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a b s t r a c t

Euler equations of compressible gas dynamics, coupled with a source term due to the
gravitational fields, often appear in many interesting astrophysical and atmospheric ap-
plications. In this paper, we design high order finite difference weighted essentially non-
oscillatory (WENO) methods for the Euler equations under static gravitation fields, which
are well-balanced for known steady state solutions. We simplify the well-balanced WENO
methods designed in Xing and Shu (2013) for the isothermal equilibrium, and then extend
them to more general steady state solutions which include both isothermal and polytropic
equilibria. One- and two-dimensional numerical examples are provided at the end to test
the performance of the proposed WENOmethods and verify these properties numerically.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we design high order finite difference weighted essentially non-oscillatory (WENO) methods for the Euler
equations under static gravitation fields, which arewell-balanced for known steady state solutions. Themathematicalmodel
under consideration is the Euler equations of compressible gas dynamics, coupledwith a source termdue to the gravitational
fields. This is an importantmodel appearing inmany interesting astrophysical and atmospheric applications. It takes the form
of

ρt + ∇ · (ρu) = 0,
(ρu)t + ∇ · (ρu ⊗ u + pId) = −ρ∇φ,

Et + ∇ · ((E + p)u) = −ρu · ∇φ,
(1)

where x ∈ Rd (d = 1, 2, 3) is the spatial variable, and t is the time. Here ρ,u, p stand for the fluid density, the velocity, and the
pressure, respectively. In this paper, φ = φ(x) denotes the time independent gravitational potential, and we leave the case
of time dependent φ for future research. Id is the identity matrix, and the operators∇ ,∇· and⊗ are the gradient, divergence
and tensor product inRd, respectively. E = ρ∥u∥

2/2+ρe (with e being the internal energy) is the non-gravitational energy.
To close the system, the pressure p is linked to ρ and e through the so called equation of state, denoted by p = p(ρ, e). The
ideal gas law, given by

p = (γ − 1)ρe = (γ − 1)
(
E − ρ∥u∥

2/2
)
, (2)
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where γ is the ratio of specific heats, is used in the numerical tests, butwewould like tomention that themethods presented
in this paper are applicable beyond the ideal gas equation of state.

Many existing numerical methods, including finite difference, finite volume and finite element discontinuous Galerkin
(DG)methods, have been designed for the Euler equationswithout the source term due to gravitational fields. However, new
numerical challenge emergeswith the addition of the gravitational source term, as suchmodel nowadmits non-trivial steady
state solutions with two well-known hydrostatic steady states being the isothermal and the polytropic equilibria. Many
practical applications involve the nearly steady state solutions, which are often small perturbations of these steady states.
Standard numerical methods fail to balance the numerical approximations of the flux term and the source term at steady
state, and introduce error comparable with the size of the physical interesting perturbation, which leads to non-physical
oscillating solutions. Well-balanced methods, which can preserve the steady state solution exactly in the discrete level, are
introduced to provide an efficient way to capture these small perturbations on relatively coarse meshes. Well-balanced
methods for the Euler equations with gravitation were first considered by LeVeque and Bale [1], where they extended their
quasi-steady wave propagation methods designed for the shallowwater equations to the Euler equations. After this pioneer
work, many well-balanced methods [2–8] have been designed and studied. Among them, we designed high order well-
balanced finite difference WENO methods for the isothermal equilibrium in [9]. Other high order well-balanced methods
can be found in [10–13], which include finite difference, finite volume and finite element DG methods.

In this paper, we propose to extend the well-balanced finite difference WENO methods designed by us in [9] for the
isothermal equilibrium to more general steady state solutions which include both isothermal and polytropic equilibria. The
main idea to achieve the well-balanced property is to rewrite the source terms in a special way using the information of
the equilibrium state to be preserved and then discretize them using a WENO differential operator which is consistent to
that for the flux term. This technique has been applied in [14–16] for the shallow water equations, and later generalized
for various models including the pollutant transport equations, chemosensitive movement equation, nozzle flow, Euler
equations with gravitation, and chemical reaction problems, etc. The major contribution of this paper is to first simplify
the source term evaluation of the well-balanced methods in [9] which will lead to a reduced computational cost, and then
extend this technique to the polytropic and other general steady state solution of the Euler equations under gravitation.

This paper is organized as follows. In Section 2, we start with presenting the mathematical model and the corresponding
steady state solutions, and then propose a novel one-dimensional high order well-balanced WENO scheme, which can
conserve the equilibrium state solutions exactly, and at the same time is genuinely high order accurate for the general
solutions. We then extend the proposed well-balanced method to multi-dimensional problems in Section 3. Section 4
contains extensive one- and two-dimensional numerical results to demonstrate the behavior of the proposedmethods, such
as high order accuracy, the well-balanced property, and good resolution for smooth and discontinuous solutions. Conclusion
remarks are given in Section 5.

