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Abstract
Wave propagation problems have many applications in physics and engineering, and the
stochastic effects are important in accurately modeling them due to the uncertainty of the
media. This paper considers and analyzes a fully discrete finite element method for a class
of nonlinear stochastic wave equations, where the diffusion term is globally Lipschitz con-
tinuous while the drift term is only assumed to satisfy weaker conditions as in Chow (Ann
Appl Probab 12(1):361–381, 2002). The novelties of this paper are threefold. First, the error
estimates cannot be directly obtained if the numerical scheme in primal form is used. An
equivalent numerical scheme in mixed form is therefore utilized and several Hölder continu-
ity results of the strong solution are proved, which are used to establish the error estimates in
both L2 norm and energy norms. Second, two types of discretization of the nonlinear term
are proposed to establish the L2 stability and energy stability results of the discrete solutions.
These two types of discretization and proper test functions are designed to overcome the
challenges arising from the stochastic scaling in time issues and the nonlinear interaction.
These stability results play key roles in proving the probability of the set on which the error
estimates hold approaches one. Third, higher moment stability results of the discrete solu-
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tions are proved based on an energy argument and the underlying energy decaying property
of the method. Numerical experiments are also presented to show the stability results of the
discrete solutions and the convergence rates in various norms.

Keywords Stochastic wave equation · Multiplicative noise · Finite element method · Higher
moment · Error estimate · Stability analysis

Mathematics Subject Classification 65N12 · 65N15 · 65N30

1 Introduction

In this paper, we consider the nonlinear stochastic wave equation with Neumann boundary
condition and functional-type multiplicative noise, taking the form of

dut = Δudt + f (u)dt + g(u)dW (t), in D × (0, T ], (1.1)

∂u

∂n
= 0 in ∂D × (0, T ], (1.2)

u(0) = h1(x) ut (0) = h2(x). in D. (1.3)

Here, D ⊂ R
d (d = 1, 2, 3) is a bounded domain, W : Ω × (0, T ] → R is a standard

Wiener process on the filtered probability space (Ω,F, {Ft : t ≥ 0},P), h1(x) and h2(x)
are the initial data whose regularity assumptions will be given later. The nonlinear drift term
f (u) is assumed to satisfy the conditions specified in [12], which discusses the existence and
uniqueness for local and global solutions of (1.1) in Sobolev space. More specifically, we
assume

f (u) =
q∑

j=1

a j (x)u
j , (1.4)

where q is an odd integer with 1 ≤ q ≤ 3 for d = 3 and q ≥ 1 for d = 1, 2, a j (x) are
bounded and continuous for any j , and there exist positive constants α ≥ 0 and λ > 0 such
that

F(u):= −
∫ u

0
f (s)ds = −

q∑

j=1

1

j + 1
a j (x)u

j+1 ≥
(

α

2
+ λ

2
uq−1

)
u2. (1.5)

One example that satisfies these conditions is f (u) = −u − u3. Furthermore, we assume
that g(u) is continuously differentiable, globally Lipschitz continuous, |g′′(u)| is bounded,
and satisfies the growth condition, i.e., there exists a constant C such that

g ∈ C1, (1.6)

|g(a) − g(b)| ≤ C |a − b|, (1.7)

|g(a)|2 ≤ C(1 + a2), (1.8)

|g′′(u)| ≤ C . (1.9)

Throughout this paper, C denotes a generic positive constant, which may have different
values at different occasions. Under these assumptions on the drift term and the diffusion
term, it is proved in [12] that, for a bounded domain D with C2 boundary, there exists a
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unique continuous solution u(t, ·) ∈ H1(D) and ut (t, ·) ∈ L2(D) in [0, T ] such that

E

[
sup
t≤T

{
‖ut (t, x)‖2L2 + ‖∇u(t, x)‖2L2 + ‖u(t, x)‖q+1

Lq+1

}]
< ∞. (1.10)

Wave propagation problem arises in many fields of scientific and engineering applications
[25], with examples including the geoscience, petroleum engineering, telecommunication,
and the defense industry etc. The deterministic wave equations have been extensively investi-
gated in the last few decades. For the second-order wave equation with nonlinear drift terms,
we refer the readers to some partial differential equation (PDE) papers in [32, 45], which
discuss their well-posedness or blow-up properties based on different polynomial nonlin-
ear drift terms. A large variety of numerical methods have been proposed for the numerical
approximations of the second-order wave equation, including finite difference, finite element,
finite volume, spectral methods and integral equation based methods. We refer to [1, 3, 4, 11,
15, 16, 24, 26, 33, 34, 42, 46–48, 50, 51], and the references therein for various numerical
methods based on the Galerkin approach.

In the wave propagation applications, the stochastic effects are important in accurately
modeling them due to the uncertainty of the media. The stochastic wave equation is a hyper-
bolic type stochastic partial differential equation (SPDE), and its solution behavior is very
different from that of the stochastic heat equation. Numerical methods for the wave equation
with various forms of stochasticity have been studied in the literature. For example, the wave
equations with random coefficients or random initial/boundary conditions were studied in
[10, 31, 43], and numerical methods for the stochastic wave equation with additive noise
were presented in [18, 20, 35, 37, 39]. For the multiplicative noise, the well-posedness or
the regularity of the solutions of the stochastic wave equation was considered in [21, 22,
40, 41], where the nonlinear drift term is Lipschitz continuous, and the noise is white in
time and correlated in space. Later, in [12, 14], some blow-up solutions were presented for
a class of nonlinear stochastic wave equations with white in time and correlated in space
noise. In [12], the theorems on well-posedness of the local and global solutions were given
for the stochastic wave equation with nonlinear drift term in the form of (1.4). The long-time
asymptotic bounds of the solutions were proved in [13]. There have also been some studies
on numerical methods for the stochastic wave equation with multiplicative noise. For exam-
ple, in [49], a difference scheme was presented for the model when both the nonlinear drift
term f and diffusion term g are Lipschitz continuous, and the optimal rates of convergence
were established for such method. The stochastic wave equations with Lipschitz continuous
nonlinear drift term and diffusion term were studied using the semi-group approach in [2, 17,
19, 38, 44]. As a comparison, the multiplicative noise is considered in this paper based on the
variational approach (see [27–30]), and the nonlinear drift term is not Lipschitz continuous.

In this paper, we present the fully discrete methods for the stochastic wave equation with
multiplicative noise, by utilizing the finite element approximation in space, and the implicit
Euler/modified Crank–Nicolson approximation in time. There are twomain objectives in this
paper. First, we want to establish the second moment and higher moment stability results
of the discrete solutions in L2 norm and various energy norms. This is motivated by the
conjecture that the numerical solutions will inherit the stability properties of the strong
solutions. The goal is achieved by designing the proper numerical scheme, choosing the
test function, and using an energy argument. Second, we want to provide the convergence
rates of the error estimates in both L2 and energy norms for the proposed method when
the nonlinear drift term is not Lipschitz continuous and the diffusion term is multiplicative
noise, and this would be the first work using the variational approach, to our best knowledge.
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To achieve this objective, we rewrite the numerical scheme in the mixed form, utilize the
above stability results, establish several Hölder continuity results, and construct a subset with
nearly probability one, to handle complex interaction between the multiplicative noise and
super-linear nonlinear term, such that the error estimates hold on this subset. This concept is
proposed based on the bounds of the solutions and is motivated by the idea in [9].

The rest of the paper is organized as follows. In Sect. 2, we prove the Hölder continuity
results and some technical lemmas that can be used to establish the error estimates. In Sect.
3, we present the fully discrete finite element methods for the stochastic wave equation, and
prove the discrete stability in L2 norm, discrete stability in various energy norm, as well
as the discrete higher moment stability in L2 norm and energy norms. In Sect. 4, the error
estimates in L2 norm and energy norms are established on a subset of which the probability
approaches 1 as spatial mesh size decreases to 0. Numerical experiments are provided in
Sect. 5 to validate the theoretical results, including discrete stability results and convergence
rates in different norms.

2 Preliminaries and Properties of SPDE Solution

In this section, we first present some basic lemmas that will be used in the stability and error
estimate analysis in Sects. 3 and 4. We then present some more useful lemmas about the
Hölder continuity in time for the strong solution u in various norms, whose proofs are given
in Appendix.

The standard Sobolev notations are adopted in the paper. We use ‖ · ‖L p and ‖ · ‖Hk

to denote the L p and Hk norms in the whole domain D, respectively. The notation (· , ·)
represents the standard inner product on D.

Lemma 1 In the 1D and 2D settings, for each individual term uq of the nonlinear function
f (·) defined in (1.4), we have for any integer 0 ≤ j ≤ q,

‖u jvq− j − ũ j ṽq− j‖2L2

≤ C
(
‖u‖2(q−1)

H1 + ‖v‖2(q−1)
H1 + ‖ũ‖2(q−1)

H1 + ‖ṽ‖2(q−1)
H1

) (‖u − ũ‖2H1 + ‖v − ṽ‖2H1

)
,

where q > 0 is an integer, and u, v, ũ, ṽ are real value functions belonging to H1(Ω). The
same result holds for q = 1, 2, 3 in the 3D setting.

Proof A direct calculation shows that

u jvq− j − ũ j ṽq− j = vq− j (u j − ũ j ) + ũ j (vq− j − ṽq− j ),

whence by applying Young’s inequality and the embedding theorem,

‖vq− j (u j − ũ j )‖2L2 = ‖vq− j (u j−1 + u j−2ũ + · · · + ũ j−1)(u − ũ)‖2L2

≤ C
(‖vq−1(u − ũ)‖2L2 + ‖uq−1(u − ũ)‖2L2 + ‖ũq−1(u − ũ)‖2L2

)

≤ C
(
‖u‖2(q−1)

H1 + ‖v‖2(q−1)
H1 + ‖ũ‖2(q−1)

H1

)
‖u − ũ‖2H1 , (2.1)

and

‖ũ j (vq− j − ṽq− j )‖2L2 = ‖ũ j (vq− j−1 + vq− j−2ṽ + · · · + ṽq− j−1)(v − ṽ)‖2L2

≤ C
(‖vq−1(v − ṽ)‖2L2 + ‖ũq−1(v − ṽ)‖2L2 + ‖ṽq−1(v − ṽ)‖2L2

)
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≤ C
(
‖v‖2(q−1)

H1 + ‖ũ‖2(q−1)
H1 + ‖ṽ‖2(q−1)

H1

)
‖v − ṽ‖2H1 . (2.2)

Combining (2.1) and (2.2) leads to the desired result. ��
The following lemma on the discrete summation-by-parts property is also provided. The

proof is straightforward and skipped here.

