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One- and multi-dimensional stochastic Maxwell equations with additive noise are consid-
ered in this paper. It is known that such system can be written in the multi-symplectic 
structure, and the stochastic energy increases linearly in time. High order discontinuous 
Galerkin methods are designed for the stochastic Maxwell equations with additive noise, 
and we show that the proposed methods satisfy the discrete form of the stochastic en-
ergy linear growth property and preserve the multi-symplectic structure on the discrete 
level. Optimal error estimate of the semi-discrete DG method is also analyzed. The fully 
discrete methods are obtained by coupling with symplectic temporal discretizations. One-
and two-dimensional numerical results are provided to demonstrate the performance of 
the proposed methods, and optimal error estimates and linear growth of the discrete en-
ergy can be observed for all cases.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we develop and analyze high order discontinuous Galerkin (DG) methods for one- and two-dimensional 
stochastic Maxwell equations with additive noise. Maxwell equations play an important role in many physical applications, 
and have been widely used in electromagnetism, electronic biology, optical imaging, etc. The general formulation of Maxwell 
equations is{

∂tD = ∇ × H − Je, ∇ · D = ρ,

∂tB = −∇ × E, ∇ · B = 0,
(1.1)

where H represents the magnetic field, E stands for the electric field, D and B are the electric and magnetic flux density 
respectively. Je is the electric current density, and ρ is the electric charge density.

Stochastic Maxwell equations are the generalized version of the deterministic Maxwell equations, which are often de-
scribed as a random perturbation of the electric current density or the magnet current density by noise. The noises are 
commonly regarded as Brownian motion, Poisson process, etc. In [28], Rytov et al. introduced fluctuations of an electromag-
netic field to obtain stochastic Maxwell equations. Ord showed in [26] that the random walk model due to Mark Kac can be 
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modified to produce Maxwell’s field equations in 1+1 dimensions. In [19], Liaskos et al. studied the stochastic integrodiffer-
ential equations in Hilbert spaces, and they examined the well posedness for the Cauchy problem of the integrodifferential 
equations describing Maxwell equations. The random electromagnetic fields using the spectral representation is explored in 
[18], and the electromagnetic fields were coupled by Maxwell equations with a random source term. Finite element approx-
imations of a class of nonlinear stochastic wave equations with multiplicative noise were recently investigated in [17]. The 
semilinear stochastic Maxwell equations with additive noise in the following form:{

εdE − ∇ × Hdt = −Je(t,x,E,H)dt − Jr
e(t,x) ◦ dW,

μdH + ∇ × Edt = −Jm(t,x,E,H)dt − Jr
m(t,x) ◦ dW,

(1.2)

were studied by Chen et al. in [3], where dW is a space-time mixed color noise, more specifically, a Q -Wiener process 
which is often driven by Brownian motions, and Je and Jm are described as electric current and magnetic current. Theoretical 
properties of the stochastic system (1.2) such as regularity, energy and divergence evolution law, and symplecticity have been 
presented in that paper. In addition, a stochastic Runge-Kutta semidiscretization scheme was proposed for (1.2) and proven 
to possess first order of mean accuracy. In [10], Cohen et al. developed an exponential integrator for a more generalized 
formulation of (1.2), when Jr

e and Jr
m depend on E and H. In a recent review article, Zhang et al. [30] presented different 

types of stochastic Maxwell equations with additive or multiplicative noises.
Stochastic Maxwell equations can be viewed as a type of stochastic Hamiltonian PDEs. In [13], Jiang et al. considered 

stochastic Hamiltonian PDEs in the form

Mdz + K zxdt = ∇z S1(z)dt + ∇z S2(z)dWt, (1.3)

where M and K are anti-symmetric matrices, and S1 and S2 are smooth functions of z. It can be shown that the system 
(1.3) satisfies the following stochastic multi-symplectic conservation law:

dω + ∂xκdt = 0, ω = MU · V , κ = K U · V ,

which U and V are a pair of solutions to the variational equation

Md(∂z) + K (∂z)xdt = ∇2
z S1(z)∂zdt + ∇2

z S2(z)∂zdWt .

In [2,11], multi-symplectic finite difference methods have been studied for the stochastic Maxwell equations with additive 
noise of the form{

εdE = ∇ × Hdt − λ11TdW,

μdH = −∇ × Edt + λ21TdW,
(1.4)

with constant coefficient λ1 and λ2. This model can be reformulated in two slightly different formulations of (1.3) in [2,11]
with different set of auxiliary variables introduced. Numerical methods based on these reformation have been presented 
and studied, and it was shown that these methods preserve stochastic multi-symplecticity on the discrete level. In addition, 
the linear growth property of stochastic energy was also preserved by the proposed methods. In [12], the extension to 
stochastic Maxwell equations with multiplicative noise was investigated. In a recent work [1], Chen developed a symplectic 
discontinuous Galerkin full discretization method for the system (1.4). The author presented Hk regularity (k = 1, 2) of the 
solutions to stochastic Maxwell equation, and showed the DG full discretization has the convergence order k/2 in time and 
k − 1/2 in space.

In this work, we investigate the high-order schemes for stochastic Maxwell equations, following the recent work in [15]
on DG methods for stochastic conservation laws. The DG method is a class of finite element methods that uses discontinuous 
piecewise polynomials as the basis functions. This method has been shown to adopt many advantages from both finite 
element and finite volume methods, which includes hp-adaptivity flexibility, efficient parallel implementation, the ability 
of handling complicated boundary conditions, etc. The DG methods were first introduced in [27] by Reed and Hill to solve 
transport equations, and later they were extended to solve hyperbolic conservation laws by Cockburn et al. in [6–9]. There 
have been some recent studies in extending DG method for stochastic partial differential equations. In [15] Li et al. applied 
the DG method to the stochastic conservation laws with multiplicative noise

du + f (u)xdt = g(x, t, u)dWt .

In [16], they also proposed an ultra-weak DG method for the stochastic Korteweg-De Vries equations in the form

du = −(uxxx + f (u)x)dt + g(x, t, u)dWt .

Optimal error estimate was proven for the semilinear equations, and numerically optimal convergence rate was also ob-
served for many nonlinear cases.
2
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In this paper we apply high order DG methods to stochastic Maxwell equations with additive noise (1.4) in one and 
two dimensions. The stochastic energy of the exact solutions are shown to satisfy the linear growth property, and we will 
demonstrate that the numerical solutions of the semi-discrete DG methods satisfy the similar energy law on the discrete 
level. When the standard Brownian motion Wt is considered, the exactly same semi-discrete energy law can be obtained. 
Following the error estimate for the deterministic Maxwell equations, we provide the optimal error estimate of the semi-
discrete DG methods for the one- and two-dimensional stochastic Maxwell equations on cartesian meshes. Furthermore, 
multi-symplectic property of certain DG methods for the one-dimensional deterministic multi-symplectic Hamiltonian par-
tial differential equations (HPDEs) of the form

Mzt + K zx = ∇z S(z)

has been recently investigated in [24]. Following the idea, we will start by establishing the multi-symplectic structure of 
the stochastic Maxwell equations, and then prove that the DG methods with suitable numerical fluxes can preserve the 
multi-symplecticity. The resulting semi-discrete methods are combined with symplectic temporal discretization. Both first 
order symplectic Euler method and second order symplectic partitioned Runge-Kutta (PRK) method will be introduced and 
analyzed in this paper.

The structure of this paper is as follows. Section 2 provides theoretical results for one-dimensional stochastic Maxwell 
equations. We discuss the conservation of multi-symplecticity of our DG scheme, demonstrate the energy law of numerical 
solutions, and present the result on the optimal error estimate of the proposed semi-discrete methods. Section 3 provides 
the same theoretical results on DG methods for two-dimensional stochastic Maxwell equations. Temporal discretization is 
provided in section 4. We consider both symplectic Euler method and the second order symplectic PRK method. Numerical 
results in both one and two dimensions are provided in section 5 to validate the convergence rate and the linear energy 
growth property. Section 6 contains some conclusion remarks.

Throughout this paper, L2 norm is denoted by ‖·‖, and C represents a generic positive constant independent of the 
spatial and temporal step size h and �t , which can take different values in different cases. In general, Wt represents a 
Q-Wiener process defined on a given probability space (	, F , P ), which can be characterized as

Wt = W (t,x,ω) =
∞∑

m=1

√
γmem(x)Bm(t,ω), t ≥ 0, x ∈R or R2, (1.5)

where {em} is an orthonormal basis of L2(D), with D ⊂ Rd , d = 1, 2. Q : L2(D) → L2(D) is a symmetric, non-negative, 
finite trace operator such that T r(Q) < ∞ and Qem = γmem with γm > 0. Furthermore, {Bm} is a sequence of independent 
standard Brownian motions.

2. One-dimensional Maxwell equation with additive noise

In this section, the one-dimensional computational domain is denoted by I , which is partitioned into subintervals I j =
[x j− 1

2
, x j+ 1

2
] where j = 1, 2, · · · , N . We also denote x j = 1

2 (x j− 1
2
+ x j+ 1

2
) to be the center of each cell, and h j = x j+ 1

2
− x j− 1

2
to be the mesh size. Let h = max j h j be the maximum mesh size. We further assume that h/h j is bounded over all j during 
mesh refinement. Assume Pk(I j) to be the space of polynomials of degree up to k on I j , and the piecewise polynomial 
space V k

h is defined as follows:

V k
h = {v : v|I j ∈ Pk(I j), j = 1,2, · · · , N}.

Note that functions in V k
h can be discontinuous at cell interfaces. Let v+

j+ 1
2

and v−
j+ 1

2
be the right and left limit of v at the 

interface x j+ 1
2

, and we denote by {v} j+ 1
2

= 1
2 (v+

j+ 1
2

+ v−
j+ 1

2
) and [v] j+ 1

2
= v+

j+ 1
2

− v−
j+ 1

2
the average and jump of v at x j+ 1

2
.

We start by considering the one-dimensional (1D) stochastic Maxwell equation with additive noise with periodic bound-
ary condition of the form{

dη = −uxdt − λ1dWt,

du = −ηxdt + λ2dWt ,
(2.1)

which can be viewed as a 1D version of the model (1.4). The DG method with generalized fluxes for the deterministic 
version of (2.1) has been considered in [5,25], where the stability, error estimate and superconvergence properties have been 
studied. In this paper, the DG scheme for (2.1) is formulated as: for x ∈ I, (ω, t) ∈ 	 ×[0, T ], find ηh(ω, x, t), uh(ω, x, t) ∈ V k

h , 
such that for any test functions ϕ, ̃ϕ ∈ V k

h , it holds that∫
I

dηhϕ(x)dx =
(∫

I

uhϕxdx − (u

∧

hϕ
−) j+ 1

2
+ (u

∧

hϕ
+) j− 1

2

)
dt −
∫
I

λ1ϕdWtdx, (2.2)
j j j

3
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∫
I j

duhϕ̃(x)dx =
(∫

I j

ηhϕ̃xdx − (η

∧

hϕ̃
−) j+ 1

2
+ (η

∧

hϕ̃
+) j− 1

2

)
dt +
∫
I j

λ2ϕ̃dWtdx, (2.3)

where the generalized alternating numerical fluxes are chosen to be

u

∧

h = {uh} + α[uh], η

∧

h = {ηh} − α[ηh],
for some non-zero constant α ∈ [−1, 1]. Below, we will explore some theoretical properties of this DG method, including 
the semi-discrete energy law, optimal error estimate and the multi-symplectic structure.

