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Abstract. We propose a universal discontinuity detector using convolution neural net-
work (CNN) and apply it in conjunction of solving nonlinear conservation laws in both
1D and 2D. The CNN detector is trained offline with synthetic data. The training data
are generated using randomly constructed piecewise functions, which are then pro-
cessed using randomized linear advection solver to count for the cases of numerical
errors in practice. The detector is then paired with high-order numerical solvers. In
particular, we combined high-order WENO in troubled cells with high-order central
difference in smooth region. Extensive numerical examples are presented. We observe
that the proposed method produces notably sharper and cleaner signals near the dis-
continuities, when compared to other well known troubled cell detector methods.
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1 Introduction

One of the challenges for solving nonlinear hyperbolic conservation laws is that even
with smooth initial data, the solution may develop discontinuities in finite time. Without
an appropriate treatment near the discontinuities, a high-order numerical scheme may
generate spurious Gibbs oscillations and may even converge to an entropy-violating so-
lution. The mesh cells containing low regularity of the solution are called “troubled
cells.” Capture of these cells is crucial in simulations, and its corresponding numerical
techniques are referred to as troubled cell indicators or shock detectors in the literature.
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Various shock detection techniques have been developed and studied. Some are de-
veloped for finite volume or discontinuous Galerkin (DG) schemes and are used in the
form of suitable limiters, see, for example, the minmod-based TVB limiter [4], the mo-
ment limiter of Biswas et al. [2] and its modification [3], the monotonicity-preserving lim-
iter [32] and its modification [27], the KXRCF shock-detection technique by Krivodonova
et al. [17], and the troubled cell indicator of Fu and Shu [8]. Some of the other shock de-
tection techniques are aimed at improving the numerical performance when high-order
essentially non-oscillatory (ENO) or weighted ENO (WENO) type approximations are
used. See, for example, multi-resolution (MR) analysis of Harten [10], strong troubled
cell indicator of Xu and Shu [37], etc. There have been extensive studies of these shock
detection techniques in the literature, and we refer to [24] for a thorough numerical com-
parison in the context of DG methods and also [21] for hybrid finite difference methods.

Besides these traditional shock detection techniques, there are a few recent work on
identifying troubled cells using artificial neural networks (ANNs). Compared with classi-
cal indicators, the neural network based indicators are usually free of problem-dependent
parameters and are able to avoid certain mislabels, such as smooth extrema in minmod-
based indicators. In [25], Ray and Hesthaven proposed to train a multi-layer perceptron,
based on a supervised learning strategy, as a troubled cell indicator for DG methods. Its
generalization to two-dimensional problems on unstructured grids was studied in [26].
In [33], the idea has also been pursued by Veiga and Abgrall with the study on trans-
ferred learning for adapting different methods or meshes. In [7], Feng et al. proposed a
characteristic-featured shock wave indicator with one linear hidden layer. Their analysis
shows that the indicator guarantees the only detection of discontinuities caused by char-
acteristic curves compressing or intersecting. In [35], Wen et al. studied the combination
of an ANN based troubled cell indicator and hybrid finite difference WENO methods.

Motivated by [34], our paper pursues the use of the convolution neural network
(CNN) architecture for training the indicator. Widely used in image classification, CNN
employs a series of convolution, pooling, and activation operations, followed by fully
connected layers. The convolutional operations with kernels involved allow for param-
eter sharing and feature sharing, which to some degrees carry out invariance and gen-
eralizability properties when the CNN is well-trained. With those properties, a well-
trained CNN is capable to reliably detect different types of discontinuities as demon-
strated in [34]. Therefore, instead of specifying the local stencil as in some existing work,
we use more global data in a subregion as the input, and rely on the CNN to extract the
relevant information for determining troubled cells. Note that the key for a CNN detec-
tor to be successful is the training procedure, which often involves a large training set.
Therefore, one of the main challenges in this project is to generate appropriate synthetic
data to train our CNNs. We construct the training data in the finite dimensional numer-
ical solution space which may exhibit some different structures near discontinuities, for
instance, either smeared discontinuity or spurious oscillation may be observed. We start
from piecewise smooth functions as the initial condition and apply numerical solvers on
linear advection equations to evolve them for a few time steps to generate the training
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data (paired with the exact discontinuity location). The details are given in Section 3.
As an application, we consider the hybrid finite difference WENO method [5, 6, 9, 20,

23, 28] for solving the hyperbolic conservation laws, and examine the numerical perfor-
mance of the proposed CNN detector. The main idea of the hybrid method is to use the
shock detector to identify the location of troubled cells first, and then apply the sophisti-
cated and robust WENO method [1, 14, 29, 30] near the troubled cells and a simple linear
scheme away from them. In this paper, we particularly consider the conjugation between
the fifth-order WENO method (at troubled cells) and the sixth-order central difference
(in smooth regions). Extensive one- and two-dimensional numerical results are provided
to illustrate the performance of the proposed CNN shock detectors in identifying dis-
continuities. Detailed comparisons with the traditional KXRCF type indicator and MR
indicator are presented, which demonstrate that the CNN based detector tends to pro-
duce cleaner and sharper signal near the discontinuities, and the appropriate threshold
for the indicator tends to be less problem-dependent.

The rest of the paper is organized as follows. In Section 2, we outline the idea of the
CNN indicator and briefly review some of other indicators in the literature. In Section
3, we give detailed explanations on the training of the network and its coupling with
the hybrid finite difference solver in the one-dimensional setting. The two-dimensional
network and hybrid method are presented in Section 4. Extensive numerical examples
are provided in Section 5 and conclusions are given in Section 6.

2 Problem setup and preliminaries

In this paper, we focus on nonlinear conservation laws

ut+∇· f (u)=0, on D⊂R
d, d=1,2. (2.1)

where f is the flux function. Here D is a bounded domain in R
d with D=[a,b] for d=1

and D=[ax,bx]×[ay,by] for d=2. The solutions to (2.1) are usually piecewise continuous
and admit jump discontinuities at finite number of points. In a finite difference scheme,
we use grid functions associated with a mesh partition to approximate the solutions. For
the one-dimensional case, the domain D is partitioned with a set of grid points, S={xi=
(a+ih): i∈{0,1,··· ,N}}, where h is the mesh size. We also use the notation Ii+ 1

2
=[xi,xi+1)

to represent the i-th (mesh) cell. For the two-dimensional case, the set of grid points is
taken as S={(xi,yj)=(ax+ihx ,ay+ jhy) : i∈{0,1,··· ,Nx}, j∈{0,1,··· ,Ny}}. For simplicity,
we consider square meshes only with hx = hy = h. The (i, j)-th (mesh) cell is denoted by
Ii+ 1

2 ,j+ 1
2
=[xi,xi+1]×[yj,yj+1]. At a given time t, the numerical solution is denoted by

uh=uh(t,x), x∈S. (2.2)

The shock detector aims at finding “troubled cells” associated with uh. Its input is a grid
function uh and its output is a list of detected troubled cells.
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2.1 CNN detector

Our work on the development of CNNs for shock detection is motivated by the CNN
jump detectors studied in [34], in which the detectors are developed to detect jump dis-
continuities of a function based on the function values on a fixed grid. Similar to [34], our
shock detection procedure is based on a one-step CNN detector for one-dimensional de-
tection (d=1) and a two-step CNN detector for two-dimensional detection (d=2). Each
of the CNNs constructed consists of an input layer, an output layer, and multiple hid-
den layers such as convolutional layers, pooling layers, and fully connected layers (see
Section 2.2 in [34]) where the activation function is the rectified linear unit (ReLU).

