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OPTIMAL ERROR ESTIMATES OF DISCONTINUOUS

GALERKIN METHODS WITH GENERALIZED FLUXES

FOR WAVE EQUATIONS ON UNSTRUCTURED MESHES

ZHENG SUN AND YULONG XING

Abstract. L2 stable discontinuous Galerkin method with a family of numeri-
cal fluxes was studied for the one-dimensional wave equation by Cheng, Chou,
Li, and Xing in [Math. Comp. 86 (2017), pp. 121–155]. Although optimal
convergence rates were numerically observed with wide choices of parameters
in the numerical fluxes, their error estimates were only proved for a sub-family
with the construction of a local projection. In this paper, we first complete
the one-dimensional analysis by providing optimal error estimates that match

all numerical observations in that paper. The key ingredient is to construct
an optimal global projection with the characteristic decomposition. We then
extend the analysis on optimal error estimate to multidimensions by construct-
ing a global projection on unstructured meshes, which can be considered as a
perturbation away from the local projection studied by Cockburn, Gopalakr-
ishnan, and Sayas in [Math. Comp. 79 (2010), pp. 1351–1367] for hybridiz-
able discontinuous Galerkin methods. As a main contribution, we use a novel
energy argument to prove the optimal approximation property of the global
projection. This technique does not require explicit assembly of the matrix for
the perturbed terms and hence can be easily used for unstructured meshes in
multidimensions. Finally, numerical tests in two dimensions are provided to
validate our analysis is sharp and at least one of the unknowns will degenerate
to suboptimal rates if the assumptions are not satisfied.

1. Introduction

In this paper, we study discontinuous Galerkin (DG) methods with generalized
fluxes for the linear wave equation

(1.1) utt = Δu,

in the form of first-order hyperbolic system,

(1.2) ut = ∇ · q, qt = ∇u.

Here x = (x1, · · · , xd) ∈ Ω ⊂ R
d, d ≥ 1 and t ∈ [0, T ]. u = u(x, t) and q = q(x, t)

are unknowns to be solved. One- and two-dimensional time-domain linear Maxwell’s
equations can be viewed as a special case of (1.2). The goal of the paper is to provide
the DG approximation of (1.2) with a class of generalized numerical fluxes, and
establish rigorous analysis to demonstrate that such DG methods have simultaneous
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optimal convergence rates for both u and q in L2 norm. For simplicity, we consider
rectangular (cubic) domains with periodic boundaries, although similar analysis
can be extended to more complicated geometries with boundary conditions of other
types.

The wave equation (1.1) widely occurs in scientific and engineering applications,
such as acoustics, electromagnetics and fluid dynamics, for modeling propagation
of mechanical or light waves. A vast amount of research has been dedicated to nu-
merical approximations of (1.1). These efforts include the finite difference methods,
the finite volume methods, the integral equation methods, the continuous Galerkin
finite element methods, the mixed finite element methods, the DG methods and so
on. See [6,9,16,20] and references therein. In this paper, we confine our attention to
the DG methods, which belong to a class of finite element methods using discontin-
uous piecewise polynomial spaces. The methods were originally proposed by Reed
and Hill in [34] for the transport equation, then received their major development in
a series of work by Cockburn et al. for hyperbolic conservation laws [14,15,17–19].
The methods feature with advantages, such as preservation of local conservation,
flexibility of fitting complex geometries, good h−p adaptivity and high parallel effi-
ciency, and have been favored in various of applications. For approximations of the
wave equation, a stream of research concerns the first-order form (1.2), sometimes
as a particular case of linear symmetric hyperbolic systems. These studies include
the space-time DG methods [21, 32], the staggered DG method [9], the hybridiz-
able DG methods [16, 33, 37], the DG methods in [6] and [22], and the central DG
method [29]. Another stream of research is based on the second-order form (1.1),
and numerical techniques for steady state elliptic problems can be adopted in the
treatment of the discrete Laplacian. See the interior penalty DG methods [24], the
hybridizable DG methods [11, 35], and the local DG methods [8, 43], for some of
the related works.

It is known that the choice of numerical fluxes is one of the main ingredients
for designing DG methods. It has crucial influences on the stability, convergence
rate and dispersive behavior of the numerical schemes [1, 2, 21, 25, 30, 38, 45]. For
linear equations, the common choices of the numerical fluxes include the upwind
and alternating fluxes. To provide more flexibility of numerical dissipation with
potential applications to complex systems, there is a growing attention on studying
numerical fluxes with general patterns very recently, for example, the upwind-biased
fluxes for linear hyperbolic equations [28, 31, 44], the generalized alternating fluxes
for the convection diffusion equation [7] and the Burgers–Poisson equation in [27],
the αβ-fluxes for the linear two-way wave equation [6] and other equations with
high-order derivatives [23], the generalized local Lax–Friedrichs fluxes for nonlinear
scalar conservation laws [26] and the generalized fluxes for Hamiltonian partial
differential equations [42]. The error analysis of these schemes may possibly require
the construction of a global projection operator, based on the technique developed
in [5] and is usually for structured meshes in one or two dimensions.

Our work focuses on the first-order form (1.2), as a continuation of [6] on ana-
lyzing subtle effects of different numerical fluxes on the convergence rates. In [6],
Cheng et al. studied the DG method for (1.2) in one spatial dimension, and pre-
sented a systematic study on a family of numerical fluxes parametrized by three
constants α, β1 and β2. The same family of numerical fluxes has also been analyzed
earlier by Ainsworth [2] et al. with emphasis on dispersive behaviors. Numerically,
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optimal convergence rates were reported in [6] with very general choices of param-
eters, while at the time, optimal error estimates were only proved for a sub-family
among them. This sub-family of numerical fluxes, up to a small relaxation, was
identified in that paper as the αβ-fluxes: β1 ≥ 0, β2 ≥ 0 and

(1.3) α2 + β1β2 =
1

4
.

The assumption on nonnegativity of β1 and β2 was required for the stability of the
scheme.

The first contribution of our paper is to provide optimal error estimates for
unproved cases in [6]. Instead of assuming (1.3), we prove optimal convergence
rates for all of the stable DG schemes under a relaxed assumption: β1 ≥ 0, β2 ≥ 0
and

(1.4) α2 + β1β2 �= 0,

which matches the numerical observations in [6]. The key ingredient is to construct
a novel global projection pair of the unknowns u and q, which is coupled through
the flux terms. We apply the characteristic decomposition on the definition of the
projection pair, so that the conditions on the transformed unknowns are decoupled.
We then apply the generalized Gauss–Radau projections [7,31] on the transformed
unknowns, and transform them back, to obtain the desired tailored operators for our
problem. In the special case of αβ-fluxes, namely α2 + β1β2 = 1/4, the projection
is a linear combination of classical Gauss–Radau projections, and can be locally
constructed as that in [6]. In general, the projection is a global operator coupled
through all mesh cells.

Our second contribution is to extend the analysis on optimal error estimate to
unstructured simplex meshes in multidimensions. We firstly note that the multi-
dimensional DG scheme generalized from [6] has close connections with the hy-
bridizable DG methods in [33] and [16]. Indeed, if one rewrites the hybridizable
DG methods into the local DG form [12], it can be seen that the two schemes
are very similar, except that the hybridizable DG methods particularly uses the
αβ-fluxes (1.3) under a different parametrization,1 and we refer to Remark 3.3 for
details. Optimal error estimates were obtained in [16] for the hybridizable DG
methods with the αβ-fluxes, by employing the local projection pair constructed in
[13].

