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a b s t r a c t 
We construct and study efficient high order discontinuous Galerkin methods for the shallow water flows 
in open channels with irregular geometry and a non-flat bottom topography in this paper. The proposed 
methods are well-balanced for the still water steady state solution, and can preserve the non-negativity 
of wet cross section numerically. The well-balanced property is obtained via a novel source term separa- 
tion and discretization. A simple positivity-preserving limiter is employed to provide efficient and robust 
simulations near the wetting and drying fronts. Numerical examples are performed to verify the well- 
balanced property, the non-negativity of the wet cross section, and good performance for both continuous 
and discontinuous solutions. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 
The shallow water equations are commonly used to model and 

simulate flows in rivers and coastal areas. In this paper, we con- 
sider one dimensional shallow water flows in open channels with 
irregular geometry and a non-flat bottom topography ( Hernández- 
Duenas and Karni, 2011; Vázquez-Céndon, 1999 ), taking the form 
of 
H t + Q x = 0 , 
Q t + (Q 2 

H + 1 
2 gσh 2 )

x = 1 
2 gh 2 σx − gσhb x , (1) 

where σ ( x ) represents the width of the channel, b denotes the bot- 
tom topography, h is the water height, H = σh is the wet cross 
section, Q = Hu is the mass flow rate, u is the velocity, and g is 
the gravitational constant. This model is characterized by the non- 
dimensional Froude number | u |/ c where c = √ 

gH/σ , and reduces 
to the nonlinear shallow water equations when the cross section 
σ ( x ) is a constant. 

The shallow water flows in channels (1) belong to the class of 
hyperbolic equations with source terms (also referred as hyperbolic 
balance laws), and admit the still water steady state solution given 
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by 
u = 0 , h + b = const, (2) 
in which the source term is exactly balanced by the flux gradi- 
ent. One main challenge in the numerical simulation of such bal- 
ance laws, including the nonlinear shallow water equations with 
a non-flat bottom topography and Euler equations under gravi- 
tation fields, is that a standard numerical method may not sat- 
isfy the balance of flux gradient and source term at the steady 
state in the discrete level, and may introduce spurious oscil- 
lations near the steady state. Well-balanced methods are de- 
signed to overcome this challenge, and performs well at (or near) 
the steady state with coarse meshes. Many well-balanced meth- 
ods have been designed for the nonlinear shallow water equa- 
tions, see Audusse et al. (2004) , Bermudez and Vazquez (1994) , 
Greenberg and LeRoux (1996) , LeVeque (1998) , Perthame and 
Simeoni (2001) , Xu (2002) , Xing (2014) , Xing and Shu (2005) , 
Xing and Shu (2013) and the references therein. Another com- 
monly encountered challenge in the simulations of the shallow 
water related models is the wetting and drying treatment for 
the region where there is little or no water. Typical applications 
include the dam break problem, flood waves and run-up phe- 
nomena. Numerically, negative water may be produced during 
the computation, which may pose additional difficulty. There are 
many existing positivity-preserving techniques to overcome this 
difficulty, and we refer to Bokhove (2005) , Bunya et al. (2009) , 
Ern et al. (2008) , Xing and Zhang (2013) , Xing et al. (2010) , 
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Kurganov and Levy (2002) and the references therein for some re- 
cent works. 

For the shallow water flows in open channels (1) , an early 
work on well-balanced methods was carried out in 1999 by 
Vázquez-Céndon (1999) , where the model was first reformulated 
into the nonlinear shallow water equations with additional source 
terms representing the channel width. The method proposed in 
Bermudez and Vazquez (1994) can then be applied to deliver 
well-balanced methods for the shallow water flows in chan- 
nels. García-Navarro and Vázquez-Céndon (20 0 0) designed well- 
balanced method using proper flux difference splitting. Recently, 
Balbas and Karni (2009) designed second-order well-balanced 
positivity-preserving numerical methods in rectangular channels 
using the central schemes. The extension to shallow water flows 
with arbitrary cross section was studied in Hernández-Duenas and 
Karni (2011) and Balbás and Hernández-Duenas (2014) . Well- 
balanced method based on energy balanced property is studied in 
Murillo and García-Navarro (2014) . Hernández-Duenas and Belja- 
did (2016) developed a new non-oscillatory semi-discrete central- 
upwind scheme coupled with artificial viscosity. Xing (2016) de- 
signed high order well-balanced finite volume weighted essentially 
non-oscillatory schemes for shallow water flows in open channels 
with irregular geometry and a non-flat bottom topography. 

All of the works mentioned above for the shallow water flows 
in open channels are based on finite difference or finite volume 
schemes. During the past few decades, high order finite element 
discontinuous Galerkin (DG) methods have gained great atten- 
tion in solving partial differential equations including the hyper- 
bolic conservation laws. DG methods, using discontinuous piece- 
wise polynomial space as the solution and test function spaces (see 
Cockburn et al., 20 0 0 for a historic review), combine advantages of 
both finite element and finite volume methods, and can achieve 
high order of accuracy easily with the use of high order polyno- 
mials within each element. Several advantages of the DG methods, 
including their accuracy, high parallel efficiency, flexibility for hp- 
adaptivity and arbitrary geometry and meshes, make them attrac- 
tive for a wide range of applications including the shallow water 
simulations. 

The main objective of this paper is to develop efficient high or- 
der DG methods for the shallow water flows in open channels with 
non-flat bottom topography. The proposed methods have two at- 
tractive features: well-balanced for the still water steady state so- 
lutions and positivity-preserving near the wetting and drying front. 
This will be the first paper on high order DG methods for the shal- 
low water flows in open channels to achieve these properties, to 
our best knowledge. To achieve well-balanced property, we start 
by rewriting the source terms in an equivalent special form us- 
ing the still water steady state solution (2) . Then we apply inte- 
gration by parts on these source terms to derive a numerical ap- 
proximation which is exactly well balanced with the flux gradient 
at the steady state and also high order accurate for general solu- 
tions. The approach to achieve high order well-balanced property 
is very different from the other high order method for the shal- 
low water flows in channels presented in Xing (2016) , where an 
extrapolation on the source term approximation was introduced 
to increase the order from second order to fourth order. Here 
we could achieve any order of accuracy in the DG framework. 
A simple positivity-preserving limiter, adopted from Zhang and 
Shu (2010) and later applied to DG methods for the shallow wa- 
ter equations in Xing et al. (2010) , was used to ensure the result- 
ing methods maintain the non-negativity of the cross sectional wet 
area. 