Lemma 2 (summation-by-parts) Suppose {an}�n=0 and {bn}�n=0 are two sequences of func-
tions. Then

�∑

n=1

(an − an−1, bn) = (a�, b�) − (a0, b0) −
�∑

n=1

(an−1, bn − bn−1).

Next, we present some results on the Hölder continuity in time for the strong solution
u in various norms, which are useful in the error estimates. Note that the regularity of the
solution is given in (1.10), and the requirements of the spatial regularity of the solution in
these Lemmas are more stringent. The proofs of these Lemmas are postponed to Appendix
for the reader’s convenience.

Define a new variable v as v:=ut . We first give the Hölder continuity in time for the strong
solution u and v with respect to the spatial L2 norm.

Lemma 3 (Hölder continuity in time for u in L2 norm) Let u be the strong solution to
problem (1.1)–(1.3). Then for any s, t ∈ [0, T ] with s < t , we have

E
[‖u(t) − u(s)‖2L2

] ≤ C(t − s)2, (2.3)

where

C =CE
[‖h2‖2L2

] + CE
[ ∫ t

0
‖Δu(ζ )‖2L2dζ

] + CE
[ ∫ t

0
‖u(ζ )‖2q

L2q dζ
] + C .

Lemma 4 (Hölder continuity in time for v in L2 norm) For any s, t ∈ [0, T ] with s < t , we
have

E
[‖v(t) − v(s)‖2L2

] ≤ C(t − s), (2.4)

where

C = CE
[ ∫ t

s
‖Δu(ζ )‖2L2dζ

] + CE
[ ∫ t

s
‖u(ζ )‖2q

L2q dζ
] + C sup

s≤ζ≤t
E

[‖u(ζ )‖2L2

] + C .

Next, we give the Hölder continuity in time for the strong solution u and v with respect
to the spatial H1-seminorm.

Lemma 5 (Hölder continuity in time for u in H1-seminorm) Let u be the strong solution to
problem (1.1)–(1.3). Under the assumptions (1.6)–(1.8), for any s, t ∈ [0, T ] with s < t , we
have

E
[‖∇(u(t) − u(s))‖2L2

] ≤ C(t − s)2, (2.5)

where

C =CE
[‖∇h2‖2L2

] + CE
[ ∫ t

0
‖∇Δu(ζ )‖2L2dζ

] + CE
[ ∫ t

0
‖u(ζ )‖4(q−1)

L4(q−1)dζ
]

+ CE
[ ∫ t

0
‖∇u(ζ )‖4L4dζ

] + C .
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Lemma 6 (Hölder continuity in time for v in H1-seminorm) Let u be the strong solution to
problem (1.1)–(1.3). Under the assumptions (1.6)–(1.8), for any s, t ∈ [0, T ] with s < t , we
have

E
[‖∇(v(t) − v(s))‖2L2

] ≤ C(t − s), (2.6)

where

C =CE
[ ∫ t

s
‖∇Δu(ζ )‖2L2dζ

] + CE
[ ∫ t

s
‖u(ζ )‖4(q−1)

L4(q−1)dζ
]

+ C sup
s≤ζ≤t

E
[‖∇u(ζ )‖4L4

] + C .

At the end of this section, we give the Hölder continuity in time for the strong solution u
with respect to the spatial H2-seminorm.

Lemma 7 (Hölder continuity in time for u in H2-seminorm) Let u be the strong solution to
problem (1.1)–(1.3). Under the assumptions (1.6)–(1.9), for any s, t ∈ [0, T ] with s < t , we
have

E
[‖∇2(u(t) − u(s))‖2L2

] ≤ C(t − s)2, (2.7)

where

C =CE
[‖∇2h2‖2L2

] + CE
[ ∫ t

0
‖∇2Δu(ζ )‖2L2dζ

] + CE
[ ∫ t

0
‖u(ζ )‖4(q−1)

L4(q−1)dζ
]

+ CE
[ ∫ t

0
‖∇2u(ζ )‖4L4dζ

] + CE
[ ∫ t

0
‖∇u(ζ )‖8L8dζ

] + C .

Remark 1 We note that the constants in the above Lemmas hinge only on the regularity of u
in space. More precisely, under the regularity assumption that

E

[
‖h2‖2H2 +

∫ T

0
‖Δu(ζ )‖2H2 + ‖∇2u(ζ )‖4L4 + ‖∇u(ζ )‖8L8

+ ‖u(ζ )‖2q
L2q + ‖u(ζ )‖4(q−1)

L4(q−1) dζ
]

+ sup
0≤ζ≤T

E
[‖∇u(ζ )‖4L4 + ‖u(ζ )‖2L2

]
< ∞,

(2.8)

all the constants in Lemmas 3–7 are bounded.

Remark 2 Following the proofs of Lemmas 3–7, we could derive the Hölder continutiy in
time for u in Hσ norm and for v in Hσ−1 norm (σ ≥ 2), namely, for any s, t ∈ [0, T ] with
s < t ,

E[‖u(t) − u(s)‖2Hσ ] ≤ C(σ, u)(s − t)2,

E[‖v(t) − v(s)‖2Hσ−1 ] ≤ C(σ, u)(s − t),
(2.9)

where the constant C(σ, u) depends on the proper spatial derivatives of the solutions for the
space-smooth noise. In particular, the explicit dependence when σ = 2 is given in (2.8).
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3 Fully Discrete Finite Element Methods and Stability Estimates

In this section, we start by presenting the fully discrete finite elementmethods for the stochas-
tic wave equations (1.1)–(1.4), and then establish several stability estimates of the numerical
solutions. In addition to the second moment stability in L2 norm and energy norms of the
discrete numerical solutions, the stability of higher moments is also provided.

3.1 Notations and the Finite Element Methods

Let Th be a quasi-uniform triangulation of the domain D. We consider the Pr -Lagrangian
finite element space

Vh = {
vh ∈ C(D̄) : vh |K ∈ Pr (K ), ∀K ∈ Th

}
, (3.1)

where D̄ is the closure of the domain D, Pr (K ) denotes the space of all polynomials of
degrees up to r on K , and r ≥ 1 is an integer. Consider a uniform partition of the time
domain [0, T ] with τ = T /N , and denote tn = nτ for n = 0, 1, · · · N .

The fully discretized numerical methods for (1.1) is to seek an Ftn adapted Vh-valued
process {unh}Nn=0 such that it holds P-almost surely that:

(
un+1
h − 2unh + un−1

h

τ
,wh

)
+ τ(∇un+1

h ,∇wh)

= τ( f n+1
h , wh) + (g(unh), wh) Δ̄Wn+1 ∀ wh ∈ Vh, (3.2)

where the notation Δ̄Wn+1 is defined by

Δ̄Wn+1:=W (tn+1) − W (tn) ∼ N (0, τ ), (3.3)

and there are two choices for the discretization of the nonlinear drift term:

1. Fully implicit discretization:

f n+1
h := f (un+1

h ). (3.4)

2. Modified Crank–Nicolson discretization:

f n+1
h := f̂ (un+1

h , unh) =
⎧
⎨

⎩
− F(un+1

h )−F(unh )

un+1
h −unh

if un+1
h �= unh,

f (un+1
h ) if un+1

h = unh,
(3.5)

where F(·) is defined in (1.5).

The finite element method (3.2) involves a two-step implicit temporal discretization, and
would need two initial conditions u0h and u−1

h to start. The initial condition u0h :=Phu(x, 0)
is obtained via a standard L2-projection operator defined as Ph : L2(D) −→ Vh satisfying

(Phu, wh) = (u, wh) ∀wh ∈ Vh,

and u−1
h = u0h − τ Phut (x, 0), namely, the backward Euler method is used for the initial

step. The discrete Laplace operator Δh : Vh �→ Vh is defined as follows: given zh ∈ Vh ,
Δhzh ∈ Vh is chosen such that

(Δhzh, wh) = −(∇zh,∇wh) ∀ wh ∈ Vh . (3.6)
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3.2 Stability in L2 Norm and Energy Norms

For the deterministic wave equation (i.e., g = 0 in (1.1)), it is well-known that this model
preserves the Hamiltonian, defined as

H(u):=1

2
‖ut‖2L2 + 1

2
‖∇u‖2L2 + (F(u), 1),

where F(u) satisfies the condition (1.5). The discrete analogue of the Hamiltonian is defined
as

H̃(unh):=
1

2
‖dtunh‖2L2 + 1

2
‖∇unh‖2L2 + (F(unh), 1), (3.7)

where dt denotes the temporal difference operator defined by

dtu
n
h = unh − un−1

h

τ
. (3.8)

Before starting the stability estimate, we summarize the assumption on the nonlinear drift
term below.

Assumption 1 The nonlinear drift term f (u) given in (1.4) satisfies (1.5). Furthermore, F(·)
is convex if the fully implicit discretization (3.4) of the nonlinear term is utilized.