2. Well-balanced WENO schemes for one-dimensional problems

In this section, we present our high order well-balanced finite difference WENO schemes for the Euler equations
with gravitation. The simpler one-dimensional problem is discussed in this section to illustrate the main idea, and their
generalization to multi-dimensional case will be given in Section 3.

2.1. Mathematical model and steady states

In one spatial dimension, the Euler equations under gravitation (1) become

ρt + (ρu)x = 0,

(ρu)t + (ρu2
+ p)x = −ρφx,

Et + ((E + p)u)x = −ρuφx, (3)

where u is the one-dimensional velocity. The hydrostatic equilibrium state with a zero velocity is given by

u = 0, px = −ρφx, (4)

where the source term due to the gravitational forces is balanced by the pressure gradient. Two important special equilibria,
which correspond to constant temperature (isothermal equilibrium) and constant entropy (polytropic equilibrium), are
commonly encountered in the practical applications.

The isothermal equilibrium state with the constant temperature T0 is given by

ρ = ρ0 exp
(

−
φ

RT0

)
, u = 0, p = p0 exp

(
−

φ

RT0

)
, (5)

where p0 = ρ0RT0 and R is the gas constant. The polytropic hydrostatic equilibrium usually takes the form of

p = Kργ . (6)
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Combined with the steady state solution (4), this will lead to the explicit form of

ρ =

(
γ − 1
Kγ

(C − φ)
) 1

γ−1

, u = 0, p =
1

K
1

γ−1

(
γ − 1

γ
(C − φ)

) γ
γ−1

, (7)

where C and K are both constants. As shown in [5], the polytropic equilibrium (7) can also be written as

u = 0, h + φ = C, (8)

where h = e + p/ρ denotes the specific enthalpy. Because of the nonlinear relationship between ρ and p of the polytropic
equilibrium, it is usually more challenging to design well-balanced methods for such steady state.

2.2. Review of finite difference WENO methods

For the sake of simplicity, we assume that the grid points {xj} are uniformly distributed with step size ∆x = xj+1 − xj. We
take the one-dimensional scalar hyperbolic conservation laws

vt + f (v)x = 0, (9)

as an example to present a quick review of the finite differenceWENO scheme. The complete algorithm can be found in [17]
and the recent review paper by Shu in [18]. The computational variables of the semi-discrete WENO methods are denoted
by vj(t), which approximate the point values v(xj, t). The WENO scheme takes the form of

dvj(t)
dt

+
1

∆x

(̂
fj+ 1

2
− f̂j− 1

2

)
= 0, (10)

with f̂j+ 1
2
being the numerical fluxes to be defined below, which approximate hj+ 1

2
= h

(
xj+ 1

2

)
with high order accuracy.

Herein, h(x) is implicitly defined by

f (v(x)) =
1

∆x

∫ x+∆x/2

x−∆x/2
h(ξ ) dξ,

and we refer to [17] for the details of this function.
To ensure the numerical stability, we take the upwind idea into account and split the flux f (v) into two parts

f (v) = f +(v) + f −(v),

where df+(v)
dv ≥ 0 and df−(v)

dv ≤ 0. One example is the simple Lax–Friedrichs flux

f ±(v) =
1
2
(f (v) ± αv), (11)

with α = maxv

⏐⏐f ′(v)
⏐⏐, and the maximum is taken over the whole region. Next, the WENO reconstruction idea [17] is used

to obtain the numerical fluxes f̂ +

j+ 1
2
and f̂ −

j+ 1
2
. For example, f̂ +

j+ 1
2
can be expressed as

f̂ +

j+ 1
2

=

r∑
k=0

ωkqrk
(
f +

j+k−r , . . . , f
+

j+k

)
, (12)

where f +

i = f +(vi), i = j − r, . . . , j + r and

qrk (g0, . . . , gr) =

r∑
l=0

ark,lgl (13)

provides a (r+1)th order approximation of the numerical flux on the kth stencil Sk = (xj+k−r , . . . , xj+k), k = 0, 1, . . . , r , with
ark,l, 0 ≤ k, l ≤ r being the corresponding constant coefficients (see [19] for more details). Here ωk in (12) is the nonlinear
weight which satisfies