The optimal error estimate is provided in this paper for the multi-dimensional
DG scheme with generalized numerical fluxes, including but not limited to the
αβ-fluxes. Compared with the one-dimensional case, the analysis of generalized
fluxes is more involved in multidimensions, and the technique of characteristic de-
composition can no longer be applied. The complication mainly comes from two
facts. Firstly, since q = ∇u is a vector, the symmetry between q and u is broken.
Secondly, there is no global projection, similar to the one-dimensional generalized
Gauss–Radau projections, at hand on unstructured meshes, which can be served
as building blocks to construct the required projection. As a result, we have to
go through the entire procedure to construct the global projection pair and derive

1The choice of αβ-fluxes seems to be essential in the hybridizable DG methods to guarantee
the locality of the solvers when inverting the spatial operator. While in particular applications of
solving (1.2), the problem is hyperbolic in nature and explicit time stepping methods are widely
used, therefore other types of numerical fluxes are also acceptable in these applications.
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its approximation property. Previously, in [31] and [7], the unisolvency and ap-
proximation property of (global) generalized Gauss–Radau projections (2.14) were
proved by explicitly assembling the linear system for the perturbation term with
respect to the classical Gauss–Radau projection. Similar technique was also used
in an earlier work [5] for analyzing the generalized KdV equation. However, this
argument may not be easily generalized to unstructured meshes in multidimensions.
Instead, we apply a novel energy argument to circumvent the steps for assembling
matrices, and the proof is sketched as follows. We consider the difference between
the global projection and the local projection constructed in [13]; then with an en-
ergy argument, it can be shown that the difference is a high-order term; finally, the
unisolvency and approximation property follow as consequences of those of the local
projection pair. With the global projection pair, we obtain optimal error estimate
for both u and q if

(1.5) α2 + β1β2 �= 0, β1 ≥ 0 and β2 > 0.

Compared with the one-dimensional case, we require the additional assumption on
nondegeneracy of β2. The condition in (1.5) is also considered to be necessary
among stable DG schemes: if the condition is violated, we observe numerically that
at least one of u and q will converge at a suboptimal rate on general unstructured
meshes.

The main novelty of this paper is to establish the global projections and analyze
their optimal convergence properties, with techniques of characteristic decompo-
sition in one dimension and the energy argument in multidimensions. The con-
structed projections can also be used in other contexts for error estimates. For
example, besides the DG schemes in the first-order form (1.2), the same analysis
can be extended to DG schemes in [8, 43] based on the second-order mixed form

(1.6) utt = ∇ · q, q = ∇u.

A brief discussion is outlined in Section 2.4 for the one-dimensional case. These
projections can also be used for analyzing DG schemes with generalized fluxes for
other equations with high-order spatial derivatives, including the heat equation,
time-dependent biharmonic equation, Schrödinger equation and dispersive equa-
tion studied in [23]. The one-dimensional and multi-dimensional analysis on these
equations will be reported in a future work.

The rest of the paper is planned as follows. We present the one-dimensional
analysis in Section 2 and multi-dimensional analysis in Section 3. Numerical tests
in two dimensions are provided in Section 4 to validate our analysis. Conclusions
are given in Section 5 at the end.

2. One-dimensional case

In this section, we analyze the DG scheme for (1.2) in one dimension

ut = qx, qt = ux.(2.1)

We start with introducing notations and the DG scheme in Section 2.1, then state
the optimal error estimates in Section 2.2, with the properties of the required
projection postponed to Section 2.3. Finally, extension to the DG scheme based on
the second-order in time formulation is discussed in Section 2.4.
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2.1. Notations and the DG scheme. Let Ω = ∪N
j=1Ij , where Ij = [xj− 1

2
, xj+ 1

2
],

be a quasi-uniform mesh partition of the spatial domain with mesh size h. The
finite element space is chosen as the discontinuous piecewise polynomial space

(2.2) Vh = {v : v|Ij ∈ Pk(Ij), j = 1, · · · , N}.
Here Pk(Ij) is the linear space spanned by polynomials of degree less or equal to k on
Ij . Note that functions in Vh can be double-valued across cell interfaces. We denote
by v+

j+ 1
2

and v−
j+ 1

2

the right and left limit of v at xj+ 1
2
. {v}j+ 1

2
= (v+

j+ 1
2

+ v−
j+ 1

2

)/2

and �v�j+ 1
2
= v+

j+ 1
2

− v−
j+ 1

2

are used to represent averages and jumps at xj+ 1
2
. We

introduce the shorthand notation (v, w) =
∑

j (v, w)Ij , with (v, w)Ij =
∫
Ij
vwdx,

the L2 inner product on Ω. The associated L2 norm is denoted by ‖v‖ =
√
(v, v).

The DG scheme in [6] for approximating (2.1) is given as follows: find uh, qh ∈ Vh,
such that

((uh)t, w)Ij+(qh, wx)Ij −
(
Fq(qh, uh)w

−)
j+ 1

2

+
(
Fq(qh, uh)w

+
)
j− 1

2

=0, ∀w∈Vh,

(2.3a)

((qh)t, v)Ij+(uh, vx)Ij−
(
Fu(uh, qh)v

−)
j+ 1

2

+
(
Fu(uh, qh)v

+
)
j− 1

2

=0, ∀v∈Vh.

(2.3b)

Here the numerical flux is given by

Fq(qh, uh) = {qh}+ α �qh� + β1 �uh� ,(2.4a)

Fu(uh, qh) = {uh}+ β2 �qh� − α �uh� .(2.4b)

The scheme can be equivalently written in the global form: find qh, uh ∈ Vh, such
that

(2.5) ((qh)t, v)Ij + ((uh)t, w)Ij + ah(qh, uh; v, w) = 0, ∀v, w ∈ Vh,

where
(2.6)

ah(qh, uh; v, w) = (uh, vx) + (qh, wx) +
∑
j

(Fq(qh, uh) �w� + Fu(uh, qh) �v�)j+ 1
2
.

Proposition 2.1 (Stability). The bilinear form ah satisfies the following property

(2.7) ah(qh, uh; qh, uh) =
∑
j

(
β1 �uh�2 + β2 �qh�2)

j+ 1
2

.

Suppose β1 ≥ 0 and β2 ≥ 0. Then the DG scheme (2.3) is stable, with the energy
equality

(2.8)
1

2

d

dt

(
‖qh‖2 + ‖uh‖2

)
+ ah(qh, uh; qh, uh) = 0.

