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Abstract Euler equations under gravitational field admit hydrostatic equilibrium statewhere
the flux produced by the pressure is exactly balanced by the gravitational source term. In
this paper, we present well-balanced Runge–Kutta discontinuous Galerkin methods which
can preserve the isothermal hydrostatic balance state exactly and maintain genuine high
order accuracy for general solutions. To obtain the well-balanced property, we first refor-
mulate the source term, and then approximate it in a way which mimics the discontinuous
Galerkin approximation of the flux term. Extensive one- and two-dimensional simulations
are performed to verify the properties of these schemes such as the exact preservation of
the hydrostatic balance state, the ability to capture small perturbation of such state, and the
genuine high order accuracy in smooth regions.

Keywords Euler equations · Runge–Kutta discontinuous Galerkin methods · Well-
balanced property · High order accuracy · Gravitational field

1 Introduction

Hydrodynamical evolution in a gravitational field arises in many applications from astro-
physics and climate. They are usually modeled by the Euler equations governing the
conservation of mass, momentum and energy, coupled with a source term due to the gravi-
tational field. In one space dimension, they take the form of
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ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = −ρφx ,

Et + ((E + p)u)x = −ρuφx , (1.1)

where ρ denotes the fluid density, u is the velocity, p represents the pressure, and E =
1
2ρu

2 + ρe (e is internal energy) is the non-gravitational energy which includes the kinetic
and internal energy of the fluid. γ is the ratio of specific heats and φ = φ(x) is the time
independent gravitational potential. The ideal gas law

p = (γ − 1)(E − ρu2/2), (1.2)

is considered to close this system.
The Euler equations under gravitational field (1.1) belong to the class of hyperbolic equa-

tions with source terms (also referred as hyperbolic balance laws), which takes the general
form of

Ut + F(U )x = S(U, x), (1.3)

where U is the solution vector with the corresponding flux F(U ), and S(U, x) is the source
term. This system usually admits non-trivial steady state solutions, in which the source term
is exactly balanced by the flux gradient. One main challenge in the numerical simulation of
such balance laws is that a standard numerical method may not satisfy the discrete version
of this balance exactly at (or near) the steady state, and may introduce spurious oscillations,
unless the mesh size is extremely refined. To save the computational cost, well-balanced
methods, which preserve exactly these steady state solutions up to machine accuracy, are
specially designed to ensure accurate simulations and exhibit essential stability properties
on relatively coarse meshes. Another prototypical example considered extensively in the
literature for hyperbolic balance laws is the shallow water equations with a non-flat bottom
topology. Many researchers have developed well-balanced methods for the shallow water
equations using different approaches, see, e.g. [1,2,8,10,13,18,19,23,25] and the references
therein.

For the Euler equations (1.1) under static gravitation potential φ(x), there exists the
hydrostatic equilibrium state, also called mechanical equilibrium, where the external forces
such as gravity are balanced by the pressure gradient force:

ρ = ρ(x), u = 0, px = −ρφx . (1.4)

It is difficult to design well-balanced numerical methods which can accurately preserve all
the solutions of (1.4). Two important special steady state are the constant entropy (isentropic)
and constant temperature (isothermal) hydrostatic equilibrium states [9]. Techniques required
to balance each equilibrium can be different. In this paper, we only consider the isothermal
hydrostatic balance with a constant temperature T . For an ideal gas satisfying

p = ρRT, (1.5)

where R is the gas constant, the steady state solution (1.4) becomes

ρ = ρ0 exp

(
− φ

RT

)
, u = 0, p = RTρ = RTρ0 exp

(
− φ

RT

)
, (1.6)

with a constant ρ0 after some simple calculation. The simplest and most commonly encoun-
tered case is the linear gravitational potential field with φx = g, and the corresponding
isothermal hydrostatic balance takes the form of
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ρ = ρ0 exp(−gρ0x/p0), u = 0, p = p0 exp(−gρ0x/p0). (1.7)

Many astrophysical problems involve nearly steady state flows in a gravitational field,
therefore it is essential to correctly capture the effect of gravitational force in these simu-
lations, especially if a long-time integration is involved, for example in modeling star and
galaxy formation. Improper treatment of the gravitational force can lead to a solution which
either oscillates around the equilibrium, or deviates from the equilibrium after a long time
run. In recent years, well-balanced numerical methods for the Euler equations with gravita-
tional fields have attracted much attention. LeVeque and Bale [11] extended the quasi-steady
wave-propagation methods for the Euler equations under a static gravitational field. Finite
volume well-balanced discretizations with respect to dominant hydrostatics has been pro-
posed by Botta et al. [3] for the nearly hydrostatic flows in the numerical weather prediction.
Xu and his collaborators [12,17,26] have extended the gas-kinetic scheme to the multidi-
mensional gas dynamic equations to develop well-balanced numerical methods, where the
gravitational potential was modeled as a piecewise step function with a potential jump at
the cell interface. Finite volume well-balanced methods for the isentropic hydrostatic equi-
librium are proposed by Kappeli and Mishra [9]. High order finite difference well-balanced
methods for the isothermal equilibrium are introduced in [22] by Xing and Shu. Other related
work on well-balanced methods for the Euler equations with gravitational field can be found
in [4,7,27].