Theorem 1 (stability of discrete Hamiltonian) Let {u�
h}N�=0 denote the numerical solutions

of the finite element methods (3.2). Under the Assumption 1, the following inequality holds
for any integer � ∈ [1, N ],
1

2
E

[
‖dtu�

h‖2L2

]
+ 1

2
E

[
‖∇u�

h‖2L2

]
+ (F(u�

h), 1)

+ 1

4

�−1∑

n=0

E

[
‖dtun+1

h − dtu
n
h‖2L2

]
+ 1

2

�−1∑

n=0

E

[
‖∇(un+1

h − unh)‖2L2

]

= E

[
H̃(u�

h)
]

+ 1

4

�−1∑

n=0

E

[
‖dtun+1

h − dtu
n
h‖2L2

]
+ 1

2

�−1∑

n=0

E

[
‖∇(un+1

h − unh)‖2L2

]
≤ C .

Proof Taking the test function wh = dtu
n+1
h in (3.2), we have

(
un+1
h − 2unh + un−1

h

τ
, dtu

n+1
h

)
+ τ

(
∇un+1

h ,∇dtu
n+1
h

)

= τ
(
f n+1
h , dtu

n+1
h

)
+

(
g(unh), dtu

n+1
h

)
Δ̄Wn+1. (3.9)

The two terms on the left can be rewritten as:
(
un+1
h − 2unh + un−1

h

τ
, dtu

n+1
h

)
=

(
dtu

n+1
h − dtu

n
h, dtu

n+1
h

)

= 1

2
‖dtun+1

h ‖2L2 − 1

2
‖dtunh‖2L2 + 1

2
‖dtun+1

h − dtu
n
h‖2L2 , (3.10)

τ
(
∇un+1

h ,∇dtu
n+1
h

)
=

(
∇un+1

h ,∇un+1
h − ∇unh

)

= 1

2
‖∇un+1

h ‖2L2 − 1

2
‖∇unh‖2L2 + 1

2
‖∇(un+1

h − unh)‖2L2 . (3.11)
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Taking the expectation on the last term yields

E

[(
g(unh), dtu

n+1
h

)
Δ̄Wn+1

]
= E

[(
g(unh), dtu

n+1
h − dtu

n
h

)
Δ̄Wn+1

]

≤ CτE
[
1 + ‖unh‖2L2

] + 1

4
E

[
‖dtun+1

h − dtu
n
h‖2L2

]
, (3.12)

where the first equality comes from the fact that

E
[(
g(unh), dtu

n
h

)
Δ̄Wn+1

] = E
[(
g(unh), dtu

n
h

)]
E

[
Δ̄Wn+1

] = 0,

and the second inequality is a result of the Cauchy-Schwarz inequality, the growth condition
of g(u) in (1.8) and the property of Δ̄Wn+1 in (3.3).

The bound of the first term on the right-hand side is discussed case by case:

1. For the fully implicit discretization (3.4), use Taylor’s formula to derive

F(unh) = F(un+1
h ) + f (un+1

h )(un+1
h − unh) + 1

2
F ′′(ξ)(un+1

h − unh)
2,

where ξ locates between unh and un+1
h . Notice that 1

2 F
′′(ξ)(un+1

h − unh)
2 ≥ 0 under the

Assumption 1.
2. For the modified Crank–Nicolson discretization (3.5),

F(unh) = F(un+1
h ) + f̂ (un+1

h , unh)(u
n+1
h − unh).

Therefore, one can conclude that, for both fully implicit (3.4) and modified Crank–Nicolson
(3.5) discretizations,

τ(− f n+1
h , dtu

n+1
h ) ≥ (F(un+1

h ) − F(unh), 1). (3.13)

Summing the Eq. (3.9) over n from 0 to �−1, taking the expectation on both sides and using
the results (3.10)–(3.13), we have

E

[
H̃(u�

h)
]

+ 1

4

�−1∑

n=0

E

[
‖dtun+1

h − dtu
n
h‖2L2

]
+ 1

2

�−1∑

n=0

E

[
‖∇(un+1

h − unh)‖2L2

]

≤ E
[
H̃(u0h)

] + Cτ

�−1∑

n=0

E
[‖unh‖2L2

] + C . (3.14)

Applying the Gronwall’s inequality yields

E

[
H̃(u�

h)
]

+ 1

4

�−1∑

n=0

E

[
‖dtun+1

h − dtu
n
h‖2L2

]
+ 1

2

�−1∑

n=0

E

[
‖∇(un+1

h − unh)‖2L2

]
≤ C .

This gives the desired stability in L2 norm and energy norms. ��

3.3 Stability of the Higher Moments

The following stability of the higher moments can be established based on the stability results
in Theorem 1.

Theorem 2 (higher monent stability) Let {u�
h}N�=0 denote the numerical solutions of the finite

element methods (3.2). Under the Assumption 1, for any integer p ≥ 2, it holds for any integer
� ∈ [1, N ] that

E

[
‖∇u�

h‖p
L2 + ‖dtu�

h‖p
L2 + (F(u�

h), 1)
p
]

≤ C . (3.15)
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Proof To ease the presentation, the proof is divided into three steps.
Step 1 Following the results (3.9)–(3.13) in the proof of Theorem 1, we have

1

2
‖dtun+1

h ‖2L2 − 1

2
‖dtunh‖2L2 + 1

2
‖dtun+1

h − dtu
n
h‖2L2

+ 1

2
‖∇un+1

h ‖2L2 − 1

2
‖∇unh‖2L2 + 1

2
‖∇un+1

h − ∇unh‖2L2

+ (F(un+1
h ) − F(unh), 1) ≤ (g(unh), dtu

n+1
h )Δ̄Wn+1, (3.16)

which can be recast as follows thanks to the definition (3.7),

H̃(un+1
h ) − H̃(unh) + 1

2
‖dtun+1

h − dtu
n
h‖2L2 + 1

2
‖∇un+1

h − ∇unh‖2L2

≤
(
g(unh), dtu

n+1
h

)
Δ̄Wn+1. (3.17)

Utilizing the following identity

H̃(un+1
h ) + 1

2
H̃(unh) = 3

4

(
H̃(un+1

h ) + H̃(unh)
)

+ 1

4

(
H̃(un+1

h ) − H̃(unh)
)

,

and multiplying (3.17) by the term H̃(un+1
h ) + 1

2 H̃(unh), we obtain

3

4

(
H̃(un+1

h )2 − H̃(unh)
2
)

+ 1

4

(
H̃(un+1

h ) − H̃(unh)
)2

+ 1

2

(
‖dtun+1

h − dtu
n
h‖2L2 + ‖∇un+1

h − ∇unh‖2L2

)(
H̃(un+1

h ) + 1

2
H̃(unh)

)

≤
(
g(unh), dtu

n+1
h

)
Δ̄Wn+1

(
H̃(un+1

h ) + 1

2
H̃(unh)

)
. (3.18)

The right-hand side of (3.18) can be rewritten as

(
g(unh), dtu

n+1
h

)
Δ̄Wn+1

(
H̃(un+1

h ) + 1

2
H̃(unh)

)

=
(
g(unh), dtu

n+1
h − dtu

n
h

)
Δ̄Wn+1

(
H̃(un+1

h ) + 1

2
H̃(unh)

)

+ (
g(unh), dtu

n
h

)
Δ̄Wn+1

(
H̃(un+1

h ) + 1

2
H̃(unh)

)

≤
(
1

4
‖dtun+1

h − dtu
n
h‖2L2 + C

(‖unh‖2L2 + 1
)
(Δ̄Wn+1)

2

+ (
g(unh), dtu

n
h

)
Δ̄Wn+1

) (
H̃(un+1

h ) + 1

2
H̃(unh)

)
, (3.19)

by applying the Cauchy-Schwarz inequality and the growth condition of g(u) in (1.8). The
last two terms can be bounded as
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(
C(‖unh‖2L2 + 1)(Δ̄Wn+1)

2 + (
g(unh), dtu

n
h

)
Δ̄Wn+1

)

×
(
H̃(un+1

h ) + 1

2
H̃(unh)

)

≤ 1

8

(
H̃(un+1

h ) − H̃(unh)
)2 + C(‖unh‖4L2 + 1)(Δ̄Wn+1)

4

+ C‖dtunh‖2L2(‖unh‖2L2 + 1)(Δ̄Wn+1)
2 + CH̃(unh)(‖unh‖2L2 + 1)(Δ̄Wn+1)

2

+ 3

2
H̃(unh)(g(u

n
h), dtu

n
h)Δ̄Wn+1. (3.20)

Combining the Eq. (3.18) with the results in (3.19)–(3.20) yields

3

4

(
H̃(un+1

h )2 − H̃(unh)
2
)

+ 1

8

(
H̃(un+1

h ) − H̃(unh)
)2

+
(
1

4
‖dtun+1

h − dtu
n
h‖2L2 + 1

2
‖∇un+1

h − ∇unh‖2L2

)(
H̃(un+1

h ) + 1

2
H̃(unh)

)

≤ C(‖unh‖4L2 + 1)(Δ̄Wn+1)
4 + C‖dtunh‖2L2(‖unh‖2L2 + 1)(Δ̄Wn+1)

2

+ CH̃(unh)(‖unh‖2L2 + 1)(Δ̄Wn+1)
2 + 3

2
H̃(unh)(g(u

n
h), dtu

n
h)Δ̄Wn+1. (3.21)

Summing the Eq. (3.21) over n from 0 to � − 1 and taking expectation on both sides, we
obtain

3

4
E

[
H̃(u�

h)
2
]

+ 1

8

�−1∑

n=0

E

[
[H̃(un+1

h ) − H̃(unh)]2
]

+
�−1∑

n=0

E

[(
1

4
‖dtun+1

h

− dtu
n
h‖2L2 + 1

2
‖∇un+1

h − ∇unh‖2L2

) (
H̃(un+1

h ) + 1

2
H̃(unh)

) ]

≤ 3

4
E

[
H̃(u0h)

2] + Cτ 2
�−1∑

n=0

E
[
(‖unh‖4L2 + 1)

]

+ Cτ

�−1∑

n=0

E
[‖dtunh‖2L2(‖unh‖2L2 + 1)

] + Cτ

�−1∑

n=0

E
[
H̃(unh)(‖unh‖2L2 + 1)

]
. (3.22)

Following the definition of H̃(unh) in (3.7), one has H̃(unh) ≥ 1
2 max

(
‖unh‖2L2 , ‖dtunh‖2L2

)
,

which implies that

‖unh‖4L2 + 1 ≤ CH̃(unh)
2 + 1,

‖dtunh‖2L2(‖unh‖2L2 + 1) ≤ C‖dtunh‖4L2 + (‖unh‖4L2 + 1
) ≤ CH̃(unh)

2 + 1,

H̃(unh)(‖unh‖2L2 + 1) ≤ CH̃(unh)
2 + (‖unh‖4L2 + 1

) ≤ CH̃(unh)
2 + 1.