∑r
k=0ωk = 1 and is formulated as

ωk =
αk∑r
l=0 αl

, with αk =
C r
k(

εWENO + ISk
)2 , k = 0, 1, . . . , r, (14)

where C r
k is the linear weight to provide (2r + 1)th-order accuracy in the smooth regions, and εWENO is a small positive

constant used to avoid the denominator becoming zero. In this paper, εWENO = 10−6 is used for all test cases. ISk are the
smoothness indicators of f +(v) on the stencil Sk, k = 0, 1, . . . , r proposed in [17,19]. The WENO reconstruction procedure
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for f̂ −

j+ 1
2
can be obtained by a mirror symmetry to that for f̂ +

j+ 1
2
with respect to xj+ 1

2
. Consequently, we define the numerical

flux f̂j+ 1
2
as follows:

f̂j+ 1
2

= f̂ +

j+ 1
2

+ f̂ −

j+ 1
2
,

which completes semi-discrete scheme (10).
Runge–Kutta methods can be used as the temporal discretization of (10) to derive fully discrete methods. In this paper,

we apply the following third order Runge–Kutta method:

v(1)
= vn

+ ∆tF(vn)

v(2)
=

3
4
vn

+
1
4

(
v(1)

+ ∆tF(v(1))
)

vn+1
=

1
3
vn

+
2
3

(
v(2)

+ ∆tF(v(2))
)
, (15)

with F(v) denoting the spatial operator.

2.3. Well-balanced WENO schemes

In the subsection, we present well-balanced finite difference WENO schemes to one-dimensional Euler equations with
known equilibrium state (4), and also explain how they can be applied to the special cases of isothermal equilibrium (5) and
polytropic equilibrium (7). In the case of isothermal equilibrium, they reduce to a simpler version of the finite difference
WENOmethods presented in [9], therefore this paper can also be viewed as a simplification and generalization of that well-
balanced technique to more general steady states.

The general steady state solutions are given by (4), and we would like to design numerical methods which preserve such
steady states which satisfy the following assumption:

The targeting steady state solutions to be preserved in (4) are explicitly
known and can be denoted by ρe(x) and pe(x) (or ρe(x) and Ee(x)). (16)

Therefore, (4) leads to the fact

pe(x)x = −ρe(x)φx. (17)

In order to designwell-balancedmethods, we follow the idea in [9] to reformulate the source term using (17) and rewrite
the governing equations (3) as

ρt + (ρu)x = 0

(ρu)t +
(
ρu2

+ p
)
x =

ρ

ρe p
e
x

Et + ((E + p)u)x = −ρuφx,

(18)

where we replace the source term −ρφx in the second equation by ρ

ρe pex. The source term in the third equation is kept the
same, as it reduces to zero at the steady state (4) and therefore will not affect the well-balanced property. Let us denote this
system in a compact vector form for the ease of presentation

Ut + F (U)x = S,

where U = (ρ, ρu, E)T , F (U) and S stand for the unknown vector, the flux and the source term, respectively.
The semi-discrete well-balanced WENO schemes still take the form of

d
dt

Uj(t) +
1

∆xj

(̂
Fj+ 1

2
− F̂j− 1

2

)
= Sj, (19)

but with slightly modified numerical fluxes and source term approximations outlined below.
To present the basic idea of the modification, we first consider the situation when the WENO scheme is applied without

the flux splitting (e.g., WENO-Roe scheme) or the local characteristic decomposition for the system of equations. Let us
compute the numerical fluxes f̂j+ 1

2
as stated in Section 2. As to the source term approximation, the third term (−ρuφx)j can

be computed as usual, namely if φx is available, (φx)j can be evaluated at the point xj. And if φ is only available pointwise and
there is no explicit formulation of φx, one option is to use the WENO reconstruction to compute (φx)j from the point values
φj±k. At the end, we let

(−ρuφx)j = −(ρu)j(φx)j. (20)
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For the second source term ρ

ρe pex, we use the usual WENO reconstruction to compute p̂ej+1/2 from the point values pej±k, and

then approximate (pex)j by (p̂ej+1/2 − p̂ej−1/2)/∆xj to obtain(
ρ

ρe p
e
x

)
j
=

ρj

ρe
j

p̂ej+1/2 − p̂ej−1/2

∆xj
. (21)

With the standard WENO numerical flux and source term approximation stated above, this WENO method without any
further modification is actually well-balanced, and we refer to Proposition 1 for the detailed proof.

Next, we look at the situation when theWENO procedure involves the local characteristic decomposition, which is often
used for the system of equations including the Euler equations. The local characteristic matrix R, consisting of the right
eigenvectors of the Jacobian at vj+1/2, is used to compute the numerical flux at xj+1/2. All the neighboring point values of
the vectors (ρu, ρu2

+ p, (E + p)u)j±k are projected to the local characteristic fields determined by R−1, and the WENO
reconstruction is then completed in the characteristic space. After the WENO reconstruction, the value will be projected
back to the physical space to obtain F̂j+1/2. For the source term approximation, we mimic the process and project the vector
(0, pe(x), 0)j±k to the local characteristic fields to carry out the WENO reconstruction. The reconstructed value is projected
back to obtain p̂ej+1/2 for the source term approximation.