2.1. Semi-discrete energy law

The exact solutions of the three dimensional stochastic Maxwell equation (1.4) satisfy the linear energy growth property, 
as studied in [11]. Below, we start by presenting similar result for the one-dimensional model (2.1).

Theorem 2.1 (Continuous energy law). Let u and η be the solutions to the model (2.1) under periodic boundary condition. Denote 
the energy by E(t) = ∫I u2(x, t) + η2(x, t)dx, then for any t, the global stochastic energy satisfies the following energy law

E(t) = E(0) + 2

t∫
0

∫
I

(λ2η − λ1u)dWtdx + (λ2
1 + λ2

2)T r(Q)t, (2.4)

and, after taking the expectation,

E
(
E(t)
)= E(0) + (λ2

1 + λ2
2)T r(Q)t. (2.5)

Proof. By utilizing the Itô’s lemma and the equations (2.1), we have

dE(t) =
∫
I

(
2udu + 2ηdη + d〈u, u〉t + d〈η,η〉t

)
dx

= −
∫
I

(2uηx + 2ηux)dtdx + 2
∫
I

(λ2u − λ1η)dWtdx + (λ2
1 + λ2

2)

∫
I

d〈Wt , Wt〉tdx. (2.6)

It follows from the periodic boundary condition and the definition of Wt that∫
I

(2uηx + 2ηux)dtdx = 0,

∫
I

d〈Wt , Wt〉tdx = T r(Q)dt.

Therefore, (2.6) reduces to

dE(t) = 2
∫
I

(λ2u − λ1η)dWtdx + (λ2
1 + λ2

2)T r(Q)dt. (2.7)

Integrating (2.7) over t yields (2.4), and taking an expectation leads to (2.5). �
Next, we show that the following semi-discrete energy law is satisfied by the numerical solutions of the DG methods.

Theorem 2.2 (Semi-discrete energy law). Let uh(ω, x, t) and ηh(ω, x, t) be the numerical solutions to the DG methods (2.2) and 
(2.3).
(a): For any t ∈ [0, T ], the numerical solutions satisfy the semi-discrete energy law

‖uh(ω, x, t)‖2 + ‖ηh(ω, x, t)‖2

= 2

t∫
0

∫
I

(λ2uh − λ1ηh)dW sdx + ‖uh(x,0)‖2 + ‖ηh(x,0)‖2 + (λ2
1 + λ2

2)Kt, (2.8)

and

E
(
‖uh(ω, x, t)‖2 + ‖ηh(ω, x, t)‖2

)
= ‖uh(x,0)‖2 + ‖ηh(x,0)‖2 + (λ2

1 + λ2
2)Kt, (2.9)
4
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with

K =
N∑

j=1

k∑
l=0

μl
j

∞∑
m=1

(∫
I j

φl
j
√

γmemdx
)2

, (2.10)

where {φl
j, j = 0, · · · , k} represents the set of orthogonal Legendre basis over cell I j , and μl

j = (
∫

I j
(φl

j)
2dx)−1 .

(b) The constant K is bounded by (k + 1)T r(Q) with k being the polynomial degree of the DG methods. Moreover, if there exists some 
constant ν ∈ (0, 2) such that the series 

∑∞
m=1 γm(Km)ν < ∞ with Km = ‖(em)x‖∞ , we can show that K = T r(Q) + O (hν), i.e., K is 

an approximation of T r(Q) appearing in the continuous energy law (2.4)-(2.5).

Proof. (a): From Itô’s formula, we have

d(uh)
2 = 2uhduh + d〈uh, uh〉t, d(ηh)

2 = 2ηhdηh + d〈ηh, ηh〉t . (2.11)

By taking the test functions ϕ = ηh and ϕ̃ = uh in the DG methods (2.2)-(2.3), and summing the resulting equations up, we 
have ∫

I j

((duh)uh + (dηh)ηh)dx =
∫
I j

(λ2uh − λ1ηh)dWtdx +
(∫

I j

uh(ηh)xdx + ηh(uh)xdx
)

dt

+
(

− (({uh} + α[uh])η−
h

)
j+ 1

2
+ (({uh} + α[uh])η+

h

)
j− 1

2

)
dt

+
(

− (({ηh} − α[ηh])u−
h

)
j+ 1

2
+ (({ηh} − α[ηh])u+

h

)
j− 1

2

)
dt

= −� j+ 1
2

+ � j− 1
2

+
∫
I j

(λ2uh − λ1ηh)dWtdx, (2.12)

where

� =
(

1

2
+ α

)
η−

h u+
h +
(

1

2
− α

)
u−

h η+
h .

Let us represent the numerical solutions uh in the cell I j as

uh(ω, x, t) =
k∑

l=0

ul
j(ω, t)φl

j(x),

which leads to

duh =
k∑

l=0

dul
jφ

l
j.

Taking the test function ϕ̃ = φm
j , m = 0, · · · , k, in (2.3), we obtain

k∑
l=0

(∫
I j

φm
j φl

jdx
)

dul
j = A j(ηh;φm

j )dt +
∫
I j

λ2φ
m
j dWtdx (2.13)

where the operator

A j( f ; g) =
∫
I j

f gxdx − ( f

∧

g−)
j+ 1

2
+ ( f

∧

g+)
j− 1

2
,

is introduced for ease of presentation. Denote the mass matrix by L j with the (m, l) entry being 
∫

I j
φl

jφ
m
j dx. Note that 

the orthogonal Legendre basis are chosen, therefore L j is a diagonal matrix, so is the inverse matrix L−1
j . Let us denote 

L−1
j = diag(μ0

j , μ
1
j , · · · , μk

j) with μl
j = (
∫

I j
(φl

j)
2dx)−1. In addition, introduce the vectors

u j =
(

u0
j , u1

j · · · , uk
j

)T

,A j =
(
A j(ηh;φ0

j ),A j(ηh;φ1
j ), · · · ,A j(ηh;φk

j )

)T

, � j =
(

φ0
j , φ

1
j , · · · , φk

j

)T

,

5



J. Sun, C.-W. Shu and Y. Xing Journal of Computational Physics 461 (2022) 111199
and the equation (2.13) can be rewritten as a linear system

L jdu j = A jdt +
∫
I j

λ2� jdWtdx, (2.14)

which leads to

du j = L−1
j A jdt + L−1

j

∫
I j

λ2� jdWtdx. (2.15)

It yields

dul
j = μl

jA j(ηh;φl
j)dt + μl

jλ2

∫
I j

φl
j

∑
m

√
γmem(x)dxdBm(t),

and furthermore we can obtain

d〈ul
j, ul

j〉t = λ2
2(μ

l
j)

2
∑

m

(∫
I j

φl
j
√

γmem(x)dx

)2

dt.

Therefore, we have∫
I j

d〈uh, uh〉tdx =
∫
I j

d
〈 k∑

l=0

ul
jφ

l
j,

k∑
l=0

ul
jφ

l
j

〉
t
dx =

k∑
l=0

(∫
I j

φl
jφ

l
jdx

)
d〈ul

j, ul
j〉t

= λ2
2

k∑
l=0

μl
j

∑
m

(∫
I j

φl
j
√

γmem(x)dx

)2

dt. (2.16)

Similarly, we have∫
I j

d〈ηh, ηh〉tdx = λ2
1

k∑
l=0

μl
j

∑
m

(∫
I j

φl
j
√

γmem(x)dx

)2

dt. (2.17)

The combination of (2.11), (2.12), (2.16) and (2.17) leads to∫
I j

(d〈uh, uh〉t + d〈ηh, ηh〉t)dx = − 2� j+ 1
2

+ 2� j− 1
2

+ 2
∫
I j

(λ2uh − λ1ηh)dWtdx + (λ2
1 + λ2

2)

k∑
l=0

μl
j

∞∑
m=1

(∫
I j

φl
j
√

γmemdx
)2

dt. (2.18)

Summing over all the cells and integrating in time from 0 to t , we can obtain (2.8). Note that 
∫

I (λ2uh − λ1ηh)dW sdx is an 

Itô integral, thus E
(∫ t

0

∫
I (λ2uh − λ1ηh)dW sdx

)
= 0, and taking the expectation (2.8) leads to (2.9).

(b): For the constant K defined in (2.10), we can bound it by

K ≤
N∑

j=1

k∑
l=0

μl
j

∞∑
m=1

∫
I j

(φl
j)

2dx

∫
I j

γme2
mdx = (k + 1)

N∑
j=1

∞∑
m=1

∫
I j

γme2
mdx

= (k + 1)

∞∑
m=1

∫
I

γme2
mdx = (k + 1)T r(Q),

where μl
j = (
∫

I j
(φl

j)
2dx)−1 is used.

Next, we show that K is an approximation of T r(Q). Note that φ0
j = 1, μ0

j = 1/h j , and 
∫

I j
φl

jdx = 0 for l ≥ 1. Let us 
define em = 1 ∫ emdx, and rewrite K as
h j I j

6
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K =
N∑

j=1

∞∑
m=1

γm

h j

(∫
I j

emdx
)2 +

N∑
j=1

∞∑
m=1

k∑
l=1

μl
jγm

(∫
I j

φl
j(em − em)dx

)2
. (2.19)

Using the fact that T r(Q) =∑∞
m=1 γm and 

∑N
j=1

∫
I j

e2
mdx = 1, we have

K − T r(Q) =
N∑

j=1

∞∑
m=1

γm

(
1

h j

(∫
I j

emdx
)2 −

∫
I j

e2
mdx

)
+

N∑
j=1

∞∑
m=1

k∑
l=1

μl
jγm

(∫
I j

φl
j(em − em)dx

)2

=: I + I I. (2.20)

Notice that∫
I j

e2
mdx =

∫
I j

(em − em + em)2dx =
∫
I j

(em − em)2dx +
∫
I j

e2
mdx =

∫
I j

(em − em)2dx + 1

h j

(∫
I j

emdx
)2

,

which leads to

I = −
N∑

j=1

∞∑
m=1

γm

∫
I j

(em − em)2dx.

Since em is uniformly bounded, there exists some constant M such that |em − em|2−ν ≤ M , and we have the following 
estimate

|I| =
N∑

j=1

∞∑
m=1

γm

∫
I j

(em − em)2dx =
N∑

j=1

∞∑
m=1

γm

∫
I j

|em − em|ν |em − em|2−νdx

≤ M
N∑

j=1

∞∑
m=1

γm

∫
I j

|em − em|νdx ≤ M
N∑

j=1

∞∑
m=1

γm(Km)νh1+ν
j

= M
( N∑

j=1

h1+ν
j

)( ∞∑
m=1

γm(Km)ν
)

= O (hν),

where Km = ‖(em)x‖∞ and the assumption 
∑∞

m=1 γm(Km)ν < ∞ is used. For the other term I I , we can apply Young’s 
inequality and follow the similar analysis as above to obtain

I I =
N∑

j=1

∞∑
m=1

k∑
l=1

μl
jγm

(∫
I j

φl
j(em − em)dx

)2 ≤
N∑

j=1

∞∑
m=1

k∑
l=1

μl
jγm

∫
I j

(φl
j)

2dx

∫
I j

(em − em)2dx

=
N∑

j=1

∞∑
m=1

k∑
l=1

γm

∫
I j

(em − em)2dx = k
N∑

j=1

∞∑
m=1

γm

∫
I j

(em − em)2dx = O (hν).