Therefore, the following result can be obtained by applying Gronwall’s inequality:

E

[
H̃(u�

h)
2
]

+
�−1∑

n=0

E

[(
H̃(un+1

h ) − H̃(unh)
)2]

+
�−1∑

n=0

E

[(
‖dtun+1

h − dtu
n
h‖2L2 + ‖∇un+1

h − ∇unh‖2L2

) (
H̃(un+1

h ) + H̃(unh)
)]

≤ C, (3.23)
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which gives us the fourth moment stability (i.e., (3.15) when p = 4).

Step 2 Next, the higher moment stability (3.15) can be established for p = 2m with any
positive integer m. Similar to the derivation in Step 1, we start from the equation (3.21) and
multiply it by H̃(un+1

h )2 + 1
2 H̃(unh)

2. After some simple algebra, we can obtain the fourth
moment stability of the numerical solution u�

h below

E

[
H̃(u�

h)
4
]

+
�−1∑

n=0

E

[((
H̃(un+1

h )
)2 − (

H̃(unh)
)2)2

]
≤ C . (3.24)

Applying this process repeatedly, the 2m-th moment stability of the numerical solution u�
h

can be obtained for any positive integer m.

Step 3 For arbitrary positive integer p, suppose 2m−1 ≤ p ≤ 2m for some m, and one can
apply the Young’s inequality to obtain

E

[
H̃(u�

h)
p
]

≤ E

[
H̃(u�

h)
2m

]
+ C ≤ C, (3.25)

where the second inequality follows from the results inStep 2. The proof is therefore complete.
��

4 Error Estimates

In this section, we present the error estimates of the proposed finite element methods. The
stability estimates studied in the previous section are crucial in the analysis.

4.1 Error Equations in Mixed Form

Denoting v = ut , we can rewrite the SPDE (1.1) as
{
du = vdt,

dv = Δudt + f (u)dt + g(u)dW (t).
(4.1)

Define vnh by vnh := unh−un−1
h

τ
, and define the numerical errors by enu :=u(tn) − unh :=ηnu + ξnu ,

env :=v(tn) − vnh :=ηnv + ξnv , where

ηnu :=u(tn) − Phu(tn) and ξnu :=Phu(tn) − unh, n = 0, 1, 2, ..., N ,

ηnv :=v(tn) − Phv(tn) and ξnv :=Phv(tn) − vnh , n = 0, 1, 2, ..., N ,

represent the errors of the L2-projection and the errors between the numerical solution and
projected strong solution, respectively.

It follows from (4.1) that for all tn , there holds P-almost surely

(u(tn+1) − u(tn), wh) =
∫ tn+1

tn
(v(s), wh)ds ∀wh ∈ Vh, (4.2)

(v(tn+1) − v(tn), zh) +
∫ tn+1

tn
(∇u(s),∇zh)ds

=
∫ tn+1

tn
( f (u(s)), zh)ds +

∫ tn+1

tn
(g(u(s)), zh)dW (s) ∀zh ∈ Vh . (4.3)
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Also, the numerical scheme (3.2) can be rewritten in the equivalent mixed form as

(un+1
h − unh, wh) = τ(vn+1

h , wh) ∀wh ∈ Vh, (4.4)

(vn+1
h − vnh , zh) + τ(∇un+1

h ,∇zh)

= τ( f n+1
h , zh) + (g(unh), zh) Δ̄Wn+1 ∀ zh ∈ Vh . (4.5)

From the properties of the L2-projection, we have (ηnu , wh) = 0 and (ηnv , zh) = 0. Combining
with the equations (4.2)–(4.5) leads to

(ξn+1
u − ξnu , wh) =

∫ tn+1

tn
(v(s) − vn+1

h , wh)ds ∀wh ∈ Vh, (4.6)

(ξn+1
v − ξnv , zh) +

∫ tn+1

tn
(∇u(s) − ∇un+1

h ,∇zh)ds

=
∫ tn+1

tn
( f (u(s)) − f n+1

h , zh)ds

+
∫ tn+1

tn
(g(u(s)) − g(unh), zh)dW (s) ∀zh ∈ Vh . (4.7)

4.2 Error Estimates

To handle the nonlinearity, we define a sequence of subsets as

Ω̃κ,m =
{
ω ∈ Ω : max

1≤n≤m
‖unh‖2H1 + max

s≤tm
‖u(s)‖2H1 ≤ κ

}
. (4.8)

Here u(s) is the strong solution of (1.1)–(1.3), unh is the numerical solution of (3.2), and
κ ≥ κ0 > 0 will be specified. Clearly, it holds that Ω̃κ,0 ⊃ Ω̃κ,1 ⊃ · · · ⊃ Ω̃κ,�.

The following lemma about the nonlinear term is needed in the proof of the error estimates.

Lemma 8 (Hölder continuity in time for nonlinear term on subsets) Let u be the strong
solution to problem (1.1)–(1.3). Under the assumptions (1.6)–(1.8), for any s, t, t ′ ∈ [0, T ]
with t ′ < s < t ≤ tm+1, we have

E
[
1Ω̃κ,m+1

‖ f (u(s)) − f (u(t))‖2L2

] ≤ Cκq−1(t − s)2, (4.9)

E
[
1Ω̃κ,m+1

‖ f (u(s)) − f̂ (u(t), u(t ′))‖2L2

] ≤ Cκq−1[(t − s)2 + (t ′ − s)2], (4.10)

where f̂ is defined in (3.5), and

C =CE
[‖h2‖2H1

] + CE
[ ∫ T

0
‖Δu(ζ )‖2H1dζ

] + CE
[ ∫ T

0
‖u(ζ )‖2q

L2q dζ
]

+ CE
[ ∫ T

0
‖u(ζ )‖4(q−1)

L4(q−1)dζ
] + CE

[ ∫ T

0
‖∇u(ζ )‖4L4dζ

] + C .

Proof By Lemma 1, we obtain

E
[
1Ω̃κ,m+1

‖ f (u(s)) − f (u(t))‖2L2

]

≤ CE

[
1Ω̃κ,m+1

q∑

j=1

(
‖u(s)‖2( j−1)

H1 + ‖u(t)‖2( j−1)
H1 + 1

)
‖u(s) − u(t)‖2H1

]
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≤ Cκq−1
E

[
1Ω̃κ,m+1

‖u(s) − u(t)‖2H1

]
. (4.11)

In addition, for any integer q that satisfies the condition of Lemma 1,

∥∥∥∥u
q(s) − 1

q + 1
· u

q+1(t) − uq+1(t ′)
u(t) − u(t ′)

∥∥∥∥
2

L2
=

∥∥∥∥∥∥
uq(s) − 1

q + 1

q∑

j=0

u j (t)uq− j (t ′)

∥∥∥∥∥∥

2

L2

≤ C
(
‖u(s)‖2(q−1)

H1 + ‖u(t)‖2(q−1)
H1 + ‖u(t ′)‖2(q−1)

H1

)

× (‖u(s) − u(t)‖2H1 + ‖u(s) − u(t ′)‖2H1

)
,

which implies that

E
[
1Ω̃κ,m+1

‖ f (u(s)) − f̂ (u(t), u(t ′))‖2L2

]

≤ Cκq−1
E

[
1Ω̃κ,m+1

(‖u(s) − u(t)‖2H1 + ‖u(s) − u(t ′)‖2H1

)]
.

Utilizing the conclusions in Lemma 3 (Hölder continuity for u in L2 norm) and Lemma 5
(Hölder continuity for u in H1-seminorm) yields (4.9) and (4.10), with the dependence of
the constant as stated. ��

Applying Lemma 1 directly, we can obtain the following lemma.

Lemma 9 (error representation for nonlinear term on subsets) Let u be the strong solution
to problem (1.1)–(1.3). Under the assumptions (1.6)–(1.8), we have

E
[
1Ω̃κ,m+1

‖ f (u(tm+1)) − f (um+1
h )‖2L2

]

≤ Cκq−1
E

[
1Ω̃κ,m+1

‖u(tm+1) − um+1
h ‖2H1

]
, (4.12)

E
[
1Ω̃κ,m+1

‖ f̂ (u(tm+1), u(tm)) − f̂ (um+1
h , umh )‖2L2

]

≤ Cκq−1
E

[
1Ω̃κ,m+1

‖u(tm+1) − um+1
h ‖2H1 + 1Ω̃κ,m

‖u(tm) − umh ‖2H1

]
, (4.13)

where the constant C is independent of u and uh.

Now we are ready to state the following main theorem on the error estimates.

Theorem 3 (error estimates) Let {u�
h}N�=0 denote the numerical solutions of the finite element

methods (3.2). Under the Assumption 1 and the Hölder continuity assumption (2.9), i.e., for
σ ≥ 2,

E[‖u(t) − u(s)‖2Hσ ] ≤ C(σ, u)(s − t)2,

E[‖v(t) − v(s)‖2Hσ−1 ] ≤ C(σ, u)(s − t),
∀s, t ∈ [0, T ] with s < t,

the following error estimate holds for any integer � ∈ [1, N ]:

E

[
1Ω̃κ,�

‖e�
u‖2L2

]
+ E

[
1Ω̃κ,�

‖∇e�
u‖2L2ds

]
+ E

[
1Ω̃κ,�

‖e�
v‖2L2

]

≤ C(σ, u)(τ + h2min{r ,σ−1} + τ 2| ln h|)h−β, (4.14)

where r is the polynomial order defined in (3.1), β > 0 can be chosen to be small enough,

κ satisfies κq−1 = C ln(h−β) so that P
[
Ω̃κ,�

]
→ 1 as h → 0. Moreover, the explicit
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dependence of C(σ, u) when σ = 2 is given in (2.8), i.e.,

C(2, u) = CE

[
‖h2‖2H2 +

∫ T

0
‖Δu(ζ )‖2H2 + ‖∇2u(ζ )‖4L4 + ‖∇u(ζ )‖8L8

+ ‖u(ζ )‖2q
L2q + ‖u(ζ )‖4(q−1)

L4(q−1) dζ
]

+ C sup
0≤ζ≤T

E
[‖∇u(ζ )‖4L4 + ‖u(ζ )‖2L2

] + C .