For the one-step CNN detector, let η = (η1,··· ,ηN) be a binary vector indicating the
ground truth cell labels, where ηi=1 if the i-th cell contains a shock, and ηi=0 otherwise.
Here we construct a detector that first standardizes the numerical PDE solution values in
uh and feeds them into a CNN to obtain an output vector of N real values,

η̂=(η̂1,··· ,η̂N)=N (ũh),

as an estimate of the ground truth η, where

ũh= ũh(t,x)=
uh(t,x)−µt

σt
, x∈S,

denotes the set of standardized function values, µt and σt denote the mean and standard
deviation of uh, respectively. Then, the detector labels each of i-th cell a trouble cell if
η̂i>th, where the threshold th=0.2 is used in our experiments. See Fig. 1 for an illustration
of the shock detection algorithm.

Figure 1: Diagram for the one-step method for discontinuity detection. ũh denotes the standardized vector of
uh.
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Figure 2: Diagram for the two-step method for discontinuity detection. ũh and ũ
(k,s)
h denote the standardized

vectors of uh and u(k,s), respectively.

For the two-step CNN detector, the algorithm also takes the input uh and outputs a
binary matrix to predict the ground truth labels η, but the detection procedure contains
two steps with two CNNs involved to reduce the computational cost. The two-step pro-
cedure is illustrated as follows.

Step 1. Define a coarse uniform grid, where each cell is the union of several neighboring
cells of the original grid. The original cells are now subcells of the coarse cells. As an
example, if the size of the original grid is 101×101, we can choose an 11×11 coarse grid
such that each coarse cell contains 10×10 = 100 subcells (original cells). We can then
construct a one-step CNN detector to detect coarse cells that contain shocks (troubled
coarse cells). Here, we use ξ = {ξk,s} to indicate the ground truth labels, where binary
variable ξk,s =1 denotes that the (k,s)-th coarse cell is a troubled coarse cell. The output
of the CNN is ξ̂={ξ̂k,s} and a coarse cell (k,s) is detected if ξ̂k,s> th1 where the threshold
th1 =0.5 is used in our experiments.

Step 2. Next, we refine our detection by detecting fine troubled cells (subcells that contain
shocks) within each detected coarse cell. The detection of fine troubled cells is operated
on a very small grid – encompassing only the coarse cells. This can be efficiently done
with a one-step CNN detector as discussed above. See Fig. 2 for the diagram of the two-
step method, where within each detected coarse cell indexed by (k,s), the fine cell Ii+ 1

2 ,j+ 1
2

is detected if η
(k,s)
i,j > th2. The threshold th2 used in our experiments is 0.2.
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2.2 Summary of other methods

In this section, we give a brief review on a few existing troubled cell indicators in the
literature, including both the traditional and neural network based indicators. For tradi-
tional troubled cell indicators, we present the KXRCF indicator and MR indicator, which
are among the “best” indicators as studied in [21] and will be compared with our CNN
detector in the numerical tests. For ease of notations, we drop the subscript h and use u
to represent the numerical data within this section and also later in Appendix A.

Traditional Troubled Cell Indicators.

• KXRCF indicator. The KXRCF shock detection technique was proposed by
Krivodonova et al. in [17] for DG method, motivated by its strong superconver-
gence at the outflow cell boundaries in smooth regions. Later, the strategy was
generalized for hybrid finite difference schemes and was shown to be well per-
formed in extensive tests [20–22]. For each cell Ii centered at xi, one first constructs
a pth order interpolation polynomial, denoted by v, using nodal values from the
neighboring cells. We take p = 2 in this paper. Then we evaluate the following
quantity:

κKXRCF
i =

∣∣∣
∫

∂I−i

(
v|Ii

−v|Inb,i

)
ds
∣∣∣

h
3
2 |∂I−i |‖v‖Ii

, (2.3)

where ∂I−i is the inflow portion of the cell boundary, Inb,i is the neighbor of Ii on the
side of ∂I−i , and h is the radius of the circumscribed circle in Ii.

Typically, Ii is marked as a troubled cell if κKXRCF
i >1. While it is reported, a larger

threshold, possibly dependent on h, may provide sharper detecting results [8]. In
this light, we define

ηKXRCF
i =−

logκKXRCF
i

logh
, (2.4)

as the indicator for the mesh cell Ii.

• MR indicator. The MR analysis was introduced by Harten in [10, 11] and then sys-
tematically studied in [12]. Its main idea is to generate approximations of a function
on nested dyadic grids and then locate discontinuities by comparing the coarse
and fine grid values. The MR indicator we particularly concern in this paper is
from [21], which uses this methodology on single-level grids.

κMR
i = |ui−ũi|, with ũi=

1

2
(ui−1+ui+1). (2.5)

Suppose u has q−1 continuous derivatives and a jump discontinuity in its qth
derivative, it is then expected that κMR

i =O(hmin(2,q)). Typically, the cell Ii is marked
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as a troubled cell if κMR
i >εMRh, with a properly chosen εMR. In our paper, to include

h in the cut-off, we instead consider the following indicator

ηMR
i =

κMR
i

h
. (2.6)

Neural Network Based Indicators.

• Indicator of Ray and Hesthaven. It uses the same input as that of the minmod-based
indicators, i.e.,

{ūi−1, ūi, ūi+1, u+
i− 1

2

, u−
i+ 1

2

}, (2.7)

where ūi is the average of u on Ii and u+
i− 1

2

, u−
i+ 1

2

are the right and left limits of u

at xi− 1
2

and xi+ 1
2
, respectively. The indicator is trained using exact functions with

known discontinuities. The generalization to two-dimensional problems on un-
structured grids is pursued in [26].