The combination of these results lead to the conclusion that K − T r(Q) = O (hν), which finishes the proof. �
Remark 2.1. If Wt is the standard Brownian motion, we have e1 = 1 and em = 0 for m > 1, therefore it can be easily shown 
that I = I I = 0 which leads to K = T r(Q). This means that the continuous energy law (2.4) is exactly preserved by the 
proposed method.

2.2. Optimal error estimates

The optimal error estimate analysis of the proposed semi-discrete DG method will be provided in this subsection.
We firstly define the generalized Radau Pα projection operators which will be used in the analysis. On any cell I j and 

for any function g(x), its projection Pα g into the space V k
h is given by∫

I j

(Pα g − g(x))v(x)dx = 0, ∀v(x) ∈ Pk−1(I j), and ({Pα g} + α[Pα g]) j+ 1
2

= g(x j+ 1
2
). (2.21)

The following property on the projection error is studied in [23,25] and will be used throughout this section.
7
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Lemma 2.1 (Projection error). Let Pα (with α �= 0) be the generalized Radau projection defined above. For any smooth function 
g(x) ∈ Hk+1 , there exists some constant C which is independent of h, such that

‖Pα g − g‖ ≤ Chk+1‖g‖Hk+1 .

Theorem 2.3 (Optimal error estimate). Let u, η ∈ L2(	 × [0, T ]; Hk+2) be the strong solutions to the one-dimensional stochastic 
Maxwell equations with additive noise (2.1), and uh, ηh ∈ V k

h be the numerical solutions given by the DG scheme (2.2) and (2.3). With 
the initial conditions chosen as

ηh(x,0) = P−αη(x,0), uh(x,0) = Pαu(x,0),

and the assumption 
∑

m γm‖em‖2
Hk+1 < ∞, there holds the following error estimate

‖u − uh‖2 + ‖η − ηh‖2 ≤ Ch2k+2. (2.22)

Proof. Note that both the exact solution η and the numerical solution ηh satisfy the equation (2.2), and both u and uh

satisfy (2.3), therefore we have the following error equations∫
I j

d(η − ηh)ϕ(x)dx =
(∫

I j

(u − uh)ϕxdx − ((u − u

∧

h)ϕ
−) j+ 1

2
+ ((u − u

∧

h)ϕ
+) j− 1

2

)
dt, (2.23)

∫
I j

d(u − uh)ϕ̃(x)dx =
(∫

I j

(η − ηh)ϕ̃xdx − ((η − η

∧

h)ϕ̃
−) j+ 1

2
+ ((η − η

∧

h)ϕ̃
+) j− 1

2

)
dt. (2.24)

Let

ξη = P−αη − ηh, εη = P−αη − η, ξu = Pαu − uh, εu = Pαu − u,

so that we can decompose the numerical error into two terms

η − ηh = ξη − εη, u − uh = ξu − εu . (2.25)

By choosing the test functions ϕ = ξη , ϕ̃ = ξu in (2.23) and (2.24), and summing up the resulting equations, we obtain∫
I j

(dξηξη + dξuξu)dx =
∫
I j

(dεηξη + dεuξu)dx

+
(∫

I j

ξuξ
η
x dx − (({ξu} + α[ξu])(ξη)−

)
j+ 1

2
+ (({ξu} + α[ξu])(ξη)+

)
j− 1

2

)
dt

−
(∫

I j

εuξ
η
x dx − (({εu} + α[εu])(ξη)−

)
j+ 1

2
+ (({εu} + α[εu])(ξη)+

)
j− 1

2

)
dt

+
(∫

I j

ξηξu
x dx − (({ξη} − α[ξη])(ξu)−

)
j+ 1

2
+ (({ξη} − α[ξη])(ξu)+

)
j− 1

2

)
dt

−
(∫

I j

εηξu
x dx − (({εη} − α[εη])(ξu)−

)
j+ 1

2
+ (({εη} − α[εη])(ξu)+

)
j− 1

2

)
dt

=
∫
I j

(dεηξη + dεuξu)dx +
(
�̃ j− 1

2
− �̃ j+ 1

2

)
dt, (2.26)

where �̃ = ( 1
2 + α

)
(ξu)+(ξη)− + ( 1

2 − α
)
(ξη)+(ξu)− . The last equality follows from the definition of Radua projection P±α

which leads to (for the error term εη =P−αη − η, εu =Pαu − u)∫
I j

εuξ
η
x dx =

∫
I j

εηξu
x dx = ({εu} + α[εu]) j± 1

2
= ({εη} − α[εη]) j± 1

2
= 0,

and an integration by parts which leads to
8
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∫
I j

ξuξ
η
x dx +

∫
I j

ξηξu
x dx − (({ξu} + α[ξu])(ξη)−

)
j+ 1

2
+ (({ξu} + α[ξu])(ξη)+

)
j− 1

2

− (({ξη} − α[ξη])(ξu)−
)

j+ 1
2

+ (({ξη} − α[ξη])(ξu)+
)

j− 1
2

= �̃ j− 1
2

− �̃ j+ 1
2
.

By Itô’s lemma, we have

d(ξη)2 = 2dξηξη + d〈ξη, ξη〉t, d(ξu)2 = 2dξuξu + d〈ξu, ξu〉t . (2.27)

Note that

d(Pαu) = Pα(du) = Pα(−ηxdt + λ2dWt) = Pα(−ηxdt) + λ2Pα(dWt).

For any test function ϕ̃ , we have∫
I j

(dPαu)ϕ̃dx =
∫
I j

Pα(−ηx)ϕ̃dxdt +
∫
I j

λ2ϕ̃Pα(dWt)dx. (2.28)

Subtracting (2.3) from (2.28), we obtain∫
I j

dξuϕ̃dx =
(∫

I j

(−ηhϕ̃x +Pα(−ηx)ϕ̃)dx + (η

∧

hϕ̃
−) j+ 1

2
− (η

∧

hϕ̃
+) j− 1

2

)
dt + λ2

∫
I j

(Pα(dWt) − dWt)ϕ̃dx.

Let us denote ξu =∑k
j=0(ξ

u)l
jφ

l
j . Following the exact same derivation of (2.16) in the proof of Theorem 2.2, we have

∫
I j

d〈ξu, ξu〉tdx = λ2
2

k∑
l=0

μl
j

∑
m

(∫
I j

φl
j
√

γm(Pαem(x) − em(x))dx
)2

dt

= λ2
2μ

k
j

∑
m

(∫
I j

bkxk√γm(Pαem(x) − em(x))dx
)2

dt ≤ C
∑

m

γm

∫
I j

(Pαem(x) − em(x))2dxdt, (2.29)

where the second equality follows from the definition of the generalized Radau projection (2.21) and bkxk is the leading 
order term of the basis φl

j . In the same fashion, we have∫
I j

d〈ξη, ξη〉tdx ≤ C
∑

m

γm

∫
I j

(P−αem(x) − em(x))2dxdt. (2.30)

The combination of (2.26)-(2.27) with (2.29)-(2.30) leads to

1

2

∫
I j

(
d(ξη)2 + d(ξu)2)dx

=
∫
I j

(dεηξη + dεuξu)dx +
(
�̃ j− 1

2
− �̃ j+ 1

2

)
dt + 1

2

∫
I j

(
d〈ξη, ξη〉t + d〈ξu, ξu〉t

)
dx

≤
∫
I j

(dεηξη + dεuξu)dx +
(
�̃ j− 1

2
− �̃ j+ 1

2

)
dt + C

∑
m

γm

∫
I j

(P±αem(x) − em(x))2dxdt.

(2.31)

Summing over I j and utilizing the periodic boundary conditions yield

1

2

∫
I

(
d(ξη)2 + d(ξu)2)dx ≤

∫
I

(dεηξη + dεuξu)dx + C
∑

m

γm‖P±αem(x) − em(x)‖2dt. (2.32)

By integrating (2.32) from 0 to t and noting that ‖ξη(x, 0)‖2 = ‖ξu(x, 0)‖2 = 0, we have
9
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‖ξη(x, t)‖2 + ‖ξu(x, t)‖2 ≤ 2
( t∫

0

∫
I

(dεηξη + dεuξu)dxds
)

+ Ct
∑

m

γm‖P±αem(x) − em(x)‖2

≤
( t∫

0

‖ξη(x, s)‖2 + ‖ξu(x, s)‖2ds
)

+ Ch2k+2 + C
∑

m

γm‖em‖2
Hk+1 h2k+2,

where the projection error is used in the last inequality. Applying the Gronwall’s inequality and combining with the optimal 
projection error yields the desired optimal error estimate (2.22). �
Remark 2.2. We assumed sufficient regularity of the exact solutions to study the “best” convergence rate of the proposed 
numerical method, which has also been observed on some numerical examples in Section 5. In the literature [1,4,10], 
H2 regularity for solutions to stochastic Maxwell equations has been assumed. In [3,4], the authors showed that for any 
given integer k, the solution is uniformly bounded in D(Mk) norm if u0 has bounded D(Mk) norm, where ‖u‖D(Mk) =
(‖u‖2 + ‖Mku‖2)

1
2 with the operator M defined by

M =
(

0 ∇×
−∇× 0

)
.

2.3. Multi-symplectic structure

The stochastic Maxwell equations (2.1) have a multi-symplectic structure, and we will show that the proposed DG 
method (2.2)-(2.3) preserves the multi-symplecticity.

Following the idea in [11], we introduce new variables

dv = udt, dζ = ηdt, P = u + 1

2
ζx, Q = η + 1

2
vx,

and rewrite (2.1) into the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 ζx = P − u,
1
2 vx = Q − η,

−dP − 1
2ηxdt = −λ2dWt ,

−dQ − 1
2 uxdt = λ1dWt ,

dv = udt,

dζ = ηdt.

(2.33)

Introduce the notation z = (u, η, v, ζ, P , Q )T , and the system (2.33) can be rewritten as the multi-symplectic system

Mdz + K zxdt = ∇z S1(z)dt + ∇z S2(z)dWt, (2.34)

where

M =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
0 0 1 0 0 0
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎠ , K =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 1
2 0 0

0 0 1
2 0 0 0

0 − 1
2 0 0 0 0

− 1
2 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and

S1(z) = P u + Q η − u2

2
− η2

2
, S2(z) = λ1ζ − λ2 v.