All of the works mentioned above are finite difference or finite volume methods. During
the past few decades, high order discontinuous Galerkin (DG) method has gained great
attention in solving hyperbolic conservation laws. DG method is a class of finite element
methods using discontinuous piecewise polynomial space as the solution and test function
spaces (see [5] for a historic review). It combines advantages of both finite element and
finite volume methods, and can achieve high order of accuracy easily with the use of high
order polynomials within each element. Several advantages of the DG method, including
its accuracy, high parallel efficiency, flexibility for hp-adaptivity and arbitrary geometry and
meshes, make it useful for a wide range of applications.

The main objective of this paper is to develop high order accurate well-balanced Runge–
Kutta DG (RKDG) methods for the isothermal hydrostatic balance of Euler equations with
gravitation field. This will be the first paper to achieve this goal, to our best knowledge.
To achieve well-balanced property, we first rewrite the source terms in an equivalent spe-
cial form using the hydrostatic balance solution (1.6). They are then discretized to be both
high order accurate for general solutions and exactly well balanced with the pressure gra-
dient at the equilibrium state. The proposed method is a generalization of well-balanced
RKDG methods [20] designed for balancing the steady state solutions of the shallow water
equations.

This paper is organized as follows. In Sect. 2, we first present the novel one-dimensional
high order well-balanced DGmethod, which can preserve the isothermal hydrostatic balance
solution (1.6) exactly, and at the same time is genuinely high order accurate for the gen-
eral solutions. We then extend the proposed well-balanced method to multi-dimensional
problems. Section 3 contains extensive numerical simulation results to demonstrate the
behavior of our well-balanced DG methods for one- and two-dimensional Euler equations
under gravitational field, verifying high order accuracy, the well-balanced property, and
good resolution for smooth and discontinuous solutions. Some conclusions are given in
Sect. 4.
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2 Well-Balanced RKDG Methods

In this section, we present high order well-balanced DG methods for the steady state solu-
tion satisfying (1.6). To better illustrate the key well-balanced idea, we start by presenting
numerical methods that balance a simplified version of the steady state (1.6), which takes the
form of

ρ = c exp(−gx), u = 0, p = c exp(−gx), (2.1)

in conjunction with the linear gravitational potential filed, i.e.,

φx = g. (2.2)

Extension to general steady state solution (1.6) will be discussed later in Sect. 2.3. We will
confine our discussion to one dimensional problem first, again for ease of presentation, and
discuss the generalization to high dimensional case at the end of this section.

2.1 Notations

We start by presenting the standard notations. We divide the interval I = [a, b] into N
subintervals and denote the cells by I j = [x j− 1

2
, x j+ 1

2
] for j = 1, . . . , N . The center of

each cell is x j = 1
2 (x j− 1

2
+ x j+ 1

2
), and the mesh size is denoted by h j = x j+ 1

2
− x j− 1

2
,

with h = max1≤ j≤N h j being the maximal mesh size. The piecewise polynomial space V k
h

is defined as the space of polynomials of degree up to k in each cell I j , that is,

V k
h =

{
v : v|I j ∈ Pk(I j ), j = 1, 2, . . . , N

}
. (2.3)

Note that functions in V k
h are allowed to have discontinuities across element interfaces.

For any unknown u, its numerical approximation in the DG methods is denoted by uh ,
which belongs to the finite element space V k

h . We denote by (uh)
+
j+ 1

2
and (uh)

−
j+ 1

2
the limit

values of uh at x j+ 1
2
from the right cell I j+1 and from the left cell I j , respectively. The usual

notations [uh] = u+
h − u−

h and {uh} = 1
2 (u

+
h + u−

h ) are used to represent the jump and the
average of the function uh at the element interfaces.

2.2 Well-Balanced Methods for the Simplified Steady State (2.1)

Many well-balanced methods, including DG methods, have been designed for the shallow
water equations. To achieve the well-balanced property, the key idea is to introduce a numer-
ical discretization of the source term, which mimics the approximation of the flux term, so
that the exact balance between the source term and the flux can be achieved at the steady
state numerically. There exist two commonly used approaches in the literature to design
well-balanced DGmethods for the shallow water equations. The first approach [20,23] often
rewrite the equations into an equivalent way and introduce a non-standard discretization of
the source term based on that. The second approach [21,23,24] employs the idea of hydro-
static reconstruction [1] to modify the approximation of numerical flux while keeping a
simple source term approximation. Due to the nonlinear dependence of the isothermal steady
state (2.1) on the external gravitational field φ(x), it is not easy to extend the hydrostatic
reconstruction idea directly. Here, we would like to follow the first approach.
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2.2.1 Reformulation of the Equation

We first reformulate the original governing equations as follows

ρt + (ρu)x = 0,

(ρu)t + (
ρu2 + p

)
x = ρ exp(gx)(exp(−gx))x ,

Et + ((E + p)u)x = −ρug, (2.4)

where we replace −ρg by ρ exp(gx)(exp(−gx))x in the second equation, following the idea
in our recent finite difference work [22]. By writing in this special form, we hope to create
the derivative term in the source term, which can be treated in the similar way as the flux
term at the steady state (2.1) to achieve the well-balanced property. We do not change the
source term in the last equation, since the well-balanced property for this equation can be
easily obtained when u = 0 at the steady state.