• Indicator of Veiga and Abgrall. In the indicator proposed by Veiga and Abgrall [33], a
wider class of local features is used as the input for the multilayer perceptron neural
networks. In the one-dimensional case, they are

{
ūi−1, ūi, ūi+1, u+

i− 1
2

, u−
i+ 1

2

, u−
i− 1

2

, u+
i+ 1

2

, ūi−ūi−1,
ūi+1−ūi−1

2
, ūi−ūi−1, h

}
. (2.8)

The data set for training is generated with a DG solver for the advection equation
with different initial conditions. The troubled cells are flagged with a high-order
limiter in [16]. The two-dimensional generalization, along with the transfer learn-
ing strategy, has also been considered.

• Indicator of Wen et al.. In [35], Wen et al. proposed to combine the neural network
shock detection technique with the hybrid finite difference methods. The 5-point
local stencil

{ui−2, ui−1, ui, ui+1, ui+2} (2.9)

is used as the input of the neural network for flagging the discontinuity at xi. The
indicator is trained with data generated from exact functions as those in [25] and is
applied in a dimension-by-dimension manner in two-dimensional simulations.

3 Method description: One-dimensional case

In this section, we present our algorithm in detail. One of the distinct features of our
method is the construction of synthetic training data. Rather than using grid functions,
as in many other existing work, we employ a randomized procedure to cast the training
data into a proper linear subspace where uh resides.



2082 Z. Sun et al. / Commun. Comput. Phys., 28 (2020), pp. 2075-2108

3.1 Randomized construction of training data

Compared with the exact solution u(t,x) of conservation laws, the numerical solution
uh(t,x) may exhibit a few different structures near discontinuities. For example, these
structures may include smearing caused by numerical dissipation and spurious oscil-
lations if an improper spatial difference scheme is chosen. With these in mind, when
preparing the training data, we propose to use numerical solutions as the input to in-
clude the effects, and pair them up with the discontinuities of the exact solutions. The
procedure is briefly outlined below.

Input data: u0 sampling at grid points
−−−−−−−−−−−−→ u0

h
numerical solver
−−−−−−−−→ uh. (3.1a)

Output data: u0 exact solver
−−−−−−→ u

detecting discontinuity
−−−−−−−−−−−−→ η. (3.1b)

Note the discontinuities of uh may locate differently from those of u due to the phase
error in the numerical discretization. To avoid this mismatch, we apply the numerical
solver only for a few steps, so that the difference is negligible.

Following the diagram in (3.1), we construct the grid function uh by solving ut+aux=
0 on D= [−1,1] with one of the following schemes for a random number of time steps.
The simple linear advection equation is chosen so that we know the exact location of the
discontinuity after a few time steps. To simplify the description, we denote by a∼U(A),
if a is a random variable with a uniform distribution on A. The detailed procedure is
given below.

1. (Problem setups) Randomly generate the advection coefficient a∼U({−1,1}), the
number of time step Nt ∼ U({0,··· ,20}), and the spatial discretizations from the
follow methods:

(a) (2l)th order central difference method, with l=1,··· ,4.

(b) (2l−1)th order upwind finite difference method, with l=1,··· ,5.

(c) (2l−1)th order finite difference WENO method, with l=2,··· ,5.

2. (Generate u0) Generate the exact initial function u0 with the following steps.

(a) Randomly select an integer Nd∼U({0,1,2,3}) as the number of discontinuities.

(b) Generate Nd random points, subject to U(D), as locations for discontinuities,
which divide D into (Nd+1) subdomains.

(c) Inside each subdomain, create a random Fourier series

a0+
NF

∑
n=1

(an cos(nx)+bn sin(nx)), (3.2)

where NF∼U({0,··· ,10}) and an,bn are i.i.d. Gaussian random variables N(0,1).
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3. (u0→u0
h) Evaluate the grid function u0

h.

4. (u0
h→uh) Pull u0

h into the range of the numerical solver, by solving ut+aux =0 with
the third-order Runge–Kutta method and the chosen spatial discretization for Nt

steps. h=2/201 and ∆t=h/10 are used in the computation, and the final numerical
solution is denoted by uh.

5. (uh→η) Label the “discontinuity” of uh, by setting ηi=1 if the exact solution u0(x−
aNt∆t) has a discontinuity on Ii+ 1

2
.

3.2 Network training

A one-step CNN is constructed to detect troubled cells from a grid of N=200 cells. The
architecture of the CNN is summarized in Table 1.

Table 1: Architecture of 1D-CNN.

Layer input size kernel size num of kernel stride output size

conv1 202 2 24 1 201×24

conv2 201×24 2×24 24 1 200×24

conv3 200×24 2×24 24 1 199×24

conv4 199×24 2×24 24 1 198×24

conv5 198×24 2×24 24 2 99×24

fully connected 99×24 201

To train the parameters of the CNN, we generate a synthetic dataset of n=1,000,000
grid functions and corresponding labels, {(um

h ,ηm): m=1,··· ,n}, using the generation pro-
cedure in the previous section. The network is trained with Keras API (https://keras.io/),
by using mean squared loss function

1

n

n

∑
m=1

‖ηm−N (ũm
h )‖

2
l2

.

We use 90% of the synthetic data for training and the remaining 10% for validation. The
input is a 202-length vector ũh and the output is a 201-length vector which gives pre-
dictions on each cell (Fig. 1). The training is based on Adam optimization [15] with the
mini-batch size of 5,000 and 1,000 epochs.

In the next subsection, we apply the CNN detector to locate nonsmooth regions (called
buffer zones), of which troubled cells are near the centers. If the troubled cells or their
adjacent cells can be identified, the buffer zones could be well constructed by intervals
with detected cells in the centers. To demonstrate the detection performance in terms of
the application, we generate 1,000 testing functions, produce 1000×201=201,000 cells, of
which 1,481 cells are troubled cells, and then test if our detector can detect the troubled
cells or their adjacent cells. We find that 98.3120% of those troubled cells are detected or
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with at least one adjacent cell detected, and only 0.0546% of normal cells (non-troubled
cells whose adjacent cells also have no discontinuity) are detected or with adjacent cells
detected.