Applying the exterior derivative to the system (2.34) yields the following variation equation for the one-form Z :

MdZ + K Zxdt = ∇2 S1(z)Zdt. (2.35)

Let U , V ∈Rd be any solutions to the variation equation (2.35), and define

ω(U , V ) = MU · V , κ(U , V ) = K U · V ,
10
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then the system (2.34) can be shown to satisfy the multi-symplectic conservation law given by

dω + κxdt = 0. (2.36)

Multi-symplectic numerical method refers to the method that satisfies a consistent discrete version of this conservation law.
Since the new system (2.33) is equivalent to the original model (2.1), we can rewrite the proposed DG methods (2.2) and 

(2.3) into a consistent formulation for the system (2.33). We start by defining the variables vh and ζh as follows: for uh and 
ηh defined in (2.2) and (2.3), find vh, ζh ∈ V k

h , such that for all test functions ψ, ̃ψ ∈ V k
h , it holds that∫

I j
dvhψdx = ∫I j

uhψdxdt,
∫

I j
dζhψ̃dx = ∫I j

ηhψ̃dxdt, (2.37)

which leads to the fact that dvh = uhdt, dζh = ηhdt . Next, find Ph, Q h ∈ V k
h , such that for all ϕ, ̃ϕ ∈ V k

h , it holds that∫
I j

(Ph − uh)ϕdx = −1

2

(∫
I j

ζhϕxdx − (̂ζhϕ
−) j+ 1

2
+ (̂ζhϕ

+) j− 1
2

)
, (2.38)

∫
I j

(Q h − ηh)ϕ̃dx = −1

2

(∫
I j

vhϕ̃xdx − (̂vhϕ̃
−) j+ 1

2
+ (̂vhϕ̃

+) j− 1
2

)
, (2.39)

where ̂vh = {vh} + 2n[vh], ζ̂h = {ζh} + 2m[ζh] for some m, n ∈R with n − m = α (for instance, n = α/2 and m = −α/2). By 
combining the derivative of (2.38) and (2.39) with the equations (2.3) and (2.2), and utilizing the fact that dvh = uhdt, dζh =
ηhdt , we obtain∫

I j

dPhφdx = 1

2

(∫
I j

ηhφxdx − (η̂hφ
−) j+ 1

2
+ (η̂hφ

+) j− 1
2

)
dt +
∫
I j

λ2φdWtdx, (2.40)

∫
I j

dQ hφ̃dx = 1

2

(∫
I j

uhφ̃xdx − (̂uhφ̃
−) j+ 1

2
+ (̂uhφ̃

+) j− 1
2

)
dt −
∫
I j

λ1φ̃dWtdx, (2.41)

where ûh = {uh} − 2m[uh], η̂h = {ηh} − 2n[ηh]. Combining (2.37)-(2.41), we have derived the following expression: find 
Ph, Q h, uh, ηh, vh, ζh ∈ V k

h such that∫
I j

(Ph − uh)ϕdx = −1

2

(∫
I j

ζhϕxdx − (̂ζhϕ
−) j+ 1

2
+ (̂ζhϕ

+) j− 1
2

)
,

∫
I j

(Q h − ηh)ϕ̃dx = −1

2

(∫
I j

vhϕ̃xdx − (̂vhϕ̃
−) j+ 1

2
+ (̂vhϕ̃

+) j− 1
2

)
,

∫
I j

dPhφdx = 1

2

(∫
I j

ηhφxdx − (η̂hφ
−) j+ 1

2
+ (η̂hφ

+) j− 1
2

)
dt +
∫
I j

λ2φdWtdx,

∫
I j

dQ hφ̃dx = 1

2

(∫
I j

uhφ̃xdx − (̂uhφ̃
−) j+ 1

2
+ (̂uhφ̃

+) j− 1
2

)
dt −
∫
I j

λ1φ̃dWtdx,

∫
I j

dvhψdx =
∫
I j

uhψdxdt,

∫
I j

dζhψ̃ =
∫
I j

ηhψ̃dxdt,

(2.42)

hold for any ϕ, ϕ̃, φ, φ̃, ψ, ψ̃ ∈ V k
h . The numerical fluxes take the form

ûh = {uh} − 2m[uh], η̂h = {ηh} − 2n[ηh], v̂h = {vh} + 2n[vh], ζ̂h = {ζh} + 2m[ζh].
Note that the method (2.42) can be rewritten into the corresponding DG scheme for the new system (2.34): find zh ∈ (V k

h)6, 
such that for all ϕ ∈ (V k)6, it holds that
h

11
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∫
I j

Mdzh · ϕdx −
(∫

I j

K zh · ϕxdx − (K̂ zh · ϕ−)
j+ 1

2
+ (K̂ zh · ϕ+)

j− 1
2

)
dt

=
∫
I j

∇ S1(zh) · ϕdxdt +
∫
I j

∇ S2(zh) · ϕdWtdx, (2.43)

where K̂ zh is the numerical flux in the form

K̂ zh = K {zh} + A[zh], A =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 m 0 0
0 0 n 0 0 0
0 n 0 0 0 0
m 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ .

Applying the exterior derivative to this scheme (2.43) leads to the variational equation∫
I j

MdZh · ϕdx −
(∫

I j

K Zh · ϕxdx − (̂K Zh · ϕ−)
j+ 1

2
+ (̂K Zh · ϕ+)

j− 1
2

)
dt =
∫
I j

∇2 S1(z)Zh · ϕdxdt. (2.44)

Following the proof of multi-symplecticity of DG methods in [24], we have the following results.

Lemma 2.2. For any Uh, Vh ∈ V k
h , we have

K U−
h · V −

h − ̂K Uh · V −
h + ̂K Vh · U−

h = K U+
h · V +

h − ̂K Uh · V +
h + ̂K Vh · U+

h = FK (Uh, Vh), (2.45)

where

FK (Uh, Vh) = {K Uh · Vh} − ̂K Uh · {Vh} + ̂K Vh · {Uh}.

Theorem 2.4 (Conservation of multi-symplecticity). Let Uh, Vh be any solutions to the variational equation (2.44), we have the 
semi-discrete version of the multi-symplectic conservation laws∫

I j

d(MUh · Vh)dx −
(
FK (Uh, Vh) j+ 1

2
−FK (Uh, Vh) j− 1

2

)
dt = 0. (2.46)

Proof. By Itô’s lemma, we have

d(MUh · Vh) = MdUh · Vh + MUh · dVh + Md〈Uh, Vh〉t . (2.47)

Note that Uh(ω, x, t), Vh(ω, x, t) ∈ V k
h , which can be rewritten as

Uh(ω, x, t)
∣∣

I j
=

k∑
l=0

ϕl
j(x)Ul

j(ω, t), Vh(ω, x, t)
∣∣

I j
=

k∑
l=0

ϕl
j(x)V l

j(ω, t),

where {ϕl
j(x), l = 0, · · · , k} is a set of basis. Therefore one has

dUh =
k∑

l=0

ϕl
j(x)dUl

j, dVh =
k∑

l=0

ϕl
j(x)dV l

j .

In the variational equation (2.44), we set dZh to be dUh , and take the test function ϕ to be dVh . As the second and third 
terms in (2.44) are both drift terms, we can conclude that 

∫
I j

Md〈Uh, Vh〉tdx = 0. By combining (2.47) and (2.44), and 
utilizing the fact that M is anti-symmetric and ∇2 S1 is symmetric, we obtain∫

I j

d(MUh · Vh)dx =
∫
I j

(MdUh · Vh + MUh · dVh)dx =
∫
I j

(MdUh · Vh − MdVh · Uh)dx

=
(∫

I

K Uh · (Vh)xdx − (̂K Uh · V −
h

)
j+ 1

2
+ (̂K Uh · V +

h

)
j− 1

2

)
dt +
∫
I

∇2 S1Uh · Vhdxdt
j j

12
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−
(∫

I j

K Vh · (Uh)xdx − (̂K Vh · U−
h

)
j+ 1

2
+ (̂K Vh · U+

h

)
j− 1

2

)
dt −
∫
I j

∇2 S1 Vh · Uhdxdt

=
((

K U−
h · V −

h − ̂K Uh · V −
h + ̂K Vh · U−

h

)
j+ 1

2
− (K U+

h · V +
h − ̂K Uh · V +

h + ̂K Vh · U+
h

)
j− 1

2

)
dt

=
(
FK (Uh, Vh) j+ 1

2
−FK (Uh, Vh) j− 1

2

)
dt,

where the last equality follows from Lemma 2.2. This finishes the proof. �
3. Two-dimensional stochastic Maxwell equations with additive noise

In this section, we will present the discontinuous Galerkin methods for two-dimensional stochastic Maxwell equations 
with additive noise with periodic boundary conditions on cartesian meshes, and study the stability, error estimate and 
multi-symplecticity of the proposed methods.

The two-dimensional rectangular computational domain is set to be I × J , and we consider the rectangular partition with 
the cells denoted by Ii × J j = [xi− 1

2
, xi+ 1

2
] × [y j− 1

2
, y j+ 1

2
] for i = 1, 2, · · · , Nx and j = 1, 2 · · · , N y . Let xi = 1

2 (xi− 1
2

+ xi+ 1
2
), 

and y j = 1
2 (y j− 1

2
+ y j+ 1

2
). Furthermore, we define the mesh size in both directions as hx,i = xi+ 1

2
−xi− 1

2
, hy, j = y j+ 1

2
− y j− 1

2
, 

with hx = maxi hx,i , hy = max j hy, j and h = max(hx, hy) being the maximum mesh size. Similar to the one-dimensional case, 
we define the two dimensional piecewise polynomial space V k

h as follows:

V k
h = {v(x, y) : v|Ii× J j ∈ Q k(Ii × J j) = Pk(Ii) ⊗ Pk( J j), i = 1,2, · · · , Nx; j = 1,2, · · · , N y}.

The two-dimensional stochastic Maxwell equations with additive noise take the form⎧⎪⎨⎪⎩
−dE + Txdt − S ydt = λ1dWt,

dS + E ydt = λ2dWt ,

dT − Exdt = λ2dWt .

(3.1)

The DG scheme for (3.1) is formulated as follows: find Eh, Sh, Th ∈ V k
h , such that for all test functions ϕ, ψ, φ ∈ V k

h , it 
holds that∫

J j

∫
Ii

dEhϕdxdy = −
∫
J j

(∫
Ii

Thϕxdx − (˜(Th)α1ϕ
−)

i+ 1
2 ,y + (˜(Th)α1ϕ

+)
i− 1

2 ,y

)
dydt

+
∫
Ii

(∫
J j

Shϕydy − ( ˜(Sh)−α2ϕ
−)

x, j+ 1
2

+ ( ˜(Sh)−α2ϕ
+)

x, j− 1
2

)
dxdt

−
∫
J j

∫
Ii

λ1ϕdWtdxdy, (3.2)

∫
J j

∫
Ii

dShψdxdy =
∫
Ii

(∫
J j

Ehψydy − (˜(Eh)α2ψ
−)

x, j+ 1
2

+ (˜(Eh)α2ψ
+)

x, j− 1
2

)
dxdt

+
∫
J j

∫
Ii

λ2ψdWtdxdy, (3.3)

∫
J j

∫
Ii

dThφdxdy = −
∫
J j

(∫
Ii

Ehφxdx − ( ˜(Eh)−α1φ
−)

i+ 1
2 ,y + ( ˜(Eh)−α1φ

+)
i− 1

2 ,y

)
dydt

+
∫
J j

∫
Ii

λ2φdWtdxdy, (3.4)

where the generalized alternating numerical fluxes are defined as follows:

g̃α = {g} + α[g], for g ∈ V k
h and α ∈ {±α1,±α2} ⊂R.