For brevity, we rewrite the Eq. (2.4) in a concise vector form

Ut + F(U )x = S,

where U = (ρ, ρu, E)T with the superscript T denoting the transpose, F(U ) represents
the physical flux and S is the source term. Denote the DG approximation to the solution U
by Uh ∈ V k

h . The standard semi-discrete DG methods for (2.4) are defined as follows: for
any test function v ∈ V k

h , Uh is given by

∫
I j

(Uh)tvdx −
∫
I j
F(Uh)vxdx + F̂j+ 1

2
v

(
x−
j+ 1

2

)
− F̂j− 1

2
v

(
x+
j− 1

2

)
=

∫
I j
Svdx, (2.5)

where

F̂j+ 1
2

= f

(
Uh

(
x−
j+ 1

2
, t

)
,Uh

(
x+
j+ 1

2
, t

))
, (2.6)

and f (a1, a2) is a numerical flux. One example is the simple Lax-Friedrichs flux

f (a1, a2) = 1

2
(F(a1) + F(a2) − α(a2 − a1)), (2.7)

where α = max λ(u) with λ(u) being the eigenvalues of the Jacobian F ′(U ), and the maxi-
mum is taken over the whole region.

2.2.2 Novel Source Term Approximation

The standard DG methods (2.5) alone do not have the well-balanced property. To preserve
the steady state solution (2.1), we need to introduce a non-standard approximation to the
source term integral. The function exp(−gx) appears in the source term S, and we introduce
the notation

b(x) = exp(−gx),

for ease of presentation. We first decompose the integral of the source term in the second
equation as
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∫
I j
S2vdx =

∫
I j

ρ exp(gx) (exp(−gx))x vdx =
∫
I j

ρ

b
bxvdx (2.8)

= ρ(x j )

b(x j )

(
b

(
x−
j+ 1

2

)
v

(
x−
j+ 1

2

)
− b

(
x+
j− 1

2

)
v

(
x+
j− 1

2

)
−

∫
I j
bvxdx

)

+
∫
I j

(
ρ

b
− ρ(x j )

b(x j )

)
bxvdx .

In Remark 1 below, we provide some explanations on why such decomposition is needed for
the purpose of well-balancedness, and introduce some other alternative equivalent decom-
positions.

We now project b(x) into the piecewise polynomial space V k
h , to obtain the polynomial

bh(x), using the standard L2 projection. Our numerical approximation to the source term
(2.8) takes the form of∫
I j
S2vdx ≈

∫
I j

(
ρh

bh
− ρh(x j )

bh(x j )

)
(bh)xvdx

+ ρh(x j )

bh(x j )

(
{bh}

(
x j+ 1

2

)
v

(
x−
j+ 1

2

)
−{bh}

(
x j− 1

2

)
v

(
x+
j− 1

2

)
−

∫
I j
bhvxdx

)
,

(2.9)

where ρ, b are replaced by the DG approximations ρh , bh , and the boundary values of bh are
replaced by the average of bh at the cell interface, denoted by {bh}, to be consistent with the
numerical flux F̂j±1/2. For the integral of the source term in the third equation, we simply
approximate it by ∫

I j
S3vdx ≈

∫
I j

−(ρu)hgvdx, (2.10)

where the standard quadrature rule is used to evaluate this integral.

2.2.3 Well-Balanced Numerical Fluxes

The last piece in designingwell-balancedDGmethods is tomodify the numerical flux F̂j+1/2.
The term α(a2 − a1) in the Lax-Friedrichs flux (2.7) contributes to the numerical viscosity
term, which is essential for this nonlinear conservation laws. However they will destroy the
well-balanced property at the steady state. We propose to modify it as

F̂j+1/2 = 1

2

⎡
⎣F

(
Uh

(
x−
j+1/2, t

))
+ F

(
Uh

(
x+
j+1/2, t

))

−α′
⎛
⎝Uh

(
x+
j+1/2, t

)

bh
(
x+
j+1/2

) −
Uh

(
x−
j+1/2, t

)

bh
(
x−
j+1/2

)
⎞
⎠

⎤
⎦ , (2.11)

where the coefficient α′ is defined as

α′ = αmax
x

bh(x), (2.12)

to maintain enough artificial numerical viscosity. This modification does not affect the accu-
racy, but at the steady state (2.1), the term Uh/bh becomes a constant. Therefore, the effect
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of these viscosity terms becomes zero and the numerical flux now reduces to a simple form

F̂j+ 1
2

= 1

2

[
F

(
U

(
x−
j+ 1

2
, t

))
+ F

(
U

(
x+
j+ 1

2
, t

))]
. (2.13)

2.2.4 Well-Balanced Methods

All these together lead to a well-balanced DG method for the Euler equations, as outlined in
the following proposition.

Proposition 1 For the Euler equations (1.1) with the linear gravitational potential field
(2.2), the semi-discrete DG methods (2.5), combined with (2.9), (2.10) and (2.11), are well-
balanced for the steady state solution (2.1).

Proof At the steady state (2.1), we have

ρh = cbh, u = 0, ph = cbh .

Easy to observe that the well-balanced property holds for the first and third equations, as both
the flux and source term approximations in these equations become zero. For the momentum
equation, we have ρh(x j )/bh(x j ) = ρh(x)/bh(x) ≡ c, and the source term approximation
(2.9) becomes

∫
I j
S2vdx ≈ c

(
{bh}

(
x j+ 1

2

)
v

(
x−
j+ 1

2

)
− {bh}

(
x j− 1

2

)
v

(
x+
j− 1

2

)
−

∫
I j
bhvxdx

)
.