3.3 Hybrid numerical scheme for conservation laws

The semidiscrete finite difference approximation of (2.1) is given by

d

dt
uh(t,xi)+

f̂i+ 1
2
− f̂i− 1

2

h
=0, (3.3)

where f̂i+ 1
2

is the high-order numerical flux. In a hybrid method, one first applies the dis-

continuity indicator to locate the troubled cells. In the smooth region, the flux construc-
tion of an efficient and simple-to-implement high-order method is used. For example, we
will use the sixth-order central difference method in our numerical tests. In this case, we
have

f̂i+ 1
2
=

1

60
fi−2−

2

15
fi−1+

37

60
fi+

37

60
fi+1−

2

15
fi+2+

1

60
fi+3, (3.4)

where fi+l = f (uh(t,xi+l)), l=−2,··· ,3. In the nonsmooth region near the troubled cells,
the more sophisticated WENO approximations will be used. We refer to [29] for detailed
descriptions of WENO methods. Finally, the numerical solution is updated along with a
strong-stability-preserving (SSP) time discretization of (3.3). For example, if we denote
(3.3) as d

dt uh=L(uh), its third-order SSP Runge–Kutta (SSPRK3) discretization is given by

u
(1)
h =un

h+∆tL(un
h), (3.5a)

u
(2)
h =

3

4
un

h+
1

4

(
u
(1)
h +∆tL(u

(1)
h )
)

, (3.5b)

un+1
h =

1

3
un

h+
2

3

(
u
(2)
h +∆tL(u

(2)
h )
)

, (3.5c)

which consists of convex combinations of three Euler forward steps. Here we use the
superscript to represent time steps and stages.

In summary, the following algorithm is used for discretizing (2.1).

1. Apply the CNN detector to mark the troubled cells Ii+ 1
2
, only once at the beginning

of each Runge–Kutta time discretization.

(a) If the total number of cells exceeds 202, we standardize the data, divide the
cells into several patches, and apply the indicator on each patch.

(b) If the total number of cells is less than 202, we standardize the data, extend
the data on both ends with constant values, and then apply the CNN detector.
(Note that one can also use smoother extensions, for example, to make the
derivatives continuous at the boundary.)
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2. Define the buffer zone surrounding the troubled cell Ii+ 1
2

as
⋃Nb

l=−(Nb+1)
Ii+ 1

2+l, with

Nb =2 in our numerical tests.

3. Apply the SSPRK3 discretization. In each Euler forward stage, do the following.

(a) Construct numerical flux at xi+ 1
2

for all i. Use the WENO procedure if xi+ 1
2

is inside the buffer zone of a troubled cell; otherwise, use the interpolation
associated with the central difference method.

(b) Update the Euler forward stage.

Remark 3.1. For sixth-order central difference method, the stencil for evaluation of nu-
merical flux at xi+ 1

2
is given by {xi−2,xi−1,xi,xi+1,xi+2,xi+3}. With the buffer size Nb =2,

this stencil will not contain any troubled cell if xi+ 1
2

is outside of the buffer zone.

4 Method description: Two-dimensional case

4.1 Randomized construction of training data

The two-dimensional data uh is generated by solving the advection equation ut+aux+
buy=0 on D=[−1,1]×[−1,1].

1. (Problem setups) Generate the random advection coefficient (a,b) = (cos ϕ,sinϕ)
and the number of time steps Nt, where ϕ∼U([0,2π]) and Nt∼U({0,··· ,10}). Ran-
domly chose one of the three spatial discretizations from Section 3.1.

2. (Generate u0) Generate the exact initial function u0 with following steps.

(a) Generate a random curve, cutting the domain D into two subregions, as the
location of discontinuity. We employ two cases:

i. Random line cut, cos(θ)(x−x0)+sin(θ)(y−y0)=0, with θ∼U([0,2π]) and
(x0,y0)∼U(D).

ii. Random circle cut, (x−x0)2+(y−y0)2=r2, with r∼U([1,3]) and (x0,y0)∼
U([−2,2]×[−2,2]).

(b) On each smooth subregion, define the function as

∑
m+n≤4

a
(i)
m,nPm(x)Pn(y), (4.1)

where Pn are the standard Legendre polynomials, am,n are coefficients ran-
domly generated from Gaussian distribution N(0,1).

(c) Rescale the function onto the domain of numerical dependence.

3. (u0→u0
h) Evaluate the grid function u0

h.



2086 Z. Sun et al. / Commun. Comput. Phys., 28 (2020), pp. 2075-2108

4. (u0
h → uh) Pull u0

h into the range of numerical solver, by solving ut+aux+buy =
0 with the chosen spatial discretization scheme and with the third-order Runge–
Kutta method for Nt steps. h = hx = hy = 2/201 and ∆t = h/5 are used. The final
solution is denoted by uh.

5. (uh→η) Label ηi,j =1, if the exact solution u0(x−aNt∆t,y−bNt∆t) is discontinuous
in the cell Ii+ 1

2 ,j+ 1
2
.

4.2 Network training

A two-step CNN detector is constructed to detect troubled cells over a 101×101 grid. The
coarse grid for the step 1 CNN is of size 11×11 such that each coarse cell contains 10×10=
100 subcells (original grid cells). The following two tables summarize the architectures
of the two CNNs.

Table 2: Architecture of first step 2D-CNN.

Layer input size kernel/pooling size num of kernel stride output size

conv1 101×101 4×4 32 1 98×98×32

maxpooling1 98×98×32 2×2 2 49×49×32

conv2 49×49×32 2×2×32 32 1 48×48×32

conv3 48×48×32 2×2×32 32 1 47×47×32

conv4 47×47×32 2×2×32 32 1 46×46×32

fully connected 46×46×32 10×10

Table 3: Architecture of second step 2D-CNN.

Layer input size kernel size num of kernel stride output size

conv1 11×11 2×2 32 1 10×10×32

conv2 10×10×32 2×2×32 32 1 9×9×32

conv3 9×9×32 2×2×32 32 1 8×8×32

fully connected 8×8×32 10×10

To train the parameters of two CNNs, we generate a synthetic dataset of n=200,000
grid functions and corresponding labels, {(um

h ,ηm) : m = 1,··· ,n}, using the generation
procedure in the previous subsection. The training of the first CNN model is based on
the Adam optimization with the mini-batch size of 2,000 and 5,000 epochs, where the
training set {(um

h ,ξm) : m = 1,··· ,n} is constructed using the synthetic dataset, and ξm

is the set of binary labels corresponding to the coarse cells for the m-th function. The
training of the second CNN model is based on the Adam optimization with the mini-

batch size of 100,000 and 1,000 epochs, where the training set {(um,(k,s)
h ,ηm,(k,s)) : m ∈

{1,··· ,n}, i, j ∈ {1,··· ,10}} is also constructed using the synthetic dataset, where ηm,(k,s)

is the set of binary labels corresponding to the (k,s)-th coarse cell for the m-th function.
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The loss functions for these two CNN models are mean squared loss function as in the
one-step CNN training.