This paper is organized as follows. In Section 2 , we first present 
the novel high order well-balanced DG methods. The positivity- 
preserving technique is presented in Section 3 . In Section 4 , some 
numerical examples are presented to verify the well-balanced 

property, the non-negativity of the wet cross section, high order 
accuracy in smooth regions for general solutions and essentially 
non-oscillatory for general solutions with discontinuities. Finally, 
some conclusions are given in Section 5 . 
2. Well-balanced methods 

In this section, we present high order well-balanced DG meth- 
ods for the shallow water flows (1) in open channels, which can 
preserve the still water steady state (2) exactly. 
2.1. Notations 

We divide the interval I = [ a, b] into N subintervals and de- 
note the cells by I j = [ x 

j− 1 
2 , x 

j+ 1 2 ] for j = 1 , · · · , N. The center of 
each cell is x j = 1 

2 (x 
j− 1 

2 + x 
j+ 1 2 ) , and the mesh size is denoted by 

τ j = x 
j+ 1 2 − x 

j− 1 
2 , with τ = max 1 ≤ j≤N τ j being the maximal mesh 

size. The piecewise polynomial space V k τ is defined as the space of 
polynomials of degree up to k in each cell I j , that is, 
V k τ = {v : v | I j ∈ P k (I j ) , j = 1 , 2 , · · · , N }. (3) 
Note that the functions in V k τ are allowed to have discontinuities 
across element interfaces. For any unknown function v , its numer- 
ical approximation in the DG methods is denoted by v τ , which 
belongs to the finite element space V k τ . We denote by v + 

τ, j+ 1 2 and 
v −
τ, j+ 1 2 the limit values of v τ at x 

j+ 1 2 from the right cell I j+1 and 
from the left cell I j , respectively. In addition, we use the usual no- 
tation, { v τ } j+ 1 2 = (v + 

τ, j+ 1 2 + v −
τ, j+ 1 2 ) / 2 , to represent the arithmetic 

mean of the function v τ at the element interface x 
j+ 1 2 . 

2.2. Reformulation of the system and standard DG methods 
The first step in designing well-balanced methods is to rewrite 

the source terms in an equivalent form using the information of 
the steady state solution (2) . Here we reformulate the original gov- 
erning equations as 

H t + Q x = 0 , 
Q t + (Q 2 

H + 1 
2 gσh 2 )

x = 1 
2 g(h + b) 2 σx − g(h + b)(σb) x 
+ 1 

2 g(σb 2 ) x , (4) 
where we replace the source term 1 

2 gh 2 σx − gσhb x by the equiv- 
alent form of 1 

2 g(h + b) 2 σx − g(h + b)(σb) x + 1 
2 g(σb 2 ) x in the mo- 

mentum equation. Note that when σ is constant, this reformula- 
tion reduces to the one in Xing and Shu (2006) for the shallow 
water equations, therefore this can be viewed as a generalization 
of the technique presented in Xing and Shu (2006) for the shallow 
water flows in channels. 

For the sake of easy presentation, we introduce the notation 
U = (H 

Q 
)

, (5) 
to denote the conservative variable, and rewrite the shallow water 
flows in channels (4) as 
U t + F (U, σ ) x = S(U, σ , σb, σb 2 ) , (6) 
where F ( U, σ ) and S ( U, σ , σb, σb 2 ) denote the flux and source 
term, respectively. 

The initial condition of U ( x , 0) is projected into the piecewise 
polynomial space V k τ to obtain U τ ( x , 0) via the standard L 2 projec- 
tion. Similarly, we project σ ( x ) and ( σb )( x ) to obtain the piecewise 
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polynomial functions σ τ and ( σb ) τ . The standard DG method for 
the class of hyperbolic equations (6) has the form: 

∫ 
I j ∂ t U n τ v d x − ∫ 

I j F (U n τ , στ ) ∂ x v d x + ̂  F j+ 1 2 v −j+ 1 2 − ̂ F j− 1 
2 v + j− 1 

2 
= ∫ 

I j S(U n τ , στ , (σb) τ , (σb) 2 τ /στ ) v d x, (7) 
with the numerical fluxes given by 
̂ F j+ 1 2 = f (U n, −

τ, j+ 1 2 , U n, + 
τ, j+ 1 2 ;σ−

τ, j+ 1 2 , σ+ 
τ, j+ 1 2 

)
, (8) 

where f is a numerical flux. Herein, we adopt the simple Lax–
Friedrichs flux 

f (U n, −
τ, j+ 1 2 , U n, + 

τ, j+ 1 2 ;σ−
τ, j+ 1 2 , σ+ 

τ, j+ 1 2 
)

= 1 
2 
(

F (U n, −
τ, j+ 1 2 , σ−

τ, j+ 1 2 
)

+ F (U n, + 
τ, j+ 1 2 , σ+ 

τ, j+ 1 2 
)

−α
(

U n, + 
τ, j+ 1 2 − U n, −

τ, j+ 1 2 
))

, (9) 
where α = max 

U ∣∣λ(U) ∣∣ with λ( U ) being the eigenvalues of the Ja- 
cobian F ′ ( U ) and the maximum is taken over the whole region. For 
this system, we have α = max 

x ∈ I (
| u τ | + √ 

gh τ). 
High order total variation diminishing (TVD) Runge–Kutta 

methods ( Shu, 1988 ) are often used as the temporal discretization 
of the method (7) . In the numerical examples of this paper, the 
third order TVD Runge–Kutta method 
U (1) = U n + &tF(U n ) 
U (2) = 3 

4 U n + 1 
4 (U (1) + &tF(U (1) ) )

U n +1 = 1 
3 U n + 2 

3 (U (2) + &tF(U (2) ) ), (10) 
with F(U) being the spatial operator, is used. 
2.3. Well-balanced numerical fluxes 

Note that the standard DG methods (7) presented in the pre- 
ceding subsection do not have the well-balanced property. In this 
subsection, we present the modification to the numerical fluxes 
with the purpose of preserving the steady state (2) exactly. 