(2.14)

Since u = 0, the flux term F2 = ρu2 + p reduces to p. Utilizing (2.13) and the equilibrium
ph = cbh , its numerical approximation takes the form of

F̂2
(
x j+ 1

2

)
v

(
x−
j+ 1

2

)
− F̂2

(
x j− 1

2

)
v

(
x+
j− 1

2

)
−

∫
I j
F2vxdx

= c{bh}
(
x j+ 1

2

)
v

(
x−
j+ 1

2

)
− c{bh}

(
x j− 1

2

)
v

(
x+
j− 1

2

)
−

∫
I j
cbhvxdx . (2.15)

We can conclude that the flux and source term approximations balance each other, which
leads to the well-balanced property of our methods. ��
Remark 1 The choice of ρh(x j )/bh(x j ) in (2.9) is not unique, and can be replace by any
other term that can recover constant c at the steady state (1.6), for example, (ρh) j/(bh) j . We
would like to comment that although ρ exp(gx) = c at the steady state (2.1), this equality
does not hold for the product of two polynomials which approximate these functions, i.e.,
ρh exp(gx)h 	= c everywhere pointwise (where exp(gx)h stands for the L2 projection of
exp(gx) into the space V k

h ).

Remark 2 A straightforward way to approximate the source term (2.8) by:∫
Ii

ρ exp(gx) (exp(−gx))x vdx

= ρ
(
x−
i+1/2

)
v

(
x−
i+1/2

)
− ρ

(
x+
i−1/2

)
v

(
x+
i−1/2

)
−

∫
Ii
exp(−gx)

(
ρ

exp(−gx)
v

)
x
dx,

(2.16)
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and then change ρ, exp(−gx) to ρh , bh , and replace the cell boundary value of ρh by {ρh},
seems to work by repeating the proof of Proposition 1. One main concern in taking this
source term approximation is that the derivative of the unknown ρ appears in the source
term approximation, and the flux {ρh} is introduced at the cell interface to communicate with
neighboring cells, which may violate the Lax-Wendroff theorem, hence affect the conver-
gence towards the weak solution when discontinuous solutions appear. For example, when
no source term presents, i.e., g = 0, the source term approximation (2.9) vanishes, while
the approximation (2.16) does not (if one replaces the cell boundary value of ρh by {ρh} in
(2.16)).

2.2.5 Temporal Discretization and Slope Limiter

For the temporal discretization, high order total variation diminishing (TVD) Runge–Kutta
methods [15] can be used. In the numerical section of this paper, we apply the third order
Runge–Kutta methods:

U (1)
h = Un

h + �tF
(
Un
h

)
U (2)
h = 3

4
Un
h + 1

4

(
U (1)
h + �tF

(
U (1)
h

))

Un+1
h = 1

3
Un
h + 2

3

(
U (2)
h + �tF

(
U (2)
h

))
, (2.17)

with F(Uh) being the spatial operator.
When the solution contains discontinuities, slope limiter procedure is usually needed

for the DG methods. They are applied after each inner stage of the Runge–Kutta methods.
Many different choices of slope limiters have been presented in the literature. In this paper,
we consider the total variation bounded (TVB) limiter presented in [6,14]. This limiter
procedure itself might destroy the well-balanced property, and violate the exact preservation
of the steady state (2.1).

Here we follow the idea presented in [24] and propose the following well-balanced way
to perform the TVB limiter. Usually, when we perform the TVB limiter on the unknowns
Uh , it involves two steps. The first step is to check whether any limiting is needed in the
cell I j based on the cell averages (Ūh) j , (Ūh) j±1 and (Uh)

−
j+1/2, (Uh)

+
j−1/2. If the answer

is positive, the second step is to apply the TVB limiter on the variables Uh in this cell I j .
To present well-balanced slope limiter procedure, we propose to first check if the limiting is
needed based on the cell averages (Uh/bh) j , (Uh/bh) j±1 and (Uh/bh)

−
j+1/2, (Uh/bh)

+
j−1/2.

If one cell is determined as needing limiting, we apply the actual TVB limiter onUh as usual.
Note that Uh/bh becomes constant at the steady state (2.1). When the limiting procedure
is implemented this way, if the steady state is reached, no cell will be flagged as requiring
limiting, hence we do not apply any TVB limiter and therefore the well-balanced property
is maintained.

2.3 Well-Balanced Methods for the General Steady State (1.6)

Well-balanced DG methods have been designed for the special steady state (2.1) in the
previous subsection. In the subsection, we extend these methods to the more general steady
state (1.6) with the gravitational field φ(x). We first rewrite the governing Eq. (1.1) as
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ρt + (ρu)x = 0,

(ρu)t + (
ρu2 + p

)
x = RTρ exp

(
φ

RT

) (
exp

(
− φ

RT

))
x
,

Et + ((E + p)u)x = −ρug, (2.18)

which is the analogy of the Eq. (2.4) for the special steady state (2.1).
The semi-discrete well-balanced DG methods still take the form of (2.5), but with a

modified flux and source term approximations outlined below. For ease of presentation, we
introduce the notation

d(x) = exp

(
− φ

RT

)
,

and denote its projection in the space V k
h as dh(x). Following the same technique as stated

above, we decompose the integral of the source term in the second equation as
∫
I j
S2vdx =

∫
I j
RTρ exp

(
φ

RT

)(
exp

(
− φ

RT

))
x
vdx =

∫
I j

RTρ

d
dxvdx

= RT
ρ(x j )

d(x j )

