitary wave example. L2 projection for u0 and P− projection for v0.

J N u v

‖eu‖2 C2 ‖eu‖∞ C∞ ‖ev‖2 C2 ‖ev‖∞ C∞
P 0 200 100 7.4327E−02 ∗ 4.5375E−02 ∗ 1.7425E−01 ∗ 1.0903E−01 ∗

400 200 3.7242E−02 0.9970 2.2867E−02 0.9886 8.6718E−02 1.0068 5.4373E−02 1.0038
800 400 1.8631E−02 0.9992 1.1442E−02 0.9989 4.3211E−02 1.0049 2.7141E−02 1.0024
1600 800 9.3165E−03 0.9998 5.7186E−03 1.0007 2.1563E−02 1.0028 1.3566E−02 1.0005

P 1 200 100 4.9784E−03 ∗ 6.6124E−03 ∗ 8.2028E−03 ∗ 1.0899E−02 ∗
400 200 1.2552E−03 1.9877 1.7168E−03 1.9455 1.9907E−03 2.0429 2.7786E−03 1.9717
800 400 3.1448E−04 1.9970 4.3265E−04 1.9885 4.8881E−04 2.0259 6.8834E−04 2.0132
1600 800 7.8660E−05 1.9992 1.0837E−04 1.9972 1.2102E−04 2.0140 1.7078E−04 2.0110

P 2 200 100 2.4070E−04 ∗ 2.9804E−04 ∗ 3.7750E−04 ∗ 5.1370E−04 ∗
400 200 3.0407E−05 2.9847 3.7438E−05 2.9929 4.6416E−05 3.0238 6.2733E−05 3.0336
800 400 3.8111E−06 2.9961 4.7476E−06 2.9792 5.7447E−06 3.0143 7.7003E−06 3.0262
1600 800 4.7671E−07 2.9990 5.9412E−07 2.9984 7.1428E−07 3.0077 9.5320E−07 3.0141

P 3 200 100 1.1264E−05 ∗ 1.5200E−05 ∗ 1.7196E−05 ∗ 2.6432E−05 ∗
400 200 7.1038E−07 3.9870 1.0086E−06 3.9137 1.0666E−06 4.0110 1.7421E−06 3.9233
800 400 4.4500E−08 3.9967 6.3554E−08 3.9882 6.6283E−08 4.0082 1.0829E−07 4.0079
1600 800 2.7828E−09 3.9992 3.9779E−09 3.9979 4.1292E−09 4.0047 6.7173E−09 4.0108

In this example, we have chosen P 3 as the space of basis functions and set

t ∈ [0,80], x ∈ [−60,100], h = 1, τ = 0.1, x1 = −20, x2 = 60.

The numerical results of both ELF-LDG and IMR-LDG methods with the same set of parameters are similar for this test, and 
hence we only present the results of ELF-LDG methods with P 3 basis to save space.

We are interested in the interaction between two waves of various parameters. As shown in [18,20,32,7,6,22], secondary 
small solitary waves may appear numerically after the collision of two waves for a certain range of wave amplitudes, and 
when such phenomenon appears, the interaction is named inelastic. Experience from these literatures suggested that, when 
max(α1, α2) ≤ 0.4, there are no visible secondary soliton waves in the interior of the region between the principal solitons, 
and the collision is elastic. And when max(α1, α2) ≥ 0.4, the interaction is inelastic and noticeable secondary soliton waves 
will appear after the collision.

We first study the collision of two solitary waves with the same amplitude. Fig. 5.4 presents the propagation of two 
solitary waves with α1 = α2 = 0.2. We can observe that both solitary waves preserve their original amplitudes and no 
displacement is observed. There is no visible secondary solitary waves and this collision is elastic. Fig. 5.5 presents the 
propagation of two solitary waves with α1 = α2 = 1.2, where some secondary solitary waves can be observed after the 
collision. Both results are in good agreement with those reported in the literatures.

Next, we present some results when solitary waves of different amplitudes interact. Fig. 5.6 includes the interaction of 
two solitary waves with α1 = 0.1, α2 = 0.3, and we can observe that the collision is elastic with no secondary solitary 
waves. Figs. 5.7, 5.8 and 5.9 present the interaction of two solitary waves with α1 = 0.1, α2 = 0.5, with α1 = 0.1, α2 = 1.2
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Fig. 5.1. Errors of mass (left) and energy (right) in the single solitary wave example. Top: results of the ELF-LDG scheme with P 1 basis; Bottom: results of 
the IMR-LDG scheme with P 1 basis.

and with α1 = 1.2, α2 = 1.5, respectively. Secondary solitary waves appear after the interaction (although some of them are 
relatively small) and the collisions are inelastic.

Following the definition in [32,6], the inelasticity coefficient Kα is defined as follows

Kα = αm

max(α1,α2)
,

where αm is the maximum joint amplitude at the collision time. Table 5.5 shows the maximum joint amplitudes of our 
methods at the collision time, compared with those in [30] and [7]. For comparison, the parameters to generate these data 
in Table 5.5 are set as

x1 = −20, xr = 30, xl = −80, xr = 120,

which is the same as those in [30,7]. We notice that αm is always smaller than the average of two wave amplitudes 
(α1 +α2)/2 and the coefficient Kα will decrease when α2 increase while keeping α1 invariant. The numerical results of our 
methods are similar as those in the literatures, but with a much larger spatial and temporal step size.

