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Canonical balanced dynamic equations involving vertically sheared horizontal flow with heat
or mass sources have emerged recently in systematic multi-scale modeling of the equatorial
wave guide on a wide range of spatio-temporal scales. Here, a new self-contained derivation of
these equations is developed briefly in a context for potential applications to the hurricane
embryo. These canonical balanced equations are studied through a combination of exact
solutions and simple numerics. The results below include elementary exact solutions given by
velocity fields that are linear in the spatial coordinates combined with an exact nonlinear
stability analysis for vertical vorticity amplification in such a preconditioned environment.
Other elementary solutions studied here include the evolution of radial eddies, which represent
‘‘hot towers’’ in the hurricane embryo in a suitable radial preconditioned background
environment.

Keywords: Cyclogenesis; Hot towers; Strong shear sources; Vertical shear; Horizontal flows;
Stability analysis

1. Introduction

Reduced models for rotating stratified flows have a central role in the understanding of
geophysical and astrophysical phenomena. Perhaps, the most familiar models of this
sort are the quasi-geostrophic models, which are appropriate for mid-latitudes on
suitable scales and arise through geostrophic balance of Coriolis terms and pressure
gradients for low Froude number flows (Pedlosky 1979, Embid and Majda 1998, Majda
2003, Julien et al. 2006). At the equator, the vertical projection of the planetary rotation
vector vanishes identically and completely new phenomena occur where the equatorial
region acts as a wave guide (Pedlosky 1979, Majda 2003). Other important phenomena
in the tropical atmosphere are due to moist convection (Smith 1997), which supplies
active mass sources and sinks to the fluid dynamics. Furthermore, all these effects
combine to produce coherent multi-scale wave patterns that profoundly influence
long-term mid-latitude weather prediction and climate change through hurricanes,
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monsoons, El Niño, and global teleconnections (Mapes et al. 2006). Recently, in this

context, new multi-scale balanced models have been developed (Sobel et al. 2001,

Majda and Klein 2003, Klein and Majda 2006, Majda 2007a,b) and applied (Biello and

Majda 2005, 2006, Biello et al. 2007) systematically to these problems. The two

common assumptions in the development of these multi-scale models is the horizontal

weak temperature gradient (WTG) approximation for potential temperature

� ¼ �ðzÞ þ ��ðxh, z, tÞ, �� 1, ð1Þ

and the low Froude number approximation for the horizontal flow Uh

Uh ¼ �uh, �� 1: ð2Þ

In (2), uh¼ (u,v) is the horizontal velocity and �¼FR, the Froude given by

FR¼ juhj/(NH), with N the buoyancy frequency associated with �ðzÞ (Majda 2003).

Values of � in the range �ffi 1/10 to 1/7 are typical observed values for the lower/middle

troposphere in the tropical atmosphere and simplified multi-scale balanced models arise

on horizontal scales ranging from microscales of order 10 km to planetary scales of

order 10,000 km (Klein 2000, Majda and Klein 2003, Biello and Majda 2006, Klein and

Majda 2006, Majda 2007a,b); the basis for utilizing the WTG assumption in (1) is the

observed small horizontal fluctuations of temperature in the tropics.
With the above background, the goal here is to study a canonical balanced model,

which arises systematically in the above context (on various spatio-temporal scales).

This model is given by vertically sheared horizontal flow with mass (heat) sources

(VSHFS) and has the canonical form

Duh

Dt
þ fu?h ¼ �rhpþ Su,

rh � uh þ wz ¼ 0,

wN2ðzÞ ¼ S�,

ð3Þ

where N(z) is the buoyancy frequency and S� and Su are mass (heat) and momentum

sources, respectively. In (3), ðu?h ,wÞ
t is the total velocity with D/Dt¼ @/@tþ uh � rhþ

w@/@z, u?h ¼ ð�v, uÞ
t, f, a constant nondimensional vertical rotation component and

rh�,rh, the horizontal divergence and gradient. Actually, an anelastic version of (3)

arises in applications but a simple density coordinate reduces the equations to the form

in (3).
The equations in (3) arise in a variety of multiple spatial scale balanced dynamics

for the tropics: on horizontal scales of order 1500 km and time scales of order 8 h

(see the BMESD model in Majda 2007b); on horizontal scales of order 10 km and time

scales of order 15min (Klein 2000, Klein and Majda 2006); with the beta plane

approximation, f¼ �y, on horizontal scales of order 800 km and time scales on the

order of 1 day (Sobel et al. 2001, Majda and Klein 2003); even on seasonal planetary

scales (see, SPEWTG model in Majda and Klein 2006). There is a wide current interest

in the outstanding problem of hurricane formation and the nature of the

preconditioning environment, which leads to cyclogenesis, the hurricane embryo

(Hendricks et al. 2004, Montgomery et al. 2006). In section 2 below, we present a brief

sketch of the fashion in which the canonical model in (3), arises on two different spatio-

temporal scales as models of interest for the hurricane embryo.
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The remainder of this article is devoted to the analytic properties of solutions of (3)
with the emphasis on the new phenomena produced by a nonzero vertical velocity w.
In section 3, general systematic exact solutions of (3), which are linear flow fields in the
spatial coordinates are introduced as background flows (Craik and Criminale 1986,
Majda 2003); these solutions are regarded as elementary local large-scale precondition-
ing fields; exact nonlinear plane wave solutions for vertical vorticity are developed,
which address their instability following a route pioneered by Craik and Criminale
(1986) (also see Craik 1989, Lifschitz and Hameiri 1991, Craik and Allen 1992, Bayly
et al. 1996, Majda and Shefter 1998, Majda 2003). In section 4, motivated by the role
of (3) for the hurricane embryo, we study radial eddy ‘‘hot towers’’ for (3) in various
radial preconditioning environments through elementary exact solution formulas
and numerics.

Finally, we note that the balanced dynamic equations in (3) with S�� 0, w� 0
involving purely horizontal flow arise as a canonical balanced model for strongly
stratified flow (Embid andMajda 1998, Riley and Lelong 2000); these balanced dynamics
have already been useful as models for laboratory experiments in decaying stratified flow
(Majda and Grote 1993, Fincham et al. 1996, Majda 2003) and for explaining features of
turbulent cascade in numerical experiments for strongly stratified flow (Smith 2001,
Smith and Waleffe 2002, Waite and Bartello 2004). Here, the emphasis is on the new
phenomena in (3), with a nonzero mass source, S� and vertical velocity w.

2. The canonical balanced model

First, we briefly sketch a self-contained derivation for the canonical model in (3) under
natural hypotheses. This context is useful as a model for the hurricane embryo as noted
in the introduction. Then, we study the general structure of the vorticity dynamics
of (3). For simplicity in explanation, we start with the Boussinesq equation and follow
the nondimensionalization in chapter 6 of Majda (2003). Thus, we assume an isotropic
scale H¼L, with Froude number FR¼U/(NL)¼ �, comparable horizontal and vertical
velocity magnitudes, Rossby number RO¼V/(Lf )�O(1), the Euler number �O(1) and
consistent with the WTG approximation in (1),

� ¼ zþ ��, �� 1: ð4Þ

If the unit of time is given by the advection time-scale T¼L/V, with all these
assumptions, the forced Boussinesq equations can be written in the nondimensional
form

Duh

Dt
þ Roð Þ

�1u?h ¼ �rhpþ Su,

Dw

Dt
¼ �

@p

@z
þ ��1� þ Sw,

D�

Dt
¼ ��1ð�wþ S�Þ,

rh � uh þ wz ¼ 0:

ð5Þ

Note that the heat source term S� has been given the magnitude ��1 in the potential
temperature equation in (5); in other words, from (4) the magnitude of heating is strong
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with the order j�j/T in nondimensional units. The formal derivation of the canonical

model (3) is straightforward, since these are just the leading-order �0 equations for

horizontal momentum, and mass conservation and the leading-order ��1 equations for
the potential temperature. If the temperature perturbation � is expanded as �¼ ��1, then
�1 is determined diagnostically from the solution of (3) as given by

�1 ¼
Dw

Dt
þ
@p

@z
� Sw: ð6Þ

This completes the derivation. Note that (RO)�1 in (5) has been identified with f in (3).
The above model regime for (3) has direct relevance for the troposphere

with N2
ffi 10�4 s�1 with the scales L¼H¼ 10 km, juj ¼ jwj ¼ 10ms�1, T¼ 15min,

[�]¼ 30	K, and

Ro ¼ ��1ðsin�0Þ
�1, ð7Þ

with �0 a given latitude (Klein 2000, Klein and Majda 2006, Majda 2007a). Thus, the

strong heating rate for applicability of the canonical equations in (3) in the present

setting is 30	K/15min or 120	Kh�1; this is the approximate magnitude of the heating

rate observed in the ‘‘hot towers’’, which occur on scales of order 10 km through moist

deep convection in the hurricane embryo (Hendricks et al. 2004, Montgomery et al.

2006). Thus, the models in (3) without rotation should be useful for studying the

balanced dynamic response for hot towers. Elementary models for this behavior are

discussed in section 4 below.
The canonical models in (3) also apply on horizontal scales of order 100 km and

timescales of order 2.5 h; these timescales are relevant for the formation of mesovortices

in the hurricane embryo (Montgomery et al. 2006). To establish this fact, introduce the

aspect ratio A¼H/L, A
 1 and the new rescaled variables

T ¼ At, X ¼ Axh, w ¼ AwA,

ðRoÞA ¼ ARo, AS�,A ¼ S�, ASu,A ¼ Su:
ð8Þ

With these rescaling, the equations in (5) become

Duh

DT
þ ðRoÞ�1A u?h ¼ �rhpþ Su,A,

A2 DwA

DT
¼ �

@p

@z
þ ��1� þ Sw,

D�

DT
¼ ��1ð�wA þ S�,AÞ,

rX � uh þ ðwAÞz ¼ 0:

ð9Þ

The derivation given below (5) can be repeated now for any A with A� 1 to yield (3) as

a canonical balanced model provided that ðROÞ
�1
A remains finite. For the atmosphere

where (7) is satisfied, the natural choice is A¼ � yielding the canonical balanced

dynamics in (3) on horizontal length scales of order 100 km on time-scales of order 2.5 h

with heat sources of allowed strength 1	Kh�1, horizontal winds of order 10 ms�1, and

nonzero order one effect of rotation for (3) with

f ¼ sin�0: ð10Þ

546 A. J. Majda et al.
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The only difference is the equation for �1 in (6) does not have Dw/Dt. Systematic
multi-scale models of this type for the hurricane embryo are developed elsewhere
(Majda et al. 2008).

2.1. Vertical vorticity dynamics

To understand the dynamics contained in the balanced model in (3), it is useful to utilize
the horizontal Helmholtz decomposition

uh ¼ rh�þ r
?
h �þ bðz, tÞ, ð11Þ

where � is the stream function, � is the velocity potential, and b(z, t) is the specified
background shear. From (3), we have that � is determined from the source S� by

4h� ¼ �wz, w ¼ S�: ð12Þ

Consistent with our discussion, here we assume constant N2(z). The equation for the
stream function is given through the dynamics of the vertical vorticity

! ¼ 4h�: ð13Þ

While it is not difficult to take the curl of (3) to obtain a dynamic equation for !, it is
illustrative to utilize Ertel’s potential vorticity equation directly for (5) to derive this
vortex dynamics (Embid and Majda 1998, Majda 2003).

The potential vorticity is defined by q¼ (!þRO
�1e3) � r�, with !¼r� v. With the

sources S�, and Sv¼ (Su,Sw), Ertel’s theorem (Majda 2003) for (5) becomes

Dq

Dt
¼ !þRo�1e3
� �

� rS� þ ðr � SvÞ � r�: ð14Þ

To compute !¼r� v, it is convenient to write v¼ (uh, 0)
t
þ (0,w)t and calculate

r �
uh

0

 !
¼

@u?h
@z
!

0@ 1A,
r �

0

w

 !
¼
�r?h w

0

 !
:

ð15Þ

With (4) and (5), to leading-order q¼!þO(�), w¼S�þO(�), so that (14) and (15) with
f¼RO

�1 yield the leading-order vertical vorticity dynamic equation

D!

Dt
¼ ð!þ fÞ S�ð Þzþ

@

@z
u?h

� �
� rhS� þ rh � Su: ð16Þ

The equations in (11–13), and (16) are the vorticity dynamic form of the balanced model
in (3) with N2

¼ 1. Alternatively, the reader can take the curl of the momentum equation
in (3) directly and obtain (16).

The vorticity production term in the vertical vorticity dynamic equation (16) is
decomposed, using the Helmholtz decomposition (11), as

@u?h
@z
� rhw ¼ � r

?
h w �

@b

@z

� �
� r?h w �

@rh�

@z

� �
� r?h w �

@r?h �

@z

� �
, ð17Þ
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where the first term is the heating/background shear production source, the second

term represents the heating generated shear production source, and the last term

arises from heating and active shear. Hence, dynamic equation for vorticity (16)

becomes

D!

Dt
¼ ð!þ f Þwz � r

?
h w �

@b

@z
� r?h w �

@rh�

@z
� r?h w �

@r?h �

@z
þ rh � Su: ð18Þ

3. Exact solutions and their nonlinear stability

In this section, we first present general exact flow fields of the dynamic equation (3)

given by velocity fields that are linear in the spatial coordinates. Taking them as local

large-scale preconditioning fields, we then establish a general set-up for the stability

analysis of the nonlinear plane wave perturbation of vertical vorticity. Stability

in various cases based on varying the given linear heating source is then explored

by a combination of theoretical exact solutions and elementary numerics. Here Su is

ignored to simplify the presentation.