(
d

(
x−
j+ 1

2

)
v

(
x−
j+ 1

2

)
− d

(
x+
j− 1

2

)
v

(
x+
j− 1

2

)
−

∫
I j
dvxdx

)

+
∫
I j
RT

(
ρ

d
− ρ(x j )

d(x j )

)
dxvdx, (2.19)

and approximate it by
∫
I j
S2vdx ≈

∫
I j
RT

(
ρh

dh
− ρh(x j )

dh(x j )

)
(dh)xvdx

+ RT
ρh(x j )

dh(x j )

(
{dh}

(
x j+ 1

2

)
v

(
x−
j+ 1

2

)
− {dh}

(
x j− 1

2

)
v

(
x+
j− 1

2

)
−

∫
I j
dhvxdx

)
,

(2.20)

where ρ, d are replaced by the DG approximations ρh , dh , and the boundary values of dh
are replaced by the cell average {dh}. The integral of the source term in the third equation is
still approximated by (2.10), and the numerical flux takes the same form as in (2.11), with
bh replaced by dh .

Following the sameproof,we can show that the semi-discreteDGmethods (2.5), combined
with (2.20), (2.10) and (2.11) (with bh replaced by dh), are well-balanced for the general
steady state solution (1.6) with the gravitational field φ(x).

2.4 Extension to Multi-dimensional Case

In this subsection, we extend well-balanced DG methods to multi-dimensional Euler equa-
tions with the gravitational field φ. The governing equations have the following formulation

ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρu ⊗ u + pId) = −ρ∇φ,

Et + ∇ · ((E + p)u) = −ρu · ∇φ, (2.21)
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where x ∈ Rl (l = 2, 3) is the spatial variable, ρ, u, p denote the density, velocity, and
pressure. E = 1

2ρ‖u‖2 + p/(γ − 1) is the non-gravitational energy. The operators ∇, ∇·
and ⊗ are the gradient, divergence and tensor product in Rl , respectively.

Here we are interested in maintaining the steady state solution with the constant temper-
ature T and the zero velocity, given by

ρ = ρ0 exp

(
− φ

RT

)
, u = 0, p = RTρ = RTρ0 exp

(
− φ

RT

)
. (2.22)

In the special case of linear gravitational potential field φ(x) = g · x, the corresponding
steady state solutions takes the form of

ρ = ρ0 exp (−ρ0(g · x)/p0) , u = v = 0, p = p0 exp (−ρ0(g · x)/p0) .

Let Tτ be a family of partitions of the computational domain 	 parameterized by τ > 0.
We do not specify the mesh element here. In two dimension, well-balanced DG methods
proposed below work for both rectangular and triangular meshes. For any element K ∈ Tτ ,
we define τK := diam(K ) and τ := max

K∈Tτ

τK . For each edge eiK (i = 1, . . . ,m) of K , we

denote the outward unit normal vector by νiK and the area of the element K by |K |.
Let us denote the multi-dimensional Euler equations (2.21) by

Ut + ∇ · F(U ) = S,

where U = (ρ, ρu, E)T , F(U) is the flux and S is the source term. The DG approximation
Uh belongs to the finite dimensional space

V k
τ ≡ {w ∈ L2(	); w|K ∈ Pk(K ) ∀K ∈ Tτ }, (2.23)

where Pk(K ) denotes the space of polynomials on the element K with at most k-th degree.
The semi-discrete DG method is given by

∫
K

∂tUw dx −
∫
K
F(U) · ∇w dx +

m∑
i=1

∫
eiK

F̂|eiK · νiKw ds =
∫
K
Sw dx, (2.24)

where w(x) is a test function from the test space V k
τ . The numerical flux F̂ is defined by

F̂|eiK · νiK = F
(
Uint (K )
i ,Uext (K )

i , νiK

)
. (2.25)

where Uint (K )
i and Uext (K )

i are the approximations to the values on the edge eiK obtained
from the interior and the exterior of K . The simple global Lax-Friedrichs flux takes the form
of

F(a1, a2, ν) = 1

2
[F(a1) · ν + F(a2) · ν − α(a2 − a1)] . (2.26)

We can extend the well-balanced DG methods designed in Sect. 2.3 to multiple space
dimensions. Following the steps in one-dimensional case, we first introduce the notation

d(x) = exp

(
−φ(x)

RT

)
, (2.27)

and rewrite the source term in the momentum equation of (2.21) as

−ρ∇φ = RTρ exp

(
φ

RT

)
∇

(
exp

(
− φ

RT

))
= RTρ

d
∇d. (2.28)
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The well-balanced approximation to the integral of this source term follows an analogue of
the decomposition (2.19), which leads to

∫
K
S2w dx =

∫
K

RTρ

d
∇d w dx (2.29)

= RT
ρ

(
x0K

)
d

(
x0K

)
(

m∑
i=1

∫
eiK

d
(
xint (K )
i

)
νiKw ds −

∫
K
d ∇w dx

)

+
∫
K
RT

(
ρ

d
− ρ

(
x0K

)
d

(
x0K

)
)

∇d w dx,

where x0K stands for the middle point or arbitrary point within the element K that is easy to
evaluate. We approximate the source term (2.29) by

∫
K
S2w dx ≈

∫
K
RT

(
ρh

dh
− ρh

(
x0K

)
dh

(
x0K

)
)