Remark 2.1 (Flux parameters). Note that in (2.4), α = 0, β1 = β2 = 1/2 gives the
upwind flux for the hyperbolic system; α = 1/2, β1 = β2 = 0 retrieves the alter-
nating flux widely used for local DG methods; α = β1 = β2 = 0 corresponds to the
central flux. Compared with these commonly used fluxes, one can see from Propo-
sition 2.1 that the generalized fluxes allow the fine-tuning of numerical dissipation
in the scheme, similar to upwind-biased fluxes investigated in [31]. In addition,
without being restricted to specific choices, the generalized fluxes are more flexi-
ble and could be potentially useful in the design of numerical schemes for complex
systems.
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2.2. Error estimates. The key ingredient for error estimates is to construct a
projection pair Π�

q and Π�
u, satisfying the following requirements(

Π�
qq, v

)
Ij

= (q, v)Ij , ∀v ∈ Pk−1(Ij), ∀j,(2.9a)

(Π�
uu,w)Ij = (u,w)Ij , ∀w ∈ Pk−1(Ij), ∀j,(2.9b)

Fq(Π
�
qq,Π

�
uu) = Fq(q, u), at x = xj+ 1

2
, ∀j,(2.9c)

Fu(Π
�
uu,Π

�
qq) = Fu(u, q), at x = xj+ 1

2
, ∀j.(2.9d)

Lemma 2.1. Suppose α2+β1β2 �= 0. Then the projection pair Π�
q and Π�

u in (2.9)

is well-defined. Furthermore, we have2

(2.10) ‖q −Π�
qq‖2 + ‖u−Π�

uu‖2 ≤ Cα,βh
2k+2

(
|q|2Hk+1 + |u|2Hk+1

)
.

The proof of Lemma 2.1 is postponed to Section 2.3.
With the definition of Π�

q and Π�
u in (2.9), it can be easily shown that

(2.11) ah(q −Π�
qq, u−Π�

uu; v, w) = 0, ∀v, w ∈ Vh.

By utilizing the same argument as in [6, Theorem 2.5], the following error estimate
of the semidiscrete DG scheme can be obtained. See also Appendix A for details.

Theorem 2.1 (Error estimate). Suppose β1 ≥ 0, β2 ≥ 0, and α2+β1β2 �= 0. Then
the scheme (2.3) has the error estimate
(2.12)(
‖q − qh‖2+‖u−uh‖2

) 1
2
∣∣
t=T

≤
(
‖Π�

qq − qh‖2+‖Π�
uu−uh‖2

) 1
2
∣∣
t=0

+C(T + 1)hk+1.

Here C is a constant that is independent of h, but may depend on (k + 1)th-order
Sobolev norms of q, u, qt and ut, as well as values of α, β1 and β2.

Remark 2.2. The condition α2+β1β2 �= 0 is considered to be necessary as well. In [6,

Table 3.8], the suboptimal convergence rate was observed for
(
‖q−qh‖2+‖u−uh‖2

) 1
2

with α = β1 = 0 and β2 = 1/10.

If a strongly stable explicit Runge–Kutta method is used for time integration
[40], one can apply [41, Corollary 3.1] to obtain the fully discrete error estimate.

Theorem 2.2 (Fully discrete error estimate). After applying a pth-order strongly
stable Runge–Kutta method to discretize (2.3), the resulted fully discrete solution
satisfies the error estimate
(2.13)(
‖qn−qnh‖2+‖un−un

h‖2
) 1

2 ≤
(
‖Π�

qq
0−q0h‖2+‖Π�

uu
0−u0

h‖2
) 1

2 +C(T+1)
(
τp+hk+1

)
.

Here qn(x) = q(x, nτ ) and un(x) = u(x, nτ ) with τ being the time step size. For
i = 0 or n, qih and ui

h are the fully discrete solutions at the ith time step.

Remark 2.3 (Temporal discretization methods). For the fully discrete scheme, the
choice of the time integrator is not quite essential. One can also use other numerical
schemes in time, such as implicit Runge–Kutta methods and multi-step methods.
As long as the stability can be ensured, we expect a similar error estimate as that
in (2.13). We also note that changing flux parameters would perturb the spectrum
of the discrete DG operator, and may either increase or decrease the maximum

2Without further specification, we use C, possibly with subscript(s), for generic constants
independent of mesh size h throughout the paper.
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allowable time step associated with the stability region of the time integrator. For
particular parameters and given temporal discretization methods, it is possible to
use eigenvalue analysis to find the time step constraint, while having an analytical
characterization in general settings could be challenging.

2.3. Proof of Lemma 2.1. Under general settings, the resulted projection pair
may not be locally defined. We hence need to introduce generalized Gauss–Radau
projections as building blocks.

Lemma 2.2 (Generalized Gauss–Radau projections, [7,31]). Suppose λ �= 0. Then
there exists a uniquely defined linear operator Πλ satisfying(

Πλu,w
)
Ij

= (u,w)Ij , w ∈ Pk−1(Ij), ∀j,(2.14a) {
Πλu

}
+ λ

�
Πλu

�
= {u}+ λ �u� , at x = xj+ 1

2
, ∀j.(2.14b)

Furthermore, the following approximation property holds

(2.15) ‖u− Πλu‖2 + h
∑
j

�
u−Πλu

�2

j+ 1
2

≤ Cλh
2k+2|u|2Hk+1 .

Remark 2.4. When λ = ±1/2, the projection in Lemma 2.2 retrieves the classical

Gauss–Radau projection, which is a local operator. We denote by Π+ = Π+ 1
2 and

Π− = Π− 1
2 .

When β1 = β2 = 0, the definition of the projection pair Π�
q and Π�

u in (2.9)

is decoupled, and one can easily observe that Π�
q = Πα and Π�

u = Π−α. The
complication for constructing the projection pair (2.9) in the general case, is that
conditions on Π�

u and Π�
q are coupled through flux terms in (2.9c) and (2.9d). In

[6], the authors point out that one can explicitly define

Π�
qq = Π+

((
1

2
+ α

)
q + β1u

)
+Π−

((
1

2
− α

)
q − β1u

)
,(2.16a)

Π�
uu = Π+

((
1

2
− α

)
u+ β2q

)
+Π−

((
1

2
+ α

)
u− β2q

)
.(2.16b)

for (2.9) when α2 + β1β2 = 1/4. Here Π+ and Π− are classical Gauss–Radau
projections specified in Remark 2.4. Note we have

β2

((
1

2
± α

)
q ± β1u

)
=

(
1

2
± α

)((
1

2
∓ α

)
u± β2q

)
under the condition α2+β1β2 = 1/4. As a result, the Gauss–Radau projections are
applied to (1/2 + α)q + β1u and (1/2− α)q − β1u separately, which indicates that
certain transformed unknowns may admit to decoupled conditions in (2.9). This
motivates us to look into the characteristic decomposition of the coefficient matrix

A =

(
α β1

β2 −α

)
for finding the proper transformation. With these in mind, we

have the following proof of Lemma 2.1.

Proof. Let A =

(
α β1

β2 −α

)
. Note that the two eigenvalues of A are

(2.17) λ1 =
√
α2 + β1β2 and λ2 = −

√
α2 + β1β2.

Under the assumption α2 + β1β2 �= 0, the matrix A is nonsingular and diagonaliz-
able.
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We now switch to vector notations. Assume

(2.18) Λ = S−1AS = diag(λ1, λ2), λ1λ2 �= 0 and

(
q
u

)
= S

(
σ
ρ

)
.

Let us denote by

(2.19) Π�

(
q
u

)
=

(
Π�

qq
Π�

uu

)
,

and we will show that

(2.20) Π�

(
q
u

)
= S

(
Πλ1σ
Πλ2ρ

)

satisfies the definition (2.9), where Πλ1 and Πλ2 are the generalized Gauss–Radau
projections defined in Lemma 2.2.