Proof For the sake of simplicity of the exposition, we suppress the dependence of σ and u
for the generic constantC . By takingwh = ξn+1

u in (4.6) and zh = ξn+1
v in (4.7), multiplying

(4.6) and (4.7) by 1Ω̃κ,n+1
, and then taking the expectation, we obtain

E

[
1Ω̃κ,n+1

(ξn+1
u − ξnu , ξn+1

u )
]

= E

[
1Ω̃κ,n+1

∫ tn+1

tn
(v(s) − vn+1

h , ξn+1
u )ds

]
, (4.15)

E

[
1Ω̃κ,n+1

(ξn+1
v − ξnv , ξn+1

v )
]

+ E

[
1Ω̃κ,n+1

∫ tn+1

tn
(∇u(s) − ∇un+1

h ,∇ξn+1
v )ds

]

= E

[
1Ω̃κ,n+1

∫ tn+1

tn
( f (u(s)) − f n+1

h , ξn+1
v )ds

]

+ E

[
1Ω̃κ,n+1

∫ tn+1

tn
(g(u(s)) − g(unh), ξ

n+1
v )dW (s)

]
. (4.16)

The left-hand side of (4.15) can be bounded by

E

[
1Ω̃κ,n+1

(ξn+1
u − ξnu , ξn+1

u )
]

= 1

2
E

[
1Ω̃κ,n+1

‖ξn+1
u ‖2L2

]
− 1

2
E

[
1Ω̃κ,n+1

‖ξnu ‖2L2

]
+ 1

2
E

[
1Ω̃κ,n+1

‖ξn+1
u − ξnu ‖2L2

]

= 1

2
E

[
1Ω̃κ,n+1

‖ξn+1
u ‖2L2

]
− 1

2
E

[
1Ω̃κ,n

‖ξnu ‖2L2

]
+ 1

2
E

[
1Ω̃κ,n+1

‖ξn+1
u − ξnu ‖2L2

]

+ 1

2
E

[
(1Ω̃κ,n

− 1Ω̃κ,n+1
)‖ξnu ‖2L2

]

≥ 1

2
E

[
1Ω̃κ,n+1

‖ξn+1
u ‖2L2

]
− 1

2
E

[
1Ω̃κ,n

‖ξnu ‖2L2

]
+ 1

2
E

[
1Ω̃κ,n+1

‖ξn+1
u − ξnu ‖2L2

]
.

(4.17)

By Lemma 4 (Hölder continuity in time for v in L2 norm) and the definition of the L2-
projection, the right-hand side of (4.15) is bounded as

E

[
1Ω̃κ,n+1

∫ tn+1

tn
(v(s) − vn+1

h , ξn+1
u )ds

]

= E

[
1Ω̃κ,n+1

∫ tn+1

tn
(v(s) − v(tn+1), ξn+1

u )ds

]

+ E

[
1Ω̃κ,n+1

∫ tn+1

tn
(ηn+1

v + ξn+1
v , ξn+1

u )ds

]

≤ τE
[
1Ω̃κ,n+1

‖ξn+1
u ‖2L2

]
+ τE

[
1Ω̃κ,n+1

‖ξn+1
v ‖2L2

]
+ Cτ 2. (4.18)
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Following the derivation of the inequality (4.17), the first term on the left-hand side of
(4.16) can be bounded by

E

[
1Ω̃κ,n+1

(ξn+1
v − ξnv , ξn+1

v )
]

≥ 1

2
E

[
1Ω̃κ,n+1

‖ξn+1
v ‖2L2

]
− 1

2
E

[
1Ω̃κ,n

‖ξnv ‖2L2

]
+ 1

2
E

[
1Ω̃κ,n+1

‖ξn+1
v − ξnv ‖2L2

]
.

(4.19)

The second term on the left-hand side of (4.16) is

E

[
1Ω̃κ,n+1

∫ tn+1

tn
(∇u(s) − ∇un+1

h ,∇ξn+1
v )ds

]

= E

[
1Ω̃κ,n+1

∫ tn+1

tn
(∇u(s) − ∇u(tn+1),∇ξn+1

v )ds

]

+ E

[
1Ω̃κ,n+1

∫ tn+1

tn
(∇en+1

u ,∇ξn+1
v )ds

]
. (4.20)

Notice that

∇ξn+1
v = ∇(Phv(tn+1)) − ∇vn+1

h

= ∇(Phv(tn+1)) − ∇(dtu(tn+1)) + (∇(dtu(tn+1)) − ∇(dtu
n+1
h )). (4.21)

For the first term on the right-hand side of (4.20), we can move it to the right-hand side of
(4.16) by adding a negative sign, and then bound it by

− E

[
1Ω̃κ,n+1

∫ tn+1

tn
(∇u(s) − ∇u(tn+1),∇ξn+1

v )ds

]

≤ CE

[
1Ω̃κ,n+1

1

τ

∫ tn+1

tn
‖∇u(s) − ∇u(tn+1)‖2L2ds

]

+ τ 2E
[
1Ω̃κ,n+1

(‖∇(Phv(tn+1))‖2L2 + ‖∇(dtu(tn+1))‖2L2

)]

+ 1

4
τ 2E

[
1Ω̃κ,n+1

‖∇(dtu(tn+1)) − ∇(dtu
n+1
h )‖2L2

]

≤ Cτ 2 + 1

4
E

[
1Ω̃κ,n+1

‖∇en+1
u − ∇enu‖2L2

]
, (4.22)

where the triangle inequality, the H1 stability of the L2-projection [5], Lemma 5 (Hölder
continuity in time for u in H1-seminorm), and the stability of E[‖∇v‖2

L2 ] (see the proof
of Lemma 5) are used in the derivation of the last inequality. For the second term on the
right-hand side of (4.20), we move the first term in (4.21) to the right-hand side of (4.16) by
adding a negative sign, and obtain (σ ≥ 2)

− E

[
1Ω̃κ,n+1

∫ tn+1

tn
(∇en+1

u ,∇(Phv(tn+1)) − ∇(dtu(tn+1))ds

]

≤ CτE
[
1Ω̃κ,n+1

‖∇en+1
u ‖2L2

]

+ τE
[
1Ω̃κ,n+1

‖∇(Phv(tn+1)) − ∇(Phdtu(tn+1))‖2L2

]

+ τE
[
1Ω̃κ,n+1

‖∇(Phdtu(tn+1)) − ∇(dtu(tn+1)‖2L2

]
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≤ CτE
[
1Ω̃κ,n+1

‖∇en+1
u ‖2L2

]
+ Cτ 2

+ Cτh2min{r ,σ−1}
E

[
1Ω̃κ,n+1

‖dtu(tn+1)‖2Hσ

]

≤ CτE
[
1Ω̃κ,n+1

‖∇en+1
u ‖2L2

]
+ Cτ 2 + Cτh2min{r ,σ−1}, (4.23)

where the mean value theorem, the H1 stability of the L2-projection [5], and Lemma 6
(Hölder continuity in time for v in H1-seminorm) are used in the second last inequality, and
the Hölder continuity in time for u in Hσ norm are used in the last inequality. The second
term in (4.21) is bounded by

E

[
1Ω̃κ,n+1

∫ tn+1

tn
(∇en+1

u ,∇dt e
n+1
u )ds

]

= 1

2
E

[
1Ω̃κ,n+1

‖∇en+1
u ‖2L2

]
− 1

2
E

[
1Ω̃κ,n+1

‖∇enu‖2L2

]

+ 1

2
E

[
1Ω̃κ,n+1

‖∇en+1
u − ∇enu‖2L2

]

≥ 1

2
E

[
1Ω̃κ,n+1

‖∇en+1
u ‖2L2

]
− 1

2
E

[
1Ω̃κ,n

‖∇enu‖2L2

]

+ 1

2
E

[
1Ω̃κ,n+1

‖∇en+1
u − ∇enu‖2L2

]
. (4.24)

Next, we estimate the nonlinear terms on the right-hand side of (4.16). We split the first
term on the right-hand side of (4.16) as follows:

1. For fully implicit discretization (3.4),

E

[
1Ω̃κ,n+1

∫ tn+1

tn
( f (u(s)) − f n+1

h , ξn+1
v )ds

]

= E

[
1Ω̃κ,n+1

∫ tn+1

tn
( f (u(s)) − f (u(tn+1)), ξ

n+1
v )ds

]

+ E

[
1Ω̃κ,n+1

∫ tn+1

tn
( f (u(tn+1) − f (un+1

h ), ξn+1
v )ds

]
. (4.25)

2. For modified Crank–Nicolson discretization (3.5),

E

[
1Ω̃κ,n+1

∫ tn+1

tn
( f (u(s)) − f n+1

h , ξn+1
v )ds

]

= E

[
1Ω̃κ,n+1

∫ tn+1

tn
( f (u(s)) − f̂ (u(tn+1), u(tn)), ξ

n+1
v )ds

]

+ E

[
1Ω̃κ,n+1

∫ tn+1

tn
( f̂ (u(tn+1), u(tn)) − f̂ (un+1

h , unh), ξ
n+1
v )ds

]
. (4.26)