3.1. The reduced system for a linear heat source

For linear flow fields, we consider the vertical velocity w specified by

w ¼ S� ¼ l � xh þ �z, ð19Þ

with l¼ (l1(t), l2(t))
T and �¼ �(t). It has a nice physical interpretation as explained

below. To have a clear idea about the effect of �, we consider a simple case with

l¼ (l, 0), and graph w at three different cases when �>0, �<0, and �¼ 0. The results

are shown in figure 1. As given in the figure 1(a), �>0 represents the structure with

rising air (w>0) above and descending air (w<0) below, i.e. heating above and

cooling below; this phenomenon is called a stratiform type cloud in the meteorology

(Ackerman and Knox 2003). As shown in the figure 1(b), �<0 means rising air below

and descending air above, i.e. cooling above and heating below; this corresponds to

a congestus-type cloud in the meteorology. The figure 1(c) shows the situation when

�¼ 0, where the heating has no vertical dependence. A transition between descending

air in the left plane and rising air in the right-half plane can be observed.
Under the linear heating condition (19), together with the equation for the stream

function (13), the vorticity equation in (18) takes the following form

@!

@t
þ Jð�,!Þ þ bðz, tÞ � rh!�

�

2
xh � rh!

þ ðl � xh þ �zÞ
@!

@z
� �ð!þ f Þ þ l? �

@

@z
r?h �þ l? �

@

@z
bðz, tÞ ¼ 0 ð20aÞ

4h� ¼ !, ð20bÞ

where Jð�ðx, tÞ,!ðx, tÞÞ ¼ r?h � � rh!:

548 A. J. Majda et al.
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3.2. Exact large-scale linear flows

We begin with exact large-scale linear flow solutions.

Proposition 1 For the vertically sheared horizontal flow with heat source

D

Dt
uh þ fuh

? ¼ �rhp,

rh � uh þ wz ¼ 0,

w ¼ S�,

with f, a fixed constant representing the Coriolis effect and S� a linear function of x, z,

there are exact linear solutions of the form

w ¼ S� ¼ l � xh þ �z, ð21aÞ

�uh ¼ �
�

2
xh þ

1

2
�!ðtÞx?h þDhðtÞxh þ bz, ð21bÞ

where Dh is an arbitrary 2� 2, traceless, symmetric matrix, b¼ (b1(t), b2(t))
T is a vector

describing the background shear and �!ðtÞ ¼ rh � �uh satisfies

@!

@t
¼ �ð!þ f Þ � l? � b, !ð0Þ ¼ !0: ð22Þ

The proof of proposition 1 follows the techniques presented in chapter 2 of Majda

(2003). We refer to appendix A for details, and also formulas for the pressure.
The linear vorticity equation (22) leads to

!ðtÞ ¼ e

R t

0
�ds

!0 þ

Z t

0

ð�f� l? � bÞe
�
R s

0
�ds0

ds

� �
: ð23Þ

To simplify our discussion below, we assume � is a constant and l? � b is independent

of t, which lead to

!ðtÞ ¼
e�t !0 þ f�

1

�
l? � b

� �
� fþ

1

�
l? � b if � 6¼ 0,

!0 � ðl
? � bÞt if � ¼ 0:

8><>: ð24Þ

Figure 1. The structure of vertical velocity w in 2D environment; (a): Stratiform-type cloud when �>0,
l<0; (b): Congestus-type cloud when �<0, l<0; (c): Structure when �¼ 0, l<0.
Note: Note the arrows are not representative of magnitude.
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Note that !4 0 means cyclones in northern hemisphere (anti-clockwise vortices), and
!5 0 means anti-cyclones (clockwise vortices). In the vorticity equation (22), �! is the
stretching term and l? � b, �f are both source terms, which determine whether cyclones
or anti-cyclones are created. We consider different cases below.

. �>0, where the rising air is above the descending air and a stratiform-type
cloud is generated.

In this case, growing vorticity occurs. The competition between the effects
of background flow and the Coriolis effect determines whether cyclones or
anti-cyclones are created by the sign of the forcing term !0 þ f� 1=�l? � b.

. �<0, where the rising air is below the descending air and a congestus-type
cloud is generated.

In this case, a steady limiting flow is observed with

!!�fþ
1

�
l? � b: ð25Þ

The flow swirls as cyclones or anti-cyclones, depending on the sign of the term
� fþ 1/� l? � b.

. �¼ 0, where heating has no vertical dependence.
In this case, linearly growing vorticity occurs, with cyclones or anti-cyclones

determined by the sign of l? � b.

In order to illustrate the flow generated by linear heating, we provide several
instantaneous plots of velocity fields with no strain flow [i.e. Dh(t)¼ 0 in (21b)].
The initial vorticity !0 is chosen as 0 to represent an environment with no vorticity.
We start with the case �¼ 1, and show the velocity fields at time t¼ 3.5. Four plots
with different parameters b (background shear) and l (spatial tilting of vertical velocity)
are given in figure 2; they show that modification of l when b¼ 0 does not affect the
horizontal field, and background shear only changes the center of the cyclone if l¼ 0.
We also observe that as b increases when l is fixed, the cyclones become weaker first
[figure 2(c)], and then anti-cyclones are generated [figure 2(d)]. This is due to the fact
that the forcing term !0 þ f� 1=�l? � b decreases as b increases for this fixed l. To show
how this linear flow changes vertically, we present a 3D plot corresponding to the
figure 2(d) above, with two slices of horizontal velocity fields, in figure 3. This shows
that the center of anti-cyclones changes due to the effect of the background shear.
In figure 4, we show streamlines spinning up through a fixed point, under two different
sets of l and b corresponding to the figure 2(a) and (d), respectively, which also shows
how the background shear changes the center of the vortex. Finally, we considered the
case �¼�1 and similar behavior is observed (not shown).

3.3. Nonlinear plane wave perturbation of the linear flow fields

The exact linear flow field solutions (21), as discussed in the previous section,
serve as local large-scale preconditioning fields. Here, we establish a general set-up
for the stability analysis of the nonlinear plane wave perturbation of vertical
vorticity. We are interested to know how the vorticity amplifies and along which
directions it is unstable. For simplicity, the strain flow is ignored in the following
discussion.
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We explore the nonlinear plane wave perturbation !0 about the large-scale linear flow
(21, 22) of the form

!ðxh, z, tÞ ¼ �!ðtÞ þ !0ðxh, z, tÞ, ð26Þ

�ðxh, z, tÞ ¼ ��ðxh, tÞ þ�0ðxh, z, tÞ ¼
�!ðtÞ

4
xh � xh þ�0ðxh, z, tÞ: ð27Þ

Under this decomposition, the vorticity equation (20) leads to

@!0

@t
þ Jð�0,!0Þ þ

�!ðtÞ

2
x?h �

�

2
xh þ bz

� �
� rh!

0 þ ðl � xh þ �zÞ
@!0

@z

� �!0 þ l? �
@

@z
r?h �0 ¼ 0 ð28aÞ

4h�
0 ¼ !0: ð28bÞ

Hence, the velocity is given by

uh ¼ �uh þ r
?
h �0, ð29Þ

where �uh is the linear horizontal velocity defined in (21b) with Dh(t)¼ 0.

For convenience, we drop the prime in the following.

x

y

−1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1
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0

0.5

1
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0

0.5

1

y

−1

−0.5

0

0.5

1

y

−1

−0.5

0

0.5

1

x

−1 −0.5 0 0.5 1
x

−1 −0.5 0 0.5 1
x

(a) (b)

(c) (d)

Figure 2. The vector field of the horizontal velocity under different parameters at z¼ 1, and t¼ 3.5
when �¼ 1, f¼ 1, and �!0 ¼ 0; (a): arbitrary l, b¼ 0; (b): l¼ 0, b¼ (6, 6); (c): l¼ (1/5,�1/6), b¼ (2, 2);
(d): l¼ (1/5,�1/6), b¼ (6, 6).
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With the matrix

AðtÞ ¼

�
�

2
�

�!ðtÞ

2
b1

�!ðtÞ

2
�
�

2
b2

l1 l2 �

2666664

3777775, ð30Þ

x−0.5
0

0.5
1

y 0

1

z

0

0.5

1

1.5

2

x−0.5
0

0.5
1

y 0

1

z

0

0.5

1

1.5

2

(a) (b)

Figure 4. A streamline spinning up through point (0,�1, 0.5), when t¼ 3.5, �¼ 1, f¼ 1, and �!0 ¼ 0;
(a): anti-clockwise, with l¼ b¼ 0; (b): clockwise, with l¼ (1/5,�1/6), b¼ (6, 6).

x−0.5
0

0.5
1

y 0

1

z

0

0.5

1

1.5

2

Figure 3. Two vertical slices of horizontal velocity fields at z¼ 0.25 and z¼ 1.75, when �¼ 1, t¼ 3.5, f¼ 1,
�!0 ¼ 0, l¼ (1/5,�1/6), and b¼ (6,6).
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the vorticity equation for perturbations in (28) is then given by

@!

@t
þ Jð�,!Þ þ AðtÞx � r!� �!þ l? �

@

@z
r?h � ¼ 0, ð31aÞ

�h� ¼ !: ð31bÞ

In order to remove the advection term A(t)x � r! from this equation, we introduce

characteristic coordinates �¼ �(x, t) with inverse X¼X(�, t) following the technique

presented in chapter 3 of Majda (2003), so that

d

dt
Xð�, tÞ ¼ AðtÞXð�, tÞ, Xð�, 0Þ ¼ �: ð32Þ

The vorticity-stream formulation in the new characteristic coordinates � is given by

@

@t
!ð�, tÞ � �!ð�, tÞ þ Jð�ðx, tÞ,!ðx, tÞÞ þ l? �

@

@z
r?h � ¼ 0 ð33aÞ

�h� ¼ !, ð33bÞ

where 4h and rh are the operators in the Eulerian coordinates x. Here we keep

a mixture of x and � for notation convenience, although we eventually switch

completely to � coordinates. The coordinate transformation in (32) is given by

X ¼ e

R t

0
AðsÞds

�, ð34Þ

where e

R t

0
AðsÞds

is a time-ordered exponential representing the fundamental solution

matrix of (32). To analyze (33), we set

! ¼ b!kðtÞe
ik�� ¼ b!kðtÞe

iðk1�1þk2�2þk3�3Þ: ð35Þ

In appendix B, we show the following formula for the amplitude b!kðtÞ

d

dt
b!kðtÞ ¼ ð�� Sðt, kÞÞb!kðtÞ, ð36Þ

with

Sðt,kÞ ¼

X3

i, j¼1
l1
@�i
@z

@�j
@x
þ l2

@�i
@z

@�j
@y

� �
kikjX3

i, j¼1

@�i
@x

@�j
@x
þ
@�i
@y

@�j
@y

� �
kikj

, ð37Þ

where each derivative term, for example, @�i/@x, is an element of the ordered exponential

ðe

R t

0
AðsÞds
Þ
T in (B.1).

We have thus shown the following:

Proposition 2 For given linear heat source (19), the system (3) has exact solutions

of the form

!ðxh, z, tÞ ¼ �!ðtÞ þ !0ðxh, z, tÞ,

where �! is given in (22) and !0 ¼ b!kðtÞe
ik��, with the characteristic coordinates � defined in

(34) and the amplitude b!k determined by (36) as a nonlinear solution of the vorticity-

stream formulation in (33).
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3.4. Amplification of vertical vorticity in background linear flow fields

In the previous section, we presented a strategy to analyze plane wave perturbations
through the simplified system (36). Here we study the stability of the perturbation
flow in various cases, to illustrate how the vorticity grows and when it stays stable.
Analysis is based on a combination of exact solutions and elementary numerics,
for different cases determined by the parameters �, l (describing the heat source),
and b (describing background shear). The results are summarized below, and explained
in more detail in the following parts. For simplicity, we assume all the parameters �,
l, and b are constant, and !0 is zero.

3.4.1. Summary

. Case 1 No heat source, and nonzero background shear (�¼ 0, l¼ 0, and
b 6¼ 0). This is the barotropic situation, and the plane wave perturbation is stable
for all wave numbers.

. Case 2 Heat source with no horizontal dependence (� 6¼ 0 and l¼ 0).
The results, shown in table 1, are obtained by theoretical analysis.

. Case 3 Heat source with no vertical dependence (�¼ 0 and l 6¼ 0).
We denote D¼ l � b¼rhw � b, the directional derivative of vertical velocity w

along the background shear direction b. It represents the coupling of
background shear and spatial tilt of heating.

The results are shown in table 2, where the regime b¼ 0 is analyzed based on
theoretical exact solutions and the other regime is analyzed based on elementary
numerics.

. Case 4 Heat source with both horizontal and vertical dependence and no
background shear (� 6¼ 0, l 6¼ 0, and b¼ 0).

The results are shown in table 3. When !ðtÞ ¼ 0, an exact solution of (36) can
be derived, and stability can then be analyzed theoretically. The other regime

Table 1. Stability of the amplitude !̂kðtÞ when � 6¼ 0 and l¼ 0.

�>0 �<0

Unstable with exponential growth
e�t for all wave numbers.

Stable with exponential decreasing
rate e�t for all wave numbers.

Table 2. Stability of the amplitude !̂kðtÞ when �¼ 0 and l 6¼ 0.

b 6¼ 0

b¼ 0 D>0 D<0

�! ¼ 0 Unstable with exponential growth Stable with bounded oscillating
e
ffiffiffiffi
Dt
p

for all wave numbers. amplitude for all wave numbers.
Unstable with linear

growth for all wave
�! 6¼ 0 numbers except k3¼ 0. Unstable with exponential

growth for all wave numbers.
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!ðtÞ 6¼ 0 is studied based on elementary numerics. The results in table 3 are
interesting since we already concluded in case 2 that the wave is stable for �<0
when l¼ 0. Here, we show that a slight tilting of the heating will lead to instability
except along k3¼ 0.

. Case 5 Heat source with both horizontal and vertical dependence and nonzero
background shear (� 6¼ 0, l 6¼ 0, and b 6¼ 0).

This most general case, shown in table 4, is studied numerically. Depending
on different parameters �, b, and l, different behavior of the amplitude b!kðtÞ can
be obtained. Hence, compared to case 4, we show that shear can stabilize the
flow in some cases when �<0 and two regimes are identified where the vertical
velocity gradient � has a different stabilizing/destabilizing effects.

3.4.2. Case 1: No heat source, and nonzero background shear. We start with the
barotropic case when there is no heat source. Hence, the background linear solution
!ðtÞ (24) equals !0, which is assumed to be zero here. In this case, the vorticity
equation (31a) takes the form

@!