For the ease of presentation, we also introduce the following operators: for α ∈R, f , g ∈V k ,
h

13



J. Sun, C.-W. Shu and Y. Xing Journal of Computational Physics 461 (2022) 111199
AIi ( f , g;α) =
∫
Ii

f gxdx − ( f̃α g−)i+ 1
2 ,y + ( f̃α g+)i− 1

2 ,y,

A J j ( f , g;α) =
∫
J j

f g ydy − ( f̃α g−)x, j+ 1
2

+ ( f̃α g+)x, j− 1
2
.

3.1. Semi-discrete energy law

Similar to the 1D case, we start by presenting the linear energy growth property of the exact solutions. In [2,11] the 
authors provided continuous energy law in R3, which has the following form in R2:

Theorem 3.1 (Continuous energy law). Let E, S, T be the solutions to the equation (3.1) under the periodic boundary condition, 
and define the two-dimensional energy as E(t) = ∫ J

∫
I E(x, y, t)2 + S(x, y, t)2 + T (x, y, t)2dxdy, then for any t, the global stochastic 

energy satisfies the following energy law

E(t) = E(0) + 2

t∫
0

∫
J

∫
I

λ2(S + T ) − λ1 EdW sdxdy + (λ2
1 + 2λ2

2)T r(Q)t, (3.5)

and, after taking the expectation,

E
(
E(t)
)

= E(0) + (λ2
1 + 2λ2

2)T r(Q)t. (3.6)

The proof is skipped here as it follows the same analysis as that of Theorem 2.1.

Theorem 3.2 (Semi-discrete energy law). Let Eh(ω, x, y, t), Sh(ω, x, y, t) and Th(ω, x, y, t) be the numerical solutions to the DG 
methods (3.2) - (3.4).
(a): For any t ∈ [0, T ], the numerical solutions satisfy the semi-discrete energy law

‖Eh(ω, x, y, t)‖2 + ‖Sh(ω, x, y, t)‖2 + ‖Th(ω, x, y, t)‖2 (3.7)

= 2

t∫
0

∫
J

∫
I

λ2(Th + Sh) − λ1 EhdW sdxdy + ‖Eh(x, y,0)‖2 + ‖Sh(x, y,0)‖2 + ‖Th(x, y,0)‖2 + (λ2
1 + 2λ2

2)Kt,

and

E
(
‖Eh(x, y, t)‖2 + ‖Sh(x, y, t)‖2 + ‖Th(x, y, t)‖2

)
= ‖Eh(x, y,0)‖2 + ‖Sh(x, y,0)‖2 + ‖Th(x, y,0)‖2 + (λ2

1 + 2λ2
2)Kt, (3.8)

with

K =
∑
i, j

k2+2k∑
l=0

μl
i, j

∞∑
m=1

(∫
J j

∫
Ii

φl
i, j

√
γmemdxdy

)2
, (3.9)

where {φl
i, j, i, j = 0, · · · , k} represents the set of Legendre basis over cell J j × Ii , and μl

i, j = (
∫

J j

∫
Ii
(φl

i, j)
2dxdy)−1 .

(b) The constant K is bounded by (k2 + 2k)T r(Q) with k being the polynomial degree of the DG methods. Moreover, if there exists 
some constant ν ∈ (0, 2) such that the series 

∑∞
m=1 γm(Km)ν < ∞ with Km = ‖∇em‖∞ , we can show that K = T r(Q) + O (hν), i.e., 

K is an approximation of T r(Q) appearing in the continuous energy law (3.5)-(3.6).

Proof. (a): By Itô’s lemma, we know that

d(Eh)
2 = 2EhdEh + d〈Eh, Eh〉t, d(Sh)

2 = 2ShdSh + d〈Sh, Sh〉t, d(Th)
2 = 2ThdTh + d〈Th, Th〉t . (3.10)

By taking the test functions ϕ = Eh , ψ = Sh and φ = Th in (3.2)-(3.4), and adding these equations, we have
14
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∫
J j

∫
Ii

(dEh)Eh + (dSh)Sh + (dTh)Thdxdy

=
∫
J j

−(�)i− 1
2 ,y + (�)i+ 1

2 ,ydydt +
∫
Ii

(�̃)x, j− 1
2

− (�̃)x, j+ 1
2

dxdt

+
∫
J j

∫
Ii

λ2(Th + Sh) − λ1 EhdWtdxdy, (3.11)

where

� = (1
2

+ α1
)
T +

h E−
h + (1

2
− α1
)

E+
h T −

h , �̃ = (1
2

+ α2
)

E+
h S−

h + (1
2

− α2
)

E−
h S+

h .

Following the same analysis as in Theorem 2.2 (more specifically, the derivation of Eq. (2.16)), we can evaluate the terms 
and have∫

J j

∫
Ii

d〈Sh, Sh〉tdxdy =
∫
J j

∫
Ii

d〈Th, Th〉tdxdy = λ2
2

k2+2k∑
l=0

μl
i, j

∞∑
m=1

(∫
J j

∫
Ii

φl
i, j

√
γmemdxdy

)2
dt,

∫
J j

∫
Ii

d〈Eh, Eh〉tdxdy = λ2
1

k2+2k∑
l=0

μl
i, j

∞∑
m=1

(∫
J j

∫
Ii

φl
i, j

√
γmemdxdy

)2
dt. (3.12)

By combining the equations (3.10)-(3.12), summing over all the cells and integrating in time from 0 to t , we can obtain

‖Eh(x, y, t)‖2 + ‖Sh(x, y, t)‖2 + ‖Th(x, y, t)‖2 (3.13)

= 2

t∫
0

∫
J

∫
I

λ2(Th + Sh) − λ1 EhdW sdxdy + ‖Eh(x, y,0)‖2 + ‖Sh(x, y,0)‖2 + ‖Th(x, y,0)‖2 + (λ2
1 + 2λ2

2)Kt.

Note that E
(∫ t

0

∫
J

∫
I λ2(Th + Sh) − λ1 EhdW sdxdy

)
= 0 since it is an Itô integral, therefore taking expectation of (3.13) leads 

to the semi-discrete energy law (3.8).
(b): The estimate of the constant K follows an exact same analysis as in the proof of Theorem 2.2 (b), that is,

K ≤ (k2 + 2k)T r(Q),

and if 
∑∞

m=1 γm(Km)ν < ∞, we can show that

K − T r(Q) = O (hν).

If Wt is the standard Brownian motion, it can be shown that K = T r(Q) (see Remark 2.1), which means that the two-
dimensional continuous energy law (3.5) is exactly preserved by the proposed method. �
3.2. Optimal error estimate

In this section we study the convergence rate of the DG scheme (3.2)-(3.4). We start with defining the generalized Radau 
projection in R2 as

Pα
x = Pα

x ⊗Py, P
α
y = Px ⊗Pα

y , Pα,β = Pα
x ⊗Pβ

y , (3.14)

where P is the L2 projection, and Pα , Pβ (with α, β �= 0) are the generalized Radau projection defined in (2.21). The 
following lemmas are provided in [23] and will be useful in our analysis.

Lemma 3.1 (Superconvergence property). For any smooth function w ∈ Hk+1 , denote ε = Pα,β w − w, with Pα,β being the pro-
jection defined in (3.14). For any v ∈V k

h , there exists some constant C such that∣∣∣∣∣∑
i, j

∫
J

AIi (ε, v,α)dy

∣∣∣∣∣≤ Chk+1‖v‖,
∣∣∣∣∣∑

i, j

∫
I

A J j (ε, v,α)dx

∣∣∣∣∣≤ Chk+1‖v‖.

j i
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Lemma 3.2 (Projection error). Let � be any projection defined in (3.14). For any smooth function w(x, y) ∈ Hk+1 , there exists some 
constant C , such that

‖�w − w‖ ≤ Chk+1.

Now we turn to the main result on the error estimate of the DG methods.

Theorem 3.3 (Optimal error estimate). Let Eh, Sh, Th ∈ V k
h be the numerical solutions given by the DG scheme (3.2) - (3.4), and 

E, T , S ∈ L2(	 × [0, T ]; Hk+2) are strong solutions to (3.1). With the initial conditions chosen as

Eh(x, y,0) = P−α1,α2 E(x, y,0); Sh(x, y,0) = P−α2
y S(x, y,0); Th(x, y,0) = Pα1

x T (x, y,0),

and the assumption 
∑

m γm‖em‖2
Hk+1 < ∞, there holds the following error estimates

‖E − Eh‖2 + ‖S − Sh‖2 + ‖T − Th‖2 ≤ Ch2k+2, (3.15)

where the constant C denotes a generic positive constant independent of the spatial cell sizes h.

Proof. Since both the numerical and exact solutions satisfy the equations (3.2) - (3.4), we have the error equations∫
J j

∫
Ii

d(E − Eh)ϕdxdy = −
∫
J j

AIi (T − Th,ϕ;α1)dydt +
∫
Ii

A J j (S − Sh,ϕ;−α2)dxdt, (3.16)

∫
J j

∫
Ii

d(S − Sh)ψdxdy =
∫
Ii

A J j (E − Eh,ψ;α2)dxdt, (3.17)

∫
J j

∫
Ii

d(T − Th)φdxdy = −
∫
J j

AIi (E − Eh, φ;−α1)dydt. (3.18)

Let

ξ E = P−α1,α2 E − Eh, ξ S = P−α2
y S − Sh, ξ T = Pα1

x T − Th,

εE = P−α1,α2 E − E, ε S = P−α2
y S − S, εT = Pα1

x T − T ,

which leads to the decomposition of the error into two terms as

E − Eh = ξ E − εE , S − Sh = ξ S − ε S , T − Th = ξ T − εT .

By choosing the test functions as ϕ = ξ E , ψ = ξ S , φ = ξ T in (3.16)-(3.18), and noting that∫
J j

AIi (ε
T , ξ E ;α1)dydt =

∫
Ii

A J j (ε
S , ξ E ;−α2)dxdt = 0

by the definition of the projections, we have∫
J j

∫
Ii

dξ Eξ E − dεEξ Edxdy = −
∫
J j

AIi (ξ
T , ξ E ;α1)dydt +

∫
Ii

A J j (ξ
S , ξ E ;−α2)dxdt, (3.19)

∫
J j

∫
Ii

dξ Sξ S − dε Sξ Sdxdy =
∫
Ii

A J j (ξ
E , ξ S ;α2)dxdt −

∫
Ii

A J j (ε
E , ξ S ;α2)dxdt, (3.20)

∫
J j

∫
Ii

dξ T ξ T − dεT ξ T dxdy = −
∫
J j

AIi (ξ
E , ξ T ;−α1)dydt +

∫
J j

AIi (ε
E , ξ T ;−α1)dydt. (3.21)

Summing up (3.19)-(3.21) and using integration by parts, we obtain
16
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∫
J j

∫
Ii

dξ Eξ E + dξ Sξ S + dξ T ξ T dxdy

=
∫
J j

∫
Ii

dεEξ E + dε Sξ S + dεT ξ T dxdy −
∫
J j

(
�i− 1

2 ,y − �i+ 1
2 ,y

)
dydt +

∫
Ii

(
�̄x, j− 1

2
− �̄x, j+ 1

2

)
dxdt

−
∫
Ii

A J j (ε
E , ξ S ;α2)dxdt +

∫
J j

AIi (ε
E , ξ T ;−α1)dydt, (3.22)

where

� = (1
2

+ α1
)
(ξ T )+(ξ E)− + (1

2
− α1
)
(ξ T )−(ξ E)+, �̄ = (1

2
+ α2
)
(ξ S)−(ξ E)+ + (1

2
− α2
)
(ξ S)+(ξ E)−.