By Lemma 8 (Hölder continuity in time for nonlinear term on subsets), the first term on
the right-hand side of (4.25) or (4.26) is bounded (taking fully implicit discretization as an
example, the modified Crank-Nicolson discretizatin has the same estimate) as

E

[
1Ω̃κ,n+1

∫ tn+1

tn
( f (u(s)) − f (u(tn+1)), ξ

n+1
v )ds

]

≤ CτE
[
1Ω̃κ,n+1

‖ξn+1
v ‖2L2

]
+ Cκq−1τ 3. (4.27)
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By Lemma 9 (error representation for nonlinear term on subsets), the second term on the
right-hand side of (4.25) or (4.26) is bounded as

E

[
1Ω̃κ,n+1

∫ tn+1

tn
( f (u(tn+1) − f n+1

h , ξn+1
v )ds

]

≤ Cκq−1τE
[
1Ω̃κ,n+1

‖u(tn+1) − un+1
h ‖2H1 + 1Ω̃κ,n

‖u(tn) − unh‖2H1

]

+ τE
[
1Ω̃κ,n+1

‖ξn+1
v ‖2L2

]

≤ Cκq−1τE
[
1Ω̃κ,n+1

‖ξn+1
u ‖2L2 + 1Ω̃κ,n

‖ξnu ‖2L2

]

+ Cκq−1τh2min{r+1,σ } sup
s≤T

E

[
1Ω̃κ,n+1

‖u(s)‖2Hσ

]

+ Cκq−1τE
[
1Ω̃κ,n+1

‖∇en+1
u ‖2L2 + 1Ω̃κ,n

‖∇enu‖2L2

]
+ τE

[
1Ω̃κ,n+1

‖ξn+1
v ‖2L2

]
,

(4.28)

where the standard approximation theory of the L2 projection is applied.
By Itô isometry, the second term on the right-hand side of (4.16) is bounded as

E

[
1Ω̃κ,n+1

∫ tn+1

tn
(g(u(s)) − g(unh), ξ

n+1
v )dW (s)

]

= E

[
1Ω̃κ,n+1

∫ tn+1

tn
(g(u(s)) − g(u(tn)), ξ

n+1
v − ξnv )dW (s)

]

+ E

[
1Ω̃κ,n+1

∫ tn+1

tn
(g(u(tn)) − g(unh), ξ

n+1
v − ξnv )dW (s)

]

≤ 1

4
E

[
1Ω̃κ,n+1

‖ξn+1
v − ξnv ‖2L2

]
+ Cτ 3 + Cτh2min{r+1,σ } sup

s≤T
E

[
1Ω̃κ,n+1

‖u(s)‖2Hσ

]

+ CτE
[
1Ω̃κ,n

‖ξnu ‖2L2

]
. (4.29)

Combining (4.15)–(4.29), we obtain the estimate

1

2
E

[
1Ω̃κ,n+1

‖ξn+1
u ‖2L2

]
− 1

2
E

[
1Ω̃κ,n

‖ξnu ‖2L2

]
+ 1

2
E

[
1Ω̃κ,n+1

‖ξn+1
u − ξnu ‖2L2

]

+ 1

2
E

[
1Ω̃κ,n+1

‖ξn+1
v ‖2L2

]
− 1

2
E

[
1Ω̃κ,n

‖ξnv ‖2L2

]
+ 1

2
E

[
1Ω̃κ,n+1

‖ξn+1
v − ξnv ‖2L2

]

+ 1

2
E

[
1Ω̃κ,n+1

‖∇en+1
u ‖2L2ds

]
− 1

2
E

[
1Ω̃κ,n

‖∇enu‖2L2ds
]

+ 1

2
E

[
1Ω̃κ,n+1

‖∇en+1
u − ∇enu‖2L2ds

]

≤ CτE
[
1Ω̃κ,n+1

‖ξn+1
u ‖2L2 + 1Ω̃κ,n

‖ξnu ‖2L2

]

+ CτE
[
1Ω̃κ,n+1

‖ξn+1
v ‖2L2

]
+ CτE

[
1Ω̃κ,n+1

‖∇en+1
u ‖2L2

]

+ 1

4
E

[
1Ω̃κ,n+1

‖ξn+1
v − ξnv ‖2L2

]
+ 1

4
E

[
1Ω̃κ,n+1

‖∇en+1
u − ∇enu‖2L2

]

+ Cκq−1τE
[
1Ω̃κ,n+1

‖ξn+1
u ‖2L2 + 1Ω̃κ,n

‖ξnu ‖2L2

]

+ Cκq−1τE
[
1Ω̃κ,n+1

‖∇en+1
u ‖2L2 + 1Ω̃κ,n

‖∇enu‖2L2

]
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+ Cτ 2 + Cτh2min{r ,σ−1} + Cκq−1τ 3 + Cκq−1τh2min{r+1,σ }.

By choosing κq−1 = C ln(h−β), where β > 0 is small enough, taking the summation over
n from 0 to � − 1, and applying Gronwall’s inequality, we obtain

E

[
1Ω̃κ,�

‖ξ�
u‖2L2

]
+ E

[
1Ω̃κ,�

‖∇e�
u‖2L2ds

]
+ E

[
1Ω̃κ,�

‖ξ�
v ‖2L2

]

+
�−1∑

n=0

E

[
1Ω̃κ,n+1

‖ξn+1
v − ξnv ‖2L2

]
+

�−1∑

n=0

E

[
1Ω̃κ,n+1

‖ξn+1
u − ξnu ‖2L2

]

+
�−1∑

n=0

E

[
1Ω̃κ,n+1

‖∇en+1
u − ∇enu‖2L2ds

]

≤ C(τ + h2min{r ,σ−1} + κq−1τ 2 + κq−1h2min{r+1,σ })h−β

≤ C(τ + h2min{r ,σ−1} + τ 2| ln h|)h−β, (4.30)

By combining (4.30) with the properties of the L2-projection, we get (4.14).
Using the Markov’s inequality, discrete Burkholder–Davis–Gundy inequalities [6–8, 23],

Eq. (1.10), and Theorem 1 (stability of discrete Hamiltonian), we have the following property

P

[
Ω̃κ,�

]
≥ 1 −

E

[
max
1≤n≤�

‖unh‖2H1 + max
s≤t�

‖u(s)‖2
H1

]

(C ln(h−β))
1

q−1

≥ 1 − C

β
1

q−1 (− ln h)
1

q−1

→ 1 as h → 0. (4.31)

This finishes the proof. ��
Remark 3 We make the following remarks:

1. We focus on the nonlinear case when q > 1 since it is much easier to analyze the linear
case when q = 1.

2. Under the assumption on the Hölder continuity in time (2.9), the H1 error order is nearly
optimal in space. Due to the limited Hölder continuity of v, only half error order in time
can be proved, which seems to be sharp according to the numerical experiments (see the
last column in Table 6).

3. The original form (3.2) and the mixed form (4.4)–(4.5) are mathematically equivalent, but
there exist some difficulties in analyzing the noise term that might be hardly circumvented
if the original form is used.

5 Numerical Tests

In this section, we provide various numerical tests to validate our theoretical results. We con-
sider the stability and error estimates of our proposed numerical schemes based on different
nonlinear drift terms f (u) and different diffusion terms g(u) in both one-dimensional and
two-dimensional cases.

The piecewise linear (r = 1) Lagrangian finite element space is used in all the numerical
experiments. The regular Monte-Carlo method is used to compute the stochastic term, and
5, 000 samples are used for all the tests below.
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Following the algorithmic introduction to the numerical simulation of SDE [36], we briefly
discuss the implementation issues. For any sample, we first generate a discretized Brownian
path with a sufficiently small time step size, which is used to compute the reference solution
for one sample. The same discretized Brownian path, but with (a large) time step size τ , is
used to compute the numerical solution. The expectation is then computed by averaging all
the errors for the 5, 000 samples.

When computing the partial expectation, strictly speaking, we need to remove some sam-
ples whose continuous or discrete H1 norm exceeds

√
κ , due to the definition of Ω̃κ,m in

(4.8). An interesting observation is that, for a sufficiently large but fixed κ > 0, we could
not find even one sample path such that the error blows up, i.e., all the sample paths in our
numerical experiments satisfy

max
0≤n≤N

‖unh‖2H1 + max
s≤T

‖u(s)‖2H1 ≤ κ.

However, such a strong (discrete) H1 bound is difficult to prove due to the nonlinearity of f
and g. Nevertheless, we take a large but fixed κ > 0 so that the partial expectation E[1Ω̃κ,�

·]
and the standard expectation E[·] coincide, at the numerical level (see Test 3 below).

Test 1 (Convergence Order Test) Consider the one-dimensional stochastic wave equations
(1.1)–(1.4) with the initial conditions

h1(x) = cos(πx), h2(x) = 0,

and different nonlinear drift and diffusion terms outlined below.
First, we consider the nonlinear drift and diffusion terms chosen to be f (u) = −u − u3

and g(u) = u. We evaluate the following errors,

{
sup

0≤n≤N
E

[
1Ω̃κ,n

‖enu‖2L2

]
} 1

2

(L2 error),

{
sup

0≤n≤N
E

[
1Ω̃κ,n

‖∇enu‖2L2

]
} 1

2

(H1 error), and

{
sup

0≤n≤N
E

[
1Ω̃κ,n

‖dt enu‖2L2

]
} 1

2

(dt L2 error).

Thanks to Lemma 4 (Hölder continuity in time for v in L2 norm), the dt L2 error can be
estimated as

sup
0≤n≤N

E
[
1Ω̃κ,n

‖dt enu‖2L2

] ≤ 2 sup
0≤n≤N

E
[
1Ω̃κ,n

(‖env‖2L2 + ‖dtu(tn) − v(tn)‖2L2

)]

≤ 2 sup
0≤n≤N

E
[
1Ω̃κ,n

(‖env‖2L2 + sup
ξ∈(tn−1,tn)

‖v(ξ) − v(tn)‖2L2

)]

≤ 2 sup
0≤n≤N

E
[
1Ω̃κ,n

‖env‖2L2

] + Cτ.