@t
þ Jð�,!Þ þ AðtÞx � r! ¼ 0, ð38Þ

where

AðtÞ ¼

0 0 b1

0 0 b2

0 0 0

2664
3775: ð39Þ

The vorticity stream formulation (33a) in the characteristic coordinates � becomes

@

@t
!ð�, tÞ þ Jð�ðx, tÞ,!ðx, tÞÞ ¼ 0, ð40Þ

Table 3. Stability of the amplitude !̂kðtÞ when � 6¼ 0, l 6¼ 0, and b¼ 0.

�>0 �<0

�! ¼ 0 Unstable with exponential growth e�t Unstable with exponential growth e��t/2

for all wave numbers except for all wave numbers except k3¼ 0.
k¼ (2l1, 2l2, 3�).

�! 6¼ 0 Unstable with exponential growth e�t Unstable with exponential growth e��t/2

for all wave numbers. for all wave numbers except k3¼ 0.

Table 4. Stability of the amplitude !̂kðtÞ when � 6¼ 0, l 6¼ 0, and b 6¼ 0.

�>0 �<0

Unstable with exponential All these situations can happen:
growth e�t for all wave Unstable with exponential growth;
numbers. Unstable with linear growth;

Stable with bounded amplitude;
Stable with amplitude decaying to zero.
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with the coordinate transformation in (32) given by

X ¼ e

R t

0
AðsÞds

� ¼

1 0 b1t

0 1 b2t

0 0 1

2664
3775�: ð41Þ

The equation for the amplitude b!kðtÞ in (36) becomes

d

dt
b!kðtÞ ¼ 0) b!kðtÞ ¼ b!kð0Þ: ð42Þ

Thus, we have the following:

Proposition 3 When there is no heating, vertical velocity is zero and the exact

nonlinear plane wave perturbation solution of the vorticity-stream formulation (33) is

stable and given by

!ðtÞ ¼ b!kð0Þe
ik�� ¼ b!kð0Þe

iðkh�xhþðk3�kh�btÞzÞ, ð43Þ

where kh¼ (k1, k2).

3.4.3. Case 2: Heat source with no horizontal dependence. First we study the case
when l¼ 0 and � 6¼ 0, i.e. the heat source changes only in the vertical direction.

When b¼ 0, the perturbation is trivially stable if � is negative and unstable otherwise.

Here we discuss the case b 6¼ 0.
The vorticity equation (31a) takes the form

@!

@t
þ Jð�,!Þ þ AðtÞx � r!� �! ¼ 0, ð44Þ

where

AðtÞ ¼

�
�

2
�

�!ðtÞ

2
b1

�!ðtÞ

2
�
�

2
b2

0 0 �

2666664

3777775: ð45Þ

The coordinate transformation in (32) is given by

X ¼ e

R t

0
AðsÞds

� ¼

e�ð�t=2Þ cosð ��ðtÞÞ �e�ð�t=2Þ sinð ��ðtÞÞ a13ðtÞ

e�ð�t=2Þ sinð ��ðtÞÞ e�ð�t=2Þ cosð ��ðtÞÞ a23ðtÞ

0 0 e�t

2664
3775�, ð46Þ

where a13(t) and a23(t) are defined as

a13ðtÞ ¼
2te�ð�t=2Þ eð3�t=2Þð3b1�t� b2 ��ðtÞÞ þ cosð ��ðtÞÞð�3b1�tþ b2 ��ðtÞÞ þ sinð ��ðtÞÞð3b2�tþ b1 ��ðtÞÞ

� �
9�2t2 þ ��2ðtÞ

,

a23ðtÞ ¼
2te�ð�t=2Þ eð3�t=2Þð3b2�tþ b1 ��ðtÞÞ � cosð ��ðtÞÞð3b2�tþ b1 ��ðtÞÞ þ sinð ��ðtÞÞð�3b1�tþ b2 ��ðtÞÞ

� �
9�2t2 þ ��2ðtÞ

,
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and

d

dt
��ðtÞ ¼

�!ðtÞ

2
, ��ð0Þ ¼ 0:

Then, the vorticity-stream formulation (33a) in the new characteristic coordinates �
become

@

@t
!ð�, tÞ � �!ð�, tÞ þ Jð�ðx, tÞ,!ðx, tÞÞ ¼ 0: ð47Þ

Since l¼ 0, S(t, k) in (37) is zero, hence the amplitude b!kðtÞ, computed in (36), is

determined by the following equation

d

dt
b!kðtÞ ¼ �b!kðtÞ, b!kðtÞ ¼ e�tb!kð0Þ: ð48Þ

Thus, we have the following:

Proposition 4 If the linear vertical velocity is given by w¼ �z, the exact nonlinear

plane wave perturbation solution of the vorticity-stream formulation (33) is given by

! ¼ b!kðtÞe
ik�� ¼ e�tb!kð0Þe

ik��, ð49Þ

where the characteristic coordinates � are defined in (46).

Note that the background shear flow bz only affects the direction of wave

propagation through the coordinates �, and has no impact on the stability of the

perturbation wave. As explained below, stability of the plane wave solution totally

depends on the sign of �.

. �>0 (rising air above, generating a stratiform-type cloud)

This case will have an exponentially growing solution of the form e�t. We

conclude that the plane wave perturbation is unstable.
. �<0 (descending air above, generating a congestus-type cloud)

The plane wave perturbation decays to zero, and becomes negligible.

The vorticity is dominated by the large-scale background vorticity in (24) and

is independent of x as t approaches infinity.
. �¼ 0 (no heat source)

The amplitude of the plane wave perturbation remains constant, hence, the

vorticity is dominated by the linearly growing large-scale preconditioned

vorticity in (24).

Remark The plane wave propagates along the wave direction k in the

characteristic coordinates �, defined in (46). We remark that a straight line in the �
coordinates is no longer a line, but rather a complicated path in the x coordinates. For

example, from (46), we know that a fixed point k¼ (1, 0, 0), represents ðe��t=2 cosð ��ðtÞÞ,
e��t=2 sinð ��ðtÞÞ, 0Þ at different time t in the x coordinates. Its trajectory is a helix

for negative �.

3.4.4. Case 3: Heat source with no vertical dependence. Here we consider the case
when w¼S�¼ l � xh, i.e. �¼ 0. We start with no background shear flow considered,
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i.e. b¼ 0. Hence the background linear solution !ðtÞ is assumed to be zero. The vorticity

equation for the plane wave perturbation (31a) takes the form

@!

@t
þ Jð�,!Þ þ AðtÞx � r!þ l? �

@

@z
r?h � ¼ 0, ð50Þ

where

AðtÞ ¼

0 0 0

0 0 0

l1 l2 0

2664
3775: ð51Þ

Then, the vorticity-stream formulation (33a) in the new coordinates � become

@

@t
!ð�, tÞ þ Jð�ðx, tÞ,!ðx, tÞÞ þ l? �

@

@z
r?h � ¼ 0, ð52Þ

with the coordinate transformation in (32) given by

X ¼ e

R t

0
AðsÞds

� ¼

1 0 0

0 1 0

l1t l2t 1

2664
3775�: ð53Þ

S(t, k) defined in (37) takes the form

Sðt, kÞ ¼
kh � l� tk3l � l

ðk1 � tl1k3Þ
2
þ ðk2 � tl2k3Þ

2
k3: ð54Þ

Therefore, the amplitude b!kðtÞ is computed through the integral of this amplification

factor and we then have the following:

Proposition 5 If the linear vertical velocity is given by w¼ l � xh and no background

shear flow is contained, the exact nonlinear plane wave perturbation solution of the

vorticity-stream formulation (33) given by

! ¼ b!kðtÞe
ik�� ¼ b!kðtÞe

iðkh�k3ltÞ�xhþik3z, ð55Þ

is unstable and the amplitude demonstrates a ‘‘linear’’ growth for k3 6¼ 0

b!kðtÞ ¼
b!kð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kh � kh � 2k3kh � ltþ k23l � lt

2

kh � kh

s
if kh 6¼ 0,

b!kð0Þt if kh ¼ 0:

8>>><>>>: ð56Þ

We remind that in this case when w¼ l � xh, the background linear vorticity !ðtÞ is
a constant and assumed to be zero. Hence, the plane wave perturbation (55) is the exact

nonlinear solution to the vorticity-stream equation in (20).
We now study the case b 6¼ 0. The vorticity equation (31a) becomes

@!

@t
þ Jð�,!Þ þ AðtÞx � r!þ l? �

@

@z
r?h � ¼ 0, ð57Þ

558 A. J. Majda et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
N
e
w
 
Y
o
r
k
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
0
1
:
3
7
 
1
7
 
F
e
b
r
u
a
r
y
 
2
0
0
9



with the matrix

AðtÞ ¼

0 �
!ðtÞ

2
b1

!ðtÞ

2
0 b2

l1 l2 0

2666664

3777775: ð58Þ

After introducing the characteristic coordinates �, (37) and (36) lead to

d

dt
b!kðtÞ ¼ �

X3

i, j¼1
l1
@�i
@z

@�j
@x
þ l2

@�i
@z

@�j
@y

� �
kikjX3

i, j¼1

@�i
@x

@�j
@x
þ
@�i
@y

@�j
@y

� �
kikj

!̂kðtÞ, ð59Þ

where each derivative term, for example @�i/@x, is an element of the ordered exponential

ðe

R t

0
AðsÞds
Þ
T. Since no exact solution of (59) can be provided, we integrate it numerically

for stability analysis.
Notice that the solution of the ordinary differential equation (ODE) (59) is

independent of the magnitude of k. For simplicity, we assume jkj ¼ 1, i.e.

k1¼ cos �1cos �2, k2¼ cos �1sin �2, and k3¼ sin �1. The following parameters are selected

in our numerical simulations: f¼ 1, b!kð0Þ ¼ 1. We remind that the Coriolis coefficient f

only enters the vorticity-stream formulation (33) for the nonlinear plane wave

perturbation implicitly through the background vorticity !ðtÞ. Here since �¼ 0, !ðtÞ
is independent of f, and this is also true for the plane wave perturbation b!kðtÞ. The

initial background linear vorticity �!0 in (24) is set to zero, as explained at the beginning

of this section. Thus, the background linear flow (24) takes the form !ðtÞ ¼ ð1?bÞt:We

consider the following cases.

(a): !ðtÞ ¼ 0, i.e. l? � b¼ 0.

In this case, we have an explicit form for the ordered exponential

e

R t

0
AðsÞds

¼

b1l1 coshð
ffiffiffiffi
D
p

tÞ þ b2l2
D

b1l2 coshð
ffiffiffiffi
D
p

tÞ � b1l2
D

b1 sinhð
ffiffiffiffi
D
p

tÞffiffiffiffi
D
p

b2l1 coshð
ffiffiffiffi
D
p

tÞ � b2l1
D

b2l2 coshð
ffiffiffiffi
D
p

tÞ þ b1l1
D

b2 sinhð
ffiffiffiffi
D
p

tÞffiffiffiffi
D
p

l1 sinhð
ffiffiffiffi
D
p

tÞffiffiffiffi
D
p

l2 sinhð
ffiffiffiffi
D
p

tÞffiffiffiffi
D
p coshð

ffiffiffiffi
D
p

tÞ

2666666664

3777777775
,

where D¼ b1l1þ b2l2. Due to the assumption l? � b¼ 0, we have l1¼D/jbjcos �,
l2¼D/jbjsin �, b1¼ jbjcos �, and b2¼ jbjsin �. Here we show numerically that for

D>0, growing perturbation occurs, while for D<0, the perturbation is stable for all

wave numbers.
First, we consider the case D>0. There are five parameters D, �, jbj, and wave

numbers �1, �2. By changing jbj in a reasonable range, and �1, �2 from 0 to 2	,
we compute the limit of 1=t logðb!kðtÞÞ as a function of � from 0 to 2	 for

D¼ 12, 32, 52, 72. The results show that the limit is around the level of
ffiffiffiffi
D
p

; in other

words, an unstable perturbation with amplitude e
ffiffiffiffi
Dt
p

can be observed. An example for
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fixed parameters is presented in figure 5. For a given D, change due to different wave
numbers �1 and �2 is relatively small. Generally, we can observe that the amplitude is of

the form e
ffiffiffiffi
Dt
p

. This is reasonable, since in the formula for the transformation matrix

e

R t

0
AðsÞds

in (60), the elements depend on sinhð
ffiffiffiffi
D
p

tÞ and coshð
ffiffiffiffi
D
p

tÞ, which are of the

form e
ffiffiffiffi
Dt
p

.
Next we consider the case D<0. Note that D¼ 0 means l¼ 0 or b¼ 0, which has

already been considered in the first part of this section. By changing jbj in a reasonable

range, and �1, �2 from 0 to 2	, we compute maximum of the amplitude b!kðtÞ for
t2 [0, 100] as a function of � from 0 to 2	 for D¼�1,�5,�10,�20. The results show

that for all other wave numbers, maximum of b!kðtÞ are all relatively small, which seems

to be stable. To better understand it, the time history of the amplitude b!kðtÞ is presented
in figure 6, where a bounded oscillating amplitude is observed.

(b): !ðtÞ 6¼ 0, i.e. l? � b 6¼ 0.

For different sets of fixed l and b, we compute limt!11=t logðb!kðtÞÞ as a function of
wave numbers �1, �2. All results demonstrate an exponential growth. Then for fixed

wave numbers �1 and �2, we compute limt!11=t logðb!kðtÞÞ, as a function of l1, l2, b1, b2
in a reasonable range. All of these limits are positive, which imply an exponentially
growing amplitude b!kðtÞ. We then conclude that the plane wave perturbation is unstable

with exponential growth in this case.

Figure 5. Plot of limt!11=t logð!̂kðtÞÞ, at different D with � changing from 0 to 2	, when �1¼	/8,
�2¼�	/8, l1¼D cos �, l2¼D sin �, b1¼ cos �, b2¼ sin �, and �¼ 0.
Notes: From bottom to top: D¼ 1, 32, 52, 72, respectively. Note that the scale is around the level of

ffiffiffiffi
D
p

.
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The above numerical study leads to the following:

Summary If the linear heat source is given by w¼ l � xh, numerical tests show that
plane wave perturbations always grow exponentially except when !ðtÞ ¼ 0 and
D¼ l � b<0.