∇dh w dx

+ RT
ρh

(
x0K

)
dh

(
x0K

)
(

m∑
i=1

∫
eiK

{dh(x)}νiKw ds −
∫
K
dh ∇w dx

)
, (2.30)

where ρ, d are replaced by the DG approximations ρh , dh , and the boundary values of dh are
replaced by the cell average {dh}. The last piece in designing the well-balanced DG methods
is to replace the Lax-Friedrichs numerical flux (2.25)–(2.26) by:

F̂|eiK · νiK = 1

2

⎡
⎣F

(
Uint (K )
i

)
· νiK + F

(
Uext (K )
i

)
· νiK

−α′
⎛
⎝ Uext (K )

i

dh
(
xext (K )
i

) − Uint (K )
i

dh
(
xint (K )
i

)
⎞
⎠

⎤
⎦ . (2.31)

where the coefficient α′ is defined as

α′ = αmax
x

dh(x), (2.32)

to maintain enough artificial numerical viscosity. All these together lead to a well-balanced
DG method for the Euler equations, as outlined in the following proposition.

Proposition 2 For the multi-dimensional Euler equations (2.21) with the gravitational
potential field φ(x), the semi-discrete DG methods (2.24), combined with (2.30) and (2.31),
are well-balanced for the steady state solution (2.22).

3 Numerical Results

In this section, we carry out extensive one- and two-dimensional numerical experiments
to demonstrate the performance of the proposed well-balanced RKDG methods. In all the
computations, we use the third order TVD Runge–Kutta methods (2.17), coupled with third
order finite element DG methods (i.e., k = 2). The CFL number is taken as 0.18.
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Fig. 1 The numerical solutions of the shock tube problem under gravitational field in Sect. 3.1 at time
t = 0.2. Top left density distribution, top right velocity distribution, bottom left energy distribution, bottom
right pressure distribution

3.1 One-Dimensional Shock Tube Problem Under Gravitational Field

In this standard Sod test, the discontinuous initial conditions are given by

(ρ, v, p) =
{

(1, 0, 1) if x ≤ 0.5,
(0.125, 0, 0.1) otherwise,

on a unit computational domain [0, 1], with a constant gravitational field g = φx = 1 acting
in the negative x direction. We compute this problem up to t = 0.2.

We present the numerical results compared with the reference solutions obtained with a
much refined 2000 uniform cells in Fig. 1. Due to the presence of the gravitational force,
the density distribution is pulling towards the left direction, and negative velocity appears
in some regions. By comparing the results in these figures, we can clearly observe that the
numerical results capture sharp discontinuity transition even on a relatively coarse mesh with
100 cells, and agree well with the reference solutions.
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Table 1 L1 errors for different
precisions for the steady state
solution (3.1) in Sect. 3.2

N Precision ρ ρu E

100 Single 2.38E-7 2.23E-7 4.55E-7

Double 1.76E-15 1.77E-15 1.24E-15

200 Single 3.13E-7 2.34E-7 4.31E-7

Double 2.99E-15 1.61E-15 1.84E-15

3.2 One-Dimensional Isothermal Equilibrium Solution

In this test case, used in [11,17,22], we test the well-balanced property of the proposed DG
methods for an ideal gas with γ = 1.4 under the linear gravitational field φx = g = 1. The
isothermal steady state solution is given by

ρ0(x) = p0(x) = exp(−x) and u0(x) = 0, (3.1)

which is in the form of the special steady state (2.1). The computational domain is set as
[0, 1].

We first show an example to demonstrate the well-balanced property of the proposed DG
methods. The initial condition is taken as the steady state solution (3.1) which should be
exactly preserved by any well-balanced method. In order to demonstrate that the steady state
is indeed maintained up to the round-off error, we use single precision and double precision
respectively to perform the computation. We compute the solution until t = 2 using both
100 and 200 uniform mesh cells, and present the L1 errors of numerical solutions in Table 1.
It can be clearly observed that the numerical errors are all at the level of round-off error for
different precisions, which verifies the desired well-balanced property accordingly.

Next, we demonstrate the advantage of well-balanced methods by simulating a small
perturbation of the isothermal steady state solution (3.1). We keep the density and velocity,
but modify the initial pressure state to

p(x, t = 0) = p0(x) + η exp(−100(x − 0.5)2),

whereη is a non-zero perturbation parameter. Two cases,η = 0.01 andη = 0.0001, have been
considered. In Fig. 2, we present the pressure perturbations at t = 0.25 on a mesh with 200
cells, and a reference solution obtained with a much refined 2000 cells. The initial pressure
perturbation is also included as a dashed line. In addition, we run the same numerical test
using the non-well-balanced DG methods, with a straightforward integration of the source
term, and show their results in Fig. 2 for comparison. It is obvious that the results of well-
balanced DG methods are in good agreement with the reference solutions for both cases,
while non-well-balanced DGmethods only provide good results for the big perturbation, but
fail to capture the small perturbation with 200 cells. This demonstrates the importance of
well-balanced methods in capturing small perturbations to equilibrium states.