Finally, we considerWENO schemes with a Lax–Friedrichs flux splitting, denoted by theWENO-LF scheme. The flux F (U)
is separated into two parts:

F (U) = F+(U) + F−(U),

where

F±(U) =
1
2

(F (U) ± αiU) , (22)

with

αi = max
U

⏐⏐λi(U)
⏐⏐

for the ith characteristic field and λi(U) being the ith eigenvalue of the Jacobian ∂F (U)/∂U . The ±αiU term contributes to
the numerical viscosity, which is essential for the numerical approximation of hyperbolic conservation laws. But such term
may destroy the well-balanced property at the steady state solution. Therefore, we propose to modify the flux splitting as
follows

F±(U) =
1
2

(
F (U) ± α′

i Ũ
)
, (23)

with Ũ given by

Ũ =

(
ρ

ρe ,
ρu
ρe ,

E
pe

)
,

and the coefficient α′

i defined as

α′

i = αi max
j

(
ρe
j , pej

)
.

At the steady state (4), Ũ becomes the constant, and the effect of this viscosity term ±α′

i Ũ towards the approximation of
F (U)x is zero. An alternative is to replace Ũ by

Ũ =
(
ρ − ρe, ρu, E − pe/(γ − 1)

)
,

and α′

i = αi, which will serve the same purpose. As the flux splitting WENO approximation becomes F±(U) = F (U)/2 at the
steady state, the well-balanced source term approximation can be obtained if we simply split the derivatives in the second
source term as:⎛⎝ 0

pex
0

⎞⎠ =

⎛⎝ 0
pex/2
0

⎞⎠+

⎛⎝ 0
pex/2
0

⎞⎠ , (24)

and apply the same WENO procedure corresponding to F+ or F− to approximate them respectively. We then add up the
resulting p̂e±j+1/2 to obtain

p̂ej+1/2 = p̂e+j+1/2 + p̂e−j+1/2. (25)

For the numerical methods described above, we have

Proposition 1. For the Euler equations with gravitation (3), reformulated in the form of (18), the semi-discrete finite difference
WENO schemes (19), with the standard WENO numerical fluxes for WENO-Roe or modified numerical fluxes based on (23)
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for WENO-LF, combined with the source term approximation stated in (20)–(21) for WENO-Roe or modified source term
approximation with (20), (21), (24), (25) for WENO-LF, are well-balanced for the general steady state solution (4) satisfying the
assumption (16).

Proof. We use the WENO-Roe method as an example to prove the well-balanced property. The proof of WENO-LF method
follows the same way and is ignored here to save space. At the steady state (4) where u = 0 and p = pe(x), the flux F (U)
becomes

F (U) =

⎛⎜⎝ ρu

ρu2
+ p

(E + p)u

⎞⎟⎠ =

( 0
pe

0

)
,

and the numerical flux F̂j+1/2 are obtained by the standard WENO reconstruction on F (U). The third source term approx-
imation (−ρuφx)j becomes 0 since u = 0, and the second source term approximation reduced to

(
ρ

ρe pex
)
j
=
(
pex
)
j which

is computed by the WENO reconstruction. Therefore, the flux and source term approximation reduce to the same WENO
reconstruction for (pe)x, and cancel with each other, which leads to the desired well-balanced property. □

We now summarize the complete procedure of the high order well-balanced finite difference WENO-LF scheme for
solving the one-dimensional Euler equations (3):

1. Reformulate the source term and rewrite the equation in the form (18).
2. Approximate the derivative term in the source term of momentum equation in (18) by splitting them as in (24) and

then applying the standardWENO procedure with flux splitting on them to obtain p̂ej+1/2 as in (25). Approximate the
derivative term in the source term of energy equation in a straightforward way.

3. At each time step, perform the usual WENO-LF approximation on the flux derivative F (U)x with a modified flux
splitting (23).

4. Evaluate the source term at the current time step by (20) and (21) using the derivative term approximation from
Step 2.

5. Add up the residues of the numerical flux and source term approximations, and forward in time by Runge–Kutta
methods.

2.3.1. Isothermal equilibrium
Now, let us consider the special case of the isothermal equilibriumgiven by (5). Therefore,wehaveρe(x) = ρ0 exp

(
−

φ

RT0

)
and pe(x) = p0 exp

(
−

φ

RT0

)
. As explained above, the required steps to obtain well-balanced finite differenceWENOmethods

include: (1) rewriting the source term of the momentum equation as −ρg =
ρ

ρe pex; (2) evaluating this source term
numerically via (21); and (3) modifying the numerical flux by (23). As proven in Proposition 1, the finite difference WENO
methods after these modifications satisfy the well-balanced property.