Similar to the scalar case, let us use (·, ·)Ij for L2 inner product on Ij . {·} and�·� are used to represent the component-wise averages and jumps. Note (2.9a) and
(2.9b) can be equivalently written as

(2.21)

(
Π�

(
q
u

)
,

(
v
w

))
Ij

=

((
q
u

)
,

(
v
w

))
Ij

, ∀w, v ∈ Pk−1(Ij), ∀j.

By taking

(
v
w

)
= (S−1)T

(
ṽ
w̃

)
and using the linearity of Π�, one can see that

(2.21) holds if and only if

(2.22)

(
Π�

(
σ
ρ

)
,

(
ṽ
w̃

))
Ij

=

((
σ
ρ

)
,

(
ṽ
w̃

))
Ij

, ∀ṽ, w̃ ∈ Pk−1(Ij), ∀j.

Similarly, (2.9c) and (2.9d) can be rephrased in the vector form

(2.23)

{
Π�

(
q
u

)}
+A

�
Π�

(
q
u

)�
=

{(
q
u

)}
+A

�(
q
u

)�
, at x = xj+ 1

2
, ∀j.

Left multiplying S−1 on both sides of (2.23) leads to

(2.24)

{
Π�

(
σ
ρ

)}
+Λ

�
Π�

(
σ
ρ

)�
=

{(
σ
ρ

)}
+Λ

�(
σ
ρ

)�
, at x = xj+ 1

2
, ∀j.

Since Λ is a diagonal matrix, one can then rewrite (2.22) and (2.24) into the scalar
form, (

Π�
qσ, ṽ

)
Ij

= (σ, ṽ)Ij , ∀ṽ ∈ Pk−1(Ij), ∀j,(2.25a) {
Π�

qσ
}
+ λ1

�
Π�

qσ
�
= {σ}+ λ1 �σ� , at x = xj+ 1

2
, ∀j;(2.25b)

(Π�
uρ, w̃)Ij = (ρ, w̃)Ij , ∀w̃ ∈ Pk−1(Ij), ∀j,(2.25c)

{Π�
uρ}+ λ2 �Π�

uρ� = {ρ}+ λ2 �ρ� , at x = xj+ 1
2
, ∀j;(2.25d)

which is equivalent to (2.9). According to Lemma 2.2, Π�
qσ and Π�

uρ are uniquely
defined as

(2.26) Π�
qσ = Πλ1σ, Π�

uρ = Πλ2ρ.

Therefore,

(2.27) Π�

(
q
u

)
= SΠ�

(
σ
ρ

)
= S

(
Πλ1σ
Πλ2ρ

)
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is also uniquely defined, and satisfies the definition (2.9). The approximation prop-
erty (2.10) of Π� follows from those of Πλ1 and Πλ2 in Lemma 2.2. �

Remark 2.5 (Rewriting with generalized Gauss–Radau projections). With λ = λ1 =√
α2 + β1β2, the transformation matrix may take the form S =

(
α+ λ β1

β2 −α− λ

)
.

Then the projection in Lemma 2.1 can be explicitly written as

Π�
qq =

1

2λ

(
Πλ ((λ+ α) q + β1u) + Π−λ ((λ− α) q − β1u)

)
,(2.28a)

Π�
uu =

1

2λ

(
Πλ ((λ− α)u+ β2q) + Π−λ ((λ+ α)u− β2q)

)
,(2.28b)

which retrieves the local projection (2.16) in [6] in the special case α2 + β1β2 =
λ2 = 1/4. Furthermore, if β1 = β2 = 0, then we have Π�

q = Πα and Π�
u = Π−α.

Remark 2.6 (The critical case α2 + β1β2 = 0). The optimal error estimate in
Theorem 2.1 excludes the case of α2+β1β2 = 0. Recall that, in the proof of Lemma
2.2 in [7, Lemma 3.2], the following estimate for the approximation constant has
been obtained when λ is bounded

(2.29) Cλ ≤ C
(
1 +

(
|1− 2λ|2 − |1 + 2λ|2

)−1
)
.

Note that the right side blows up when λ shrinks to zero, which indicates the failure
of the approximation property (2.15) in the critical case. Our constructed projec-
tion (Π�

qq,Π
�
uu) is essentially a linear combination of generalized Gauss–Radau

projections, see Remark 2.5. Hence it suffers a similar singularity with the critical
parameter α2 + β1β2 = 0. In this situation, the optimal error estimate in Theorem
2.1 would also break up, since C in (2.13) depends on Cλ.

Remark 2.7 (The four-parameter family of fluxes). The analysis can be easily ex-

tended to a larger class of numerical fluxes with A =

(
α1 β1

β2 α2

)
, where α2 �= −α1

in general. The scheme (2.3) is stable under the assumption β1 ≥ 0, β2 ≥ 0, and
(α1 +α2)

2 ≤ 4β1β2. On the top of it, if we further assume α1α2 + β1β2 �= 0, it can
be shown that A is diagonalizable and nonsingular, and the projection in Lemma
2.1 is still well-defined with the same approximation estimate.

2.4. Extension to the second-order in time DG scheme. In this paper, we
mainly focus on the first-order system of the wave equation (2.1). Directly solving
the second-order in time wave equation (1.1) may be preferred under some cir-
cumstances, as illustrated in [8, 43]. The same optimal error estimate can also be
obtained for the local DG scheme in [43], which is based on the second-order mixed
form

(2.30) utt = qx, q = ux.

The local DG scheme takes the form of

((uh)tt, w)Ij +(qh, wx)Ij −
(
Fq(qh, uh)w

−)
j+ 1

2

+
(
Fq(qh, uh)w

+
)
j− 1

2

=0, ∀w∈Vh,

(2.31a)

(qh, v)Ij +(uh, vx)Ij −
(
Fu(uh, qh)v

−)
j+ 1

2

+
(
Fu(uh, qh)v

+
)
j− 1

2

=0, ∀v∈Vh,

(2.31b)

where the numerical flux is given by (2.4).
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Differentiate (2.31b) with respect to t. After combining the two equations, it
yields that

(2.32) ((qh)t, v) + ((uh)tt, w) + ãh(qh, uh; v, w) = 0.

where

ãh(qh, uh; v, w)

(2.33)

= ((uh)t, vx) + (qh, wx) +
∑
j

(Fu((uh)t, (qh)t) �v� + Fq(qh, uh) �w�)j+ 1
2
.

Proposition 2.2 (Stability). The bilinear form ãh satisfies the following property

(2.34) ãh(qh, uh; qh, (uh)t) =
1

2

d

dt

∑
j

(
β1 �uh�2 + β2 �qh�2)

j+ 1
2

.

The DG method (2.31) is energy-conserving, in the sense that d
dtE(qh, uh) = 0 with

(2.35) E(qh, uh) =

⎛
⎝‖qh‖2 + ‖(uh)t‖2 +

∑
j

(
β1 �uh�2 + β2 �qh�2)

j+ 1
2

⎞
⎠

1
2

.