3.4.5. Case 4: Heat source with both horizontal and vertical dependence and no

background shear. We consider the most general linear heat source w¼ l � xhþ�z.
A simple case when b¼ 0 is studied in this section. In this case, the vorticity equation
for the plane wave perturbation (31a) takes the form

@!

@t
þ Jð�,!Þ þ AðtÞx � r!� �!þ l? �

@

@z
r?h � ¼ 0, ð60Þ

with the matrix

AðtÞ ¼

�
�

2
�
!ðtÞ

2
0

!ðtÞ

2
�
�

2
0

l1 l2 �

2666664

3777775: ð61Þ

0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time

w

Figure 6. The time history of the amplitude !̂kðtÞ for D¼�1, �¼ 0, and jbj ¼ 1, when �¼ 0, �!ðtÞ ¼ 0,
at a fixed wave number �1¼	/4 and �2¼ 9	/10.
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The coordinate transformation in (32) is given by

X ¼ e

R t

0
AðsÞds

� ¼

eð�t=2Þ cosð ��ðtÞÞ �eð�t=2Þ sinð ��ðtÞÞ â13ðtÞ

eð�t=2Þ sinð ��ðtÞÞ eð�t=2Þ cosð ��ðtÞÞ â23ðtÞ

0 0 e��t

2664
3775�, ð62Þ

with the coefficients

â13ðtÞ¼
2teð�t=2Þ e�ð3�t=2Þð3l1�tþ l2 ��ðtÞÞ� cosð ��ðtÞÞð3l1�tþ l2 ��ðtÞÞþ sinð ��ðtÞÞð3l2�t� l1 ��ðtÞÞ

� �
9�2t2þ ��2ðtÞ

,

â23ðtÞ¼
2teð�t=2Þ e�ð3�t=2Þð3l2�t� l1 ��ðtÞÞþ cosð ��ðtÞÞðl1 ��ðtÞ�3l2�tÞ� sinð ��ðtÞÞð3l1�tþ l2 ��ðtÞÞ

� �
9�2t2þ ��2ðtÞ

,

and

d

dt
��ðtÞ ¼

�!ðtÞ

2
, ��ð0Þ ¼ 0:

The vorticity-stream formulation (33a) in the new coordinates � becomes

@

@t
!ð�, tÞ þ Jð�ðx, tÞ,!ðx, tÞÞ þ l? �

@

@z
r?h � ¼ 0: ð63Þ

We first discuss the case ! ¼ 0, where analytical solution can be obtained.

Here ��ðtÞ ¼ 0 and the above coefficients reduce to

â13ðtÞ ¼
2l1
3�

e��t � e�ð�t=2Þ
� �

, â23ðtÞ ¼
2l2
3�

e��t � e�ð�t=2Þ
� �

:

S(t, k), defined in (37), takes the form

Sðt, kÞ ¼
eð�=2Þtkh � lþ

2k3
3�

e��t � eð1=2Þ�t
� �

l � l

eð�=2Þtk1 þ
2l1
3�

k3 e��t � eð1=2Þ�t
� �� �2

þ eð�=2Þtk2 þ
2l2
3�

k3 e��t � eð1=2Þ�t
� �� �2

� k3e
��t: ð64Þ

Plugging this in (36) and integrating, we get

b!kðtÞ ¼
b!kð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�k1e

�t � 2l1k3 e�t � e�ð1=2Þ�t
� �� �2

þ 3�k2e
�t � 2l2k3 e�t � e�ð1=2Þ�t

� �� �2
ð3�k1Þ

2
þ ð3�k2Þ

2

s
, if kh 6¼ 0,

b!kð0Þ e
�t � e�ð�=2Þt

� �
, if kh ¼ 0:

8>><>>:
If kh¼ 0, instability is observed for both �>0 and �<0. We now discuss the stability

for kh 6¼ 0 in two different situations.

. �>0 (rising air above, generating a stratiform-type cloud)

As t approaches infinity, e�t!1 and e��t/2! 0. Hence,

b!kðtÞ ! b!kð0Þe
�t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3�k1 � 2l1k3Þ

2
þ ð3�k2 � 2l2k3Þ

2

ð3�k1Þ
2
þ ð3�k2Þ

2

s
: ð65Þ
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If (3�k1� 2l1k3)
2
þ (3�k2� 2l2k3)

2
6¼ 0, b!kðtÞ ! 1, and the perturbation is

unstable. If 3�k1¼ 2l1k3 and 3�k2¼ 2l2k3, b!kðtÞ ! b!kð0Þe
��t=2, and the

perturbation is stable.
. �<0 (descending air above, generating a congestus-type cloud)

As t approaches 1, e�t! 0 and e��t/2!1. Hence,

b!kðtÞ ! b!kð0Þe
�ð1=2Þ�t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1k3Þ

2
þ ð2l2k3Þ

2

ð3�k1Þ
2
þ ð3�k2Þ

2

s
: ð66Þ

The perturbation is unstable unless k3¼ 0 or l¼ 0. Note that the case l¼ 0 is

already discussed in the previous section, which supports (66).

We have thus shown the following:

Proposition 6 For a linear heat source w¼ l � xhþ �z with nonzero constants � and l,

the plane wave perturbation always grows exponentially except for �>0 along the

direction k¼ (2l1, 2l2, 3�) and for �<0 along the direction k3¼ 0, if in the absence of the

background linear vorticity (!ðtÞ ¼ 0) and background shear (b¼ 0).

If ! 6¼ 0, we have the following formula (36) for the amplitude b!kðtÞ

d

dt
b!kðtÞ ¼ �b!kðtÞ �

X3

i, j¼1
l1
@�i
@z

@�j
@x
þ l2

@�i
@z

@�j
@y

� �
kikjX3

i, j¼1

@�i
@x

@�j
@x
þ
@�i
@y

@�j
@y

� �
kikj

!̂kðtÞ

¼ ��

e��t
X3

i¼1
l1
@�i
@x
þ l2

@�i
@y

� �
kik3

e�tk21 þ e�tk22 þ 2
X2

i¼1

@�i
@x

â13 þ
@�i
@y

â23

� �
kik3 þ ðâ13Þ

2
þ ðâ23Þ

2
Þk23

� �
0BB@

1CCA
� b!kðtÞ, ð67Þ

where each derivative term, for example @�i/@x, is an element of the ordered exponential

ðe

R t

0
AðsÞds
Þ
T. Note that due to the complexity of the ordered exponential ðe

R t

0
AðsÞds
Þ
T, it is

difficult to find the solution of equation (67) explicitly, while we can easily integrate

it numerically by an ODE solver.
As before, we assume k1¼ cos �1cos �2, k2¼ cos �1sin �2, k3¼ sin �1, and take the

parameters �!0 ¼ 0, f¼ 1, b!kð0Þ ¼ 1. Two cases are considered.

. �>0 (rising air above, generating a stratiform-type cloud)

We start by exploring the effect of �. By changing l¼ (l1, l2)¼L(cos �, sin �)
in a reasonable range, and �2 from 0 to 2	, we compute the limit of 1=t logðb!kðtÞÞ

as a function of �1 from 0 to 2	 for �¼ 1, 2, 3, 4. The results show that the

limit is around the level of �, in other words, an unstable perturbation

with amplitude e�t can be observed. An example for fixed parameters is

presented in figure 7. For a given �, as L increases, the amplitude increases

a little, and the effect of � becomes less important. Changes due to different

wave number �2 is relatively small. Generally, we can observe that the amplitude

is of the form e�t.
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. �<0 (descending air above, generating a congestus-type cloud)

As t becomes bigger and bigger, the background vorticity �!ðtÞ ! �f, hence,
we expect the similar behavior as in the formula (66) for the special case ! ¼ 0,

i.e. the amplitude is around e��t/2 except at k3¼ 0.

We start by exploring the effect of �. By changing l¼ (l1, l2)¼L(cos �,sin �) in
a reasonable range, and �2 from 0 to 2	, we compute the limit of 1=t logðb!kðtÞÞ as

a function of �1 from 0 to 2	 for �¼�1,�2,�3,�4. The results show that an

unstable perturbation with amplitude around e��t/2 can be observed for all �1
except 0 and 	 (k3¼ 0). For k3¼ 0, the amplitude is stable of the form e�t.

An example for fixed parameters is presented in figure 8. For given �, as

L increases, the amplitude increases a little, and the effect of � becomes less

important. The change due to a different wave number �2 is relatively small.

Generally, we can observe that the amplitude is of the form e��t/2 except at

k3¼ 0 and this confirms our expectation.

3.4.6. Case 5: Heat source with both horizontal and vertical dependence and nonzero

background shear. This is the most general case under the linear vertical velocity
assumption. From (33) in full generality, the stability of the perturbation is determined

Figure 7. Plot of limt!11=t logð!̂kðtÞÞ at different � with �1 changing from 0 to 2	, when �2¼	/4, l1¼ l2¼ 1,
and b¼ 0.
Notes: From bottom to top: �¼ 1, 2, 3, 4, respectively. Note that the scale is around the level of �.
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by the competition of the stretching term �! and the tilting term l? � @=@zðr?h �Þ, as

reflected in (36). These studies are given numerically here.
As earlier, we assume k1¼ cos �1cos �2, k2¼ cos �1sin �2, k3¼ sin �1, and take the

parameters �!0 ¼ 0, f¼ 1, b!kð0Þ ¼ 1. Two cases are considered.

. �>0 (rising air above, generating a stratiform-type cloud)

By changing l¼ (l1, l2)¼L(cos �1, sin �1), b¼ (b1, b2)¼B(cos �2, sin �2) in

a reasonable range, and �2 from 0 to 2	, we compute the limit of

1=t logðb!kðtÞÞ as a function of �1 from 0 to 2	 for �¼ 1, 2, 3 ,4. The results

show that unstable perturbation with amplitude e�t can be observed.

An example for fixed parameters is presented in figure 9. For given �, as L

(or B) increases, the amplitude increases a little, and the effect of �1 (or �2)
becomes less important. The change due to a different wave number �2
is relatively small. Generally, we can conclude that the amplitude is of the

form e�t.
. �<0 (descending air above, generating a congestus-type cloud)

As we observed in the previous section (case 4), a slight tilting of the heating

leads to instability in the absence of shear. Here, we will show that shear may

Figure 8. Plot of limt!11=t logð!̂kðtÞÞ at different � with �1 changing from 0 to 2	, when �2¼	/4, l1¼ l2¼ 1,
and b¼ 0.
Notes: From bottom to top: �¼�1, �4, respectively. Note that the scale is around the level of ��/2
except k3¼ 0.
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stabilize the flow, and the effect of various parameters on stability will be
studied in the following. We remark that based on several numerical
experiments, the wave number vector k does not affect the stability; that is,
if the perturbation is stable/unstable for one wave number, it will remain the
same for all wave numbers. Hence, all results given below are independent of the
wave number.

Figure 10 shows the stable and unstable regions in (b1, b2) plane (i.e. based on
shear components), where the employed parameters are also given. As it is
clearly observed, the plane is divided into two regions by a roughly straight line,
hereafter referred to as the regime boundary (RB). The slope of the RB is mainly
determined by l � b (as will be further confirmed in the following) and as �
increases in absolute value [figure 10(b)], the RB shifts to the left with roughly
the same slope. Moreover, as � increases in absolute value, the stability region is
increased in the lower-left region (referred to as A� where l � b is mainly
negative), while it is decreased in the upper right region (referred to as Aþ).
Hence, the vertical velocity gradient � has different effects on stability in the two
regimes Aþ and A� identified by the RB. On the other hand, as it is observed
in figure 10, the boundaries of the stability regions are mainly straight lines. This
means that for fixed l, mainly the ratio of b2/b1 i.e. direction of shear is

Figure 9. Plot of limt!11=t logð!̂kðtÞÞ at different � with �1 changing from 0 to 2	, when �2¼	/4, l¼ (1, 1),
and b¼ (1,�2).
Notes: From bottom to top: �¼ 1, 2, 3, 4, respectively. Note that the scale is around the level of �.
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important rather than the individual magnitudes of b1 and b2. Finally, note
that in figure 10(b), the regions of instability in A� and stability in Aþ have

become smaller and moved to the outside of the shown area due to the effect
of �.

In figure 11, we present the regions of stability for fixed � with l¼ (1, 0)
and l¼ (1,�1) where the slope of the RB is roughly 0 and 1, respectively.

This strongly confirms that the slope of the RB mainly depends on l � b. Hence,
based on figures 10 and 11, we can conclude that the RB is mainly a straight line
identified by l � b while � has a shifting effect on the RB. Finally, we examined
the effect of the heating tilt l on the stability region for some fixed b and variable
l. The two regimes Aþ and A� were again observed, where for fixed b, mainly

the ratio of l2/l1 i.e. direction of heating tilt was observed to be important, rather
than the individual magnitudes of l1 and l2 (not shown).

Figure 10. The stability and instability regions in the (b1, b2) plane, for l¼ (1, 1). (a): �¼�1; (b): �¼�4.

Figure 11. (Same as figure 10) for �¼�1. (a): l¼ (1, 0); (b): l¼ (1,�1).
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Finally, note that in the stable cases, the wave amplitude may decay to zero or
stay (oscillating) bounded while in the unstable case, the amplitude may grow
linearly or exponentially. The time histories ofb!kðtÞ are shown in figure 12, where
examples of decaying amplitude (a) and bounded oscillations (b) are presented.

In summary, shear may stabilize the flow and two regimes are identified based
on a roughly straight line (called the regime boundary or RB) whose slope is
closely related to l � b, and the vertical velocity gradient � has a stabilizing
(destabilizing) effect below (above) RB where l � b is mainly negative (positive).