By Itô’s lemma, we have

d(ξ E)2 = 2dξ Eξ E + d〈ξ E , ξ E 〉t, d(ξ S)2 = 2dξ Sξ S + d〈ξ S , ξ S〉t, d(ξ T )2 = 2dξ T ξ T + d〈ξ T , ξ T 〉t .

Following the exact same analysis as shown in the proof of Theorem 2.3, we have∫
J j

∫
Ii

d〈ξ E , ξ E 〉tdxdy ≤ C
∑

m

γm

∫
J j

∫
Ii

(P−α1,α2(em(x, y)) − em(x, y))2dxdydt,

∫
J j

∫
Ii

d〈ξ S , ξ S〉tdxdy ≤ C
∑

m

γm

∫
J j

∫
Ii

(P−α2
y (em(x, y)) − em(x, y))2dxdydt,

∫
J j

∫
Ii

d〈ξ T , ξ T 〉tdxdy ≤ C
∑

m

γm

∫
J j

∫
Ii

(Pα1
x (em(x, y)) − em(x, y))2dxdydt.

Therefore, by summing over all the cells Ii × J j in (3.22) and applying the superconvergence property in Lemma 3.1, we 
obtain

1

2

∫
J

∫
I

d(ξ E)2 + d(ξ S)2 + (dξ T )2dxdy

= 1

2

∫
J

∫
I

(d〈ξ E , ξ E 〉t + d〈ξ S , ξ S〉t + d〈ξ T , ξ T 〉t)dxdy +
∫
J

∫
I

dξ Eξ E + dξ Sξ S + dξ T ξ T dxdy

≤
∫
J

∫
I

dεEξ E + dε Sξ S + dεT ξ T dxdy + Chk+1(‖ξ T ‖ + ‖ξ S‖)dt

+ C
∑

m

γm
(‖P−α1,α2(em) − em‖2 + ‖Pα1

x (em) − em‖2 + ‖P−α2
y (em) − em‖2)dt.

(3.23)

Integrating (3.23) over t , applying the projection error property and Young’s inequality, we can show that

‖ξ E‖2 +‖ξ S‖2 +‖ξ T ‖2 ≤ C

t∫
0

‖ξ E(x, y, s)‖2 +‖ξ S(x, y, s)‖2 +‖ξ T (x, y, s)‖2ds + Ch2k+2+C
∑

m

γm‖em‖2
Hk+1 h2k+2.

Applying the Gronwall’s inequality and combining with the optimal projection error yields the desired optimal error esti-
mate (3.15). �
3.3. Multi-symplectic structure

Similar to the 1D case, to rewrite the two-dimensional stochastic Maxwell equations (3.1) in the multi-symplectic form. 
Following the idea in [11], we introduce the new variables such that

du = Edt, dv = Sdt, dw = T dt, P = T − 1

2
ux, Q = S + 1

2
u y, R = E − 1

2
wx + 1

2
v y,

and the system (3.1) becomes
17
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
2 ux = P − T ,

1
2 u y = Q − S,

− 1
2 wx + 1

2 v y = R − E,

−dP + 1
2 Exdt = −λ2dWt,

−dQ − 1
2 E ydt = −λ2dWt ,

−dR + 1
2 Txdt − 1

2 S ydt = λ1dWt,

dw = T dt,

dv = Sdt,

du = Edt.

(3.24)

We set z = (T , S, E, w, v, u, P , Q , R)T , and define

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

K1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 − 1
2 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 − 1

2 0 0 0 0 0
0 0 1

2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1
2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, K2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 1

2 0 0 0
0 0 0 0 1

2 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 − 1

2 0 0 0 0 0 0
0 − 1

2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

S1 = P T + Q S + R E − T 2 + S2 + E2

2
, S2 = λ1u − λ2(w + v),

therefore, the two-dimensional stochastic Maxwell equations (3.1) can be rewritten in the following multi-symplectic system

Mdz + K1zxdt + K2zydt = ∇ S1(z)dt + ∇ S2(z)dWt . (3.25)

Its variational equation takes the form

MdZ + K1 Zxdt + K2 Z ydt = ∇2 S1(z)Zdt. (3.26)

Let U , V be any solution to the variational equation (3.26), and define ω = MU · V , κx = K1U · V , κy = K2U · V , then we 
can derive the multi-symplectic conservation law given by

dω + κxdt + κydt = 0.

Since the new system (3.24) is equivalent to the original model (3.1), we can rewrite the proposed DG methods (3.2)-(3.4)
into a consistent formulation for the system (3.24). For Eh, Sh, Th defined in (3.2) - (3.4), find wh, vh, uh ∈V k

h , such that 
for all ψ, ψ̄, ψ̃ ∈V k

h , it holds that∫
J j

∫
Ii

dwhψdxdy =
∫
J j

∫
Ii

Thψdxdy dt, (3.27)

∫
J j

∫
Ii

dvhψ̄dxdy =
∫
J j

∫
Ii

Shψ̄dxdy dt, (3.28)

∫
J j

∫
Ii

duhψ̃dxdy =
∫
J j

∫
Ii

Ehψ̃dxdy dt, (3.29)
18
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which leads to the fact that dwh = Thdt, dvh = Shdt, duh = Ehdt . Next, find Ph, Q h, Rh ∈V k
h such that for any ϕ, ϕ̃, ϕ̄ ∈

V k
h , it holds that∫

J j

∫
Ii

(Ph − Th)ϕdxdy = 1

2

∫
J j

(∫
Ii

uhϕxdx − (̂uhϕ
−)i+ 1

2 ,y + (̂uhϕ
+)i− 1

2 ,y

)
dy, (3.30)

∫
J j

∫
Ii

(Q h − Sh)ϕ̄dxdy = −1

2

∫
Ii

(∫
J j

uhϕ̄ydy − (̂uhϕ̄
−)x, j+ 1

2
+ (̂uhϕ̄

+)x, j− 1
2

)
dx, (3.31)

∫
J j

∫
Ii

(Rh − Eh)ϕ̃dxdy = 1

2

∫
J j

(∫
Ii

whϕ̃xdx − (ŵhϕ̃
−)i+ 1

2 ,y + (ŵhϕ̃
+)i− 1

2 ,y

)
dy

− 1

2

∫
Ii

(∫
J j

vhϕ̃ydy − (̂vhϕ̃
−)x, j+ 1

2
+ (̂vhϕ̃

+)x, j− 1
2

)
dx, (3.32)

where the numerical fluxes are chosen as

(̂uh)x0,y = ({uh} − 2m1[uh])x0,y, (ŵh)x0,y = ({wh} − 2n1[wh])x0,y, mn, n2 ∈ R with m1 − n1 = α1,

(̂uh)x,y0 = ({uh} + 2m2[uh])x,y0 , (̂vh)x,y0 = ({vh} + 2n2[uh])x,y0 , mn, n2 ∈ R with m2 − n2 = α2.

By combining the derivative of (3.30)-(3.32) with the equations (3.2)-(3.4), we obtain∫
J j

∫
Ii

dPhφdxdy = −1

2

∫
J j

(∫
Ii

Ehφxdx − (̂Ehφ
−)i+ 1

2 ,y + (̂Ehφ
+)i− 1

2 ,y

)
dydt + λ2

∫
J j

∫
Ii

φdWtdxdy,

∫
J j

∫
Ii

dQ hφ̄dxdy = 1

2

∫
Ii

(∫
J j

Ehφ̄ydy − (̂Ehφ̄
−)x, j+ 1

2
+ (̂Ehφ̄

+)x, j− 1
2

)
dxdt + λ2

∫
J j

∫
Ii

φ̄dWtdxdy,

∫
J j

∫
Ii

dRhφ̃dxdy = −1

2

∫
J j

(∫
Ii

Thφ̃xdx − (T̂hφ̃
−)i+ 1

2 ,y + (T̂hφ̃
+)i− 1

2 ,y

)
dy (3.33)

+ 1

2

∫
Ii

(∫
J j

Shφ̃ydy − (̂Shφ̃
−)x, j+ 1

2
+ (̂Shφ̃

+)x, j− 1
2

)
dx − λ1

∫
J j

∫
Ii

φ̃dWtdxdy,

where the numerical fluxes are

(T̂h)x0,y = ({Th} + 2m1[Th])x0,y, (̂Eh)x0,y = ({Eh} + 2n1[Eh])x0,y,

(̂Eh)x,y0 = ({Eh} − 2n2[Eh])x,y0 , (̂Sh)x,y0 = ({Sh} − 2m2[Sh])x,y0 .

Combining (3.27)-(3.33), we have derived the equivalent formulation of the DG scheme (3.2)-(3.4) for the new system (3.25): 
find zh ∈ (V k

h )9, such that for all ϕ ∈ (V k
h )9, we have∫

J j

∫
Ii

Mdzh · ϕdxdy −
∫
J j

(∫
Ii

K1zh · ϕxdx − (̂K1zh · ϕ−)
i+ 1

2 ,y + (̂K1zh · ϕ+)
i− 1

2 ,y

)
dydt

−
∫
Ii

(∫
J j

K2zh · ϕ ydy − (̂K2zh · ϕ−)
x, j+ 1

2
+ (̂K2zh · ϕ+)

x, j− 1
2

)
dxdt

=
∫
J j

∫
Ii

∇ S1(zh) · ϕdxdydt +
∫
J j

∫
Ii

∇ S2(zh) · ϕdWtdxdy, (3.34)

where (̂K1zh)x0,y = (K1{zh} + A1[zh])x0,y , and (̂K2zh)x,y0 = (K2{zh} + A2[zh])x,y0 ,
19
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A1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 m1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 n1 0 0 0 0 0
0 0 n1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

m1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, A2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 m2 0 0 0
0 0 0 0 n2 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 n2 0 0 0 0 0 0
0 m2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Applying the exterior derivative to this scheme (3.34) leads to the variation equation∫
J j

∫
Ii

MdZh · ϕdxdy −
∫
J j

(∫
Ii

K1 Zh · ϕxdx − (̂K1 Zh · ϕ−)
i+ 1

2 ,y + (̂K1 Zh · ϕ+)
i− 1

2 ,y

)
dydt (3.35)

−
∫
Ii

(∫
J j

K2zh · ϕ ydy − (̂K2 Zh · ϕ−)
x, j+ 1

2
+ (̂K2 Zh · ϕ+)

x, j− 1
2

)
dxdt =

∫
J j

∫
Ii

∇2 S1 Zh · ϕdxdydt,

Theorem 3.4 (Conservation of multi-symplecticity). Let Uh, Vh be any solutions to the variational equation (3.35), we have the 
semi-discrete version of the multi-symplectic conservation laws∫

J j

∫
Ii

d(MUh · Vh)dx −
∫
J j

(
FK1(Uh, Vh)i+ 1

2 ,y −FK1(Uh, Vh)i− 1
2 ,y

)
dydt

−
∫
Ii

(
FK2(Uh, Vh)x, j+ 1

2
−FK2(Uh, Vh)x, j− 1

2

)
dxdt = 0. (3.36)

The proof follows the same idea as that of Theorem 2.4, and is skipped here to save space.