5.4. Wave break-up

In this example, we consider the wave break-up phenomenon. The initial conditions are given in the following:

u(x,0) = 2α sech2

(√
α

6

x − x0

β

)
, ut(x,0) = 0,
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Fig. 5.2. Time history of the numerical errors of uh in L2 norm (left) and L∞ norm (right) of ELF-LDG and IMR-LDG methods in the single solitary wave 
example with different polynomial basis P 0 (top), P 1 (middle) and P 2 (bottom). (For interpretation of the references to color in this figure, the reader is 
referred to the web version of this article.)
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Fig. 5.3. Time history of the numerical errors in L2 norm (left) and L∞ norm (right) of ELF-LDG and IMR-LDG methods in the single solitary wave example 
with P 3 polynomial basis. Top: numerical error of uh ; Middle: numerical error of vh; Bottom: numerical error of wh .
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Fig. 5.4. The propagation of two solitary waves (left) and the contour line (right) with α1 = 0.2, α2 = 0.2.

Fig. 5.5. The propagation of two solitary waves (left) and the contour line (right) with α1 = 1.2, α2 = 1.2.

Fig. 5.6. The propagation of two solitary waves (left) and the contour line (right) with α1 = 0.1, α2 = 0.3.
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Fig. 5.7. The propagation of two solitary waves (left) and the contour line (right) with α1 = 0.1, α2 = 0.5.

Fig. 5.8. The propagation of two solitary waves (left) and the contour line (right) with α1 = 0.1, α2 = 1.2.

Fig. 5.9. The propagation of two solitary waves (left) and the contour line (right) with α1 = 1.2, α2 = 1.5.
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Table 5.5
The maximum joint amplitudes at the collision of ELF-LDG methods with P 3 basis and various α1, α2. Parameters: h = 0.5, τ = 0.01, x1 = −20, x2 = 30, 
xl = −80, xr = 120 and T = 30.

α1 α2 Our αm αm in [30] αm in [7] Our Kα

h = 0.5, τ = 0.01 h = 0.1, τ = 0.001 h = 0.1, τ = 0.001

0.4 0.4 0.72243 0.72243 0.71642 1.80607
2 2 3.31617 3.31620 3.25880 1.65809
0.4 0.5 0.80846 0.80843 0.79614 1.61692
0.4 1.5 1.71761 1.71760 1.62530 1.14507
0.4 2.5 2.66881 2.66880 2.56680 1.06752

Fig. 5.10. A solitary wave breaks up (left) and the contour line (right) test with α = 1.

where β =
√

1 + 2α
3 . In the numerical experiment, we have chosen P 3 as the space of basis functions, and set

x0 = 20, x ∈ [−60,100], t ∈ [0,60], h = 1, τ = 0.1.

Again, the numerical results are based on the ELF-LDG methods.
Fig. 5.10 shows an initial solitary wave with amplitude α = 1 breaking into two smaller diverging solitary waves. Note 

that the two solitary waves are symmetric and move in opposite directions with oscillating tails between them. In Fig. 5.11, 
we observe an initial wave with amplitude α = 0.1 breaks into two smaller solitary waves, symmetric and moving in op-
posite directions, while no visible oscillating tails between them. The wave break-up can be viewed as two same amplitude 
waves collision by setting the initial time as the time of two waves collision. Therefore the observation of with or without 
oscillating tails in Figs. 5.10 and 5.11 is consistent with the conclusions in Section 5.3.

5.5. Finite time blow-up

In this example, we simulate the finite time blow-up of the numerical solution, which was discussed in [27,37,38]. The 
equation is considered on x ∈ [0, 1] with the initial conditions

u(x,0) = −3 sin(πx), ut(x,0) = − sin(πx).

Under this setup, it is known from the discussion in [37] that there exists a finite time T 0 such that a unique local solution 
u ∈ C2([0, T 0]); H2(0, 1) 

⋂
H1

0(0, 1) exists and satisfies

‖u(·, t)‖L2(1,2) → ∞, as t → T 0,

and

I(t) =
1∫

0

u(x, t) sin(πx)dx → −∞, as t → T 0.

We use ELF-LDG scheme with P 3 basis and h = 0.005, τ = 0.001 to simulate this example. The numerical solution uh
at various times (before the blow-up) is shown in Fig. 5.12, where we can observe that the solution tends to blow up at 
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Fig. 5.11. A solitary wave breaks up (left) and the contour line (right) test with α = 0.1.

Fig. 5.12. The numerical solution uh of the blow-up test at different times.

x = 0.5 and reaches the value of −3 × 104 when t = 2.18. The time history of the quantity I(t) and the 3D plot of the 
numerical solution uh(x, t) are shown in Fig. 5.13.

6. Concluding remarks

In this paper, we have developed and analyzed energy conserving LDG methods for solving improved Boussinesq equa-
tion. We proved that the proposed semi-discrete scheme has the desired property of preserving mass and energy exactly. An 
optimal error estimate is provided for the semi-discrete methods if the flux and initial projection are chosen carefully, and 
numerical tests confirm that optimal convergence rate can be obtained. Both explicit and implicit temporal discretizations 
were presented to obtain two kinds of fully discrete methods, which are shown to conserve the discrete mass and energy 
exactly. The proposed LDG methods have the advantage of high order accuracy and easily extended to arbitrary order, mass 
and energy conservation, and optimal error estimate. They also inherit other advantages of the DG methods, including the 
adaptivity and excellent parallel efficiency. Numerous examples of wave propagation showed the proposed LDG scheme has 
the capacity to simulate one traveling solitary wave, two solitary waves interaction, single wave break-up and blow-up phe-
nomenon well. The proposed methods and the analysis to investigate the energy conservation and error estimate would 
be very useful for other types of wave equations involving nonlinear high order and mixed derivatives terms. Study on the 
error estimate of the fully discrete methods, and generalization to other wave equations will be the subject of our future 
investigation.
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Fig. 5.13. Numerical results of the blow-up test. Left: time history of the quantity I(t); Right: 3D plot of the time history of the numerical solution uh .
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