To demonstrate the detection performance, we generate 1,000 testing functions, pro-
duce 1000×100×100 = 10,000,000 cells, of which 107,480 cells are troubled cells, and
therefore produce 1000×100=100,000 coarse cells, of which 10,721 coarse cells are trou-
bled coarse cells. For the troubled coarse cell detection, 97.5469% of the coarse troubled
cells are detected, and 0.2655% of the non-troubled coarse cells are detected. For the step
2 detection, 99.6278% of the troubled cells are detected or with at least one of the eight
nearest cells detected, and 0.0877% of the normal cells are detected or with at lease one
of the eight nearest cells detected.

4.3 Numerical scheme for conservation laws

The finite difference discretization of the two-dimensional conservation laws

ut+ f (u)x+g(u)y =0 (4.2)

is given by

d

dt
uh(t,xi,yj)+

f̂i+ 1
2 ,j− f̂i− 1

2 ,j

hx
+

ĝi,j+ 1
2
− ĝi,j− 1

2

hy
=0. (4.3)

Here f̂i+ 1
2 ,j and ĝi,j+ 1

2
are numerical fluxes approximating f (u) and g(u) at (xi+ 1

2
,yj) and

(xi,yj+ 1
2
), respectively, whose values are obtained from the one-dimensional procedures

for either central or WENO approximations. As before, the SSPRK3 method is used for
time discretization. The detailed numerical procedure is given below.

1. Apply the CNN detector to mark the troubled cells Ii+ 1
2 ,j+ 1

2
, only once at the begin-

ning of each Runge–Kutta time discretization.

(a) If the data set is larger than the designed inputs of the CNN detector, we stan-
dardize the data, divide the data into several subregions, and apply the CNN
detector to them individually.

(b) If the data set is smaller than the designed inputs, we standardize the data, ex-
tend the data set with constant values (or smoother extensions) on the bound-
ary, and apply the CNN detector.

2. Define the buffer zone surrounding Ii+ 1
2 ,j+ 1

2
as
⋃Nb+1

l,m=−(Nb+1)
Ii+ 1

2+l,j+ 1
2+m. We take

Nb =2 for two-dimensional tests.

3. Apply the SSPRK3 discretization. In each Euler forward stage, do the following.

(a) Construct numerical flux at (xi+ 1
2
,yj) and (xi,yj+ 1

2
) for all i and j: Use the

WENO procedure if the points are inside the buffer zone of a troubled cell;
otherwise, use the interpolation associated with the central difference method.

(b) Update the Euler forward stage.
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5 Numerical examples

In this section, we conduct numerical tests to test the performance of the proposed CNN
detector with hybrid methods. Examples in Section 5.1 with one-dimensional scalar
equations are served as proofs-of-principle for examining the performance of the CNN
detector with smeared discontinuities and shock waves. Detailed comparisons with
KXRCF and MR indicators are provided in Section 5.2 and Section 5.3 for one- and two-
dimensional Euler equations.

In all numerical tests, the SSPRK3 time discretization (3.5) is used. We take Nb = 2
for the buffer zone unless otherwise stated. In numerical tests for Euler equations, only
the density functions ρ are tested with the indicators for identifying troubled cells. In the
figures showing the troubled cell histories, we only plot cells with signals greater than
the thresholds, and the buffer cells are not included in these plots.

5.1 Scalar conservation laws in one dimension

The time step is set as ∆t= 0.2h for all numerical tests in this subsection. We have run
simulations with various mesh sizes with 200, 400 and 800 points used. The threshold for
the CNN detector is taken as 0.2.

Example 5.1 (Linear advection equation). In this numerical test, we consider the simple
linear advection equation with a traveling square wave

ut+ux=0, x∈
(
−

1

2
,
1

2

)
, u(x,0)=

{
1, x∈ (− 1

4 , 1
4),

0, otherwise.
(5.1)

Periodic boundaries are applied. The solutions after 1 period, at T=1, together with the
corresponding CNN outputs, are given in Fig. 3. The time histories of marked troubled
cells are given in Fig. 4. We can see that the CNN detector does capture the moving dis-
continuity every now and then. But in the first row of Fig. 3, it seems there are small
oscillations generated near the discontinuities. The possible cause of this numerical ar-
tifact, is that the discontinuities are too smeared. There is a wide region of transition
points, and our CNN output marks one or two points in the middle of this region. With
the buffer size of Nb = 2, the transition region cannot be covered inside the buffer zone.
If we expand the buffer zone from Nb =2 to Nb =6, one can see from the second rows of
Fig. 3 and Fig. 4 that although similar troubled cells are identified during the computa-
tion, the oscillations nearing the discontinuities seem to be suppressed.

Example 5.2 (Burgers equation). We then apply the scheme to solve the initial value prob-
lem of the Burgers equation

ut+

(
u2

2

)

x

=0, x∈ (0,2π), u(x,0)=1+sin(x). (5.2)
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Figure 3: Solution profiles and signal outputs of the CNN detector at T=1 for the linear advection equation in
Example 5.1. First row: Nb=2. Second row: Nb=6. Solid black lines: exact solution. Blue squares: numerical
solution. Red circles with stems: indicator output. Black dashed lines: threshold for the indicator.

Figure 4: Troubled cell histories of the CNN detector for the advection equation in Example 5.1. First row:
Nb =2. Second row: Nb =6.
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Figure 5: Solution profiles and signal outputs of the CNN detector at T=2 for the Burgers equation in Example
5.2. Solid black lines: exact solution. Blue squares: numerical solution. Red circles with stems: indicator
output. Black dashed lines: threshold for the indicator.

Figure 6: Troubled cell histories of the CNN detector for the Burgers equation in Example 5.2.

Periodic boundary conditions are applied. The solution develops into a right-moving
shock wave starting from T=1. The final solution at T=2 and the corresponding outputs
of the CNN detector are given in Fig. 5. The marked troubled cells during the simulations
are reported in Fig. 6. In this numerical test with a shock wave, since the sharp profiles
of the discontinuities are maintained with fewer transition points, there is no observable
oscillation with Nb =2. The CNN detector does capture the formation of the shock wave
starting from T=1.

5.2 Euler equations in one dimension

In this subsection, we apply the hybrid method to solve Euler equations in one dimension




ρ
ρµ
E




t

+




ρµ
ρµ2+p

µ(E+p)




x

=




0
0
0


, (5.3)

where ρ is the density, µ is the velocity, E is the internal energy, and p = (γ−1)(E−
ρ
2 µ2), with γ=1.4, is the pressure. We use 200, 400 and 800 mesh points for simulations,
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and the time step size is taken as ∆t = 0.6h. Comparisons between the CNN detector
with the KXRCF indicator and the MR indicator are also provided. All these indicators
produce numeric signals for troubled cells and there is always a threshold parameter
that one can tune with: a larger threshold tends to include fewer troubled cells while
suffering the danger to generate oscillations. Here we look into the possibility of having
problem-independent and predetermined thresholds. We have tested the problems with
various parameters, chosen the ones with overall good performance and fixed them in
the following tests: 0.2 for the CNN detector, 0.5 for the KXRCF indicator and 1 for the
MR indicator. We remark that for KXRCF and MR indicators, a finely tuned and problem-
dependent threshold may provide better results for each particular test.