4. Symplectic time discretization

In this section, we discuss the symplectic temporal discretization for the semi-discrete DG methods presented in the 
previous section.

In the one-dimensional case, we can set ηh |I j =∑k
l=0 ηl

jϕ
l
j , uh|I j =∑k

l=0 ul
jϕ

l
j , with the set {ϕl

j} being the basis of V k
h , 

and introduce the notations

p = (η0
1, · · · , ηk

1, η
0
2, · · · , ηk

2, · · · , ηk
J )

T , q = (u0
1, · · · , uk

1, u0
2, · · · , uk

2, · · · , uk
J )

T .

In the two-dimensional case, we consider

Eh|Ii× J j =
k2+2k∑

l=0

El
i, jϕ

l
i, j, Sh|Ii× J j =

k2+2k∑
l=0

Sl
i, jϕ

l
i, j, Th|Ii× J j =

k2+2k∑
l=0

T l
i, jϕ

l
i, j,

where {ϕl
i, j} is the basis of V k

h . Define

Ei, j = (E0
i, j, E1

i, j, · · · , Ek2+2k
i, j )T ,

Eh = (E1,1, E2,1, · · · , E I,1, E1,2, · · · , E I, J
)T

,

and similarly for Sh , T h , and then introduce the notations

p = Eh, q = (Sh, T h)
T .

With these notations, either the one-dimensional scheme (2.2)-(2.3) or the two-dimensional method (3.2)-(3.4) can be 
simplified into the following stochastic differential equations

dp = Aq + L
∞∑

m=1

dBm(t), dq = Bp + N
∞∑

m=1

dBm(t),
20
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where A, B, L, N are some constant matrices which may take different values in 1D or 2D setting. In this section, it is 
sufficient to consider the simplified version of it

dp = Aq + LdBt, dq = Bp + NdBt, (4.1)

where Bt is a Brownian motion.

Remark 4.1. As studied in [29, Theorem 4.1], a suitable symplectic Runge-Kutta time integration, combined with the DG 
spatial discretization, leads to a multi-symplectic scheme for HPDEs which is equivalent to a time-space PRK scheme for 
this model. Therefore, two symplectic temporal integration methods will be discussed below.

4.1. Symplectic Euler method

We let 0 = t0 ≤ t1 ≤ · · · ≤ tN = T be a partition of the time interval [0, T ]. By setting τ = tk+1 − tk , and �Bk = Btk+1 −Btk , 
the symplectic Euler methods for the system (4.1) are given by

pk+1 = pk + τ Aqk + L�Bk, qk+1 = qk + τ Bpk+1 + N�Bk. (4.2)

Following the studies in [22], we have the following result:

Theorem 4.1. Symplectic Euler method (4.2) has the first mean-square order of convergence.

4.2. Partitioned Runge-Kutta method

Consider the two-stage symplectic PRK methods [22] for the system (4.1) of the form

Q1 = qk + N
(

Jk + 1√
2
�Bk

)
P1 = pk + 1

4
τ AQ1 + L

(
Jk + 1

2
√

3
�Bk

)
,

Q2 = qk + 2

3
τ BP1 + �Bk N

(
Jk − 1

3
√

2
�Bk

)
,

P2 = pk + τ
(1

4
AQ1 + 3

4
AQ2

)
+ L
(

Jk − 1√
3
�Bk

)
,

pk+1 = pk + L�Bk + τ
(1

4
AQ1 + 3

4
AQ2

)
qk+1 = qk + N�Bk + τ

(2

3
BP1 + 1

3
BP2

)
,

(4.3)

where

τ = tk+1 − tk, �Bk = Btk+1 − Btk , Jk = 1

τ

tk+1∫
tk

Bs − Btk ds.

The random variables �Bk and Jk are modeled numerically at each step following the approach discussed in [15], where a 
new process

v(s) = Wtk+τ s − Wtk√
τ

, 0 ≤ s ≤ 1

is introduced and we have �Bk = √
τ v(1) and Jk = √

τ 3
∫ 1

0 v(s)ds. Therefore, they can be computed numerically by solving 
for v(s) numerically, and we refer to [15, Section 4.2.2] for the details of the implementation.

In order to analyze the convergence rate of the PRK methods (4.3), we recall the following theorem in [20, Theorem 1.1].

Theorem 4.2. Consider a general system of stochastic differential equation

dX = a(t, X)dt +
m∑

r=1

br(t, X)dBr(t), (4.4)

where X, a and br are column vectors defined on t ∈ [t0, T ], and Br are independent standard Brownian motions, and let Xt,x(t + τ )

be a one-step approximation satisfying that for any t0 ≤ t ≤ T − τ ,
21
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∣∣∣∣∣E(Xt,x(t + τ ) − Xt,x(t + τ )
)∣∣∣∣∣≤ K (1 + |x|2)1/2τ p1 , (4.5)

(
E
∣∣∣Xt,x(t + τ ) − Xt,x(t + τ )

∣∣∣2)1/2

≤ K (1 + |x|2)1/2τ p2 . (4.6)

Let p2 ≥ 1
2 , p1 ≥ p2 + 1

2 , then for any N and k = 0, 1, · · · , N, the following result holds:(
E
∣∣∣Xt0,X0(tk) − Xt0,X0(tk)

∣∣∣2)1/2

≤ K (1 +E|X0|2)1/2τ p2− 1
2 . (4.7)

The following Lemma, which is also studied in [21, Lemma 2.1], is a direct result of Theorem 4.2 and will be useful in 
our analysis.

Lemma 4.1. Let the one-step approximation Xt,x(t + τ ) satisfies the conditions of Theorem 4.2, and suppose that another one step 
approximation ̃Xt,x(t + τ ) satisfies∣∣∣∣∣E( X̃t,x(t + τ ) − Xt,x(t + τ )

)∣∣∣∣∣= O (τ p1), (4.8)

(
E
∣∣∣ X̃t,x(t + τ ) − Xt,x(t + τ )

∣∣∣2)1/2

= O (τ p2), (4.9)

with the same p1 and p2 as in Theorem 4.2, then the mean-square order of accuracy for ̃Xt,x(t +τ ) is also p2 −1/2, same as Xt,x(t +τ ).

We have the following main result on the convergence rate of the PRK method (4.3).

Theorem 4.3. The explicit PRK method (4.3) for the system (4.1) has the mean-square order of 2.

Proof. According to [14, Section 10.5], the following one-step approximation for the system (4.1) has the mean-square order 
2:

pk+1 = pk + τ Aqk + 1

2
τ 2 ABpk + τ AN Jk + L�Bk, (4.10)

qk+1 = qk + τ Bpk + 1

2
τ 2 B Aqk + τ BL Jk + N�Bk, (4.11)

which will be used as a reference method.
The PRK method (4.3) can be rewritten as

pk+1 = pk + τ Aqk + 1

2
τ 2 ABpk + τ AN Jk + L�Bk + 1

2
τ 2 ABL

(
Jk + 1

2
√

3
�Bk

)
+ O (τ 3),

qk+1 = qk + τ Bpk + 1

2
τ 2 B Aqk + τ BL Jk + N�Bk + 1

2
τ 2 B AN

(
Jk + 1

3
√

2
�Bk

)
+ O (τ 3).

Notice that

E Jk =E�Bk = 0, E( Jk)
2 = τ

3
, E(�Bk)

2 = τ ,

which, by Young’s inequality, leads to

E
(

Jk + 1

2
√

3
�Bk

)2 ≤ CE( Jk)
2 + CE(�Bk)

2 = O (τ ).

Therefore, we have∣∣∣∣∣E(pk+1 − pk+1
)∣∣∣∣∣= O (τ 3),

E
(

pk+1 − pk+1
)2 = E

(1
τ 2 ABL

(
Jk + 1√ �Bk

)
+ O (τ 3)

)2 = O (τ 5),

2 2 3
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Table 5.1
Numerical error and convergence rates of 1D case when k = 1.

Nx Nt ‖eu‖ order ‖eη‖ order

20 600 0.01295 0 0.01725 0
40 1200 3.201E-3 2.0162 4.281E-3 2.0106
80 2400 7.851E-4 2.0276 1.083E-3 1.9829
160 4800 1.958E-4 2.0036 2.714E-4 1.9966

Table 5.2
Numerical error and convergence rates of 1D case when k = 2.

Nx Nt ‖eu‖ order ‖eη‖ order

20 600 3.176E-4 0 4.407E-4 0
40 1200 3.958E-5 3.0045 5.486E-5 3.0061
80 2400 4.920E-6 3.0081 6.874E-6 2.9964
160 4800 6.144E-7 3.0013 8.645E-7 2.9912

which leads to(
E
(

pk+1 − pk+1
)2
)1/2

= O (τ 5/2).

Following a similar approach, we also have∣∣∣∣∣E(qk+1 − qk+1
)∣∣∣∣∣= O (τ 3),

(
E
(

qk+1 − qk+1
)2
)1/2

= O (τ 5/2).

Therefore, by applying the result of Lemma 4.1, the PRK method (4.3) has mean-square order of 2. �
Remark 4.2. The PRK scheme (4.3) was shown in [22] to have the mean-square order of 3/2 for general system. For this 
linear system (4.1), it can be shown to have second order mean-square convergence rate.

5. Numerical experiments

The numerical results of the DG scheme is presented in this section to demonstrate the performance of the proposed 
methods. We consider the DG method with various polynomial degree k as the spatial discretization, and utilize the PRK 
method (4.3) for temporal discretization. The accuracy tests are provided for both 1D case and 2D case to demonstrate the 
convergence rate of the methods, and the linear growth of discrete energy is also studied for both cases.

5.1. Accuracy test

5.1.1. Example 1
For the one-dimensional system (2.1) with periodic boundary conditions, we set λ1 = λ2 = 1, and choose Wt = Bt , which 

is the standard Brownian motion, so that one exact solution to (2.1) takes the form{
η = sin(x − t) + cos(x + t) − Bt

u = sin(x − t) − cos(x + t) + Bt .
(5.1)

The computational domain is [0, 2π ] and the final time is set to T = 3. Initial conditions for η(x, 0) and u(x, 0) are 
obtained by letting t = 0 in (5.1). We use Nx and Nt to denote number of spatial cells and temporal steps respectively. 
Table 5.1 and Table 5.2 demonstrates the order of convergence rate for the case k = 1 and k = 2 respectively, where �t
is chosen to be small enough to ensure that the spatial error dominates. Under both cases, we can observe the optimal 
convergence orders, i.e., (k +1)-th order of accuracy, which is consistent with the result in Theorem 2.3 for the semi-discrete 
method. Note that the second order temporal discretization is used for both cases, therefore, one would expect a second 
order convergence even coupled with third order DG spatial discretization. This second order convergence is observed in 
Table 5.3, when larger �t is used.