Suppose the initial condition is given as the steady state (2) , 
i.e., H/σ + b = h + b = C and Q/H = u = 0 , with C being a constant. 
We want to recover this steady state information using the com- 
putational variables U τ (piecewise polynomials) at each time level. 
The projection of the initial condition leads to the fact that (H τ + 
(σb) τ ) /στ = C. At each time step, we introduce the functions h τ
and b τ based on the numerical solutions as 
h τ = H τ

στ
, b τ = (σb) τ

στ
, (11) 

and their sum (h + b) τ defined by: 
(h + b) τ = H τ + (σb) τ

στ
. (12) 

Note that, inside each cell I j , (h + b) τ is a rational polynomial func- 
tion, and may not be a polynomial. But at the steady state solu- 
tion (2) , we can easily obtain that (h + b) τ = C. At the cell bound- 
ary x j+1 / 2 , we can evaluate U ±τ, j+1 / 2 using the polynomials from 
the left and right boundaries. Similarly, we can obtain σ±

τ, j+1 / 2 and 
(σb) ±τ, j+1 / 2 . The cell average and cell boundary values of (h + b) τ

are defined as: 
(h + b) τ, j = (H τ + (σb) τ ) j 

σ τ, j , (h + b) ±
τ, j+ 1 2 = H ±

τ, j+ 1 2 + (σb) ±
τ, j+ 1 2 

σ±
τ, j+ 1 2 , 

(13) 
which also satisfy (h + b) τ, j = (h + b) ±

τ, j+ 1 2 = C at the still water 
state (2) . For the purpose of positivity preserving (as explained in 
Section 3 ), we also introduce the updated cell boundary values at 
the time step t n as in Audusse et al. (2004) 
h ∗, ±

τ, j+ 1 2 = max (0 , h n, ±
τ, j+ 1 2 + b ±

τ, j+ 1 2 − max (b + 
τ, j+ 1 2 , b −τ, j+ 1 2 ) 

)
, (14) 

which satisfies 
h ∗, + 

τ, j+ 1 2 = h ∗, −
τ, j+ 1 2 

at the steady state. 
Now, let us discuss the well-balanced numerical fluxes. In the 

Lax–Friedrichs numerical flux ̂ F j+1 / 2 defined in (9) , the additional 
term −α(U n, + 

τ, j+ 1 2 − U n, −
τ, j+ 1 2 ) contributes to the numerical viscosity, 

which is essential for this nonlinear conservation laws. However 
they may destroy the well-balanced property at the steady state. 
Therefore, we propose to modify this flux (9) as 

f (U n, −
τ, j+ 1 2 , U n, + 

τ, j+ 1 2 ;σ−
τ, j+ 1 2 , σ+ 

τ, j+ 1 2 
)

= 1 
2 
[ (

σ ∗h ∗, + u + 
(Q + ) 2 

H + + 1 
2 gσ+ (h + ) 2 

)n 
τ, j+ 1 2 

+ (σ ∗h ∗, −u −
(Q −) 2 

H − + 1 
2 gσ−(h −) 2 

)n 
τ, j+ 1 2 

−α

( (
σ ∗h ∗, + 
Q + 

)n 
τ, j+ 1 2 −

(
σ ∗h ∗, −
Q −

)n 
τ, j+ 1 2 

) ] 
, (15) 

where 
σ ∗

τ, j+ 1 2 = min (σ+ 
τ, j+ 1 2 , σ−

τ, j+ 1 2 ) . (16) 
Here we modify the first component of the flux term from Q ±τ to 
σ ∗

τ h ∗, ±
τ u ±τ , for the purpose of positivity preserving to be explained 

in Section 3 . 
2.4. Source term approximation 

Next, we present the high order well-balanced approximation 
to the source term integration. In Xing (2016) , we designed high 
order well-balanced finite volume methods for the shallow wa- 
ter flows in channels, and the well-balanced approximation to the 
source term integration is obtained via an extrapolation technique. 
That approach can only provide even order approximation to the 
source term, and it is not easy to extend it to finite element meth- 
ods. Here, a very different approach to approximate the source 
term is presented for our DG methods. 

The source term of the momentum equation in (4) takes the 
form of 
∫ 

I j S (2) v d x = 1 
2 g 

∫ 
I j (h + b) 2 σx v d x − g ∫ 

I j (h + b)(σb) x v d x 
+ 1 

2 g 
∫ 

I j (σb 2 ) x v d x, (17) 
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where S (2) denote the second component of the source term. We 
can further decompose this integral as 
∫ 

I j S (2) v d x = 1 
2 g 

∫ 
I j 
[ 
(h + b) 2 − (h + b) 2 j ] σx v d x 

− g ∫ 
I j 
[
(h + b) − (h + b) j ](σb) x v d x 

+ 1 
2 g (h + b) 2 j ∫ 

I j σx v d x − g (h + b) j ∫ 
I j (σb) x v d x 

+ 1 
2 g 

∫ 
I j (σb 2 ) x v d x. 

= 1 
2 g 

∫ 
I j 
[ 
(h + b) 2 − (h + b) 2 j ] σx v d x 

− g ∫ 
I j 
[
(h + b) − (h + b) j ](σb) x v d x 

+ 1 
2 g (h + b) 2 j (σv (x −

j+ 1 2 ) − σv (x + 
j− 1 

2 ) −
∫ 

I j σv x d x )

− g (h + b) j (σbv (x −
j+ 1 2 ) − σbv (x + 

j− 1 
2 ) −

∫ 
I j σbv x d x )

+ 1 
2 g 

(
σb 2 v (x −

j+ 1 2 ) − σb 2 v (x + 
j− 1 

2 ) −
∫ 

I j σb 2 v x d x ), 
(18) 

by adding and subtracting the constant terms (h + b) 2 j , (h + b) j in- 
side the integral, and applying integration by parts. Note that the 
constant term (h + b) j can be replaced by any other term that can 
recover constant C at the still water steady state (2) , for example 
(h + b)(x j ) . 