3.3 One-Dimensional Gas Falling into a Fixed External Potential

Next, we consider a more general gravitational field, which takes the sine wave form:

φ(x) = −φ0
L

2π
sin

2πx

L
,
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Fig. 2 The pressure perturbation of a hydrostatic solution in Sect. 3.2. The result of the well-balanced method
with 200 and 2000 cells, and that of the non-well-balanced (denoted by non-wb) method with 200 cells. Left
η = 0.01, right η = 0.0001

Table 2 L1 errors for different
precisions for the steady state
solution (3.2) in Sect. 3.3

N Precision ρ ρu E

100 Single 1.98E-7 2.86E-7 3.03E-7

Double 1.90E-15 5.37E-16 8.80E-16

200 Single 1.24E-7 2.65E-7 2.51E-7

Double 2.49E-15 7.78E-16 1.20E-15

where L is the computational domain length and φ0 is the amplitude. This test case was first
considered in [16] and later used in [17,22]. The general steady state takes the following
form

ρ = ρ0 exp

(
− φ

RT

)
, u = 0 and p = RTρ0 exp

(
− φ

RT

)
, (3.2)

with a constant temperature T .
We first verify the well-balanced property of the the proposed DG methods. For an ideal

gas with γ = 5/3, the initial conditions are defined in (3.2) with parameters ρ0 = 1, R =
1, T = 0.6866, L = 64 and φ0 = 0.02. We compute the example up to t = 50 using
both 100 and 200 uniform cells. We apply both single and double precisions, to carry out
the computation. L1 errors of ρ, ρu and E are presented in Table 2, where we can clearly
observe that the errors are all at the level of round-off error for different precisions.

In the following test case, we impose a small perturbation to the steady state (1.6), and
let the solution run for a long time. Eventually, it will converge to an isothermal hydrostatic
state. We would like to compare the performance of well-balanced and non-well-balanced
methods for this test.

We define the initial data as

ρ = ρ0 exp

(
− φ

RT

)
, u = 0, p = RTρ0 exp

(
− φ

RT

)
+ 0.001 exp

(−10(x − 32)2
)
,

with the same parameters used in thewell-balanced test.We run the simulation for 1, 000, 000
time steps with 64 uniform cells, and show the numerical results at the final time in Fig. 3.
For comparison, we also plot the numerical results by the non-well-balanced DG methods.
Easy to observe that the constant velocity and constant temperature distributions of the
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Fig. 3 The numerical solutions of well-balanced method (solid line) and non-well-balanced method (square
box, denoted by non-wb) for the convergence test in Sect. 3.3 after 1,000,000 time steps. Top left density distri-
bution, top right velocity distribution, bottom left pressure distribution, bottom right temperature distribution

equilibrium state are well-captured by the proposed well-balanced DG methods, while the
non-well-balanced methods fail to achieve this.

3.4 Two-Dimensional Accuracy Test

In this two-dimensional example, we test the convergence rate of well-balanced DGmethods
for the Euler equations (2.21) with a linear gravitational field φx = φy = 1. For such linear
field, a time-dependent exact solution has been proposed in [22], which takes the form of

ρ(x, y, t) = 1 + 0.2 sin(π(x + y − t (u0 + v0))),

u(x, y, t) = u0, v(x, y, t) = v0,

p(x, y, t) = p0 + t (u0 + v0) − x − y + 0.2 cos(π(x + y − t (u0 + v0)))/π,

on a square domain [0, 2] × [0, 2]. The constants are set as u0 = v0 = 1 and p0 = 4.5 in
this test case. The exact solutions are taken as the boundary condition when needed. We run
the simulation up to t = 0.1. The L1 errors and orders of accuracy are shown in Table 3.
We can clearly observe that the expected high order accuracy is achieved for the proposed
well-balanced DG methods.
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Table 3 L1 errors and numerical orders of accuracy for the example in Sect. 3.4

Cells ρ ρu ρv E

L1 error Order L1 error Order L1 error Order L1 error Order

8 × 8 1.20E-04 1.09E-04 1.09E-04 2.84E-04

16 × 16 1.19E-05 3.33 1.13E-05 3.27 1.13E-05 3.27 3.18E-05 3.16

32 × 32 1.14E-06 3.39 1.17E-06 3.27 1.17E-06 3.27 3.61E-06 3.14

64 × 64 1.35E-07 3.07 1.58E-07 2.89 1.58E-07 2.89 4.10E-07 3.14

128 × 128 1.80E-08 2.91 2.15E-08 2.88 2.15E-08 2.88 4.78E-08 3.10

256 × 256 2.41E-09 2.90 2.94E-09 2.87 2.94E-09 2.87 5.93E-09 3.01

Table 4 L1 errors for different
precisions for the steady state
solution (3.3) in Sect. 3.5

Precision ρ ρu ρv E

Single 1.35E-8 2.13E-8 2.07E-8 2.15E-8

Double 8.37E-14 6.24E-14 8.51E-14 3.27E-14

3.5 Two-Dimensional Isothermal Equilibrium Solution

We use this test case, taken from [22], to demonstrate the well-balanced property and the
capacity of the proposed methods for capturing the small perturbation of an isothermal
equilibrium solution in the two-dimensional case. Consider an ideal gas with γ = 1.4 and
the linear gravitational field φx = φy = g. On a unit square domain, we are interested in the
following isothermal equilibrium state

ρ(x) = ρ0 exp

(
−ρ0g

p0
(x + y)

)
,

u(x, y) = v(x, y) = 0,

p(x, y) = p0 exp

(
−ρ0g

p0
(x + y)

)
, (3.3)

with ρ0 = 1.21, p0 = 1 and g = 1.
We first test the well-balanced property by using this equilibrium state as the initial data.