Theorem 2.3. With E(·, ·) defined in (2.35), the DG scheme (2.31) has the error
estimate

(2.36) E(q − qh, u− uh)
∣∣
t=T

≤ E(Π�
qq − qh,Π

�
uu− uh)

∣∣
t=0

+ C(T + 1)hk+1.

In particular, with the initial condition qh(x, 0) = Π�
qq(x, 0) and uh(x) = Π�

uu(x, 0),

we have the error estimate in L2 norm

(2.37)
(
‖q − qh‖2 + ‖ut − (uh)t‖2

) 1
2 ≤ C(T + 1)hk+1.

Here, both constants C are independent of h, but may depend on (k + 1)th-order
Sobolev norms of q, qt, ut and utt, as well as values of α, β1 and β2.

Theorem 2.4. With qh(x, 0) = Π�
qq(x, 0) and uh(x, 0) = Π�

uu(x, 0), we have

(2.38) sup
t∈[0,T ]

‖u− uh‖ ≤ C(T + 1)hk+1,

where the constant C is independent of h, but may depend on (k+1)th-order Sobolev
norms of q, qt, ut and utt, as well as values of α, β1 and β2.

The proof of Theorem 2.3 is very similar to that of Theorem 2.1 in Appendix A,
and is skipped. The proof of Theorems 2.4 is provided in Appendix B.

3. Multi-dimensional case

In this section, we extend the previous analysis to multidimensions with un-
structured simplex meshes. Notations and the DG scheme are given in Section 3.1
and the optimal error estimates are stated in Section 3.2. The detailed proof on
properties of the required projection pair is given in Section 3.3.
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3.1. Notations and the DG scheme. Let Ω ⊂ R
d, d ≥ 2, be a rectangular

(cubic) domain with periodic boundaries. Consider a quasi-uniform triangulation
of the domain Ω = ∪K∈Th

K with simplex mesh cells. The collection of faces (mesh
skeleton) is denoted by Γ. Given a face F ∈ ∂K, we denote by n the unit outer
normal along F with respect to K. With the mesh cell K unspecified, we use nF

for the unit normal across F , whose direction is not essential. We also assume there
exists a fixed constant vector r ∈ R

2, |r| = 1, such that |r · nF | ≥ κ > 0.
For finite element spaces, let

Vh = {vh : vh|K ∈ Pk(K), ∀K ∈ Th}(3.1)

be the space of discontinuous piecewise polynomials, where Pk(K) is the linear space
spanned by polynomials on K of degree less or equal to k. We use the notations
Vh = [Vh]

d and Pk(K) = [Pk(K)]d for corresponding product spaces for vector
functions. Given a face F , we denote by K+ and K− the two neighboring cells.
w± and v± are the traces of w and v on K+ ∩ K− taken within K±. n± is the
unit outer normal of F from K±. The following notations will be used for averages
and jumps across a face F

{w} =
1

2

(
w+ + w−) , {v} =

1

2

(
v+ + v−) ,(3.2)

�wn� = w+n+ + w−n−, �v · n� = v+ · n+ + v− · n−,(3.3)

which are all single-valued on F . For ease of presentation, we denote by

(3.4) (·, ·) =
∑

K∈Th

(·, ·)K and 〈·, ·〉 =
∑
F∈Γ

〈·, ·〉F ,

where

(u,w)K =

∫
K

uwdx, (q,v)K =

∫
K

q · vdx,(3.5)

〈μ, ν〉F =

∫
F

μνds, 〈ζ, ξ〉F =

∫
F

ζ · ξds.(3.6)

‖ · ‖ =
√
(·, ·) is used for the L2 norm over the domain Ω and ‖·‖Γ =

√
〈·, ·〉 is used

for the L2 norm over the mesh skeleton Γ. Note the following identities hold for
jump terms

�wn� = nF (�wn� · nF ) , | �wn� |2 = (�wn� · nF )
2, r · �wn� = �rw · n� ,(3.7)

and integration over faces [3]

(3.8)
∑
K

〈w,v · n〉∂K = 〈{wn}, �v�〉+ 〈�wn� , {v}〉.
Now we are ready to state the numerical scheme for (1.2): find uh ∈ Vh and

qh ∈ Vh, such that

((uh)t, w)K + (qh,∇w)K − 〈Fq(qh, uh),nw〉∂K = 0, ∀w ∈ Vh,(3.9a)

((qh)t,v)K + (uh,∇ · v)K − 〈Fu(uh,qh)n,v〉∂K = 0, ∀v ∈ Vh,(3.9b)

where the numerical flux is chosen as

Fq(qh, uh) = {qh} −α �qh · n� − β1 �uhn� ,(3.10a)

Fu(uh,qh) = {uh} − β2 �qh · n� +α · �uhn� .(3.10b)
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Here

(3.11) α = αsign(r · nF )nF

and α, β1 and β2 are parameters.
After summing over all mesh cells K, the scheme (3.9) can be written in the

following global form: find qh ∈ Vh and uh ∈ Vh, such that

(3.12) ((qh)t,v) + ((uh)t, w) + ah(qh, uh;v, w) = 0, ∀v ∈ Vh, ∀w ∈ Vh,

where

ah(qh, uh;v, w)

= (qh,∇w) + (uh,∇ · v)−
∑
K

(
〈Fq(qh, uh),nw〉∂K + 〈Fu(uh,qh)n,v〉∂K

)
= (qh,∇w) + (uh,∇ · v)− 〈Fq(qh, uh), �wn�〉 − 〈Fu(uh,qh), �v · n�〉.

(3.13)

We start by presenting the stability of the proposed method.

Proposition 3.1 (Stability). The bilinear form ah satisfies the following property

(3.14) ah(qh, uh;qh, uh) = β1 ‖�uhn�‖2Γ + β2 ‖�qh · n�‖2Γ .
Suppose β1 ≥ 0 and β2 ≥ 0. Then the DG scheme (3.12) is stable, with the energy
equality

(3.15)
1

2

d

dt

(
‖qh‖2 + ‖uh‖2

)
+ ah(qh, uh;qh, uh) = 0.

Proof. With integration by parts, it can be seen that
(3.16)
ah(qh, uh;qh, uh)

= (qh,∇uh) + (uh,∇ · qh)− 〈Fq(qh, uh), �uhn�〉 − 〈Fu(uh,qh), �qh · n�〉
= (∇ · (uhqh), 1)− 〈Fq(qh, uh), �uhn�〉 − 〈Fu(uh,qh), �qh · n�〉
=

∑
K

〈uh,qh · n〉∂K − 〈Fq(qh, uh), �uhn�〉 − 〈Fu(uh,qh), �qh · n�〉
=

∑
K

〈uh,qh · n〉∂K − 〈{qh}, �uhn�〉 − 〈{uh}, �qh · n�〉
+ 〈α �qh · n� + β1 �uhn� , �uhn�〉+ 〈β2 �qh · n� −α · �uhn� , �qh · n�〉

= β1 ‖�uhn�‖2Γ + β2 ‖�qh · n�‖2Γ ,
where we have used the definition of numerical flux (3.10) in the second last equality,
and the identity (3.8) in the last equality. The stability (3.15) of the DG scheme
follows from choosing v = qh and w = uh in (3.12). �

3.2. Error estimates. Similar to the one-dimensional case, the key ingredient is
to construct the projection pair satisfying(