In view of Theorem 3 (error estimate), the theoretical bound for these errors should be nearly

O(τ
1
2 + h).

Table 1 show these errors and their convergence rates with respect to space, when the time
step is fixed to be τ = 1 × 10−3, from which the spatial order of 2 (L2 error), 1 (H1 error),
2 (dt L2 error) can be observed. Similarly, we fix the spatial step size and report the errors
and their convergence rates with respect to time in Table 2, where the temporal order of 1
are observed for all three errors.

Next, the nonlinear drift and diffusion terms are chosen to be f (u) = −u − u11 and
g(u) = u, and the corresponding results are demonstrated in Tables 3 and 4. The convergence
rates are consistent with those of the previous test where f (u) = −u − u3. Tables 1, 2, 3,
and 4 indicate that the H1 error estimate in Theorem 3 is nearly sharp.
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Table 1 Test 1 (a): spatial errors and convergence rates when τ = 1 × 10−3, T = 0.01

L2 error Order H1 error Order dt L2 error Order

h = 1/4 7.902 × 10−2 – 8.798 × 10−1 – 1.488 × 10−1 –

h = 1/8 1.602 × 10−2 2.302 4.178 × 10−1 1.074 3.369 × 10−2 2.143

h = 1/16 3.792 × 10−3 2.079 2.063 × 10−1 1.018 8.079 × 10−3 2.060

h = 1/32 9.349 × 10−4 2.020 1.028 × 10−1 1.004 1.999 × 10−3 2.015

h = 1/64 2.329 × 10−4 2.005 5.138 × 10−2 1.001 4.984 × 10−4 2.004

Table 2 Test 1 (a): temporal errors and convergence rates when h = 1/128, T = 0.4

L2 error Order H1 error Order dt L2 error Order

τ = 0.1 3.506 × 10−2 – 1.102 × 10−1 – 2.630 × 10−1 –

τ = 0.1/2 1.495 × 10−2 1.230 4.708 × 10−2 1.227 1.577 × 10−1 0.738

τ = 0.1/4 6.379 × 10−3 1.229 2.017 × 10−2 1.223 8.577 × 10−2 0.879

τ = 0.1/8 2.860 × 10−3 1.157 9.063 × 10−3 1.154 4.451 × 10−2 0.946

τ = 0.1/16 1.341 × 10−3 1.093 4.253 × 10−3 1.092 2.278 × 10−2 0.966

τ = 0.1/32 6.572 × 10−4 1.029 2.084 × 10−3 1.029 1.164 × 10−2 0.969

Table 3 Test 1 (b): spatial errors and convergence rates when τ = 1 × 10−3, T = 0.01

L2 error Order H1 error Order dt L2 error Order

h = 1/4 7.982 × 10−2 – 8.828 × 10−1 – 1.938 × 10−1 –

h = 1/8 1.614 × 10−2 2.306 4.207 × 10−1 1.069 3.445 × 10−2 2.492

h = 1/16 3.801 × 10−3 2.086 2.068 × 10−1 1.024 8.168 × 10−3 2.076

h = 1/32 9.369 × 10−4 2.020 1.031 × 10−1 1.004 2.017 × 10−3 2.018

h = 1/64 2.334 × 10−4 2.005 5.149 × 10−2 1.002 5.022 × 10−4 2.006

Table 4 Test 1 (b): temporal errors and convergence rates when h = 1/128, T = 0.4

L2 error Order H1 error Order dt L2 error Order

τ = 0.1 3.206 × 10−2 – 1.008 × 10−1 – 2.526 × 10−1 –

τ = 0.1/2 1.342 × 10−2 1.256 4.242 × 10−2 1.249 1.504 × 10−1 0.748

τ = 0.1/4 5.692 × 10−3 1.237 1.830 × 10−2 1.213 8.125 × 10−2 0.888

τ = 0.1/8 2.536 × 10−3 1.166 8.338 × 10−3 1.134 4.236 × 10−2 0.940

τ = 0.1/16 1.196 × 10−3 1.084 3.996 × 10−3 1.061 2.164 × 10−2 0.969

τ = 0.1/32 5.938 × 10−4 1.010 1.995 × 10−3 1.002 1.106 × 10−2 0.968
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Table 5 Test 1 (c): spatial errors and convergence rates when τ = 1 × 10−3, T = 0.01

L2 error Order H1 error Order dt L2 error Order

h = 1/4 7.901 × 10−2 – 8.798 × 10−1 – 1.469 × 10−1 –

h = 1/8 1.602 × 10−2 2.302 4.178 × 10−1 1.074 3.364 × 10−2 2.127

h = 1/16 3.792 × 10−3 2.079 2.063 × 10−1 1.018 8.053 × 10−3 2.063

h = 1/32 9.349 × 10−4 2.020 1.028 × 10−1 1.005 1.991 × 10−3 2.016

h = 1/64 2.329 × 10−4 2.005 5.138 × 10−2 1.001 4.964 × 10−4 2.004

Table 6 Test 1 (c): temporal errors and convergence rates when h = 1/128, T = 0.4

L2 error Order H1 error Order dt L2 error Order

τ = 0.1 1.132 × 10−1 – 3.502 × 10−1 – 1.052 × 10−1 –

τ = 0.1/2 7.337 × 10−2 0.626 2.292 × 10−1 0.612 7.203 × 10−2 0.546

τ = 0.1/4 4.198 × 10−2 0.805 1.318 × 10−1 0.798 4.773 × 10−2 0.594

τ = 0.1/8 2.242 × 10−2 0.905 7.068 × 10−2 0.899 3.184 × 10−2 0.584

τ = 0.1/16 1.158 × 10−2 0.953 3.666 × 10−2 0.947 2.169 × 10−2 0.554

τ = 0.1/32 5.890 × 10−3 0.975 1.871 × 10−2 0.970 1.495 × 10−2 0.537

Table 7 Test 2: spatial errors and convergence rates when τ = 5 × 10−3, T = 5 × 10−2

L2 error Order H1 error Order dt L2 error Order

h = 1/16 2.565 × 10−4 – 2.335 × 10−2 – 4.586 × 10−3 –

h = 1/32 6.355 × 10−5 2.013 1.097 × 10−2 1.089 1.896 × 10−3 1.275

h = 1/64 1.642 × 10−5 1.952 5.500 × 10−3 0.996 5.391 × 10−4 1.814

h = 1/128 4.142 × 10−6 1.987 2.746 × 10−3 1.002 1.410 × 10−4 1.935

h = 1/256 1.038 × 10−6 1.997 1.373 × 10−3 1.001 3.565 × 10−5 1.984

Lastly, the nonlinear drift and diffusion terms are chosen to be f (u) = −u − u3 and
g(u) = √

u2 + 0.01, and the corresponding results are included in Tables 5 and 6. We
observe that the convergence rates of the L2 and the H1 errors are consistent with the above

cases. Significantly, Table 6 indicates the O(τ
1
2 ) convergence for the dt L2 error, which is in

agreement with the theoretical result.

Test 2 (Influence of Initial Conditions) Consider the one-dimensional stochastic wave equa-
tions (1.1)–(1.4) with the following initial conditions (with less regularity)

h1(x) = 0, h2(x) = max{0, 1 − 4|x − 0.5|}.
The nonlinear drift and diffusion terms are chosen to be f (u) = −u − u3 and g(u) = u.
Tables 7 and 8 show the L2 error, the H1 error, the dt L2 error, and their convergence rates in
both space and time. The spatial convergence rates are the same as in the previous cases, and
the temporal convergence rates of the L2, H1, and dt L2 errors are approximately 1.0, 1.0,
and 0.75. This indicates that the regularity of data does affect the convergence behaviors,
which is also known for the discretizations of deterministic wave equations.
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Table 8 Test 2: temporal errors and convergence rates when h = 1/512, T = 1

L2 error Order H1 error Order dt L2 error Order

τ = 0.1/8 1.324 × 10−3 – 7.489 × 10−3 – 4.653 × 10−2 –

τ = 0.1/16 6.437 × 10−4 1.040 3.963 × 10−3 0.918 3.130 × 10−2 0.572

τ = 0.1/32 3.163 × 10−4 1.025 1.935 × 10−3 1.035 1.920 × 10−2 0.705

τ = 0.1/64 1.549 × 10−4 1.030 9.583 × 10−4 1.014 1.152 × 10−2 0.738

τ = 0.1/128 7.659 × 10−5 1.016 4.974 × 10−4 0.946 6.908 × 10−3 0.737

Fig. 1 Test 3: the stability in the stochastic case (left), and the stability in the deterministic case (right). Here
f (u) = −u − u3 and g(u) = u

Test 3 (Numerical Stability) Consider the two-dimensional stochastic wave equations (1.1)–
(1.4) with the following initial conditions

h1(x, y) = cos(πx) cos(2π y), h2(x, y) = 0.

We investigate the stability (in different norms) of the proposed methods with various nonlin-
ear drift and diffusion terms. For comparison, we also include the results of the deterministic
equations. Figures 1, 2, and 3 provide the time history of the stability in L2, H1, and dt L2

norms of the stochastic (left) and deterministic (right) solutions. The transparent shaded
regions in the left figures are possible trajectories of all sample points, and the solid lines
represent the average of all trajectories.