Our numerical approximation to the source term (18) takes the 
following form 
∫ 

I j S (2) 
τ v d x = 1 

2 g ∫ I j 
[ 
(h + b) 2 τ − (h + b) 2 τ, j ] (στ ) x v d x 

− g ∫ 
I j [(h + b) τ − (h + b) τ, j ]((σb) τ ) x v d x 

+ 1 
2 g (h + b) 2 τ, j ( 

{ στ } j+ 1 
2 v −j+ 1 2 − { στ } j− 1 

2 v + j− 1 
2 −

∫ 
I j στ v x d x ) 

− g (h + b) τ, j ( 
{ (σb) τ } j+ 1 

2 v −j+ 1 2 −{ (σb) τ } j− 1 
2 v + j− 1 

2 −
∫ 

I j (σb) τ v x d x ) 

+ 1 
2 g 

( {
(σb) 2 τ
στ

}

j+ 1 
2 v −j+ 1 2 −

{
(σb) 2 τ
στ

}

j− 1 
2 v + j− 1 

2 −
∫ 

I j (σb) 2 τ
στ

v x d x ) 
, 

(19) 
where the terms σ , σb, σb 2 , h + b, (h + b) j are replaced by 
their numerical approximations σ τ , ( σb ) τ , (σb) 2 τ /στ , (h + b) τ , 
(h + b) τ, j , respectively. Moreover, the boundary values of σ τ , 
( σb ) τ , (σb) 2 τ /στ are replaced by their averages at the cell inter- 
face, denoted by { σ τ }, {( σb ) τ }, {(σb) 2 τ /στ

}
, to be consistent with 

the numerical flux (15) at the steady state. 
2.5. Slope limiter 

For the system of hyperbolic conservation laws, when the solu- 
tion contains discontinuities, DG methods are often coupled with 
a slope limiter procedure to compress the possible oscillation near 
the discontinuities. Many different choices of slope limiters are 
available in the literature, and we consider the classical total varia- 
tion bounded (TVB) limiter ( Shu, 1987 ) in this paper. The standard 
TVB limiter on the unknown U τ involves two steps: the detection 

of the troubled-cell and the reconstruction of the polynomial solu- 
tion in these troubled-cells. 

The first step replies on the troubled-cell indicators which ana- 
lyze the smoothness of the solution in the cell I j based on the cell 
averages U τ, j , U τ, j±1 and cell boundary values U −τ, j+1 / 2 , U + τ, j−1 / 2 . 
Using these quantities, we can construct the forward and backward 
differences, 
&+ U τ, j = U τ, j+1 − U τ, j , &−U τ, j = U τ, j − U τ, j−1 , 
˜ U τ, j = U −τ, j+1 / 2 − U τ, j , ≈

U τ, j = U τ, j − U + τ, j−1 / 2 . (20) 
The TVB limiter is applied to these differences to obtain 

˜ U mod 
τ, j = m (˜ U τ, j , &+ U τ, j , &−U τ, j ), 

≈
U mod 

τ, j = m (≈
U τ, j , &+ U τ, j , &−U τ, j ), 

where m is the minmod type TVB limiter: 
m (b 1 , b 2 , . . . , b n ) 

= 
⎧ 
⎪ ⎨ 
⎪ ⎩ 

b 1 , if | b 1 | ≤ M&x 2 , 
sign (b 1 ) min 

1 ≤i ≤n | b i | , if | b 1 | > M&x 2 and 
sign (b 1 ) = . . . = sign (b n ) , 

0 , otherwise , 
with M being the TVB parameter to be chosen adequately for each 
test and proportional to the second derivatives of the solution near 
smooth critical points. The cell interface values are then updated as 
U −,mod 

τ, j+1 / 2 = U τ, j + ̃  U mod 
τ, j , U + ,mod 

τ, j−1 / 2 = U τ, j − ≈
U mod 

τ, j , (21) 
and the cell I j is marked as a troubled-cell if the update in 
(21) changes either of the two cell interface values, i.e., if U −,mod 

τ, j+1 / 2 ̸ = 
U −τ, j+1 / 2 or U + ,mod 

τ, j−1 / 2 ̸ = U + τ, j−1 / 2 . 
If a cell is marked as a troubled-cell, the reconstruction step 

is to replace the polynomial in this cell by a limited linear 
or quadratic polynomial. For example, one can choose the lim- 
ited function U mod 

τ, j as the unique quadratic polynomial satisfying 
(21) and also maintaining the original cell average U τ, j . 

For the system of conservation laws, we often apply the TVB 
limiter with local characteristic decomposition to achieve better 
numerical results, i.e., the variables are projected into the charac- 
teristic direction before evaluating the differences in (20) . After we 
compute the updated cell interface values (21) , we project them 
back to the physical spaces to detect the troubled-cells. 

The standard limiter may conflict with the well-balanced prop- 
erty, and we propose a well-balanced limiter procedure following 
the idea presented in Xing et al. (2010) by modifying the troubled- 
cell detection step. In the proposed well-balanced slope limiter 
procedure, we will first check if the limiting is needed based on 
the cell averages (h + b) τ, j , (h + b) τ, j±1 and (h + b) −τ, j+1 / 2 , (h + 
b) + τ, j−1 / 2 . If the cell I j is flagged as needing limiting, the actual TVB 
limiter is applied on U τ as the above procedure. Note that (h + b) τ
becomes constant at the still water steady state (2) , therefore, no 
limiter is applied when the steady state is reached, and the well- 
balanced property is maintained. 
2.6. Summary of the well-balanced schemes 

Our proposed well-balanced DG methods for the shallow wa- 
ter flows (1) in channels are given by (7) , where the numerical 
fluxes are defined in (8) and (15) , and the source term approxima- 
tion is provided in (19) . The method is completed by a temporal 
TVD Runge–Kutta discretization (10) , with the well-balanced slope 
limiter procedure applied in each inner stage of the Runge–Kutta 
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methods. Collecting the results of the previous subsections, it is 
straightforward to prove the following result: 
Proposition 1. The DG methods for the shallow water flows in chan- 
nels (1) as described above can maintain the well-balanced property 
for the steady state solutions (2) . 
Proof. At the steady state (2) , we have 
(h + b) τ = C, Q τ = 0 . 
For the mass equation H t + Q x = 0 , numerical approximation of 
the source term is 0, and the approximation of the flux term is 
̂ F (1) 

j+ 1 2 v −j+ 1 2 − ̂ F (1) 
j− 1 

2 v + j− 1 
2 − ∫ 

I j F (1) v x d x, where F (1) = Q τ stands for the 
flux term in the mass equation. Since Q τ = 0 at the steady state, 
the volume integral ∫ 