We compute the solution up to t = 1 on a mesh with 50 × 50 uniform cells. In order to
demonstrate that the steady state is indeed maintained up to round-off error, we use single
precision and double precision to carry out the computation. The L1 errors of ρ, ρu, ρv and
E are shown in Table 4, where the well-balanced property can be easily observed.

Next, we demonstrate the advantage of well-balanced methods by imposing a small per-
turbation to the pressure state of the isothermal equilibrium solution:

p(x, y, t = 0) = p0 exp

(
−ρ0g

p0
(x + y)

)
+ η exp

(
−ρ0g

p0

(
(x − 0.3)2 + (y − 0.3)2

))
,

whereη = 0.001 is a non-zero perturbation constant.Wecompute the examplewith bothwell-
balanced DG methods and non-well-balanced methods (with a straightforward calculation
of the source term), up to t = 0.15 with 50 × 50 cells and simple transmissive boundary
conditions. The contour plots of their pressure perturbation are shown in Fig. 4 and the
3D figures of the pressure perturbation are shown in Fig. 5. We also include the density
perturbations in Fig. 6. From these figures, we can observe that non-well-balanced DG

123



J Sci Comput (2016) 67:493–513 509

x

y

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x

y

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Fig. 4 The contours of the pressure perturbation of a two-dimensional hydrostatic solution in Sect. 3.5 at
time t = 0.15 with 50× 50 cells. 20 uniformly spaced contour lines from 0.0003 to 0.0003. Left results based
on well-balanced method, right results based on non-well-balanced method

x

0
0.2

0.4
0.6

0.8
1

y

0
0.2

0.4
0.6

0.8
1

P
re
ss

u
re
p
er
tu
rb
at
io
n

-0.0002

0

0.0002

Y

X

Z

x

0
0.2

0.4
0.6

0.8
1

y
0

0.2
0.4

0.6
0.8

1

P
re
ss

u
re
p
er
tu
rb
at
io
n

-0.0002

0

0.0002

Y

X

Z

Fig. 5 The 3D figure of the pressure perturbation of a two-dimensional hydrostatic solution in Sect. 3.5
at time t = 0.15 with 50 × 50 cells. Left results based on well-balanced method, right results based on
non-well-balanced method

y

x

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y

x

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 6 The contours of the density perturbation of a two-dimensional hydrostatic solution in Sect. 3.5 at time
t = 0.15 with 50 × 50 cells. 20 uniformly spaced contour lines from −0.001 to 0.0002. Left results based on
well-balanced method, right results based on non-well-balanced method

123



510 J Sci Comput (2016) 67:493–513

x

y

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x

y

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Fig. 7 The contours of the pressure perturbation of a two-dimensional hydrostatic solution in Sect. 3.5 at
time t = 0.15 with 200 × 200 cells. 20 uniformly spaced contour lines from −0.0003 to 0.0003. Left results
based on well-balanced method, right results based on non-well-balanced method

methods are not capable of capturing such small perturbation on the coarse mesh, while
the well-balanced ones can resolve it very well. At the end, we also run the both methods on
a refined mesh with 200 × 200 uniform cells, and show their pressure perturbation results
in Fig. 7. The results of non-well-balanced DG methods are improving on the refined mesh,
and the difference between well-balanced and non-well-balanced methods becomes smaller,
which is what we expected.

3.6 Two-Dimensional Explosion Problem

In this last test case, we test a two-dimensional circular explosion problem following the
setup in [4]. We consider an ideal gas (γ = 1.4) under the linear gravitational field with
φx = 0, φy = g = 0.118, and the initial conditions

ρ(x, y, t = 0) = 1,
u(x, y, t = 0) = 0,
v(x, y, t = 0) = 0,

p(x, y, t = 0) = 1 − gy +
{
0.005, if (x − 1.5)2 + (y − 1.5)2 < 0.01,
0, otherwise,

on the computational domain [0, 3] × [0, 3]. Simple transmissive boundary conditions are
used in all directions.

This test can also be viewed as a small perturbation of the steady state solution. We
compute the solutions using both well-balanced and non-well-balanced DG methods, and
compare their performance. Due to the circular pressure perturbation near the center of the
domain, a shock wave will be developed, and propagate to the boundary. A uniform mesh
of 100 × 100 computational cells is used, and we perform the simulation until t = 2.4.
In Figs. 8 and 9, we plot the density ρ and velocity

√
u2 + v2 of both well-balanced and

non-well-balanced methods at times t = 1.2, 1.8 and 2.4, where we can easily observe the
big numerical error of non-well-balanced methods in the velocity plots. We would like to
comment that although the underline steady state in this test does not have the form of (2.22),
therefore our well-balanced methods are not designed to capture this steady state solution,
but we can still observe the good behavior in capturing small perturbation of this equilibrium
state.
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4 Concluding Remarks

In this paper, we have constructed well-balanced DGmethods for the isothermal equilibrium
state solution of the Euler equations under static gravitational field. Special attention has
been paid to the approximation of the source term, to achieve the well-balanced property.
We have demonstrated that the proposed DG methods can balance the general isothermal
equilibrium state exactly, and at the same time maintain the high order accuracy for the gen-
eral solutions. Extensive numerical examples are provided to demonstrate the well-balanced
property, accuracy, and good resolution of the proposed numerical methods for both continu-
ous and discontinuous solutions. Another interesting equilibrium state of the Euler equations
is the isentropic hydrostatic state. How to design high order well-balanced methods for such
equilibrium and more general steady state constitutes our future work.
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