4. Exact radial eddies in a preconditioned background environment

Recent studies (Hendricks et al. 2004, Montgomery et al. 2006), have revealed the
important role of hot towers in cyclogenesis. Montgomery et al. ( 2006) showed how,
with the crucial role of vortical hot towers (VHTs), a ‘‘midtropospheric cyclonic
vortex’’ may be transformed into a ‘‘surface-concentrated (warm core) tropical
depression’’. Hot towers are intense deep convection cores with small horizontal
scales (of order 10 km) and short convective lifetimes (of order 1 h) that reach the
tropopause via nearly undiluted ascent. They emerge as the preferred coherent
structures within the preconditioning mesoscale convective vortex (MCV) embryo
(Montgomery et al. 2006).

Motivated by the important role of hot towers in the hurricane embryo, it is useful to
build elementary models, which exhibit basic characteristics of hot towers to study the
evolution of radial eddies (which represent ‘‘VHTs’’) in various radial preconditionings.
We will focus on the axisymmetric case, which is a reasonable assumption for hot
towers (Montgomery et al. 2006). Note that in this section, in general, we are interested
in the issue of how heat (mass) sources can generate vortices. We will explore the role of
heat sources in cyclogenesis through a reduced form of the asymptotic system (3).
Although the terminology of hot towers (cloud scales) is used here, the model that will
be presented in this section could be also regarded as an elementary model for larger
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(a) (b)

Figure 12. The time history of the amplitude !̂kðtÞ at �1¼	/3, �2¼	/15 when �¼�1, l2¼ 1, b1¼ 1, and
b2¼ 1; (a): l1¼�2.7; (b): l1¼�3.04196.
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(meso) scale systems e.g. mesovortices under synoptic-scale preconditionings. Indeed,
as explained in section 2, the canonical equations considered in this article are relevant
for both cloud and mesoscales; furthermore also applying uniformly in the equatorial
wave guide on somewhat longer timescales (the BMESD model in Majda 2007b).

This section is organized as follows. First, we present the reduced form of the system
(3) in the axisymmetric case and split the flow into large-scale mean and small-scale
perturbation. We then build some elementary exact large-scale solutions that exhibit
some characteristics of various natural situations such as barotropic, deep-convective,
and stratiform mean flows. Next, we present an elementary model for hot towers, which
represents many characteristics of hot towers such as their general horizontal and
vertical features, downdrafts and updrafts, and their life cycles. Using this elementary
model, we then study the evolution of hot towers in the absence/presence of various
mean flows and briefly discuss the competition of various forcing/preconditioning
effects. Note that all numerical studies in this section are in nondimensional units.
The dimensionalization for both micro-(cloud) and mesoscales is immediate based on
the reference magnitudes given for each scale in section 2.

4.1. The reduced system in the axisymmetric case

Here, we present the reduced form of (3) in the axisymmetric case. The flow field is
specified by

u ¼ urer þ u�e� þ wez, ð68Þ

where ur and u� are, respectively, radial and tangential velocities, ez is the vertical
normal vector, and er and e� are, respectively, the usual radial and tangential normal
vectors in cylindrical coordinates where cyclones in the northern hemisphere
(anti-clockwise eddies) have positive vorticity. For simplicity, we assume Su¼ 0,
N2(z)¼ 1 and constant f in (3). Note that axisymmetry is broken in the presence of
vertical shear, and hence, no vertical shear is considered here. Under these assumptions,
the system (3) is reduced to

@u�
@t
þ ur

@u�
@r
þ ur

u�
r
þ w

@u�
@z
þ fur ¼ 0, ð69aÞ

@ rurð Þ

@r
þ
@ rwð Þ

@z
¼ 0,

ð69bÞ

w ¼ S�:
ð69cÞ

The first two equations in (69) are the familiar axial momentum and continuity
equations in axisymmetric flows, while the last one is the leading-order part of the
temperature equation due to a strong heat source, as explained in section 2.

Note that in (69), the vertical velocity w(r, z, t) is determined directly by the given heat
source (as before). Further, using (69b), the radial velocity ur is also directly specified by
the heat source

ur ¼ �
1

r

Z r

0

s
@w

@z
ds: ð70Þ
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That is, when the heat source is strong and axisymmetric, the vertical section of the flow

field in (68), i.e. urerþwez, is totally determined by the heat source. Indeed, we only

need to solve a single advection equation with source terms (69a) for u� in a given flow

field to understand how cyclones/anti-cyclones evolve, and totally specify the flow

field (68). This simplicity of the reduced asymptotic model (69) enables us to closely

track and understand various effects (production, amplification, dissipation, and

advection) and gain some insights into cyclogenesis, which are not so clear and tractable

in complex models. In the following, we will show how to reformulate (69) such that the

effect of a large-scale preconditioning is also modeled.

4.1.1. The evolution of vertical vorticity. The vertical vorticity ! is related to u�
through

! ¼
1

r

@ðru�Þ

@r
¼

u�
r
þ
@u�
@r

, ð71Þ

which is obtained by taking curl (in radial coordinate) of the velocity vector. Hence,

(69a) is written equivalently as

@u�
@t
þ ur!þ w

@u�
@z
þ fur ¼ 0: ð72Þ

Using (71) and (72), we obtain

@!

@t
þ ur

@!

@r
þ w

@!

@z
�
@w

@z
!þ fð Þ þ

@w

@r

@u�
@z
¼ 0: ð73Þ

Plugging u� and ur from (71) and (69b) into (73) leads to the following equation for the

evolution of vertical vorticity directly in terms of the heat source (w)

@!

@t
�

1

r

Z r

0

s
@w

@z
ds

� �
@w

@r
þ w

@!

@z
�
@w

@z
ð!þ f Þ þ

@w

@r

@

@z

1

r

Z r

0

s! ds

� �
¼ 0: ð74Þ

We leave it to the reader to verify that (74) could be also obtained by simplifying the

general vorticity equation (16) for the axisymmetric case.

4.1.2. Axisymmetric flow as a superposition of large-scale mean and small-scale

perturbation. In this part, our goal is to decompose the axisymmetric flow as
a small-scale perturbation added to a large-scale mean flow, which provides

a systematic framework to study the evolution of radial eddies generated by

(small-scale) hot towers under various (large-scale) preconditionings. We decompose

the heat source into a large-scale mean and small-scale perturbation as S�ðt, r, zÞ ¼

S�ðt, zÞ þ S0�ðt, r, zÞ: Hence, the flow quantities are decomposed as

wðt, r, zÞ ¼ wðt, zÞ þ w0ðt, r, zÞ, ð75Þ

!ðt, r, zÞ ¼ !ðt, zÞ þ !0ðt, r, zÞ, ð76Þ

u�ðt, r, zÞ ¼ u�ðt, r, zÞþ u�ð Þ
0
ðt, r, zÞ, ð77Þ

urðt, r, zÞ ¼ urðt, r, zÞþ urð Þ
0
ðt, r, zÞ, ð78Þ
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where �ur and �u� are, respectively, obtained from (70) and (71)

urðt, r, zÞ ¼ �
1

2

@wðt, zÞ

@z
r, ð79Þ

u�ðt, r, zÞ ¼
1

2
!ðt, zÞr: ð80Þ

The equation for the evolution of vorticity (73) is simplified for !ðt, zÞ as

@!ðt, zÞ

@t
þ wðt, zÞ

@!ðt, zÞ

@z
¼
@wðt, zÞ

@z
!ðt, zÞ þ fð Þ: ð81Þ

The mean flow satisfies (72) by

@u�
@t
þ ur!þ w

@u�
@z
þ f ur ¼ 0: ð82Þ

Subtracting (82) from (69a), we obtain the following equation for the evolution of
small-scale perturbation (u�)

0 in a large-scale preconditioning (specified by w, ur, and !)

@ u�ð Þ
0

@t
þ ur þ urð Þ

0
� � @ u�ð Þ

0

@r
þ

u�ð Þ
0

r

� �
þ wþ w0ð Þ

@ u�ð Þ
0

@z
¼ �f urð Þ

0
� urð Þ

0!� w0
@u�
@z

, ð83Þ

where (ur)
0 is given by a small-scale heat source using (70). In summary, we have shown

the following:

Proposition 7 For a given heat source S�ðt, r, zÞ ¼ S�ðt, zÞ þ S0�ðt, r, zÞ, the system (69)
has exact solutions of the form u¼ �uþ u0, where

u ¼ �
1

2

@wðt, zÞ

@z
rer þ

1

2
!ðt, zÞre� þ wez, ð84Þ

u0 ¼ �
1

r

Z r

0

s
@w0

@z
dser þ u�ð Þ

0e� þ w0ez,

where w ¼ S�, w0 ¼ S0�, and ! and (u�)
0 satisfy (81) and (83), respectively.

Remark The term ( �urþ (ur)
0) (u�)

0/r in (83), is an important term in the evolution of
radial eddies. It is an amplification term when ( �urþ (ur)

0)<0, while it is a dissipation
term when ( �urþ (ur)

0)>0. This is easily verified by considering the model equation
@’/@t¼ �’ with the solution ’ ¼ ’0e

�t: This term becomes dominant close to the center-
axis where r is very small, and amplifies cyclones and anti-cyclones when the flow
direction is toward the center and dissipates them otherwise. For long-time simulations,
this term is dominant and overcomes all other source terms.

Note that if the small-scale heat source is removed, the perturbation flow remains
stagnant in any vertical section [i.e. (ur)

0 ¼w0 ¼ 0], and in the absence of mean flow, only
a tangential flow remains in the system at a steady state, as explained by (83).
Finally, (83) has some properties, which largely reduce the number of cases to be
studied. In the absence of the mean flow, and for the initial value ðu�Þ

0
0 ¼ 0, the

dependence of (u�)
0 on f is linear. Moreover, in the absence of the mean flow, for f¼ 0,

the dependence of (u�)
0 on ðu�Þ

0
0 is linear. On the other hand, for f ¼ ðu�Þ

0
0 ¼ 0,

the dependence of (u�)
0 on ! is linear. Further, when f¼ 0, there is a symmetry

in the solutions. That is, the results for the case ðu�Þ
0
0 ¼ ðbu�Þ00 and ! ¼ b!, differ by a (�1)

factor from the case ðu�Þ
0
0 ¼ �ðbu�Þ00 and ! ¼ �b!.
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4.1.3. An important special case: steady mean vorticity. In hurricane embryo, the
(large-scale) mesovortices provide a vorticity-rich background environment and the life

period of hot towers is relatively small compared with the timescales of mesovortices

(Montgomery et al. 2006), which are called the mean flow here. Therefore, the effect

of mesovortices could be realistically modeled by a (quasi) steady mean flow,

which corresponds to zero mean vertical velocity (i.e. w ¼ 0 and hence, �ur¼ 0).

The mean vorticity equation from (81) in this case is reduced to @!=@t ¼ 0, or

! ¼ !0ðzÞ, ð85Þ

and because w ¼ ur ¼ 0, the equation for the perturbation flow (83) is reduced to

@ u�ð Þ
0

@t
þ urð Þ

0 @ u�ð Þ
0

@r
þ

u�ð Þ
0

r

� �
þ w0

@ u�ð Þ
0

@z
¼ �f urð Þ

0
� urð Þ

0!� w0
@u�
@z
: ð86Þ

Solutions of the reduced system (85) and (86) will be studied in this article for some

typical natural situations of specified !. A special case is a barotropic steady mean

vorticity where @u�=@z ¼ 0, and (86) is further simplified to

@ u�ð Þ
0

@t
þ urð Þ

0 @ u�ð Þ
0

@r
þ

u�ð Þ
0

r

� �
þ w0

@ u�ð Þ
0

@z
¼ �f urð Þ

0
� urð Þ

0!: ð87Þ

There is an interesting relation between a barotropic mean vorticity and the Coriolis

effect, as explained in the following remark.

Remark The effect of a ‘‘barotropic background vorticity’’ is equivalent to the

Coriolis effect. Indeed, the Coriolis parameter could be viewed as a constant barotropic

mean vorticity added to a given (not necessarily barotropic) mean vorticity

(by replacing ! with e! ¼ !þ f ). Although the Coriolis parameter f is not important

at the cloud scale, as was mentioned in section 2 and the remark at the beginning of this

section, the numerical study presented below equivalently covers the evolution

of mesoscale vortices (where f is important). Hence, we prefer to keep the Coriolis

parameter f in the discussions below, noting that at the cloud scale, the Coriolis

parameter f simply refers to a steady preconditioning barotropic mean vorticity

(which may be added to the baroclinic mean vorticity).
We now proceed to the general case w 6¼ 0 and obtain the conservation equation of

angular momentum for the general case.

4.1.4. The conservation form. Multiplying (69a) by r, and adding a term u�(@(rur)/@rþ
@(rw)/@z), which is zero by the continuity equation (69b), we obtain the following

conservation equation for the angular momentum ru�

@ ru�ð Þ

@t
þ
@ ruru�ð Þ

@r
þ
@ rwu�ð Þ

@z
þ rfur þ uru� ¼ 0: ð88Þ

We now split the angular momentum equation (88) into (large-scale) mean and (small-

scale) perturbation. The mean flow satisfies (88) by

@ ru�ð Þ

@t
þ
@ ruru�ð Þ

@r
þ
@ rwu�ð Þ

@z
þ rf ur þ uru� ¼ 0: ð89Þ
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Substituting u� ¼ u�þðu�Þ
0, w ¼ wþ w0, and ur ¼ urþðurÞ

0 in (88) and subtracting (89),
we obtain

@ r u�ð Þ
0

� �
@t

þ
@ r urþ urð Þ

0
� �

u�ð Þ
0

� �
@r

þ
@ r wþ w0½ � u�ð Þ

0
� �

@z
þ rf urð Þ

0
þ urþ urð Þ

0
� �

u�ð Þ
0

¼ �
@ r urð Þ

0u�
� �
@r

þ
@ rw0u�ð Þ

@z
þ urð Þ

0u�

	 

: ð90Þ

The conservative form (90) will be employed for the numerical studies in this article.
Finally, the large-scale mean vorticity (81) could be also written in the conservation
form

@!ðt, zÞ

@t
þ
@ wðt, zÞ!ðt, zÞ½ �

@z
¼
@wðt, zÞ

@z
2!ðt, zÞ þ fð Þ: ð91Þ

4.1.5. Numerical scheme and boundary conditions. The large-scale mean flow in the
conservation form (91) is solved by a one-dimensional upwind finite volume scheme.
A first-order upwind finite volume scheme (in flux form) is then employed to simulate
the evolution of perturbation (90) on a staggered grid. A grid of 120� 120
computational cells where employed; a uniform vertical spacing is chosen and in the
horizontal direction, a variable grid spacing with a very high resolution close to the
center is used, which was defined according to rj¼R( j/N )4 where N¼ 120 is the total
number of grid points in horizontal direction, rj is the horizontal coordinate of the
jth grid points and R¼ 1 is the radius of the modeled domain. A time step of �t¼ 0.01
was employed. No significant changes were observed with higher temporal or spatial
resolutions. Thanks to the flux form of the discretized equations, and noting that the
perturbation is compactly supported, the boundary conditions for rðu�Þ

0 are easily zero
flux at all boundaries.