Example 5.3 (Sod problem). In this classical Riemann problem test, the initial condition
is taken as

(ρ,µ,p)=

{
(1,0,1), x≤0,

(0.125,0,0.1), x>0.
(5.4)

The solution profiles of the hybrid methods with CNN, KXRCF and MR indicators at T=
0.13, along with corresponding indicator signals, are given in Fig. 7. The time histories of
the marked troubled cells are provided in Fig. 8. It can be seen from Fig. 7, CNN detector
seems to produce sharper signal at the discontinuities, while the outputs of KXRCF and
MR indicators seem to have a spread into the neighboring cells. From the troubled cell
histories, we can also see that the CNN detector captures thinner and finer trajectories
of the moving discontinuities, while the troubled cells for KXRCF and MR indicators
are wider. We also summarize the percentages of troubled cells, both with and without
buffers, in Table 4, from which one can see that the percentages of marked troubled cells
decrease when the mesh sizes N increase. Also, CNN detector marks the least amount of
cells, followed by MR indicator, and then KXRCF indicator.

Table 4: Troubled cell percentages of the Sod problem in Example 5.3. “Avg” means the averaged percentages
of marked cells for all time steps. “Max” corresponds to the maximum percentages that ever occurred among
all time steps. “nbf” means the buffer cells are excluded in the counting, and “bf” means the buffer cells are
included in the counting.

N indicator Avg(nbf) Max(nbf) Avg(bf) Max(bf)

200

CNN 1.09 2.50 5.00 8.50

KXRCF 9.81 14.00 15.37 22.00

MR 4.39 7.50 10.40 15.50

400

CNN 0.50 1.25 2.32 4.75

KXRCF 6.64 9.75 10.19 14.25

MR 3.08 5.25 6.20 9.50

800

CNN 0.21 0.62 0.97 2.00

KXRCF 4.40 6.12 6.46 8.62

MR 1.98 3.62 3.57 5.62
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Figure 7: Signals of different troubled cell indicators for the Sod problem in Example 5.3. First row: CNN
detector. Second row: KXRCF indicator. Third row: MR indicator. First column: N = 200. Second column:
N = 400. Third column: N = 800. Solid black lines: exact solution. Blue squares: numerical solution. Red
circles with stems: indicator output. Black dashed lines: threshold for the indicator.

Example 5.4 (Interacting blast waves). In this example, we consider the interaction of
two blast waves with the initial data

(ρ,µ,p)=





(1,0,1000), x≤−0.1,

(1,0,0.01), 0.1< x≤0.9,

(1,0,100), x>0.9.

(5.5)

Reflective boundaries are imposed both at x=0 and x=1, and we refer to [36] for detailed
descriptions of this example. We solve the problem up to T=0.4. The numerical density,
and the indicator outputs, on [0,1] are given in Fig. 9. The troubled cell histories and
their percentages are reported in Fig. 10 and Table 5. For this problem, it seems that the
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Figure 8: Troubled cell histories of different indicators for the Sod problem in Example 5.3. First row: CNN
detector. Second row: KXRCF indicator. Third row: MR indicator. First column: N= 200. Second column:
N=400. Third column: N=800.

Table 5: Troubled cell percentages for the interacting blast waves in Example 5.4. See Table 4 for explanations
of “Avg”, “Max”, “nbf” and “bf”.

N indicator Avg(nbf) Max(nbf) Avg(bf) Max(bf)

200

CNN 2.26 4.50 9.30 15.50

KXRCF 21.01 26.00 30.23 39.00

MR 19.26 26.00 27.16 36.00

400

CNN 1.05 2.75 4.37 7.75

KXRCF 15.70 20.75 20.91 30.75

MR 14.04 21.25 18.65 29.00

800

CNN 0.51 1.38 2.13 4.00

KXRCF 10.79 15.75 14.03 21.75

MR 9.42 14.88 12.31 20.25
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Figure 9: Signals of different troubled cell indicators for the interacting blast waves in Example 5.4. First row:
CNN detector. Second row: KXRCF indicator. Third row: MR indicator. First column: N = 200. Second
column: N = 400. Third column: N = 800. Solid black lines: reference solution. Blue squares: numerical
solution. Red circles with stems: indicator output. Black dashed lines: threshold for the indicator.

signals by KXRCF and MR indicators are much stronger than those in previous tests, and
many cells are marked as troubled cells. At the same time, CNN seems to be able to pro-
duce clean signals. It marks much fewer cells (see Table 5) while maintaining acceptable
profiles of numerical densities.

Example 5.5 (Shu–Osher problem). This test was introduced in [31], describing a Mach 3
shock interacting with sine waves in density. The initial condition is set as

(ρ,µ,p)=

{
(3.857143,2.629369,10.333333), x≤−4,

(1+0.2sin(5x),0,1), x>−4.
(5.6)
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Figure 10: Troubled cell histories of different indicators for the interacting blast waves in Example 5.4. First
row: CNN detector. Second row: KXRCF indicator. Third row: MR indicator. First column: N=200. Second
column: N=400. Third column: N=800.

The density plots at T = 1.8 on the domain [−5,5], as well as the corresponding indi-
cator outputs, are provided in Fig. 11. The troubled cell histories and the percentages
are reported in Fig. 12 and Table 6, respectively. With a refined mesh, it seems that the
CNN detector can better tell the high frequency waves in the region [0,2] from the ac-
tual discontinuities. While the KXRCF and MR indicators consistently produce signals of
medium strength in the high frequency region, and their inclusion of the high frequency
region as troubled cells may depends heavily on the choice of thresholds.

5.3 Euler equations in two dimensions

In this subsection, we consider Euler equations in two dimensions
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Figure 11: Signals of different troubled cell indicators for the Shu–Osher problem in Example 5.5. First row:
CNN detector. Second row: KXRCF indicator. Third row: MR indicator. First column: N = 200. Second
column: N = 400. Third column: N = 800. Solid black lines: reference solution. Blue squares: numerical
solution. Red circles with stems: indicator output. Black dashed lines: threshold for the indicator.

Table 6: Troubled cell percentages for the Shu–Osher problem in Example 5.5. See Table 4 for explanations of
“Avg”, “Max”, “nbf” and “bf”.