Π�
qq,v

)
K

= (q,v)K , ∀v ∈ Pk−1(K), ∀K ∈ Th,(3.17a)

(Π�
uu,w)K = (u,w)K , ∀w ∈ Pk−1(K), ∀K ∈ Th,(3.17b) 〈

Fq(Π
�
qq,Π

�
uu),nFμ

〉
F
= 〈Fq(q, u),nFμ〉F , ∀μ ∈ Pk(F ), ∀F ∈ Γ,(3.17c) 〈

Fu(Π
�
uu,Π

�
qq), ν

〉
F
= 〈Fu(u,q), ν〉F , ∀ν ∈ Pk(F ), ∀F ∈ Γ.(3.17d)
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Lemma 3.1. Suppose β1 ≥ 0, β2 > 0 and α2+β1β2 �= 0. Then the projection pair
in (3.17) is well-defined. Furthermore, we have
(3.18)

‖q−Π�
qq‖2 + ‖u−Π�

uu‖2 + h
(∥∥�(

q−Π�
qq

)
· nF

�∥∥2
Γ
+ ‖�(u−Π�

uu)nF �‖2Γ)
≤ C�h

2k+2
(
|q|2Hk+1 + |u|2Hk+1

)
.

Here C� is a constant independent of h, but may depend on values of α, β1 and β2.
It may also depend on κ if β1 = 0.

The proof of Lemma 3.1 is postponed to the next subsection. Next, we can
establish the optimal L2 error estimate of the proposed methods.

Theorem 3.1 (Error estimate). With α, β1 and β2 prescribed in Lemma 3.1, the
scheme (3.9) admits the following error estimate.
(3.19)(
‖q−qh‖2+‖u−uh‖2

) 1
2
∣∣
t=T

≤
(
‖Π�

qq− qh‖2+‖Π�
uu−uh‖2

) 1
2
∣∣
t=0

+C(T +1)hk+1,

where C is a constant independent of h, but depends on C� in Lemma 3.1 and
(k + 1)th-order Sobolev norms of q, u, qt and ut.

Proof. We denote by

eq = q− qh and eu = u− uh.(3.20)

It can be seen that the following error equation holds

(3.21) ((eq)t,v) + ((eu)t, w) + ah(eq, eu;v, w) = 0, ∀v ∈ Vh, ∀w ∈ Vh.

Let us then decompose the error terms as the projection error and the projected
error

(3.22) eq = ηq +Π�
qeq and eu = ηu +Π�

ueu,

where ηq = q− Π�
qq and ηu = u− Π�

uu. According to the construction of Π�
q and

Π�
u in (3.17), we have

(3.23) ah(ηq, ηu;v, w) = 0, ∀v ∈ Vh, ∀w ∈ Vh.

Hence (3.21) can be rewritten as
(3.24)(

(Π�
qeq)t,v

)
+ ((Π�

ueu)t, w) + ah(Π
�
qeq,Π

�
ueu;v, w) = −((ηq)t,v)− ((ηu)t, w).

Then by taking v = Π�
qq and w = Π�

uu, it can be deduced that

(3.25)
1

2

d

dt

(
‖Π�

qeq‖2 + ‖Π�
ueu‖2

)
≤ −

(
(ηq)t,Π

�
qeq

)
− ((ηu)t,Π

�
ueu).

Here we have used the fact that ah(Π
�
qeq,Π

�
ueu; Π

�
qeq,Π

�
ueu) ≥ 0 from Proposition

3.1 under the assumptions β1 ≥ 0 and β2 ≥ 0. One can then apply the Cauchy–
Schwarz inequality and the approximation property in Lemma 3.1 to obtain
(3.26)

d

dt

(
‖Π�

qeq‖2 + ‖Π�
qeu‖2

) 1
2 ≤

(
‖(ηq)t‖2 + ‖(ηu)t)‖2

) 1
2 =

(
‖ηqt

‖2 + ‖ηut
‖2
) 1

2

≤ Chk+1 (|qt(·, t)|Hk+1 + |ut(·, t)|Hk+1) ,
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which implies

(
‖Π�

qeq‖2 + ‖Π�
ueu‖2

) 1
2
∣∣
t=T

≤
(
‖Π�

qeq‖2 + ‖Π�
ueu‖2

) 1
2
∣∣
t=0

+ CThk+1 sup
t∈[0,T ]

(|qt|Hk+1 + |ut|Hk+1) .

(3.27)

The proof can be completed after invoking triangle inequality with respect to the
product norm

√
‖ · ‖2 + ‖ · ‖2 and the approximation property of Π�

q and Π�
u in

Lemma 3.1. �

Remark 3.1 (Fully discrete error estimate). Similar to that in one dimension, if
explicit Runge–Kutta methods are used for time marching, one can obtain fully
discrete error estimates using [41, Corollary 3.1].

Remark 3.2. If one uses the standard L2 projections, instead of Π�
q and Π�

u in (3.17)
for error estimates, only suboptimal convergence can be obtained. This suboptimal
rate is (k + 1/2)th-order if β1 > 0 and β2 > 0, and is kth-order in general.

Remark 3.3 (Connections with hybridizable DG methods). We remark the case
α2 + β1β2 = 1/4 and β2 > 0 has been studied in [16] in the context of hybridizable
DG method (in particular, the LDG-hybridizable method). The coefficients of the
numerical flux are given under a different parametrization [12]

Fq(qh, uh) =

(
τ−

τ− + τ+

)
q+
h +

(
τ+

τ− + τ+

)
q−
h −

(
τ+τ−

τ− + τ+

) �uhn� ,(3.28a)

Fu(uh,qh) =

(
τ+

τ− + τ+

)
u+
h +

(
τ−

τ− + τ+

)
u−
h −

(
1

τ− + τ+

) �qh · n� ,(3.28b)

which can be expressed in the form of (3.10) with

α =
1

2
− τ−

τ− + τ+
, β1 =

τ+τ−

τ− + τ+
, β2 =

1

τ− + τ+
.

Remark 3.4 (Numerical fluxes and energy conservation). From the energy estimate
in Proposition 3.1 and the prescribed family of flux parameters in Lemma 3.1, it
can be seen that we need the numerical scheme to be energy-dissipative for optimal
convergence in Theorem 3.1. This has also been numerically validated in Tables
4.9, 4.10 and 4.11: if we take β1 = β2 = 0 for an energy-conserving scheme, the
numerical scheme may lose order on unstructured meshes. This is in contrast to
the one-dimensional case, where the same choices of numerical fluxes will lead to
optimal energy-conserving schemes. However, we point out it is possible to use the
second-order in time formulation to develop an energy-conserving DG method with
optimal convergence rate. This has been studied in the context of hybridizable DG
method in [11].

Remark 3.5 (With other boundary conditions). Although for simplicity we only
consider periodic boundaries, the analysis can also be extended to boundary condi-
tions of other types. For example, if homogeneous Dirichlet boundaries u = 0 are
assumed, one can keep the numerical flux as (3.10) on interior faces Γ0, and replace
its definition with

(3.29) Fq(qh, uh) = (qh − uhn)
∣∣
K
, Fu(u,qh) = 0, ∀F ∈ K ∩ Γ∂
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along boundary faces Γ∂ , as studied in the hybridizable DG method [16]. The
projection in Lemma 3.1 can still be constructed for the optimal error analysis.