I j F (1) v x d x = 0 . Note that we have h ∗, + 
τ, j+ 1 2 = 

h ∗, −
τ, j+ 1 2 from (14) , therefore the numerical flux ̂ F (1) as defined in 

(15) becomes zero too and there is no numerical dissipation. 
Next, we prove the well-balanced property for the momentum 

equation which contains the source term. Denote the flux term in 
this equation by F (2) . With the numerical flux given in (15) , its nu- 
merical approximation on the left side of (7) takes the form of 

̂ F (2) 
j+ 1 2 v −j+ 1 2 − ̂ F (2) 

j− 1 
2 v + j− 1 

2 −
∫ 

I j F (2) v x d x 
= 1 

2 g{ στ h 2 τ } j+ 1 2 v (x −
j+ 1 2 ) − 1 

2 g{ στ h 2 τ } j− 1 
2 v (x + 

j− 1 
2 ) −

∫ 
I j 1 

2 gστ h 2 τ v x d x. 
(22) 

Since (h + b) τ = (h + b) τ, j ≡ C, the source term approximation 
(19) becomes 
∫ 

I j S (2) 
τ v d x = 1 

2 gC 2 ({ στ } j+ 1 2 v −j+ 1 2 − { στ } j− 1 
2 v + j− 1 

2 − ∫ 
I j στ v x d x )

− gC ({ (σb) τ } j+ 1 2 v −j+ 1 2 − { (σb) τ } j− 1 
2 v + j− 1 

2 − ∫ 
I j (σb) τ v x d x )

+ 1 
2 g 

({
στ b 2 τ} j+ 1 2 v −j+ 1 2 − {

στ b 2 τ} j− 1 
2 v + j− 1 

2 − ∫ 
I j στ b 2 τ v x d x ). 

Notice the equality that 
1 
2 gστ h 2 τ = 1 

2 gστ (h + b) 2 τ − gστ (h + b) τ b τ + 1 
2 gστ b 2 τ

= 1 
2 gC 2 στ − gCστ b τ + 1 

2 gστ b 2 τ , (23) 
therefore, we can conclude that the flux and source term approx- 
imations balance each other at the still water steady state, which 
leads to the desired well-balanced property. !

3. Positivity-preserving methods 
Zhang and Shu (2010) proposed a framework to design high or- 

der maximum-principle-preserving methods for hyperbolic conser- 
vation laws. Since then, the method has gained many attentions, 
and has been applied to various applications, including the shal- 
low water equations in Xing (2016) , Xing and Zhang (2013) and 
Xing et al. (2010) . It was shown to be able to maintain the non- 
negativity of water height under suitable CFL condition without 
affecting the mass conservation, and keep the high order accu- 
racy for the general solutions. Here, we will explore the applica- 
tion of this approach to the well-balanced DG methods presented 
in Section 2 for the shallow water flows in open channels. 

As explained in Zhang and Shu (2010) , the key components 
to achieve this goal are the following two items: the positivity 
of the first order version of this method, and a simple positivity- 
preserving limiter to be coupled with the high order method. Fol- 
lowing the setup, we only consider the simple Euler time dis- 
cretization, and the same results can be generalized to multi-step 

and TVD high order Runge–Kutta methods. Without loss of gener- 
ality, we ignore the subscript τ in this section. Consider the well- 
balanced DG methods (7) with the numerical fluxes defined in 
(15) , take the test function v = 1 leads to the following update of 
the cell averages of the wet cross section 
H n +1 

j = H n j − λ
[ ̂  F (1) 

j+ 1 2 − ̂ F (1) 
j− 1 

2 
] 
, (24) 

where 
̂ F (1) 

j+ 1 2 = 1 
2 
[ 
σ ∗

j+ 1 2 h ∗, −
j+ 1 2 u n, −

j+ 1 2 + σ ∗
j+ 1 2 h ∗, + 

j+ 1 2 u n, + 
j+ 1 2 

−α
(
σ ∗

j+ 1 2 h ∗, + 
j+ 1 2 − σ ∗

j+ 1 2 h ∗, −
j+ 1 2 

)] 
, (25) 

and λ = &t/ &x . The first order version of this method takes the 
form of 
H n +1 

j = H n j − λ
[ ̂  F (1) 

j+ 1 2 − ̂ F (1) 
j− 1 

2 
] 
, (26) 

with the numerical flux defined as 
̂ F (1) 

j+ 1 2 = 1 
2 
[ 
σ ∗

j+ 1 2 h ∗, −
j+ 1 2 u n j + σ ∗

j+ 1 2 h ∗, + 
j+ 1 2 u n j+1 

−α
(
σ ∗

j+ 1 2 h ∗, + 
j+ 1 2 − σ ∗

j+ 1 2 h ∗, −
j+ 1 2 

)] 
, (27) 

and the first order version of the starred terms h ∗, ±
j+ 1 2 , σ ∗

j+ 1 2 given 
by 
h ∗, −

j+ 1 2 = max (0 , h n j + b j − max (b j , b j+1 ) ), 
h ∗, + 

j+ 1 2 = max (0 , h n j+1 + b j+1 − max (b j , b j+1 ) ), 
σ ∗

j+ 1 2 = min (σ j , σ j+1 ) . (28) 
We have the following lemma about the positivity-preserving 
property of this first order method. 
Lemma 2. Under the CFL condition λα ≤ 1 with α = max (| u | + √ 

gh ) , consider the first order scheme (26) with the numerical flux 
(27) and (28) . If H n 