N indicator Avg(nbf) Max(nbf) Avg(bf) Max(bf)

200
CNN 2.39 6.50 10.14 25.00

KXRCF 2.29 3.00 5.13 10.50

MR 3.55 6.50 8.04 20.00

400
CNN 0.79 2.00 3.60 9.50

KXRCF 1.55 2.25 3.20 6.00

MR 6.55 12.75 11.73 24.50

800
CNN 0.30 0.88 1.31 3.38

KXRCF 1.02 1.50 2.20 4.00
MR 5.29 10.62 9.64 19.38
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Figure 12: Troubled cell histories of different indicators for the Shu–Osher problem in Example 5.5. First row:
CNN detector. Second row: KXRCF indicator. Third row: MR indicator. First column: N = 200. Second
column: N=400. Third column: N=800.




ρ
ρµ
ρν
E




t

+




ρµ
ρµ2+p

ρµν
µ(E+p)




x

+




ρν
ρµν

ρν2+p
ν(E+p)




y

=




0
0
0
0


, (5.7)

where ρ is the density, (µ,ν) is the velocity vector, E is the total energy, and p=(γ−1)(E−
ρ
2 (µ

2+ν2)), with γ=1.4, is the pressure. In all two-dimensional tests, the CFL number is
chosen as 0.6. For the CNN detector, we choose the threshold to be 0.5 for the first step
model and 0.2 for the second step model. The thresholds for the KXRCF indicator and
MR indicator are both taken as 1. For a direct comparison with the CNN detector, we
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consider tensor product implementations of the KXRCF and MR indicators, which are
outlined in Appendix A.

Example 5.6 (Riemann problem I). We start with a Riemann problem, and the initial data
is set as (see, for example, [19])

(ρ,µ,ν,p)=





(1.5,0,0,1.5), x>0.5, y>0.5,

(0.5323,1.206,0,0.3), x<0.5, y>0.5,

(0.138,1.206,1.206,0.029), x<0.5, y<0.5,

(0.5323,0,1.206,0.3), x>0.5, y<0.5.

(5.8)

The numerical densities, the indicator outputs and the troubled cells at T = 0.3 are re-
ported in Fig. 13 when 200×200 mesh points are used, and in Fig. 14 when 400×400
mesh points are used. The percentages of troubled cells during the computation, when
CNN, KXRCF and MR indicators are used, are summarized in Table 7. It can be seen that,
the CNN detector itself marks fewer cells (about half of the number) compared with the
KXRCF and MR indicators. While the percentages of buffer cells for the CNN detector
are similar to those of the MR indicator. This is because a wider buffer zone is applied
due to the way the troubled cells are labeled. See Appendix A for details. Also, the in-
dicator outputs of KXRCF indicator seem to be much more noisy, when compared with
those of the other indicators.

Table 7: Troubled cell percentages for the Riemann problem in Example 5.6. See Table 4 for explanations of
“Avg”, “Max”, “nbf” and “bf”.

Nx×Ny indicator Avg(nbf) Max(nbf) Avg(bf) Max(bf)

200×200

CNN 2.70 4.36 9.94 14.46

KXRCF 8.32 9.86 14.30 17.29

MR 5.64 7.04 10.96 13.19

400×400

CNN 1.46 2.17 5.76 7.98

KXRCF 6.42 8.18 11.29 14.25

MR 3.70 4.75 7.01 9.35

Example 5.7 (Riemann problem II). Next, we consider the Riemann problem that is ini-
tially set as (see, for example, [19])

(ρ,µ,ν,p)=





(1.1,0,0,1.1), x>0.5, y>0.5,

(0.5065,0.8939,0,0.35), x<0.5, y>0.5,

(1.1,0.8939,0.8939,1.1), x<0.5, y<0.5,

(0.5065,0,0.8939,0.35), x>0.5, y<0.5.

(5.9)

The solutions, indicator outputs and the marked cells at T=0.2 are given in Fig. 15. (We
provide the plots with 400×400 mesh points only, and those with 200×200 points are
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Figure 13: Numerical outputs for Riemann problem in Example 5.6 with 200×200 mesh cells at T=0.3. First
row: CNN detector. Second row: KXRCF indicator. Third row: MR indicator. First column: numerical density,
with 20 equally spaced contour lines ranging from 0.15 to 1.75. Second column: indicator signal. Third column:
marked troubled cells.

.

omitted to save space.) Percentages of troubled cells are summarized in Table 8. Again,
we can observe that the CNN detector gives sharp and concentrated signals. Compared
with the KXRCF and MR indicators, it marks fewer number of cells if the buffer zone is
not considered.
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Figure 14: Numerical outputs for Riemann problem in Example 5.6 with 400×400 mesh cells at T=0.3. First
row: CNN detector. Second row: KXRCF indicator. Third row: MR indicator. First column: numerical density,
with 20 equally spaced contour lines ranging from 0.15 to 1.75. Second column: indicator signal. Third column:
marked troubled cells.

Table 8: Troubled cell percentages for the Riemann problem in Example 5.7. See Table 4 for explanations of
“Avg”, “Max”, “nbf” and “bf”.

Nx×Ny indicator Avg(nbf) Max(nbf) Avg(bf) Max(bf)

200×200

CNN 3.26 4.95 12.55 17.77

KXRCF 8.19 9.40 14.69 18.13

MR 5.98 7.35 12.39 15.49

400×400

CNN 1.64 2.43 6.52 8.64

KXRCF 5.53 6.45 9.73 11.45

MR 3.82 4.83 7.40 9.55
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Figure 15: Numerical outputs for Riemann problem in Example 5.7 with 400×400 mesh cells at T=0.2. First
row: CNN detector. Second row: KXRCF indicator. Third row: MR indicator. First column: numerical density,
with 30 equally spaced contour lines ranging from 0.4 to 2.2. Second column: indicator signal. Third column:
marked troubled cells.

Example 5.8 (Double Mach reflection). This problem describes reflections of planar shocks
in air from wedges [36]. The computational domain of this problem is set as [0,4]×[0,1].
Initially, a right-moving Mach 10 shock is positioned at x = 1/6 and makes a 60o angle
with the x-axis. It moves into the undisturbed air with a density of 1.4 and a pressure
of 1. At the bottom boundary, the exact post-shock condition is imposed from x = 0 to
x = 1/6 and a reflective boundary condition is used in the rest part for the rigid wall.
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Figure 16: Numerical outputs for double Mach reflection in Example 5.8 with 480×120 mesh cells at T=0.2.
First row: CNN detector. Second row: KXRCF indicator. Third row: MR indicator. First column: numerical
density, with 30 equally spaced contour lines ranging from 1.5 to 22.7. Second column: indicator signal. Third
column: marked troubled cells.