Remark 3.6 (In heterogeneous media). The analysis can also be extended to prob-
lems in heterogeneous media. The treatment of variable coefficients follows similar
lines along [16] and [11].

3.3. Proof of Lemma 3.1. In this subsection, we provide the proof of Lemma
3.1. We will start by presenting a special case when the projections Π�

qq and Π�
uu

defined in (3.17) become the local projections. The general case will be studied as
a perturbation away from these local projections, and the main analytical tool is
based on an energy argument.

3.3.1. Local projections. When α2+β1β2 = 1/4 and β2 > 0, the projection pair Π�
qq

and Π�
uu becomes the local projection studied in [13]. In particular, let us denote

by Πq and Πu the projection pair corresponding to α = 0 and β1 = β2 = 1/2,
which satisfies the following equations(

Πqq,v
)
K

= (q,v)K , ∀v∈Pk−1(K), ∀K∈Th,(3.30a) (
Πuu,w

)
K

= (u,w)K , ∀w∈Pk−1(K), ∀K∈Th,(3.30b)

〈
{Πqq} −

1

2

�
Πuun

�
,nFμ

〉
F

=

〈
{q} − 1

2
�un� ,nFμ

〉
F

,∀μ ∈ Pk(F ), ∀F ∈ Γ,

(3.30c)

〈
{Πuu} −

1

2

�
Πqq · n

�
, ν

〉
F

=

〈
{u} − 1

2
�q · n� , ν〉

F

, ∀ν ∈ Pk(F ), ∀F ∈ Γ.

(3.30d)

We claim that (3.30c) and (3.30d) can be equivalently written as
(3.31)〈

Πqq · n−Πuu, μ
〉
F
= 〈q · n− u, μ〉F , ∀μ ∈ Pk(F ), ∀F ∈ ∂K, ∀K ∈ Th.

To show (3.30c) and (3.30d) imply (3.31), we consider a face F ∈ ∂K and take
nF as the unit outer normal of F with respect to K. (3.31) can be obtained by
subtracting (3.30d) from (3.30c). On the other hand, adding (3.31) along F in two
neighboring cells will lead to (3.30d) and taking the subtraction will lead to (3.30c).

Note that the projection pair Π�
qq and Π�

uu, defined by (3.30a), (3.30b) and
(3.31), retrieves the same form as that in [13, Theorem 2.1], therefore we have the
following approximation result.

Lemma 3.2. The projection pair Πq and Πu in (3.30) is well-defined, with the
approximation property

‖q−Πqq‖2 + ‖u−Πuu‖2 ≤ Ch2k+2
(
|q|2Hk+1 + |u|2Hk+1

)
,(3.32) ∥∥�

(q−Πqq) · n
�∥∥2

Γ
+
∥∥�(

u−Πuu
)
n
�∥∥2

Γ
≤ Ch2k+1

(
|q|2Hk+1 + |u|2Hk+1

)
.(3.33)

The approximation (3.32) follows from the result in [13, Theorem 2.1], and the
approximation (3.33) can be observed by adding and subtracting the L2 projection
of u and q, and then applying Cauchy–Schwartz inequality, inverse inequality, the
result (3.32) and the optimal projection error of the L2 projection.
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3.3.2. The general case. Next, we will analyze the general case as a perturbation
away from the above local projection pair Πq and Πu. With a dimension count
(see Appendix C), it can be seen that (3.17) forms a square linear system, therefore
the approximation estimate in (3.18) implies that the projection pair (3.17) must
be unique, hence unisolvent. It suffices to prove (3.18) holds for any Π�

qq and Π�
uu

satisfying (3.17).
To this end, we denote the projection error of Πq and Πu by

(3.34) ηq = q−Πqq and ηu = u−Πuu,

and define perturbation terms

(3.35) δq = (Π�
q −Πq)q and δu = (Π�

u −Πu)u.

By subtracting (3.30) from (3.17), it can be seen that δq and δu satisfy the following
conditions

(δq,v)K =0, ∀v∈Pk−1(K), ∀K ∈ Th,(3.36a)

(δu, w)K =0, ∀w∈Pk−1(K), ∀K ∈ Th,(3.36b)

〈Fq(δq, δu),nFμ〉F =−
〈
α

�
ηq · n

�
+ (β1 −

1

2
) �ηun� ,nFμ

〉
F

, ∀μ∈Pk(F ), ∀F ∈Γ,

(3.36c)

〈Fu(δu, δq), ν〉F =−
〈
(β2 −

1

2
)
�
ηq · n

�
−α · �ηun� , ν〉

F

, ∀ν∈ Pk(F ), ∀F ∈Γ.

(3.36d)

It can be equivalently written as

(δq,v)K = 0, ∀v ∈ Pk−1(K), ∀K ∈ Th,(3.37a)

(δu, w)K = 0, ∀w ∈ Pk−1(K), ∀K ∈ Th,(3.37b) 〈
{δq} −

1

2
�δun� ,nFμ

〉
F

= 〈ζ · nF , μ〉F , ∀μ ∈ Pk(F ), ∀F ∈ Γ,(3.37c) 〈
{δu} −

1

2
�δq · n� , ν〉

F

= 〈ξ, ν〉F , ∀ν ∈ Pk(F ), ∀F ∈ Γ,(3.37d)

where

ζ = −α(
�
ηq · n

�
− �δq · n�)− (β1 −

1

2
)(�ηun� − �δun�),(3.38a)

ξ = − (β2 −
1

2
)
(�
ηq · n

�
− �δq · n�)+α · (�ηun� − �δun�) .(3.38b)

Lemma 3.3.

(3.39) ‖δq‖2 + ‖δu‖2 ≤ Cα,βh
(
‖ζ · n‖2Γ + ‖ξ‖2Γ

)
.

Lemma 3.3 essentially states a property of the local projection pair Πq and Πu.
Its proof follows similar arguments as that in [13, Appendix A], and is sketched in
Appendix D.

Lemma 3.4. The approximation estimate (3.18) holds if

(3.40) ‖�δq · n�‖2Γ + ‖�δun�‖2Γ ≤ C�

(∥∥�
ηq · n

�∥∥2
Γ
+ ‖�ηun�‖2Γ) .
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Proof. Combining the definition of ζ and ξ in (3.38) with the assumption (3.40),
and applying Cauchy–Schwarz inequality, it yields that

(3.41) ‖ζ · n‖2Γ + ‖ξ‖2Γ ≤ C�

(∥∥�
ηq · n

�∥∥2
Γ
+ ‖�ηun�‖2Γ) .

With Lemma 3.3, one can obtain that

(3.42) ‖δq‖2 + ‖δu‖2 ≤ C�h
(∥∥�

ηq · n
�∥∥2

Γ
+ ‖�ηun�‖2Γ) .

Recall the approximation estimate for ηq and ηu in Lemma 3.2, we have

(3.43) ‖δq‖2 + ‖δu‖2 ≤ C�h
2k+2

(
|q|2Hk+1 + |u|2Hk+1

)
.