j , H n 
j±1 are non-negative, then H n +1 

j is also non- 
negative. 
Proof. The scheme (26) can be written as 
H n +1 

j = 
[ 

1 − 1 
2 λ(

α + u n j )σ ∗
j+ 1 2 
σ j 

h ∗, −
j+ 1 2 
h n 

j 
−1 

2 λ(
α − u n j )σ ∗

j− 1 
2 

σ j 
h ∗, + 

j− 1 
2 

h n 
j 

] 
σ j h n j 

+ 1 
2 λ(

α + u n j−1 )σ ∗
j− 1 

2 h ∗, −
j− 1 

2 + 1 
2 λ(

α − u n j+1 )σ ∗
j+ 1 2 h ∗, + 

j+ 1 2 
≥

[ 
1 − 1 

2 λ(α + u n j ) − 1 
2 λ(α − u n j ) ] σ j h n j 

+ 1 
2 λ(

α + u n j−1 )σ ∗
j− 1 

2 h ∗, −
j− 1 

2 + 1 
2 λ(

α − u n j+1 )σ ∗
j+ 1 2 h ∗, + 

j+ 1 2 
= (1 − λα) σ j h n j + 1 

2 λ(
α + u n j−1 )σ ∗

j− 1 
2 h ∗, −

j− 1 
2 

+ 1 
2 λ(

α − u n j+1 )σ ∗
j+ 1 2 h ∗, + 

j+ 1 2 , 
since 0 ≤ h ∗, −

j+ 1 2 , h ∗, + 
j− 1 

2 ≤ h n 
j and σ ∗

j± 1 
2 ≤ σ j (this also justifies the 

reason that we pick the minimum value in the definition of σ ∗

in (16) ). Therefore, H n +1 
j is a linear combination of h n 

j−1 , h ∗, −
j− 1 

2 
and h ∗, + 

j+ 1 2 and all the coefficients are non-negative, which leads to 
H n +1 

j ≥ 0 . !
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Next, we move to discuss high order schemes. We refer 

to Zhang and Shu (2010) and Xing et al. (2010) for the de- 
tails and only present the main idea here. We introduce the 
N -point (with 2 N − 3 ≥ k ) Legendre Gauss-Lobatto quadrature 
rule on the interval I j , and denote these quadrature points by 
S j = { 

x 
j− 1 

2 = ˆ x 1 
j , ̂  x 2 

j , · · · , ̂  x N−1 
j , ̂  x N 

j = x 
j+ 1 2 } 

, with the corresponding 
quadrature weights ̂ w r for the interval [ −1 / 2 , 1 / 2] satisfying ∑ N 

r=1 ̂  w r = 1 . We employ the following positivity-preserving lim- 
iter ( Xing et al., 2010; Zhang and Shu, 2010 ) on the DG polynomial 
U n 

j (x ) = (H n 
j (x ) , Q n 

j (x )) T , 
˜ U n j (x ) = θ(

U n j (x ) − U n j ) + U n j , θ = min 
{ 

1 , H n j 
H n j − m j 

} 
, (29) 

with 
m j = min 

x ∈ S j H n j (x ) = min 
r=1 , ··· ,N H n j ( ̂  x r j ) . (30) 

With this choice of m j , we can show that ˜ H n 
j ( ̂  x r 

j ) ≥ 0 (r = 1 , · · · , N) , 
and this limiter maintains the local conservation of the variable 
U n 

j (x ) . 
We compute the modified polynomial ˜ U n 

j (x ) and use ˜ U n 
j (x ) in- 

stead of U n 
j (x ) in the well-balanced methods (7) . Following the 

proofs in Xing et al. (2010) and Zhang and Shu (2010) , we can ver- 
ify that the well-balanced methods coupled with this positivity- 
preserving limiter are high order accurate, positivity-preserving 
and mass conservation, under the CFL condition 
λα ≤ ̂ w 1 . (31) 
To be efficient, we could implement the time step restriction 
(31) only when a preliminary calculation to the next time step pro- 
duces negative wet cross section. 
4. Numerical examples 

In this section, we carry out extensive numerical experi- 
ments to demonstrate the performance of the proposed positivity- 
preserving well-balanced DG methods for the shallow water flows 
in open channels. The third order finite element DG methods 
(i.e., k = 2 ), coupled with third order TVD Runge–Kutta meth- 
ods (10) , are implemented in these examples. The CFL number 
is taken as 0.16 which satisfies the requirement (31) to achieve 
positivity-preserving property. The gravitation constant g is fixed 
as 9.812 m/s 2 . Channels with both continuous and discontinuous 
width functions have been tested. 
4.1. Accuracy test 

We first test the third order accuracy of the resulting method 
on an example with smooth solutions. The following periodic bot- 
tom topography and channel width function 
b(x ) = sin 2 (πx ) , σ (x ) = e sin (2 πx ) , 
are considered in this example. The initial conditions are given by 
h (x, 0) = 3 + e cos (2 πx ) , Q(x, 0) = sin ( cos (2 πx )) , x ∈ [0 , 1] , 
with periodic boundary conditions. We run the test up to the stop- 
ping time t = 0 . 1 when the solutions are still smooth. 

As the exact solutions are not available for this nonlinear sys- 
tem, we apply the same method with a much refined N = 25,600 
cells to obtain a reference solution, and then treat it as the exact 
solution when computing the errors and convergence rates, which 
are shown in Table 1 . We can clearly observe that the expected 
third order accuracy is achieved. 

Table 1 
L 1 errors and orders for the test case in Section 4.1 . 

Cells H Q 
L 1 error Order L 1 error Order 

25 1.19E −04 9.53E −05 
50 1.47E −05 3.02 1.16E −05 3.03 
100 1.85E −06 2.99 1.46E −06 2.99 
200 2.33E −07 2.99 1.84E −07 2.99 
400 2.93E −08 2.99 2.31E −08 2.99 
800 3.64E −09 3.01 2.87E −09 3.01 
1600 4.58E −10 2.99 3.62E −10 2.99 

4.2. Well-balanced test 
The purpose of the second test problem ( Balbas and Karni, 

2009; Xing, 2016 ) is to verify the well-balanced property of our 
proposed DG methods. We consider the bottom topography given 
by 
b(x ) = {0 . 25(1 + cos (10 π (x − 0 . 5))) , if 0 . 4 ≤ x ≤ 0 . 6 , 

0 , otherwise , (32) 
in the domain [0, 1]. The channel with varying width σ ( x ) takes 
the form of 
σ (x ) = 

⎧ 
⎨ 
⎩ 1 − σ0 (1 + cos (2 π x − (x l + x r ) / 2 

x r − x l 
))

, if x ∈ [ x l , x r ] , 
1 , otherwise, 

(33) 
where x l and x r are the left and right boundary of the contraction, 
and 1 − 2 σ0 represents the minimum width of the channel at the 
point (x l + x r ) / 2 . In this example, we choose x l = 0 . 25 , x r = 0 . 75 , 
and σ0 = 0 . 2 . The initial condition is provided as the steady state 
solution 
h + b = 1 , Q = σhu = 0 , 
and the periodic boundary condition is considered. 