Remark 1. Finite difference well-balanced WENO numerical methods for the Euler equations under gravity have been
proposed in [9]. The method proposed there is very similar to the one described above, with the only difference in the
source term evaluation (21). In [9], p̂ej+1/2 are computed by applying the WENO reconstruction procedure on pej with the
weights computed from the WENO reconstruction of the flux Fj. In this paper, we simplify the procedure by applying the
WENO reconstruction on pej directly (with the weights computed from pej ). The difference in these two approximations also
leads to the following difference in the implementation. In [9], p̂ej+1/2, hence the source term approximation, needs to be
re-evaluated at each time step as the weights from the WENO reconstruction of the flux Fj may change at different time. If
the method described in this paper is used, we can simply compute p̂ej+1/2 once at the beginning of the code and use them
for all the time steps, hence save some computational costs, for solving the Euler equations with static gravitational fields.
The approach in this paper can be viewed as a simplification and generalization of the well-balancedmethods studied in [9].

2.3.2. Polytropic equilibrium

Next, we turn our attention to the polytropic equilibrium given by (7). Therefore, we have ρe(x) =

(
γ−1
Kγ

(C − φ)
) 1

γ−1
and

pe(x) =
1

K
1

γ−1

(
γ−1
γ

(C − φ)
) γ

γ−1
. The same three steps listed in Section 2.3.1 can be applied to generate well-balanced finite

difference WENO methods.

3. Multi-dimensional extension

The approach to design one-dimensional finite difference well-balancedWENOmethods can be easily extended to multi
space dimensions, which will be explained in this section. Consider the multi-dimensional Euler equations (1) under the



G. Li, Y. Xing / Computers and Mathematics with Applications 75 (2018) 2071–2085 2077

gravitation, the isothermal equilibrium takes the form of

ρ = ρ0 exp
(

−
φ

RT0

)
, u = 0, p = RTρ = RTρ0 exp

(
−

φ

RT0

)
, (26)

and the polytropic equilibrium is given by

ρ =

(
ν − 1
Kν

(C − φ)
) 1

ν−1

, u = 0, p =
1

K
1

ν−1

(
ν − 1

ν
(C − φ)

) ν
ν−1

. (27)

Extension of standard finite difference WENO schemes to multi space dimensions on rectangular meshes is straight-
forward, and can be obtained dimension by dimension directly. Let us take two dimension as an example. For every
fixed j, we can define G(x) = F (U(x, yj)), and then apply the one-dimensional WENO reconstruction to approximate
G′(xi) = Fx(U(xi, yj)). We can repeat it to approximate Fy(U(xi, yj)) by fixing i and defining H(y) = F (U(xi, y)). We refer
to [17,19] for more details of multi-dimensional finite difference WENO methods.

Following the steps to design well-balanced WENO methods for the one-dimensional problem, we first define the
equilibrium state ρe(x), pe(x) (for example the density and pressure in Eqs. (26) or (27)), and then rewrite the source term
in the momentum equation of (1) as

− ρ∇φ =
ρ

ρe ∇pe.

The one-dimensional well-balanced procedure to approximate the derivatives of the flux term and source term, described
in Section 2.3, will be applied in each of the x directions. As summarized in Section 2.3.1, in addition to the standardWENO-
LF procedure, we need to modify the viscosity part of the flux splitting in the numerical flux evaluation as in (23) and
approximate the derivative ∇pe in the source term by the splitting (24) and the standard WENO reconstruction. For the
temporal discretization, TVD Runge–Kutta method (15) can be used.

Easy to verify that, all the desired properties proved in the one-dimensional case, such as high order accuracy, and well-
balanced property, are still valid in the multi-dimensional case.

4. Numerical results

In this section, we demonstrate the performance of the proposedWENO schemes by extensive one- and two-dimensional
numerical results. The fifth order finite difference WENO schemes, coupled with third order TVD Runge–Kutta time
discretization methods (15), are used in all the tests. The CFL number is taken as 0.6. Since the paper [9] contains a series of
numerical results to test the performance of well-balanced finite difference WENO methods for the isothermal equilibrium
state, here we only include the well-balanced tests for the polytropic equilibrium (7) or (27) to save space.

4.1. Accuracy test

In the first example, we test the order of accuracy of the proposed well-balanced WENO schemes, and consider the
following initial data [7]

ρ(x, 0) = exp(−x),
u(x, 0) = 0,
p(x, 0) = (1 + x) exp(−x),

coupled with the gravitational potential φ(x) = x2/2 and γ = 1.4 in a unit computational domain [0, 1]. The time step ∆t
is taken to be proportional to ∆x5/3, so that the temporal accuracy matches the spatial accuracy. We run this example up
to the final time of t = 0.1. As the exact solution is not available, we apply the same method with a much refined mesh
of 6400 points to obtain a reference solution numerically. Table 1 shows the numerical errors in L1 norm and the order of
accuracy. We can see that finite difference WENO methods converge with the expected fifth order accuracy. The L∞ and L2
errors demonstrate a similar pattern as the L1 errors, therefore we only list the L1 errors in the paper to save the space.