Table 9: Troubled cell percentages for the double Mach reflection in Example 5.8. See Table 4 for explanations
of “Avg”, “Max”, “nbf” and “bf”.

Nx×Ny indicator Avg(nbf) Max(nbf) Avg(bf) Max(bf)

480×120

CNN 1.57 2.57 6.71 10.78

KXRCF 4.06 6.30 7.94 12.93

MR 7.04 11.64 13.05 21.45

960×240

CNN 0.80 1.32 3.45 5.48

KXRCF 2.71 4.31 5.08 8.16

MR 4.97 8.11 9.52 15.86

At the top boundary, the flow values are set to describe the exact motion of the Mach 10
shock. We compute the solution up to T = 0.2. Solution profiles of numerical densities,
indicator outputs and marked cells are given in Fig. 16 and Fig. 17. Percentages of trou-
bled cells are summarized in Table 9. In this test, it seems that the MR indicator produces
very strong signals, and marks a lot more cells than the other two indicators, if we main-
tain the threshold to be 1. For the CNN and KXRCF indicators, troubled cells marked
by the CNN detector seem to be fewer than half of the KXRCF indicator before applying
the buffer zone. With the buffer zone, this difference is reduced, but the CNN detector
still marks fewer cells. Again, the indicator outputs of KXRCF indicator seem to be much
more noisy, when compared with those of the CNN detector.
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Figure 17: Numerical outputs for double Mach reflection in Example 5.8 with 960×240 mesh cells at T=0.2.
First row: CNN detector. Second row: KXRCF indicator. Third row: MR indicator. First column: numerical
density, with 30 equally spaced contour lines ranging from 1.5 to 22.7. Second column: indicator signal. Third
column: marked troubled cells.

Example 5.9 (Bubble-shock interaction). This last example simulates the interaction be-
tween a planar shock wave and a circular region of low density [13, 18]. The computa-
tional domain is set as [−0.1,1.5]×[−0.5,0.5]. An incoming Mach 2.95 shock is initially
positioned at x=0, and move rightward into the undisturbed gas with unit density and
pressure. A circular bubble is centered at (0.3,0) with radius 0.2, inside of which the den-
sity is 0.1. Solution profiles of numerical densities, indicator outputs and marked cells are
given in Fig. 16 and Fig. 17. The percentages of troubled cells are summarized in Table

Table 10: Troubled cell percentages for the bubble-shock interaction in Example 5.9. See Table 4 for explanations
of “Avg”, “Max”, “nbf” and “bf”.

Nx×Ny indicator Avg(nbf) Max(nbf) Avg(bf) Max(bf)

320×200

CNN 3.11 5.47 11.21 20.49

KXRCF 7.92 10.25 12.47 17.35

MR 8.28 12.25 14.23 22.18

640×400

CNN 1.90 3.39 7.07 12.70

KXRCF 6.51 9.20 10.44 15.68

MR 6.77 11.26 11.72 20.25
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Figure 18: Numerical outputs for bubble-shock interaction in Example 5.9 with 320×200 mesh cells at T=0.3.
First row: CNN detector. Second row: KXRCF indicator. Third row: MR indicator. First column: numerical
density, with 30 equally spaced contour lines ranging from 0.5 to 4.5. Second column: indicator signal. Third
column: marked troubled cells.

10. From the pictures and the table, it can be seen that the CNN detector is capturing
fewer troubled cells, while maintaining acceptable solution profiles.

6 Conclusion

We proposed a troubled cell detector using CNNs. The CNN can be trained offline
and become increasingly more accurate as one keeps training it. A well trained CNN
detector can then be used in online computations of conservation laws, where discon-
tinuities often occur. In this paper, we demonstrate the effectiveness of the approach,
where fifth-order WENO is used on troubled cells and sixth-order central difference in
smooth regions. The computational results are encouraging, as we obtained cleaner and
sharper resolutions in the results, when compared to other existing methods. More in-
depth study of the method, such as its computational efficiency and coupling of other
numerical schemes, will follow in future studies.
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Figure 19: Numerical outputs for bubble-shock interaction in Example 5.9 with 640×400 mesh cells at T=0.3.
First row: CNN detector. Second row: KXRCF indicator. Third row: MR indicator. First column: numerical
density, with 30 equally spaced contour lines ranging from 0.5 to 4.5. Second column: indicator signal. Third
column: marked troubled cells.
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A KXRCF and MR indicators in two dimensions

Again in this section, we drop the subscript h and use u for numerical solutions. Let Ii,j

be the mesh cell centered at (xi,yj). We assume hx = xi+ 1
2
−xi− 1

2
=hy =yj+ 1

2
−yj− 1

2
=h.

KXRCF Indicator. For each cell Ii,j, we first use the nine nodal values ui+i′,j+j′ , −1≤i′, j′≤1

to find a Q2 interpolating polynomial, denoted by v. For Euler equations, we use the
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Figure 20: Troubled cell and buffer zones of indicators. The crosses of lines corresponds to grid points (xi,yj).
Red cell: troubled cell marked by the CNN detector. Red region: buffer zone for the CNN detector. Blue cell:
troubled cell marked by the KXRCF/MR indicator. Blue region: buffer zone for the KXRCF/MR indicator.

velocity (µ,ν) to determine the flow direction in the cell Ii,j. Then define

κKXRCF
i,j =

∣∣∣∣
∫

∂I−i,j

(
v|Ii,j

−v|Inb,i,j

)
ds

∣∣∣∣

h
3
2 |∂I−i,j |‖v‖Ii,j

, (A.1)

where ∂I−i,j is the inflow portion of the cell boundary, Inb,i,j is the neighboring cell sharing

the edge ∂I−i,j . The output of KXRCF indicator on Ii,j is set as

ηKXRCF
i,j =−

logκKXRCF
i,j

logh
. (A.2)

MR Indicator. For the mesh cell Ii,j, we define

κMR
i,j =

(
1

9

1

∑
i′,j′=−1

ui+i′,j+j′

)
−ui,j. (A.3)

The output of MR indicator on Ii+ 1
2 ,j+ 1

2
is set as

ηMR
i,j =

κMR
i,j

h
. (A.4)

Buffer Zone. We remark that the signal of traditional indicators are given at a cell cen-
tered at grid points, while that of CNN detector is given at the actual mesh cell. In the
case that closed cells are considered, the buffer zone of the CNN detector is slightly wider
than the KXRCF and MR indicators. See Fig. 20. We note that this is not an issue in one
dimension, since the discontinuity is marked on a half-closed interval.
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