4.2. The mean flow

The case of a steady horizontal mean flow was already studied in section 4.1.3. Here, we
present some physical problems of interest for unsteady mean flows (where w 6¼ 0), and
discuss how various mean (large-scale) heat sources can generate large-scale mean
vorticities (radial preconditionings).

Motivated by the most common mean flows in natural events (in particular, the mean
flows associated with cyclogenesis), we consider the following cases in this article:

. Barotropic mean vorticity

This case was already discussed in section 4.1.3 and it was shown that the effect
of a barotropic mean vorticity is equivalent to the Coriolis effect.

. Deep convective mean flow

In this case, the mean vertical velocity is defined by w ¼ AðtÞ sinð	zÞ, 0 
 z 
 1
and leads to low-level cyclone generation, as briefly explained in the following.
We remind the reader that, for the mean flow, (81) is reduced to
d �!=dt ¼ ð �!þ f Þwz in the characteristic coordinates. This means that the
cyclones will spin up if wz 4 0. In deep convective mean flows,
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wz ¼ 	AðtÞ cosð	zÞ, which is positive for z<1/2, and negative for z>1/2.

This process yields cyclones in the lower troposphere and anti-cyclones in the

upper troposphere. The vorticity in the steady mean flow that emerges from this

process has the form !ðzÞ ¼ A sinð	zÞ:
. Stratiform mean flow

In this case, the mean vertical velocity is defined by w ¼ �AðtÞ sinð2	zÞ,
0
 z
 1, and mid-level cyclone generation is expected; this is because here

wz ¼ �2	AðtÞ cosð2	zÞ, which is positive for 1/4< z<3/4 and negative for

z<1/4 and z>3/4. This process leads to a mid-level cyclone and high- and low-

level anti-cyclone generation. The vorticity in the steady mean flow that emerges
from such a process has the form !ðzÞ ¼ �A cosð2	zÞ:

The congestus mean flow has the same w as the stratiform case with the opposite sign.

Finally, note that another interesting case, is the boundary layer, where @w=@z4 0, and
yields rising air in mean. This leads to cyclone generation. We do not numerically study

this case for the sake of briefness.

4.3. An elementary model for small-scale hot towers

In order to study the role of hot towers in the hurricane embryo, we introduce here

a perturbation flow with a compact support, which represents basic characteristics of
hot towers. The effect of a hot tower is reflected through S0� or equivalently through the

perturbation vertical velocity w0. Based on the observations (Hendricks et al. 2004,

Montgomery et al. 2006), hot towers exhibit the following basic features: they have

a horizontally small-scale compact support; their vertical structure resembles deep

convective rising plumes; they consist of an intense updraft in their center and milder

downdrafts around them, and they exhibit short convective lifetimes including
generation, mature, and decaying stages.

Motivated by the above typical features of hot towers, we consider the following

profile of vertical velocity as an elementary hot tower model

bw ¼
z4ðz� 1Þ4

	
850rðr� 1Þ6 þ

255

2
ðr� 1Þ6 þ 1700rðr� 1Þ6

þ 5100rðr� 1Þ5 þ
255

2r
ðr� 1Þ6 þ 765ðr� 1Þ5



, 0 
 r, z 
 1,

0 otherwise:

8>>>>><>>>>>:
ð92Þ

Using the continuity equation, we obtain

bur ¼ �4z3ðz� 1Þ4 � 4z4ðz� 1Þ3
� �

850r2ðr� 1Þ6 þ
255

2
rðr� 1Þ6

� �
, 0 
 r, z 
 1,

0 otherwise:

8<:
ð93Þ

The profiles of bw, bur, and the velocity field in this case are shown in figures 13 and 14,

which clearly resemble a deep convective rising plume, with an intense updraft in its

center and a mild downdraft around. Note that the above perturbation flow field is

compactly supported and satisfies burjr¼1 ¼ 0:
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Finally, the above-mentioned life cycle of a hot tower, may be modeled by the sinþ

function

sinþð�Þ ¼
sinð�Þ if sinð�Þ4 0,

0 otherwise:

(
ð94Þ

r

z

0 1
0

1

Figure 14. The perturbation flow field (ûr, ŵ) generated by the hot tower given by (92) and (93).

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1
r

0

0.05

0.1

0.15

0.2

0.2 0.4 0.6 0.8 1
r

(a) (b)

Figure 13. (a) bw at z¼ 1/2 and (b) bur at z ¼ 1=2þ
ffiffiffi
7
p
=14 where it is maximum, given by (92) and (93).
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Hence,

w0 ¼ bw sinþð	t=TmaxÞ, ð95Þ

urð Þ
0
¼bur sinþð	t=TmaxÞ: ð96Þ

In order to study the effect of small-scale preconditioning, in some cases below we will
consider the natural choice of a small-scale barotropic vortex as initial condition

u�ð Þ
0
ðt ¼ 0, r, zÞ ¼

u�ð Þ
0
0, 0 
 r, z 
 1,

0 otherwise,

(
ð97Þ

where value of ðu�Þ
0
0 is variable in the numerical experiment (the case ðu�Þ

0
0 ¼ 0

corresponds to no initial perturbation). Note that positive ðu�Þ
0
0 corresponds to cyclonic

initial small-scale vorticity. To give insight about various possible cases, numerical
studies are performed here for short (Tmax¼ 1) and long (Tmax¼ 10) events. In the
following, we study the evolution of radial eddies in various radial preconditionings.
We begin with the evolution of hot towers under no mean flow, and then the effect of
a steady mean flow on hot towers is studied.

4.4. Evolution of hot towers in the absence of mean flows

Here, we assume no background rotation (! ¼ 0 and w ¼ 0Þ: This gives an insight into
how initial conditions and the Coriolis parameter can affect the evolution of a hot tower
in the absence of mean flow. The equation (83) for the evolution of (u�)

0 in this case
is reduced to

@ u�ð Þ
0

@t
þ urð Þ

0 @ u�ð Þ
0

@r
þ

u�ð Þ
0

r

� �
þ w0

@ u�ð Þ
0

@z
¼ �f urð Þ

0: ð98Þ

Note that the effects of the terms �fðurÞ
0 and ðurÞ

0
ðu�Þ

0=r depend on the sign of ðurÞ
0: Due

to the special form of the perturbation flow field (92) and (93), ðurÞ
05 0 for z<1/2,

and ðurÞ
04 0 for z>1/2, which leads to the following effects:

. The source term �fðurÞ
0 generates cyclones i.e. positive tangent velocity ðu�Þ

0 in
the lower troposphere (z<1/2) and anti-cyclones i.e. negative ðu�Þ

0 in the upper
troposphere. In the following, the effect of this term will be referred to as the
‘‘Coriolis effect’’.

. The term ðurÞ
0
ðu�Þ

0=r is an amplification term when z<1/2 and a dissipation
term when z>1/2 (see the remark in section 4.1.2). The effect of this term will
be referred to as ‘‘amplification effect’’ or ‘‘dissipation effect’’. In the regions
close to center, where r is very small, this term is dominant.

4.4.1. Evolution of hot towers with no small-scale initial vorticity. This case is called
case A1: In this case, the system is linear in terms of the Coriolis parameter f, and
hence, we only consider f¼ 1. Because no initial (u�)

0 is assumed, at the beginning
only the ‘‘Coriolis effect’’ is active and generates cyclones and anti-cyclones in the
lower and upper tropospheres, respectively. The generated cyclones and anti-cyclones
are then advected by the perturbation flow, which lead to positive tangent velocity
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(u�)
0 i.e. cyclonic flow close to the center and negative (u�)

0 i.e. anti-cyclonic flow far
from the center. Then, the ‘‘amplification effect’’ leads to a huge increase of (u�)

0 in
the inner core. This effect becomes more and more dominant as time increases and
(u�)
0 is increased extremely rapidly in the internal core around mid-levels. The huge

(u�)
0 generated at the inner core, is advected to the higher levels and is dissipated

there. Note that if the simulation time is considered long enough, then the
amplification and advection effects overcome the dissipation effect and a cyclonic
flow is generated in a main part of the inner core. However, (u�)

0 at the high levels
remains negative for a long time because the advection effect is small at that part and
it takes a long time for advection and amplification effects to overcome the Coriolis
effect in that region. The upper anti-cyclone is advected far from the center and it
becomes weaker. This does not violate the conservation of angular momentum
because the conserved quantity in (88) is actually r(u�)

0 and hence, (u�)
0 becomes small

as r is increased. We call this regime ‘‘the Coriolis-dominated regime’’. contour plots
of the tangent velocity ðu�Þ

0 at t¼Tmax for Tmax¼ 1 and 10, are shown in figure 15.
The negative ðu�Þ

0 (e.g. anti-cyclonic vortex) is very small in absolute value. Note that
in figure 15, the cyclonic tangent velocity generated by an order 1 Coriolis effect, is of
order 0.1 for Tmax¼ 1 and of order 1 for Tmax¼ 10. Hence, by increasing the
simulation time by one order of magnitude, the dominant generated vortices (here,
cyclones) are roughly amplified by one order. This feature is roughly observed in most
other experiments presented below.

We now briefly discuss the evolution of vertical vorticity. The initial vorticity is
produced in the domain according to the term @w0/@zf in the vorticity equation (73).
As the time increases, a huge vorticity is produced close to the center. This is
because the vorticity is given by @ðu�Þ

0=@rþ ðu�Þ
0=r; in the regions close to the center,

the term ðu�Þ
0=r is dominant (because r is very small) and this leads to a huge vorticity

in the inner core.

4.4.2. The effect of a nonzero small-scale initial vorticity when f^ 0. This case is called
case A2: In this case, the system is linear in terms of ðu�Þ

0
0, and thus, we only consider

ðu�Þ
0
0 ¼ 1: That is, initially we have a cyclonic perturbation here. The amplification,

dissipation, and advection effects are active, since the beginning of simulation

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8
1.8E−01

1.4E−01

1.1E−01

6.7E−02

2.9E−02

−9.9E−03

−4.8E−02

−8.7E−02

2.5E+00

2.1E+00

1.8E+00

1.4E+00

1.1E+00

6.9E−01

3.3E−01

−2.4E−02

(a) (b)

Figure 15. Case A1, contour plots of ðu�Þ
0 for ðu�Þ

0
0 ¼ 0, f¼ 1, results at t¼Tmax for Tmax¼ 1 (a) and

Tmax¼ 10 (b).
Notes: Dashed lines show negative values (anti-cyclonic flow). Horizontal axis is r and vertical axis is z.
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(because ðu�Þ
0
0 6¼ 0), and as before a strong cyclonic flow in the inner core at mid-levels is

generated. However, due to the absence of the Coriolis effect here, no anti-cyclonic flow
is generated and the whole flow swirls cyclonicly. We call this regime ‘‘the initial
vorticity-dominated regime’’. Typical contour plots of ðu�Þ

0 for this case are given in
figure 16. We remind the reader that since the system is linear in terms of ðu�Þ

0
0, if the

initial ðu�Þ
0
0 is negative, then anti-cyclones are amplified and the whole flow swirls as

anti-cyclone. Note that in the previous case (the Coriolis-dominated regime), both
cyclonic and anti-cyclonic flows were generated, but in the present regime, depending
on the initial condition, only cyclonic or anti-cyclonic flow is generated. Finally, in
figure 16, the cyclonic tangent velocity generated by an order 1 initial tangent velocity,
is of order 1 for Tmax¼ 1 and of order 10 for Tmax¼ 10. Hence, compared to the previous
case, we conclude that the effect of an initial tangent velocity of order 1, is roughly one
order of magnitude stronger than the effect of an order 1 Coriolis forcing. Further,
comparing the two cases Tmax¼ 1 and Tmax¼ 10, for the cases A1 and A2, we observe
that the flow generated in case A1 grows more rapidly in time compared with case A2.
This is because the Coriolis effect is a source term and it is active during the simulation.

4.4.3. The competition of Coriolis and initial small-scale vorticity. In order to see how
the initial small-scale cyclones/anti-cyclones and the Coriolis parameter f compete,
here we select a small initial perturbation ðu�Þ

0
0¼
0.05 and change f in the range

0
 f
 1. The reason for selecting small ðu�Þ
0
0 is that, as explained earlier, the effect

of ðu�Þ
0
0 is of one order of magnitude stronger than the effect of Coriolis. For larger

ðu�Þ
0
0, the Coriolis effect cannot compete and the flow field is dominated by the initial

small-scale vorticity. Here, for small values of f, e.g. f¼ 0.1 the initial condition is
dominant and the results are qualitatively similar to those of the case A2, while for large
values of f, e.g. f¼ 1, the Coriolis effect is dominant and the results are close to those of
the case without initial condition (case A1). We now discuss the two cases of cyclonic
and anti-cyclonic initial small-scale flows separately.

. Cyclonic initial small-scale vorticity

This case is called case A3. Typical contour plots of ðu�Þ
0 for ðu�Þ

0
0¼ 0.05 when

f¼ 0.5 are given in figure 17. Note that, here Coriolis and initial small-scale
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Figure 16. Case A2, contour plots of (
�)
0 for ðu�Þ

0
0 ¼ 1, f¼ 0, results at t¼Tmax for Tmax¼ 1 (a) and

Tmax¼ 10 (b).
Note: Horizontal axis is r, and vertical axis is z.
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vorticity collaborate in the lower levels, but they have opposite effects in higher
levels. Comparing figure 17(b) with figure 16(b), we observe that the high-level
anti-cyclone is largely weakened in figure 17, due to the opposite effect at high
levels. Moreover, although the Coriolis is reduced in figure 17, the low-level
cyclone is of almost at the same strength due to the collaboration at low
levels.