We solve the problem with 200 uniform cells until the final 
time T = 1 . The numerical surface level h + b and the bottom b 
are plotted in Fig. 1 . The 3D plot of the bottom topography b and 
the channel shape σ is provided in Fig. 2 . In order to demonstrate 
that the steady state solution is maintained up to round-off error, 
the L 1 , L 2 and L ∞ errors of the wet cross section H and the mass 
flow rate Q with single precision and double-precision are shown 
in Table 2 . We can clearly see that the L 1 , L 2 and L ∞ errors are all 
at the level of round-off errors for these precisions, which verify 
the expected well-balanced property. 
4.3. Small perturbation test 

In this subsection, we simulate the propagation of small per- 
turbations to a steady state solution, to demonstrate the capability 
of the proposed DG methods for such challenging case. This test 
was first proposed by Balbas and Karni (2009) . We set the bottom 
topography as (32) , and the initial condition as 
h + b = {1 + 0 . 01 , if 0 . 1 ≤ x ≤ 0 . 2 , 

1 , otherwise , Q = σhu = 0 , 
in a computational domain [0, 1] with simple transmissive bound- 
ary conditions. Two different sets of channel σ ( x ) defined in 
(33) are tested, one with a left shifted contraction x l = 0 . 15 , x r = 
0 . 65 , σ0 = 0 . 2 , and the other with a right shifted contraction x l = 
0 . 35 , x r = 0 . 85 , σ0 = 0 . 2 . 

For these tests involving such small perturbation of steady 
state solutions, non-well-balanced numerical methods usually have 
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Fig. 1. The still water steady state solution in Section 4.2 . Left: the surface level h + b and the bottom topography b ; Right: the shape σ of the channel. 
Table 2 
L 1 , L 2 and L ∞ errors of the still water steady state solutions in Section 4.2 . 

Precision L 1 error L 2 error L ∞ error 
H Q H Q H Q 

Single 4.50E −08 1.54E −06 3.73E −09 1.35E −07 1.19E −07 5.36E −06 
Double 2.66E −17 2.85E −15 4.08E −18 2.50E −16 2.22E −16 9.68E −15 

Fig. 2. The 3D plot of the bottom topography b and the channel shape σ in 
Section 4.2 . 
difficulty with the calculations and produce oscillatory results 
( Kurganov and Levy, 2002 ). The numerical results of the proposed 
well-balanced DG methods at different times on 200 uniform com- 
putational cells, compared with refined 20 0 0 cells “reference” so- 
lutions, are shown in Fig. 3 . For the sake of comparison, we also 
present the numerical results by the non-well-balanced DG meth- 
ods with 200 cells. We can clearly observe that the well-balanced 
results are free of spurious numerical oscillations, and our methods 
can numerically capture such small perturbation well on relatively 
coarse meshes. 
4.4. A converging-diverging channel 

Here we consider the classic transcritical steady flow in 
a converging-diverging channel, originally proposed by García- 

Navarro et al. (1992) . This test is related to many practical prob- 
lems such as the flow between bridge piers. The bottom is set as 
flat (i.e., b = 0 ), and the converging-diverging channel is given by 
σ (x ) = 

{ 
5 − 0 . 7065 (1 + cos (2 π x − 250 

300 
))

, if x ∈ [150 , 450] , 
5 , otherwise , 

in the computational domain [0, 500]. The initial conditions are set 
as 
h = 2 , Q = σhu = 20 , 
and the boundary conditions are given by Q = 20 at the upstream, 
and h = 1 . 85 at the downstream. We compute this test up to a 
long time T = 50 0 0 (until it reaches a steady state) using 200 uni- 
form cells, and present the numerical result of the water height h 
in Fig. 4 , which agrees well with those in the literature ( García- 
Navarro et al., 1992; Vázquez-Céndon, 1999 ). The flow changes 
from subcritical flow to supercritical flow at the critical point ( x = 
250 ), and later becomes subcritical flow via a stationary hydraulic 
jump to connect to the subcritical downstream boundary condi- 
tion. 
4.5. Drain on a non-flat bottom 

In this section, we consider a drainage test, first proposed 
by Gallouët et al. (2003) and later appeared in Xing and 
Shu (2011) for the shallow water equations. The goal is to test 
both well-balanced property and positivity-preserving feature of 
our methods. 

The bottom topography is given by 
b(x ) = {0 . 2 − 0 . 05(x − 10) 2 , if 8 ≤ x ≤ 12 , 

0 , otherwise , 
on the computational domain [0, 25], and the channel width is set 
as 
σ (x ) = 

⎧ 
⎨ 
⎩ 1 − 0 . 2 (1 + cos 2 π (x − 10) 

12 . 5 
)

, if 3 . 75 ≤ x ≤ 10 , 
1 , otherwise, 
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Fig. 3. The contracting channel σ ( x ) (the top row) and numerical results by well-balanced DG methods with 200 and 2000 cells as well as those by non-well-balanced 
(denoted by “non-WB”) DG methods with 200 cells at T = 0 . 025 , 0 . 05 , 0 . 15 and 0.25 (from top to bottom) in Section 4.3 . Left: the channel with a left shifted contraction; 
Right: the channel with a right shifted contraction. 



180 S. Qian et al. / Advances in Water Resources 115 (2018) 172–184 

x

su
rf

ac
e 

le
ve

l, 
Fr

ou
de

 n
um

be
r

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

numerical h
Froude number

x

C
ha

nn
el

0 100 200 300 400 500
0

1

2

3

4

5

Fig. 4. Steady transcritical flow in a converging-diverging channel (left) and the channel shape σ ( x ) (right) in Section 4.4 . 

x

C
ha

nn
el

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Fig. 5. The discontinuous channel σ ( x ) in Section 4.5 . 
which is discontinuous at the point x = 10 , and is shown in Fig. 5 . 