4.2. Hydrostatic atmosphere in a linear gravitational field

In this example, we consider a polytropic hydrostatic atmosphere, studied in [5,11]. The gravitation field is given by
φ(x) = gx with g = 1, and the polytropic equilibrium state takes the form of

ρ(x) =

(
ρ

γ−1
0 −

1
K0

γ − 1
γ

gx
) 1

γ−1

,

u(x) = 0,
p(x) = K0ρ(x)γ ,

(28)

with γ = 5/3, ρ0 = 1, p0 = 1 and K0 = p0/ρ
γ

0 in a computational domain [0, 2].
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Table 1
L1 errors and numerical orders of accuracy for the test case in Section 4.1.

N ρ ρu E

L1 error Order L1 error Order L1 error Order

25 1.17E−2 3.71E−2 1.89E−2
50 1.45E−3 3.01 4.64E−3 3.00 2.57E−3 2.88

100 1.16E−4 3.65 3.57E−4 3.70 2.00E−4 3.69
200 5.57E−6 4.38 1.70E−5 4.39 8.72E−6 4.52
400 2.00E−7 4.80 6.50E−7 4.71 3.07E−7 4.83
800 6.29E−9 4.99 1.99E−8 5.03 9.27E−9 5.05

Table 2
L1 errors for different precisions for the steady state solution in Section 4.2.1.

N Precision ρ ρu E

100 Single 5.36E−08 2.99E−08 5.02E−08
Double 4.99E−15 6.17E−16 2.43E−16

200 Single 7.60E−08 3.25E−08 5.94E−08
Double 1.03E−14 1.23E−15 5.03E−16

4.2.1. Well-balanced property
We take the polytropic equilibrium (28) as the initial condition, and use it to test the well-balanced property of the

proposed finite difference WENO methods. The example is run to the final time t = 4 with both 100 and 200 points. To
demonstrate that the numerical error is maintained at the round-off level, we carry out the simulation with both single
precision and double precision. The L1 errors of numerical solutions with various spatial points and precisions are shown in
Table 2, where we can observe that the equilibrium states are maintained up to the round-off level. This verifies the desired
well-balanced property.

4.2.2. Small amplitude wave propagation
In the second test case, we would like to compare the ability of capturing small amplitude perturbation between the

well-balanced WENO schemes and non-well-balanced ones. So we impose a periodic velocity perturbation

u(x, t) = A sin(4π t), (29)

at the bottom of the atmosphere, with A = 10−6 representing a small perturbation. The excited waves move through the
computational domain and aremodified by the density and pressure stratification of the atmosphere.We run the simulation
until t = 1.5 with 200 points. Again, we use the same fifth order well-balanced WENO scheme with a much refined 2000
points to compute a reference solution. To demonstrate the advantage of well-balanced methods, we also run the same
test with non-well-balanced WENO schemes on 200 points using the straightforward source term evaluation. The pressure
perturbations and the velocity of both methods at the final time, as well as those of the reference solution, are shown in
Fig. 1. Easy to observe that the solution of well-balanced WENO schemes is in good agreement with the reference solution,
which demonstrates that the importance of the well-balanced methods in capturing small amplitude perturbations to the
steady state.

4.2.3. Large amplitude wave propagation
In this test case, we repeat the simulation, but with a large amplitude perturbation A = 0.1 in (29). The numerical

results at time t = 1.5 are displayed in Fig. 2. We observe that both well-balanced and non-well-balanced schemes
produce satisfying results, which agrees with our expectation that the well-balanced methods perform similarly as non-
well-balanced methods when far away from the steady states.

4.3. Contact discontinuity under gravitational field

Here we consider a Riemann problem under the gravitational field φx = 1 acting in the negative x direction. Following
the setup in [7,11], the initial conditions consist of a jump at x = 0.5 and are given by

(ρ, u, p) =

{
(1, 0, 1) if x ≤ 0.5,
(10, 0, 1) otherwise,

with γ = 1.4 in a unit computational domain [0, 1]. The solid wall boundary condition is imposed on both end points.
We compute this problem to the stopping time of t = 0.6, and plot the numerical solutions obtained with 200 points

in Fig. 3. For comparison, we use the same fifth order WENO scheme with a much refined N = 2000 points to compute a
reference solution, and include them in the plots. By comparing the results, we can easily observe that the discontinuities are
well solved by the proposed methods even on the relatively coarse mesh, and the numerical solutions agree well with the
reference ones. In addition, we also include the numerical results of the non-well-balanced WENO schemes in the figures,
and observe a better performance of the well-balanced methods over the non-well-balanced ones.
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Fig. 1. Small amplitude waves traveling up the hydrostatic atmosphere in Section 4.2.2: the pressure perturbations (left) and velocity (right). Included are
the solution of well-balanced (denoted byWB) schemes with 200 and 2000 points, and that of the non-well-balanced (denoted by non-WB) schemes with
200 points.