. Anti-cyclonic initial small-scale vorticity

This case is called case A4. Typical contour plots of ðu�Þ
0 for ðu�Þ

0
0¼�0.05 when

f¼ 0.5 are given in figure 18. Note that for f¼ 0.5, although for short timescales
the small-scale initial vorticity is dominant and generates an anti-cyclonic flow,
for longer timescales the Coriolis effect wins, and starts to generate a cyclone as
time increases. This is because, as explained earlier, cyclones/anti-cyclones
generated in case A1 (due to Coriolis) grow more rapidly in time compared with
case A2. In figure 18, an anti-cyclone is observed in the center due to initial
condition, then followed by a cyclone due to Coriolis effect, then followed by an
anti-cyclone due to Coriolis (compare with figure 15).

4.5. The effect of steady mean flows on hot towers

In this part, we study the evolution of hot towers in presence of a steady mean flow,
which was introduced in section 4.1.3. For simplicity, we assume zero initial small-scale
vorticity e.g. ðu�Þ

0
0 ¼ 0: We remind that the equation (83) in this case (w ¼ ur ¼ 0) is

reduced to (86), which we repeat here

@ u�ð Þ
0

@t
þ urð Þ

0 @ u�ð Þ
0

@r
þ

u�ð Þ
0

r

� �
þ w0

@ u�ð Þ
0

@z
¼ �f urð Þ

0
� urð Þ

0!� w0
@u�
@z
:

Note that for f¼ 0, and in the absence of initial small-scale vorticity, the solution is
linear in !. Due to the presence of the terms �fðurÞ

0
� ðurÞ

0!� w0u�=@z, the tangential
velocity ðu�Þ

0 will be generated in the system, even with a zero initial condition.
As mentioned in a remark in section 4.1.3, the natural choice of a barotropic
background vorticity returns to the previous case (case A; no background rotation).
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Figure 17. Case A3, contour plots of (
�)
0 for ðu�Þ

0
0 ¼ 0:05, f¼ 0.5, results at t¼Tmax for Tmax¼ 1 (a) and

Tmax¼ 10 (b).
Note: Horizontal axis is r, and vertical axis is z.
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Hence, motivated by the mean vorticity generated only due to the deep convective and
stratiform mean flows in section 4.2, we will consider here four cases of mean vorticity
as large-scale preconditioning. Experiments in this section are grouped as case B.

4.5.1. Low-level cyclonic and high-level anti-cyclonic mean flow. This case is called
case B1. The mean vorticity here corresponds to the build up from a transient large-
scale deep convective flow (section 4.2) and it is defined by ! ¼ sinð2	zÞ.

. When f¼ 0, at the beginning, both terms �ðurÞ
0! and �w0@u�=@z are active.

Note that the term @u�=@z linearly increases with r, and w0 is large at mid-levels.
Hence, the term �w0@u�=@z is dominant in the mid-levels at outer region
(far from center) and leads to anti-cyclonic flow. Another component of the
mean flow effect, i.e. �ðurÞ

0!, is dominant close to the center (in the outer region
it is small compared with �w0@u�=@z because @u�=@z increases with r). Due to the
special form of the perturbation flow, �ðurÞ

0! is always positive here and tends
to generate cyclonic flow. This, along with the amplification effect, leads to
cyclone in the inner core for Tmax¼ 1. The cyclone in the internal part is much
stronger than the anti-cyclone in the external part due to the amplification
effect. We call this case the ‘‘deep convective mean flow-dominated regime’’.
For the case Tmax¼ 10, the term ðurÞ

0
ðu�Þ

0=r becomes dominant again as in the
previous cases and forces the flow to swirl mainly as a cyclone at mid-levels with
a small anti-cyclonic flow far from the center at low- to mid-levels.

. As f is increased, the inner cyclone is amplified as explained in the following.
We remind the reader that the Coriolis term could be included in the mean
vorticity through a change of variable e! ¼ !þ f, and hence they collaborate
when have the same sign. Here the Coriolis effect and the background mean
vorticity have similar effects at low levels. Thus, stronger cyclones (compared to
the case f¼ 0) are generated there and then transported to the inner core. Hence,
the inner cyclone is amplified by increasing f. In short times, i.e. Tmax¼ 1, the
anti-cyclone becomes weaker as f is increased, because Coriolis effect and the
background mean vorticity do not act exactly at same regions. For Tmax¼ 10,
the Coriolis effect and the background mean vorticity totally collaborate, and
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Figure 18. Case A4, contour plots of (
�)
0 for ðu�Þ

0
0 ¼ 0:05, f¼ 0.5, results at t¼Tmax for Tmax¼ 1 (a) and

Tmax¼ 10 (b).
Note: Horizontal axis is r, and vertical axis is z.
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by increasing f, the final inner cyclone is almost linearly amplified. As expected,
when f is increased, the results become more and more similar to the case ! ¼ 0,
which was already identified as Coriolis-dominated regime.

Typical contour plots of ðu�Þ
0 for this case when f¼ 0.5 are given in figure 19.

The strength of cyclones are comparable to case A1 by a 1.5 factor, which is expectable
due to the relation between f and a barotropic vorticity and noting that !þ f is
of order 1.5 here. The anti-cyclonic tangent velocity is roughly two order weaker as
expected due to the discussion above.

4.5.2. Low-level anti-cyclonic and high-level cyclonic mean flow. This case is called
case B2. Here, the mean vorticity generated by a transient large-scale downward flow
(section 4.2) is considered, which is defined by ! ¼ �sinð2	zÞ:

. When f¼ 0, the results are linear in terms of !, and differ from the last case by
a (�1) factor.

. As f is increased, the Coriolis effect and the background mean vorticity act
oppositely and the inner anti-cyclone eventually becomes a cyclone as in the
Coriolis-dominated regime. An interesting case is f¼ 0.5, where the two effects
(mean vorticity and Coriolis) are close and this lead to an anti-cyclone in the
inner core, followed by a cyclone, while low- and high-level flows are still
cyclonic for Tmax¼ 10. Typical contour plots of ðu�Þ

0 for this case when f¼ 0.5
are given in figure 20. For Tmax¼ 1, the strength of anti-cyclones are
comparable by a �0.8 factor to the strength of cyclones in case A1, which is
again reasonable. For Tmax¼ 10, both cyclones and anti-cyclones are amplified
by a factor 5 and they are propagated in the domain due to advection.

4.5.3. Mid-level cyclone and low- and high-level anti-cyclone. This case is called
case B3. Motivated by the mean vorticity generated by transient effects from a large-
scale stratiform flow (section 4.2), here we choose ! ¼ �cosð2	zÞ:
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Figure 19. Case B1, contour plots of (
�)
0 for ðu�Þ

0
0 ¼ 0, f¼ 0.5, results at t¼Tmax for Tmax¼ 1 (a) and

Tmax¼ 10 (b).
Notes: Dashed lines show negative values (anti-cyclonic flow). Horizontal axis is r and vertical axis is z.
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. When f¼ 0, in the case Tmax¼ 1, low-level anti-cyclones and high-level cyclones
are generated in the inner core due to the term �ðurÞ

0!, followed by low-level
cyclones and high-level anti-cyclones in the outer region (far from center) due to
the term �w0@u�=@z (not shown). When Tmax¼ 10, an internal anti-cyclone is
generated (around the center) while a cyclone is generated in the external region
(when f¼ 0). We call this case the ‘‘stratiform mean flow-dominated regime’’.

. As f is increased, the flow evolves as following. For the case Tmax¼ 1,
the cyclones and anti-cyclones in the internal region become much weaker
(because they do not collaborate with the Coriolis-dominated regime) and the
external ones move toward the center. For the case Tmax¼ 10, by increasing
the Coriolis parameter, the internal anti-cyclone becomes much weaker and the
external cyclone becomes stronger, and the flow field becomes closer to the
Coriolis-dominated regime, as expected. Typical contour plots of ðu�Þ

0 for this
case when f¼ 0.5 are given in figure 21. Note that a small spot of weak low-level
anti-cyclonic flow (close to center) at Tmax¼ 1, becomes much amplified and
generates an anti-cyclonic inner core. This is a general important feature due to
the amplification effect. Indeed, in the long run, the flow direction (cyclonic/
anti-cyclonic) in the inner core is only dictated by the flow direction at the
lowest level. Finally, comparing figure 21 with figure 19, we observe that the
cyclones generated by a deep convective mean flow (case B1), are two times
stronger than those generated by stratiform mean flow (case B3). Hence, deep
convective preconditionings should have a higher potential for initiation of
hurricanes. Anti-cyclones are stronger here compared with case B1. Moreover,
the strength of cyclones and anti-cyclones are closer to each other in this case
compared to deep convective mean flows (case B1).

4.5.4. Mid-level anti-cyclone and low- and high-level cyclone. This case is called
case B4. The mean vorticity generated by a transient large-scale congestus flow is
considered here, which differs by a (�1) factor from the stratiform flow in section 4.2),
and defined by ! ¼ cosð2	zÞ:

. When f¼ 0, the results differ from the last case by a (�1) factor, due to
linearity in !.
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Figure 20. Case B2, contour plots of (
�)
0 for ðu�Þ

0
0 ¼ 0, f¼ 0.5, results at t¼Tmax for Tmax¼ 1 (a) and

Tmax¼ 10 (b).
Notes: Dashed lines show negative values (anti-cyclonic flow). Horizontal axis is r and vertical axis is z.
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. As f is increased, the flow evolves as following. In the case Tmax¼ 1, the cyclones

and anti-cyclones in the external region become much weaker (due to

the Coriolis effect). When Tmax¼ 10, by increasing the Coriolis parameter,

the internal cyclone becomes much stronger and the external anti-cyclone

becomes weaker. Typical contour plots of ðu�Þ
0 for this case for f¼ 0.5 are given

in figure 22. Compared with the last case, B3, although the flow features are

different, the strength of cyclones are still comparable, but anti-cyclones are
much weaker here. For the long time Tmax¼ 10, the cyclonic/anti-cyclonic

regions are exchanged, as expected. Hence, congestus preconditionings also

have less potential for initiation of hurricanes, compared with deep convective

preconditionings.

Remark In the presence of a nonzero initial small-scale vorticity, the competition of the

Coriolis effect, initial small-scale vorticity, and various large-scale steady mean flows

governs the evolutions of radial eddies. The flow field in this case evolves based on

the combination of various regimes identified above, which is beyond the scope of this

article.
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Figure 21. Case B3, contour plots of (
�)
0 for ðu�Þ

0
0 ¼ 0, f¼ 0.5, results at t¼Tmax for Tmax¼ 1 (a) and

Tmax¼ 10 (b).
Notes: Dashed lines show negative values (anti-cyclonic flow). Horizontal axis is r and vertical axis is z.
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Figure 22. Case B4, contour plots of (
�)
0 for ðu�Þ

0
0 ¼ 0, f¼ 0.5, results at t¼Tmax for Tmax¼ 1 (a) and

Tmax¼ 10 (b).
Notes: Dashed lines show negative values (anti-cyclonic flow). Horizontal axis is r and vertical axis is z.
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4.6. The effect of an unsteady mean flow on hot towers

Here, we briefly explain the effect of an unsteady mean flow (w 6¼ 0). The mean flow in
most natural cases evolves much slower than the perturbation. Hence, the quasi-steady
state assumption for the mean vorticity made above is still reasonable. However, the
advection, amplification, and dissipation effects are based on the total velocities
ur þ ðurÞ

0 and wþ w0: Further, the small-scale radial eddies ðu�Þ
0 generated due to hot

towers do not remain in the system at a steady state after the end of the perturbation
heating. This is because the terms involving mean radial and vertical velocities ur and w
in (83) are still active and hence, the evolution of ðu�Þ

0 continues even after the decay of
the hot tower (w0 ¼ ðurÞ

0
¼ 0). The mean flow in this case advects ðu�Þ

0 in the system and
also amplifies (dissipates) it when the flow direction is toward (outward) the center,
through the term urðu�Þ

0=r in (83). Hence, the radial eddies generated by the hot towers
may be even further amplified by the mean flow.

4.7. Large-scale linear flows with sheared sertical structure

There is a direct link between the large-scale linear flows from proposition 1 in section 3
and the large-scale vertical flows in proposition 7 of this section. Both can be
generalized for nonlinear, nonaxisymmetric mean flows as following:

Proposition 8 For a large-scale heat source S� ¼ S�ðt, zÞ, the system (3) has exact
solutions of the form

wðt, zÞ ¼ S�ðt, zÞ,

uhðz, tÞ ¼
1

2
!x?h þ

1

2
Dhxh �

1

2
wzxh þ bðz, tÞ,

ð99Þ

where Dh is an arbitrary 2� 2 symmetric matrix with zero trace;

Dh ¼
�1ðt, zÞ �2ðt, zÞ
�2ðt, zÞ ��1ðt, zÞ

� �
,

bðz, tÞ is an arbitrary background shear flow and ! satisfies

@!ðt, zÞ

@t
þ wðt, zÞ

@!ðt, zÞ

@z
¼
@wðt, zÞ

@z
!ðt, zÞ þ fð Þ: ð100Þ

Proof Noting that

rh �
1

2
!x?h

� �
¼ !, rh � �

1

2
wzxh

� �
¼ �wz, ð101Þ

and the term 1/2Dxhþ b(z, t) is horizontally curl and divergence free, for a given ! and
wðt, zÞ, it is straightforward to check that the velocity field given by (99) satisfies the
continuity equation in (3), and moreover, rh � uh ¼ !: Finally, (100) guarantees that
the momentum equation in (3) is also satisfied.