We consider the initial conditions as follows: 
h (x, 0) = 0 . 5 − b(x ) , H(x, 0) = σ (x ) h (x, 0) , Q(x, 0) = 0 . 
A free boundary condition on H and zero on Q is imposed on 
the left boundary, and an outlet condition on a dry bed (refer to 

Gallouët et al., 2003 for the details) is used on the right bound- 
ary. A uniform mesh with 250 cells is taken. We present the wa- 
ter surface level h + b and the discharge Q at T = 10 , 20 , 100 and 
500 in Fig. 6 , respectively. We can observe that the numerical so- 
lution reaches the steady state after a long time. The converged 
steady state is a still water (requiring well-balanced feature of the 
numerical methods) on the left of the bump, and a dry state (re- 
quiring positivity-preserving feature of the numerical methods) on 
the right of the bump. The numerical results show that our pro- 
posed DG methods work well for this challenging test even with a 
discontinuous channel. 
4.6. Moving water steady states over a hump 

In this last numerical example ( Xing, 2016 ), we consider the 
convergence of our methods towards steady transcritical and sub- 
critical flows with different channel configurations. In Xing and 
Shu (2006) , the same tests are used to check the performance of 
well-balanced DG methods for the shallow water equations (i.e., 
constant channel width). The computational domain is set as [0, 
25] and the bottom topography is defined by 
b(x ) = {0 . 2 − 0 . 05(x − 10) 2 , if 8 ≤ x ≤ 12 , 

0 , otherwise , 
We choose different sets of variable channel width, to be defined 
in each case, to demonstrate the effect of channel on the final so- 
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lutions. The initial conditions are given by 
h (x, 0) = 0 . 5 − b(x ) , Q(x, 0) = 0 . 
We take 200 uniform computational cells and set the final time as 
T = 200 when the flow reaches moving water steady states. De- 
pending on different boundary conditions, the flow can be subcrit- 
ical or transcritical with or without a steady shock. Analytical so- 
lutions for these moving water steady states can be computed, and 
will be provided for comparison. 

4.6.1. Subcritical flow 
The boundary condition is set as hu = 4 . 42 at the upstream, and 

h = 2 at the downstream. Two different sets of channel width σ ( x ), 
defined in (33) , are considered in this case, one with a left shifted 
contraction x l = 3 . 75 , x r = 16 . 25 , σ0 = 0 . 05 , and the other with a 
right shifted contraction x l = 8 . 75 , x r = 21 . 25 , σ0 = 0 . 05 . The flow 
will evolve to a moving water steady state at time T = 200 . The 
converged state is a subcritical flow. We show the surface level 
h + b and the mass flow rate Q at the final time in Fig. 7 , and also 
include the analytical solutions in them for comparison. It is clear 
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Fig. 8. Steady subcritical flow over a bump without a shock in Section 4.6 . Top: the surface level h + b; Middle: the discharge Q as the numerical flux for the water height 
H ; Bottom: the 3D plot of the bottom b , water surface h + b and channel shape σ ; Left: the channel with a left shifted contraction; Right: the channel with a right shifted 
contraction. 
that the numerical solutions are in good agreement with the ana- 
lytic ones. We can also observe the effect of different σ ( x ) on the 
converged steady state solutions. 
4.6.2. Transcritical flow without a shock 

The boundary condition is set as hu = 1 . 53 at the upstream, and 
h = 0 . 66 at the downstream. Two different sets of channel σ ( x ), 

defined in (33) , are considered, one with a left shifted contraction 
x l = 3 . 75 , x r = 16 . 25 , σ0 = 0 . 15 , and the other with a right shifted 
contraction x l = 8 . 75 , x r = 21 . 25 , σ0 = 0 . 15 . The converged steady 
state solution is a transcritical flow without a shock. The surface 
level h + b and the mass flow rate Q are plotted in Fig. 8 , which 
show very good agreement with the analytical solutions. 
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Fig. 9. Steady subcritical flow over a bump with a shock in Section 4.6 . Top: the surface level h + b; Middle: the discharge Q as the numerical flux for the water height 
H ; Bottom: the 3D plot of the bottom b , water surface h + b and channel shape σ ; Left: the channel with a left shifted contraction; Right: the channel with a right shifted 
contraction. 

4.6.3. Transcritical flow with a shock 
The boundary condition is set as hu = 0 . 18 at the upstream, and 

h = 0 . 33 at the downstream. Two different sets of channel σ ( x ), 
defined in (33) , are considered, one with a left shifted contraction 
x l = 3 . 75 , x r = 16 . 25 , σ0 = 0 . 15 , and the other with a right shifted 

contraction x l = 8 . 75 , x r = 21 . 25 , σ0 = 0 . 15 . The converged steady 
state solution is a transcritical flow with a shock appearing in the 
middle of the domain. We present the surface level h + b and the 
mass flow rate Q in Fig. 9 , which agree well with the analytical 
solutions. 



184 S. Qian et al. / Advances in Water Resources 115 (2018) 172–184 
5. Conclusions 

Efficient DG methods have been designed in this paper for the 
shallow water flows in open channels with a non-flat bottom to- 
pography. The proposed methods have two nice features: well- 
balanced for the still water steady state solutions and positivity- 
preserving near the wetting and drying front. The well-balanced 
property is achieved via a novel source term splitting and ap- 
propriate well-balanced approximation of each split source term. 
A simple positivity-preserving limiter, adopted from Zhang and 
Shu (2010) , was used to ensure the resulting methods maintain the 
non-negativity of the cross sectional wet area. We have carried out 
extensive numerical simulations, which demonstrate that the pro- 
posed methods are well-balanced, efficient for the small perturba- 
tion test near the steady state solutions, positivity-preserving near 
the wetting and drying front, high order accurate, and also perform 
well for both continuous and discontinuous solutions. Future work 
include the extension to the generalized model with the channel 
width σ depending on both x and z . 
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