In Fig. 1, the nonlinear drift and diffusion terms are chosen to be f (u) = −u − u3 and
g(u) = u. In Fig. 2, the nonlinear drift and diffusion terms are chosen to be f (u) = −u−u7

and g(u) = u. In Fig. 3, the nonlinear drift and diffusion terms are chosen to be f (u) =
−u−u3 and g(u) = √

u2 + 1. From these figures, we see that all the possible trajectories of
sample points are bounded in H1 norm. We also observe that the expectation of stochastic
numerical solutions in various norms do not blow up, which is consistent with the theoretical
results provided in Sect. 3.
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Fig. 2 Test 3: the stability in the stochastic case (left), and the stability in the deterministic case (right). Here
f (u) = −u − u7 and g(u) = u

Fig. 3 Test 3: the stability in the stochastic case (left), and the stability in the deterministic case (right). Here

f (u) = −u − u3 and g(u) =
√
u2 + 1
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A Proofs of Hölder Continuity

In this Appendix, we prove the Hölder continuity in time for the strong solution u in various
norms in Sect. 2.
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Proof of Lemma 3 The SPDE (1.1) leads to

ut (t) − h2 =
∫ t

0
Δudζ +

∫ t

0
f (u)dζ +

∫ t

0
g(u)dW (ζ ). (A.1)

Taking the square, the spatial integral, and the expectation on both sides of (A.1), and then
using the triangle inequality, the Schwarz inequality, and Itô isometry, we obtain

E
[‖ut (t)‖2L2

]

≤ CE
[‖h2‖2L2

] + CE
[ ∫

D

(∫ t

0
Δu(ζ )dζ

)2
dx

]

+ CE
[ ∫

D

(∫ t

0
f (u(ζ ))dζ

)2
dx

] + CE
[ ∫

D

(∫ t

0
g(u(ζ ))dW (ζ )

)2
dx

]

≤ CE
[‖h2‖2L2

] + CE
[ ∫ t

0
‖Δu(ζ )‖2L2dζ

]

+ CE
[ ∫ t

0
‖ f (u(ζ ))‖2L2dζ

] + CE
[ ∫ t

0
‖g(u(ζ ))‖2L2dζ

]

≤ CE
[‖h2‖2L2

] + CE
[ ∫ t

0
‖Δu(ζ )‖2L2dζ

] + CE
[ ∫ t

0
‖u(ζ )‖2q

L2q dζ
] + C, (A.2)

where (1.8) is used in the derivation of the last inequality. For any s, t ∈ [0, T ] with s < t ,
we have

E
[‖u(t) − u(s)‖2L2

] = E
[‖ut (ξ)‖2L2

]
(t − s)2 ≤ C(t − s)2, (A.3)

where ξ ∈ (s, t) and

C = CE
[‖h2‖2L2

] + CE
[ ∫ t

0
‖Δu(ζ )‖2L2dζ

] + CE
[ ∫ t

0
‖u(ζ )‖2q

L2q dζ
] + C .

This finishes the proof of the lemma. ��
Proof of Lemma 4 Note that v = ut . By (1.1), for any s, t ∈ [0, T ] with s < t , we have

v(t) − v(s) =
∫ t

s
Δudζ +

∫ t

s
f (u)dζ +

∫ t

s
g(u)dW (ζ ). (A.4)

Taking the square, the spatial integral, and the expectation on both sides of (A.4), and then
using the triangle inequality, the Schwarz inequality, and Itô isometry, we obtain

E
[‖v(t) − v(s)‖2L2

]

≤ CE
[ ∫ t

s
‖Δu(ζ )‖2L2dζ

]
(t − s)

+ CE
[ ∫ t

s
‖ f (u(ζ ))‖2L2dζ

]
(t − s) + CE

[ ∫ t

s
‖g(u(ζ ))‖2L2dζ

]
,

≤ CE
[ ∫ t

s
‖Δu(ζ )‖2L2dζ

]
(t − s)

+ CE
[ ∫ t

s
‖u(ζ )‖2q

L2q dζ
]
(t − s) + CE

[ ∫ t

s
‖u(ζ )‖2L2dζ

] + C(t − s),

≤ C(t − s), (A.5)
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where

C = CE
[ ∫ t

s
‖Δu(ζ )‖2L2dζ

] + CE
[ ∫ t

s
‖u(ζ )‖2q

L2q dζ
] + C sup

s≤ζ≤t
E

[‖u(ζ )‖2L2

] + C,

and this finishes the proof of the lemma. ��

Proof of Lemma 5 From the Eq. (1.1), we get

ut (t) − h2 =
∫ t

0
Δudζ +

∫ t

0
f (u)dζ +

∫ t

0
g(u)dW (ζ ). (A.6)

Taking the gradient, the square, the spatial integral, and the expectation on both sides of
(A.6), and then using the triangle inequality, the Schwarz inequality, and Itô isometry, we
obtain

E
[‖∇ut (t)‖2L2

]

≤ CE
[‖∇h2‖2L2

] + CE
[ ∫

D

(∫ t

0
∇Δu(ζ )dζ

)2
dx

]

+ CE
[ ∫

D

(∫ t

0
∇ f (u(ζ ))dζ

)2
dx

] + CE
[ ∫

D

(∫ t

0
∇g(u(ζ ))dW (ζ )

)2
dx

]

≤ CE
[‖∇h2‖2L2

] + CE
[ ∫ t

0
‖∇Δu(ζ )‖2L2dζ

]

+ CE
[ ∫ t

0
‖∇ f (u(ζ ))‖2L2dζ

] + CE
[ ∫ t

0
‖∇g(u(ζ ))‖2L2dζ

]

≤ CE
[‖∇h2‖2L2

] + CE
[ ∫ t

0
‖∇Δu(ζ )‖2L2dζ

]

+ CE
[ ∫ t

0
‖u(ζ )‖4(q−1)

L4(q−1)dζ
] + CE

[ ∫ t

0
‖∇u(ζ )‖4L4dζ

] + C . (A.7)

Therefore, for any s, t ∈ [0, T ] with s < t , we have

E
[‖∇(u(t) − u(s))‖2L2

] = E
[‖∇ut (ξ)‖2L2

]
(t − s)2 ≤ C(t − s)2, (A.8)

where ξ ∈ (s, t) and

C = CE
[‖h2‖2L2

] + CE
[ ∫ t

0
‖∇Δu(ζ )‖2L2dζ

] + CE
[ ∫ t

0
‖u(ζ )‖4(q−1)

L4(q−1)dζ
]

+ CE
[ ∫ t

0
‖∇u(ζ )‖4L4dζ

] + C .

This finishes the proof of the lemma. ��

Proof of Lemma 6 From the SPDE (1.1), for any s, t ∈ [0, T ] with s < t , we have

v(t) − v(s) =
∫ t

s
Δudζ +

∫ t

s
f (u)dζ +

∫ t

s
g(u)dW (ζ ). (A.9)

Taking the gradient, the square, the spatial integral, and the expectation on both sides of
(A.6), and then using the triangle inequality, the Schwarz inequality, and Itô isometry, we
obtain
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E
[‖∇(v(t) − v(s))‖2L2

]

≤ CE
[ ∫ t

s
‖∇Δu(ζ )‖2L2dζ

]
(t − s)

+ CE
[ ∫ t

s
‖∇ f (u(ζ ))‖2L2dζ

]
(t − s) + CE

[ ∫ t

s
‖∇g(u(ζ ))‖2L2dζ

]
,

≤ CE
[ ∫ t

s
‖∇Δu(ζ )‖2L2dζ

]
(t − s)

+ CE
[ ∫ t

s
‖u(ζ )‖4(q−1)

L4(q−1)dζ
]
(t − s) + CE

[ ∫ t

s
‖∇u(ζ )‖4L4dζ

] + C(t − s),

≤ C(t − s), (A.10)

where

C = CE
[ ∫ t

s
‖∇Δu(ζ )‖2L2dζ

] + CE
[ ∫ t

s
‖u(ζ )‖4(q−1)

L4(q−1)dζ
]

+ C sup
s≤ζ≤t

E
[‖∇u(ζ )‖4L4

] + C .

This finishes the proof of the lemma. ��
Proof of Lemma 7 Again, from the Eq. (1.1), we get

ut (t) − h2 =
∫ t

0
Δudζ +

∫ t

0
f (u)dζ +

∫ t

0
g(u)dW (ζ ). (A.11)

Taking theHessian, the square, the spatial integral, and the expectation on both sides of (A.6),
and then using the triangle inequality, the Schwarz inequality, and Itô isometry, we obtain

E
[‖∇2ut (t)‖2L2

]

≤ CE
[‖∇2h2‖2L2

] + CE
[ ∫

D

(∫ t

0
∇2Δu(ζ )dζ

)2
dx

]

+ CE
[ ∫

D

(∫ t

0
∇2 f (u(ζ ))dζ

)2
dx

] + CE
[ ∫

D

(∫ t

0
∇2g(u(ζ ))dW (ζ )

)2
dx

]

≤ CE
[‖∇2h2‖2L2

] + CE
[ ∫ t

0
‖∇2Δu(ζ )‖2L2dζ

]

+ CE
[ ∫ t

0
‖∇2 f (u(ζ ))‖2L2dζ

] + CE
[ ∫ t

0
‖∇2g(u(ζ ))‖2L2dζ

]

≤ CE
[‖∇2h2‖2L2

] + CE
[ ∫ t

0
‖∇2Δu(ζ )‖2L2dζ

]

+ CE
[ ∫ t

0
‖u(ζ )‖4(q−1)

L4(q−1)dζ
] + CE

[ ∫ t

0
‖∇2u(ζ )‖4L4dζ

]

+ CE
[ ∫ t

0
‖∇u(ζ )‖8L8dζ

] + C . (A.12)

Therefore, for any s, t ∈ [0, T ] with s < t , we have

E
[‖∇2(u(t) − u(s))‖2L2

] = E
[‖∇2ut (ξ)‖2L2

]
(t − s)2

≤ C(t − s)2, (A.13)

123



   53 Page 28 of 29 Journal of Scientific Computing            (2022) 91:53 

where ξ ∈ (s, t) and

C = CE
[‖∇2ut (0)‖2L2

] + CE
[ ∫ t

0
‖∇2Δu(ζ )‖2L2dζ

] + CE
[ ∫ t

0
‖u(ζ )‖4(q−1)

L4(q−1)dζ
]

+ CE
[ ∫ t

0
‖∇2u(ζ )‖4L4dζ

] + CE
[ ∫ t

0
‖∇u(ζ )‖8L8dζ

] + C .

This finishes the proof of the lemma. ��
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