4.8. Summary

The evolution of the perturbation flow ðu�Þ
0 for the case of a steady-mean vorticity is

governed by (86) through the terms ðurÞ
0
ðu�Þ

0=r, w0@ðu�Þ
0=@z, fðurÞ

0, ðurÞ
0! , w0@u�=@z, and
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the advection effects. For small time (Tmax¼ 1), the competition of the initial condition,
Coriolis, and the mean vorticity determines the flow regime (based on the above terms),
and may lead to several cyclones and anti-cyclones. For long time (Tmax¼ 10),
the dominant term is ðurÞ

0
ðu�Þ

0=r. It always amplifies the cyclones and anti-cyclones
when the flow direction is toward the center, and dissipates them when the flow
direction is outward. Hence, in the hot tower perturbation flow considered here, this
term acts as an amplification term in the bottom, and as a dissipation term in the top.
Therefore, for long-time simulations (Tmax� 1), the final cyclonic/anti-cyclonic
situation depends on flow conditions in the lowest level; if the lowest level swirls
cyclonicly, then in the whole domain, a mainly cyclonic flow is generated, and
vice versa. That is, if the competition of various effects in short times lead to a cyclonic
flow at the lower level, independent of the flow structure at higher levels, eventually
a cyclonic flow is developed in the system and vice versa.

In the case of an unsteady mean flow, the radial eddies are also advected by the mean
flow. Moreover the amplification/dissipation term becomes ður þ ðurÞ

0
Þðu�Þ

0=r and the
amplification/dissipation effect is now determined by the direction of the total radial
velocity ur þ ðurÞ

0:
In summary, in presence of initial small-scale vorticity, Coriolis, or mean vorticity,

hot towers (heat sources) can generate very large vorticities in their core through the
term ður þ ðurÞ

0
Þðu�Þ

0=r, and the role of a barotropic mean vorticity is equivalent to
the Coriolis effect. Finally, hot towers appear to generate stronger cyclonic flows with
the deep convective preconditioning compared with stratiform/congestus
preconditionings.

5. Concluding remarks

In this article, we presented a comprehensive study of a canonical balanced model,
which involves vertically sheared horizontal flows with mass sources arising in several
multi-scale models for the tropics. In section 2, we developed two new examples
of physical regimes for the balanced models, which are useful for the hurricane
embryo; a comprehensive multi-scale model for this process is developed elsewhere
(Majda et al. 2008).

First, when the heat source is specified as a linear function, general linear flow
solutions are introduced as background large-scale preconditioning fields. Nonlinear
plane wave perturbations for vertical vorticity in such a preconditioned environment
are studied through a combination of exact solutions and elementary numerics.
The stability analysis reveals how these vorticity perturbations grow due to the effects
of a linear heat source and background shear flow. An interesting result comes from the
case when �<0 (the linear heat source is given by w¼ �zþ l � xh). If the heating is
independent of horizontal coordinates (i.e. l¼ 0), the perturbation is stable everywhere,
as it is well known. However, if the heating starts to depend on horizontal coordinates,
the flow field becomes unstable in most cases.

Next, by constructing an elementary axisymmetric model of hot towers (which
represents their basic characteristics), it was shown how a heat/mass source can
generate large vorticity in a suitable preconditioning. Useful elementary insight into the
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role of hot towers in cyclogenesis has been obtained through combination of exact
solutions and simple numerics. The simplicity of the reduced models enabled us to
carefully study and understand the role of various effects in generation, amplification,
and dissipation of vorticity in hot towers. Various cases were studied, which showed
how several regimes of cyclonic/anti-cyclonic flow could happen due to the effect of
various natural background large-scale preconditioning, the Coriolis forcing, and initial
small-scale cyclonic/anti-cyclonic vorticity. Section 4.7 provides a summary.

Although the terminology of hot towers and cloud scales are used here, the canonical
model studied in this article, is also relevant for larger scales, and the elementary model
study also gives insight into how mesovortices may be generated due to the heat sources
by mesoscale convective systems under various synoptic-scale preconditionings.

The insights obtained in this study, are useful as elementary structures in multi-scale
models for the hurricane embryo (Majda et al. 2007), where hot towers play
a substantial role (Hendricks et al. 2004, Montgomery et al. 2006). These will be
developed elsewhere in a subsequent study.
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Appendix A

We now present the details for deriving the linear exact solutions for vertically sheared
horizontal flow with heat source. Let us assume that the Coriolis parameter f is constant
and source terms S� is linear. Su is ignored.

A.1 Vorticity solution

We assume that

w ¼ S� ¼ �ðtÞzþ lðtÞ � xh, ðA:1Þ

for an arbitrary l and � as functions of t only, which implies

4h� ¼ ��, r
?
h w ¼ l?: ðA:2Þ

Since our purpose is to find the linear solution of the system, velocity uh are linear
functions in space, which means that vorticity ! only depends on t. Hence,

4h� ¼ !ðtÞ: ðA:3Þ
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Then, based on relations A.2 and A.3, it is natural to assume that � and � are both

independent of z.
Starting from equation (16), inserting the Helmholtz decomposition and using the

linear formula of w (A.1), we have the new equation for vorticity

@!

@t
� �!þ l? �

@bðz, tÞ

@z
� �f ¼ 0: ðA:4Þ

A.2 Symmetric and antisymmetric analysis

We first introduce the notation

V1 ¼

@u

@x

@u

@y

@v

@x

@v

@y

0BBB@
1CCCA, V?1 ¼

�
@v

@x
�
@v

@y

@u

@x

@u

@y

0BBB@
1CCCA, P1 ¼

pxx pxy

pxy pyy

 !
:

Since we only consider the linear solution, V1 defined above is only a function of time t.

Further, we can decompose u as

uh ¼ V1ðtÞxh þ bz,

where b¼ b(t) refers to the shear flow ð @u=@z @v=@z ÞT.
Compute the derivative w.r.t. x, y of the momentum equation and have

d

dt
V1 þ V2

1 þ

@u

@z
@v

@z

0B@
1CA @w

@x

@w

@y

� �
þ fV?1 ¼ �P1: ðA:5Þ

Using the fact that @V1/@t¼ dV1/dt (coming from the linearity of uh), the above

equation can be simplified as

@

@t
V1 þ V2

1 þ blT þ fV?1 ¼ �P1: ðA:6Þ

We then decompose V1 into its symmetric part D1 and antisymmetric part �1, where

�1 ¼ 1=2ð 0 �!
! 0

Þ. Using the fact that V2
1 ¼ D

2
1 þ�2

1 þ�1D1 þD1�1 where the first

two terms are symmetric and the latter two are antisymmetric, we can break up the

velocity gradient equation (A.6) to the symmetric part

@

@t
D1 þD

2
1 þ�2

1 þ
1

2
ðlbT þ blT Þ þ

f

2
ðV?1 þ ðV

?
1 Þ

T
Þ ¼ �P1, ðA:7Þ

and the antisymmetric part

@

@t
�1 þD1�1 þ�1D1 þ

1

2
ðblT � lbT Þ þ

f

2
ðV?1 � ðV

?
1 Þ

T
Þ ¼ 0, ðA:8Þ

which can be further simplified to be the vorticity equation (A.4).
At the end, we take the derivative w.r.t. the z direction of the momentum equation

@

@t

@u

@z
þ u

@

@x

@u

@z
þ v

@

@y

@u

@z
þ w

@

@z

@u

@z
þ
@u

@x

@u

@z
þ
@u

@y

@v

@z
þ
@u

@z

@w

@z
� f

@v

@z
¼ �pxz, ðA:9Þ
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@

@t

@v

@z
þ u

@

@x

@v

@z
þ v

@

@y

@v

@z
þ w

@

@z

@v

@z
þ
@v

@x

@u

@z
þ
@v

@y

@v

@z
þ
@v

@z

@w

@z
þ f

@u

@z
¼ �pyz: ðA:10Þ

These can be simplified into the form

bt þ ðV1 þ �IÞbþ fb? ¼ �ð pxz pyzÞ
T: ðA:11Þ

A.3 Proposition

Here, we present a full version of the proposition with the pressure term included.

Proposition 9 For the vertically sheared horizontal flow with heat source

d

dt
uh þ fuh

? ¼ �rhp,

rh � uh þ wz ¼ 0,

w ¼ S�,

with f a fixed constant representing the Coriolis effect and S� a linear function of x, z,

there are exact linear solutions of the form

w ¼ S� ¼ l � xh þ �z, with l ¼ ðl1ðtÞ, l2ðtÞÞ
T, � ¼ �ðtÞ, ðA:12aÞ

�uh ¼ �
�

2
xh þ

1

2
�!ðtÞx?h þDhðtÞxh þ bz, with b ¼ ðb1ðtÞ, b2ðtÞÞ

T, ðA:12bÞ

p ¼
1

2
PðtÞx � x, ðA:12cÞ

where Dh is an arbitrary 2� 2, traceless, symmetric matrix, b¼ (b1(t), b2(t))
T is a vector

describing the background shear and �!ðtÞ ¼ rh � �uh satisfies

@!

@t
¼ �ð!þ f Þ � l? � b, !ð0Þ ¼ !0: ðA:13Þ

Matrix P(t) is given by

P1ðtÞ2�2 P2ðtÞ

P2ðtÞ
T
1�2 p22ðtÞ

 !
,

with p22(t) as an arbitrary function of t and

�P1 ¼
dD

dt
þD2

1 þ�2
1 þ

1

2
ðlbT þ blTÞ þ

f

2
V?1 þ ðV

?
1 Þ

T
� �

,

�P2 ¼ bt þ ðV1 þ �IÞbþ fb?,

ðA:14Þ

where V1 ¼ D1 þ�1, �1 ¼ 1=2ð 0 �!ðtÞ
!ðtÞ 0 Þ and D1 ¼ ð

��=2��1 �2
�2 ��=2þ�1

Þ.

Proof

d�uh

dt
¼

d

dt

V1 bT

l �

 !
x ¼

d

dt
ðD1xh þ�1xh þ bzÞ

¼
d

dt
D1xh þ

d

dt
�1xh þ

d

dt
bzþ ðV1 bÞ

V1 b

lT �

 !
x
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¼
d

dt
D1xh þ

d

dt
�1xh þ

d

dt
bzþ ðV2

1 þ blTÞxh þ ðV1 þ �IÞbz

¼ ð�D2
1 ��2

1 �
1

2
ðblT þ lbTÞ �

f

2
ðV?1 þ ðV

?
1 Þ

T
Þ � P1Þxh

þ ð�D1�1 ��1D1 �
1

2
ðblT � lbTÞ �

f

2
ðV?1 � ðV

?
1 Þ

T
Þxh

þ ð�P2 � ðV1 þ �IÞb� f ðbÞ?Þzþ ðV2
1 þ blTÞxh þ ðV1 þ �IÞbz

¼ �f�u?h � ðP1 P2Þx

)
d�uh

dt
þ fu?h ¼ �rhp:

Then the first equation (A.12a) is proven. The second and third equations (A.12b)
and (A.12c) are both obvious. This finishes the proof. g

Appendix B

As in (34), X is a linear transformation of �, and we have the following relations
between the derivatives by time-ordered exponential

@�1

@�2

@�3

0BB@
1CCA ¼ e

R t

0
AðsÞds

� �T
@x

@y

@z

0BB@
1CCA,

@x

@y

@z

0BB@
1CCA ¼ e

R t

0
AðsÞds

� �T
 !�1 @�1

@�2

@�3

0BB@
1CCA: ðB:1Þ

To analyze (33), we set

! ¼ b!kðtÞe
ik�� ¼ b!kðtÞe

iðk1�1þk2�2þk3�3Þ: ðB:2Þ

Then,

! ¼ 4h� ¼
X3
i, j¼1

@�i
@x

@�j
@x
þ
@�i
@y

@�j
@y

� �
@2�

@�i@�j
,

� ¼
�1X3

i, j¼1

@�i
@x

@�j
@x
þ
@�i
@y

@�j
@y

� �
kikj

!,
ðB:3Þ

and

�
@

@z

@

@y
� ¼ �

X3
i, j¼1

@�i
@z

@�j
@y

@2�

@�i@�j
¼ �

X3

i, j¼1

@�i
@z

@�j
@y

kikjX3

i, j¼1

@�i
@x

@�j
@x
þ
@�i
@y

@�j
@y

� �
kikj

!,

@

@z

@

@x
� ¼

X3
i, j¼1

@�i
@z

@�j
@x

@2�

@�i@�j
¼

X3

i, j¼1

@�i
@z

@�j
@x

kikjX3

i, j¼1

@�i
@x

@�j
@x
þ
@�i
@y

@�j
@y

� �
kikj

!: ðB:4Þ
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We also have

Jð�ðx, tÞ,!ðx, tÞÞ ¼ r?h � � rh!

¼

�
@�1
@y
�
@�2
@y
�
@�3
@y

@�1
@x

@�2
@x

@�3
@x

0BB@
1CCAr�� �

@�1
@x

@�2
@x

@�3
@x

@�1
@y

@�2
@y

@�3
@y

0BB@
1CCAr�!

¼ �kT�

0
@�1
@x

@�2
@y
�
@�2
@x

@�1
@y

@�1
@x

@�3
@y
�
@�3
@x

@�1
@y

�
@�1
@x

@�2
@y
þ
@�2
@x

@�1
@y

0
@�2
@x

@�3
@y
�
@�3
@x

@�2
@y

�
@�1
@x

@�3
@y
þ
@�3
@x

@�1
@y
�
@�2
@x

@�3
@y
þ
@�3
@x

@�2
@y

0

0BBBBBBB@

1CCCCCCCAk! ¼ 0,

which can be easily verified. Plugging these terms into the vorticity-stream formulation

(33a), we have the following formula for the amplitude b!kðtÞ

d

dt
b!kðtÞ ¼ ð�� Sðt, kÞÞb!kðtÞ, ðB:5Þ

with

Sðt,kÞ ¼

X3

i, j¼1
l1
@�i
@z

@�j
@x
þ l2

@�i
@z

@�j
@y

� �
kikjX3

i, j¼1

@�i
@x

@�j
@x
þ
@�i
@y

@�j
@y

� �
kikj

, ðB:6Þ

where each derivative term, for example @�i/@x, is an element of the ordered exponential

ðe

R t

0
AðsÞds
Þ
T in (B.1).
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