5.1.2. Example 2
Next, we consider the two-dimensional stochastic Maxwell equations (3.1) with periodic boundary conditions. Set λ1 =

λ2 = 1, and choose Wt = Bt , then the exact solution to (3.1) takes the form
23
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Table 5.3
Numerical error and convergence rates of 1D case when k = 2 with larger �t .

Nx Nt ‖eu‖ order ‖eη‖ order

20 60 5.6019E-4 0 5.3547E-4 0
40 120 1.2175E-4 2.2020 9.5595E-5 2.4858
80 240 2.9228E-5 2.0585 2.0804E-5 2.2000
160 480 7.2337E-6 2.0145 4.9803E-6 2.0626

Table 5.4
Numerical error and convergence rates of 2D case when k = 1.

Nx Ny Nt ‖eE‖ order ‖eS ‖ order ‖eT ‖ order

20 20 200 0.02715 0 0.01749 0 0.01749 0
40 40 400 6.617E-3 2.0366 4.466E-3 1.9696 4.466E-3 1.9696
80 80 800 1.634E-3 2.0176 1.129E-3 1.9839 1.129E-3 1.9839
160 160 1600 4.061E-4 2.0086 2.839E-4 1.9918 2.839E-4 1.9918

Table 5.5
Numerical error and convergence rates of 2D case when k = 2.

Nx Ny Nt ‖eE‖ order ‖eS ‖ order ‖eT ‖ order

20 20 200 8.529E-4 0 5.899E-4 0 5.899E-4 0
40 40 400 9.980E-5 3.0952 7.061E-5 3.0628 7.061E-5 3.0628
80 80 800 1.253E-5 2.9939 9.119E-6 2.9529 9.119E-6 2.9529
160 160 1600 1.521E-6 3.0422 1.137E-6 3.0038 1.137E-6 3.0038⎧⎪⎨⎪⎩

E = sin(x + t) − cos(y + t) − Bt,

S = cos(y + t) + Bt,

T = sin(x + t) + Bt .

(5.2)

The spatial domain is set to be [0, 2π ]2, and the final stopping time is taken to be T = 1. The initial conditions of E, S, T
can be obtained by setting t = 0 in the exact solutions (5.2). We use Nx and Nt to denote number of spatial cells and 
temporal steps respectively. The numerical errors and the corresponding convergence rates are shown in Table 5.4 for k = 1
and in Table 5.5 for k = 2. Under both cases, we can observe the optimal convergence orders, i.e., (k + 1)-th order of 
accuracy, which matches the analysis in Theorem 3.3 for the semi-discrete method.

5.1.3. Example 3
Finally in this section we consider the one-dimensional system (2.1) with space-time mixed noise and periodic boundary 

condition. Let λ1 = λ2 = 1 and consider the initial condition{
η(x,0) = sin(x) + cos(x),

u(x,0) = sin(x) − cos(x).

The computational domain is I = [0, 2π ] and we set final time T = 0.1. Wt is the space-time mixed Wiener process defined 
as

Wt =
∞∑

m=1

√
1

m3

sin(mx)√
π

Bm, (5.3)

which is truncated by taking the sum over m up to 100 numerically.
Since the exact solution is not available, we compute a set of reference solutions uref , ηref using the refined 10240

spatial computational cells and 102400 time steps. We first generate the random variables �Bref
k and J ref

k = 1
τ ref

∫ tk+1
tk

Bs −
Btk ds on each refined time step. The same discretized Brownian path, but with (a large) time step size τ , is used to compute 
the numerical solution. For example, assuming the time interval [tk, tk + τ ] with larger τ can be written as [tk, tk + rτ ref ], 
we can evaluate �Bk , Jk from the reference ones, by observing that

�Bk =
r−1∑
i=0

�Bref
k+i, Jk = 1

τ

r−1∑
i=0

tk+i+1∫
tk+i

Bsds − Btk = 1

τ

r−1∑
i=0

(
τ ref ( J ref

k+i + Btk+i )
)

− Btk .

Table 5.6 shows the numerical errors and the corresponding convergence rates for the case k = 2, and we can observe the 
optimal rate of convergence (k + 1 th order of accuracy) for this case with space-time mixed noise, which is consistent with 
the analytical result in Theorem 2.3.
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Table 5.6
Numerical error and convergence rates of 1D case when k = 2 for space-time mixed noise.

Nx Nt ‖eu‖ order ‖eη‖ order

320 3200 7.9988E-4 0 8.1094E-4 0
640 6400 9.5457E-5 3.0688 8.9730E-5 3.1759
1280 12800 1.2232E-5 2.9642 1.1932E-5 2.9107
2560 25600 1.4548E-6 3.0719 1.4801E-6 3.0112

Fig. 5.1. Averaged energy with different sizes of noise for 1D case. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

5.2. Averaged energy growth

The discrete energy law satisfied by the numerical solutions uh and ηh was studied in Theorem 2.2 for the one-
dimensional system. Under the same setup of initial condition, noise and boundary condition as in Example 1 and Example 
2 in Section 5.1, we simulate the system up to the final stopping time T = 3, with the time step size �t = 0.0075 and 80 
space meshes. In this test, we run the simulations with 2000 samples, and take the average to approximate the expectation 
and compute the averaged energy. Fig. 5.1 shows the time history of the averaged energy of our numerical solutions to-
gether with exact solutions with different noise size λ1,2, from which we can observe that the averaged energy of numerical 
solutions is almost linear with respect to time. Note that when λ1 = λ2 = 0, the global energy is preserved exactly on the 
discrete level. When the noise sizes λ1,2 increase, the linear growth rate of the discrete energy also increases. The slopes of 
the discrete energy in Fig. 5.1 (b-d) can be computed via least square fitting, and are approximately 0.1228, 3.085, 12.987 
respectively. They are proportional to λ2

1 + λ2
2, which is consistent with the result in Theorem 2.2. From Fig. 5.1 we can also 

observe that the discrete energy growth is very close to the exact energy growth.
Similarly, Theorem 3.2 studied the discrete energy law satisfied by the numerical solutions Eh , Sh and Th for the two-

dimensional system. For this example we simulate the system up to the final stopping time T = 1, with the time step size 
�t = 0.0025 and 80 × 80 space meshes. In this test, we run the simulations with 1000 samples, and take the average to 
approximate the expectation and compute the averaged energy. Fig. 5.2 shows the time history of the averaged energy of our 
numerical solutions and exact solutions with different noise size λ1,2, from which we can observe that the averaged energy 
is almost linear with respect to time, and the lines are very close to those of exact solutions. Note that when λ1 = λ2 = 0, 
the global energy is preserved exactly on the discrete level. When the noise sizes λ1,2 increase, the linear growth rate of 
25
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Fig. 5.2. Averaged energy with different sizes of noise for 2D case.

the discrete energy also increases. The slopes of the lines in Fig. 5.2 (b-d) can be computed via least square fitting, and are 
approximately 1.1413, 28.500, 115.08, respectively. They are proportional to λ2

1 + λ2
2, which is consistent with the result in 

Theorem 3.2.

5.3. Test with noises of various sizes

In this example, we consider the two-dimensional system (3.1), and use the initial conditions studied in [2]:⎧⎪⎨⎪⎩
E(x, y,0) = sin(3πx) sin(4π y),

S(x, y,0) = − 4
5 cos(3πx) cos(4π y),

T (x, y,0) = − 3
5 sin(3πx) cos(4π y),

with I × J = [0, 23 ] × [0, 12 ]. The final stopping time is set as T = 1. Following the definition (1.5), we construct the Wiener 
process as

Wt =
∞∑

m,n=1

2

√
3

m3 + n3
sin
(3

2
mπx
)

sin
(

2nπ y
)
Bm,n(t), (5.4)

and truncate the sum (5.4) by taking the sum over m, n from 1 to 50.
In this example, the mesh sizes �x = �y = 0.0083 and time step size �t = 0.00083 are considered. In order to show 

the effect of noise with various sizes on the numerical solution, we run the simulations with four sets of parameters: 
λ1,2 = 0, 0.01, 0.05, 0.07. The contour plots of the numerical solution Sh with these choices of noises are shown in Fig. 5.3. 
The 3D plots of Th are also provided in Fig. 5.4. It can be observed from these figures that the perturbation of the numerical 
solutions becomes more and more obvious as the size of the noise grows.

5.4. Long-time behavior of solutions

In this example, we consider the one-dimensional model (2.1) with periodic boundary conditions and Wt = Bt , and one 
possible traveling wave solution takes the form
26



Fig. 5.3. Contour plots of Sh(x, y) with different sizes of noise for the test in Section 5.3. 8 uniformly spaced contour lines within the range [−0.8, 0.8] are 
used. {

η(x, t) = sech2(5(x − t) − 15) − λ1Bt,

u(x, t) = sech2(5(x − t) − 15) + λ2Bt .
(5.5)

The computation domain is set to be [0, 6], with the mesh size �x = 0.0375, and �t = 0.003125. The initial condition is 
chosen to be the exact solution (5.5) with t = 0.

Fig. 5.5 shows the time history of the waveform numerical solutions uh running up to final time T = 28 (almost 5 
periods). We can observe that when there is no noise (λ1 = λ2 = 0), the shape and height of the wave does not change 
during the simulation, and when small noise exists (λ1 = λ2 = 0.1), the height of the wave is impacted by the noise.

Fig. 5.6 demonstrates the comparison of the numerical solution and the exact solution at different times. We choose 
λ1 = λ2 = 0.1, and run the simulation until T = 103. From Fig. 5.6 we can that the numerical solution almost coincides with 
the exact solution at different times, which means that our multi-symplectic DG scheme can preserve the shape and height 
of the wave accurately for a long time.

6. Conclusion remark

In this paper we have developed and analyzed the DG scheme for the one- and two-dimensional stochastic Maxwell 
equations with additive noise. The proposed methods are shown to satisfy the discrete form of the stochastic energy linear 
growth property. The optimal error estimate of the semi-discrete methods is also proven analytically. By introducing auxil-
iary variables, we also rewrite the stochastic Maxwell equations into the multi-symplectic structure and demonstrate that 
the proposed DG methods preserve the multi-symplectic structure. The semi-discrete methods are then combined with the 
symplectic Euler or PRK temporal discretization methods. Numerical experiments are provided to test the performance of 
the resulting methods, and optimal error estimates and linear growth of the discrete energy can be observed for all cases.
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Fig. 5.4. 3D plots of Th(x, y) with different sizes of noise for the test in Section 5.3.

Fig. 5.5. 3D plots of the time history of the waveform of numerical solutions with or without noise.
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Fig. 5.6. Comparison between numerical solutions and exact solutions at different times.
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