Fig. 2. Large amplitude waves traveling up the hydrostatic atmosphere in Section 4.2.3: the pressure perturbations (left) and velocity (right). Included are
the solution of well-balanced schemes with 200 and 2000 points, and that of the non-well-balanced schemes with 200 points.

4.4. Two-dimensional polytrope

Subsequently, we consider two-dimensional test cases to test the performance of the proposedmethods. In this example
taken from [5,12], we consider a static adiabatic gaseous sphere holding together by self-gravitation. From the hydrostatic
equilibrium

dp
dr

= −ρ
dφ
dr

, (30)

and the Poisson equation for the gravitational field φ(r), one can derive an analytical solution for γ = 2 (neutron stars can
be modeled by γ = 2–3). The density, pressure and velocity of the analytical equilibrium are given as follows

ρe(x, y) = ρe(r) = ρc
sin(αr)

αr
, pe(x, y) = pe(r) = Kρ(r)2, ue

= 0, (31)

and the gravitational potential is given by

φ(x, y) = φ(r) = −2Kρc
sin(αr)

αr
, (32)
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Fig. 3. Contact discontinuity under gravitational field in Section 4.3. Included are the solution of well-balanced schemes with 200 and 2000 points, and
those of the non-well-balanced scheme with 200 points. Top left: density distribution; Top right: velocity distribution; Bottom left: energy distribution;
Bottom right: pressure distribution.

Table 3
L1 errors for different precisions for the steady state solution (31) and (32) in Section 4.4.1 by well-balanced methods.

N Precision ρ ρu ρv E

50 × 50 Single 5.89E−7 4.54E−7 4.37E−7 6.39E−7
Double 3.96E−16 1.91E−16 1.91E−16 4.40E−15

100 × 100 Single 8.76E−6 5.70E−6 5.71E−7 6.17E−6
Double 5.78E−15 1.99E−15 1.99E−15 9.15E−15

with α =

√
4πg
2K and r =

√
x2 + y2 being the radial variable on a Cartesian domain [−0.5, 0.5]×[−0.5, 0.5]. Herein, we take

K = g = ρc = 1 in this test. We can observe that the polytrope obviously fulfills the polytropic equality h(r) + φ(r) = 0 for
any r > 0.

4.4.1. Well-balanced property
Firstly, we test the well-balanced property of the proposed WENO methods on this two-dimensional problem, by using

this equilibrium state (31) as the initial condition. We compute the solution up to t = 14.8 on the meshes of both 50 × 50
and 100 × 100 points. To demonstrate that the numerical error is maintained at the round-off level, we carry out the
simulation with both single precision and double precision. The L1 errors of numerical solutions with various spatial points
and precisions are shown in Table 3, where we can observe that the equilibrium states are maintained up to the round-
off level. This verifies the desired well-balanced property. For comparison, we also present the L1 errors of the non-well-
balanced methods in Table 4. It is evident that the L1 errors of the non-well-balanced method are much larger than those by
the well-balanced one, and they do not change much when different precisions are used.
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Table 4
L1 errors for different precisions for the steady state solution (31) and (32) in
Section 4.4.1 by non-well-balanced methods.

N Precision ρ ρu ρv E

50 × 50 Single 0.2387 0.2638 0.2638 0.3258
Double 0.2387 0.2638 0.2638 0.3259

100 × 100 Single 0.2362 0.2607 0.2607 0.3223
Double 0.2362 0.2607 0.2606 0.3223

Fig. 4. The contours of the numerical results of the small amplitude wave propagation problem in Section 4.4.2 by well-balanced WENO schemes at time

t = 0.2 with 100 × 100 points. Pressure perturbation (left) and velocity
(√

u2 + v2
)
(right).

4.4.2. Small amplitude wave propagation
In order to test the capability of the proposed method in capturing small perturbations of the hydrostatic equilibrium,

we add a small Gaussian hump perturbations to the pressure profile of the equilibrium state

p(r) = Kρ(r)2 + 0.001 exp(−100r2),

where ρ(r) is given by as in (31), and keep the velocity and density profiles to be same. The transmission boundary conditions
are applied in this test.

We evolved this modified initial condition up to t = 0.2 on a mesh of 100 × 100 uniform points and present the contour
plots of the pressure perturbation and the velocity

√
u2 + v2 at the final time in Fig. 4. To demonstrate the advantage of

well-balanced methods, we also run the same test with non-well-balanced WENO schemes on the same mesh using the
straightforward source term evaluation, and present the results in Fig. 5. From these figures, we can observe that non-well-
balanced WENO schemes are not capable of capturing such small perturbation on relatively coarse meshes, while the well-
balanced ones can resolve it very well and preserve the axial symmetric structure.

Next, we compute this test case up to a longer time with both well-balanced and non-well-balanced WENO schemes.
Their numerical results at t = 1.5 are presented in Figs. 6 and 7, respectively. Their numerical results at t = 3 are shown
in Figs. 8 and 9, respectively. From these figures, it is obvious that the numerical solutions of non-well-balanced methods
containmuch larger errorswhen comparedwith those of thewell-balancedmethods. This phenomenon is amanifestation of
that the non-well-balancedmethods cannot capture the small perturbations of the hydrostatic equilibriumwell on a relative
coarse mesh.

4.5. Polytropic hydrostatic solution

In the last two-dimensional example, we follow the setup in [7] and consider a polytropic hydrostatic solution of the form

ρe(x, y) = (T e(x, y))
1

γ−1 , ue(x, y) = ve(x, y) = 0, pe(x, y) = (T e(x, y))
γ

γ−1 , (33)

on a unit computational domain with T e(x, y) = 1−
γ−1
γ

φ(x, y), γ = 1.4 and φ(x, y) = x+ y. In this test, we impose a small
perturbation to the pressure profile

p(x, y, 0) = pe + η exp
(
−100ρ0((x − 0.3)2 + (y − 0.3)2)/p0

)
,
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Fig. 5. The contours of the numerical results of the small amplitude wave propagation problem in Section 4.4.2 by non-well-balanced WENO schemes at

time t = 0.2 with 100 × 100 points. Pressure perturbation (left) and velocity
(√

u2 + v2
)
(right).

Fig. 6. The contours of the numerical results of the small amplitude wave propagation problem in Section 4.4.2 by well-balanced WENO schemes at time

t = 1.5 with 100 × 100 points. Pressure perturbation (left) and velocity
(√

u2 + v2
)
(right).

Fig. 7. The contours of the numerical results of the small amplitude wave propagation problem in Section 4.4.2 by non-well-balanced WENO schemes at

time t = 1.5 with 100 × 100 points. Pressure perturbation (left) and velocity
(√

u2 + v2
)
(right).



G. Li, Y. Xing / Computers and Mathematics with Applications 75 (2018) 2071–2085 2083

Fig. 8. The contours of the numerical results of the small amplitude wave propagation problem in Section 4.4.2 by well-balanced WENO schemes at time

t = 3 with 100 × 100 points. Pressure perturbation (left) and velocity
(√

u2 + v2
)
(right).

Fig. 9. The contours of the numerical results of the small amplitude wave propagation problem in Section 4.4.2 by non-well-balanced WENO schemes at

time t = 3 with 100 × 100 points. Pressure perturbation (left) and velocity
(√

u2 + v2
)
(right).

with η = 0.001, ρ0 = 1.21, p0 = 1, and keep the velocity and density profiles to be the same. We present the numerical
results at t = 0.15 by well-balanced WENO schemes in Fig. 10. For comparison, we also run the same test with non-well-
balanced WENO schemes on the same mesh using the straightforward source term evaluation, and present the results in
Fig. 11. Again, we can observe that non-well-balanced WENO schemes fail to capture such small perturbation on relatively
coarse meshes, while the well-balanced ones can resolve it well with good resolution. Note that the magnitude of the
pressure perturbation by non-well-balanced methods is much larger than that generated by well-balanced methods.

5. Concluding remarks

In this paper, we have constructed well-balanced finite difference WENO schemes for the one-dimensional and multi-
dimensional Euler equations under static gravitational fields. Special attention has been paid to the approximation of
the source term as well as the construction of the numerical fluxes, to achieve the well-balanced property. We have
demonstrated that the proposedWENO schemes can balance the known equilibrium state exactly, and at the same time keep
the high order accuracy for the general solutions. Extensive one- and two-dimensional tests are carried out to demonstrate
these properties numerically.



2084 G. Li, Y. Xing / Computers and Mathematics with Applications 75 (2018) 2071–2085

Fig. 10. Polytropic hydrostatic solution in Section 4.5 with η = 0.001 by well-balancedWENO schemes at time t = 0.15 on a mesh with 100 × 100 points.
Pressure perturbation (left) and velocity (

√
u2 + v2) (right).

Fig. 11. Polytropic hydrostatic solution in Section 4.5 with η = 0.001 by non-well-balanced WENO schemes at time t = 0.15 on a mesh with 100 × 100
points. Pressure perturbation (left) and velocity (

√
u2 + v2) (right).
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