The estimates for ‖q − Π�
uq‖ and ‖u − Π�

uu‖ can be obtained after applying tri-
angle inequality. By adding and subtracting Πuu and Πqq, and then applying
Cauchy–Schwarz inequality, inverse inequality, (3.40) and the optimal approxima-
tion property of Πq and Πu, one can also obtain estimates of

∥∥�(
q−Π�

qq
)
· n

�∥∥
Γ

and ‖�(u−Π�
uu)n�‖Γ. Details are omitted. �

It remains to verify (3.40) for the listed cases. The main idea is to use the
semi-positivity of the bilinear form ah(·, ·; ·, ·) to estimate the jump terms.

Take v = ∇δu in (3.36a), w = ∇ · δq in (3.36b), μ = �δun� · nF in (3.36c) and
ν = �δq · n� in (3.36d). Summing these equations over all the elements yields that

(δq,∇δu) + (δu,∇ · δq)− 〈Fq(δu, δq), �δun�〉 − 〈Fu(δu, δq), �δq · n�〉(3.44)

=

〈
α

�
ηq · n

�
+ (β1 −

1

2
) �ηun� , �δun�〉

+

〈
(β2 −

1

2
)
�
ηq · n

�
−α · �ηun� , �δq · n�〉.

Note the left side of the equation is simply ah(δq, δu; δq, δu). Recall the identity

(3.14), therefore the left hand side term becomes β1 ‖�δun�‖2Γ + β2 ‖�δq · n�‖2Γ. Ap-
plying Cauchy–Schwarz inequality to right hand side of (3.44), it yields that

β1 ‖�δun�‖2Γ + β2 ‖�δq · n�‖2Γ
≤ Cα,β

ε

(∥∥�
ηq · n

�∥∥2
Γ
+ ‖�ηun�‖2Γ)+ ε

(
‖�δq · n�‖2Γ + ‖�δun�‖2Γ) ,

(3.45)

for any positive constant ε.

Case 1 (β1 > 0 and β2 > 0.). In this case, we can simply take ε = min(β1, β2)/2
and rearrange terms to obtain (3.40), with the constant C� = Cα,β independent of
κ.

Case 2 (β1 = 0, β2 > 0 and α �= 0.). In this case, we have

(3.46) (β2 − ε) ‖�δq · n�‖2Γ ≤ Cα,β

ε

(∥∥�
ηq · n

�∥∥2
Γ
+ ‖�ηun�‖2Γ)+ ε ‖�δun�‖2Γ .

Now it suffices to estimate ‖�δun�‖2Γ to verify (3.40). The main idea is to con-
struct the bilinear form of the advection operator from (3.36) and use the associated

semi-positivity for estimating ‖δun‖2Γ.
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We take w = r · ∇δu in (3.36b) and ν = �rδu · n� in (3.36d). Then it can be
shown that

(3.47)

Lδq(δu; δu) :=
∑
K

(δur,∇δu)K − 〈{δu} − β2 �δq · n� +α · �δun� , �rδu · n�〉
=

〈
(β2 −

1

2
)
�
ηq · n

�
−α · �ηun� , �rδu · n�〉.

The left hand side of (3.47) corresponds to the DG discretization of the advection
operator r · ∇, which can be simplified as follows

Lδq(δu; δu)

=
∑
K

(
∇ · (δu(rδu)) ,

1

2

)
K

− 〈{δu} − β2 �δq · n� +α · �δun� , �rδu · n�〉
=

1

2

∑
K

〈δu, (rδu) · n〉∂K−〈{δu}, �rδu · n�〉+ 〈β2 �δq · n�−α · �δun� , �rδu · n�〉
=

1

2

(∑
K

〈δu, (rδu) · n〉∂K − 〈{δu}, �rδu · n�〉 − 〈{rδu}, �δun�〉
)

+ 〈β2 �δq · n� −α · �δun� , r · �δun�〉
= 〈β2 �δq · n� −α · �δun� , r · �δun�〉.

(3.48)

Here we have used the fact that �rδu · n� = r · �δun�, hence 〈{δu}, �rδu · n�〉 =
〈{rδu}, �δun�〉, and then the identity (3.8). One can further apply the relationship�δun� = nF (�δun� · nF ) and α = αsign(r · nF )nF to obtain
(3.49)
Lδq(δu; δu) = 〈β2 �δq · n� −α · �δun� , r · �δun�〉

= −
〈
(α · nF )(r · nF ), (�δun� · nF )

2
〉
+ β2(�δq · n� , (r · nF ) �δun� · nF )

= − α
〈
|r · nF |, (�δun� · nF )

2
〉
+ β2〈(r · nF ) �δq · n� , �δun� · nF 〉.

We then simplify the right hand side of (3.47) along similar lines to obtain

(3.50)

〈
(β2 −

1

2
)
�
ηq · n

�
−α · �ηun� , �rδu · n�〉

=

〈
−α|r · nF | �ηun� · nF + (β2 −

1

2
)(r · nF )

�
ηq · n

�
, �δun� · nF

〉
.

Combining (3.49) with (3.50), one can deduce
(3.51)

α
∥∥∥|r · nF |

1
2 �δun� · nF

∥∥∥2
Γ

= α〈|r · nF | �ηun� · nF , �δun� · nF 〉

+

〈
β2 �δq · n�−(β2−

1

2
)
�
ηq · n

�
, (r · nF )(�δun� · nF )

〉
.

Applying Cauchy–Schwarz inequality and rearranging terms yield that
(3.52)

(|α| − ε̃)
∥∥∥|r · nF |

1
2 �δun� · nF

∥∥∥2
Γ
≤ Cα,β

ε̃

(
‖�ηun�‖2Γ +

∥∥�
ηq · n

�∥∥2
Γ
+ ‖�δq · n�‖2Γ) .
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Here we have used the fact that |r · nF | ≤ 1 and ‖�ηun� · nF ‖2Γ = ‖�ηun�‖2Γ. Then
we take ε̃ = |α|/2 and recall the assumption 0 < κ ≤ |r · nF | to get

(3.53) ‖�δun�‖2Γ ≤ Cα,β,κ

(
‖�ηun�‖2Γ +

∥∥�
ηq · n

�∥∥2
Γ
+ ‖�δq · n�‖2Γ) .

We combine (3.46) and (3.53) to obtain

(3.54) (β2 − (1 + Cα,β,κ)ε) ‖�δq · n�‖2Γ ≤ Cα,β,κ

ε

(∥∥�
ηq · n

�∥∥2
Γ
+ ‖�ηun�‖2Γ) .

The bound for ‖�δq · n�‖2Γ can be obtained after taking ε to be sufficiently small.
In the end, we obtain (3.40) with C� = Cα,β,κ dependent on κ, by combining (3.54)
and (3.53). This completes the proof of Lemma 3.1.

4. Numerical tests in two dimensions

Extensive numerical studies in one dimension can be found in [6], which match
all of our theoretical findings. In this section, we only provide two-dimensional
accuracy tests using the initial value problem in [22, Example 4.9].

We apply the DG scheme (3.9) to (1.2) on Ω = [0, 1] × [0, 1] with the initial
condition

(4.1) u(x, y, 0) = sin(2π(x+ y)) and q(x, y, 0) = 0.

The exact solution to the stated initial value problem is given by the following plane
wave

u(x, y, t) =
1

2
sin(2π(x+ y − (

√
2)t)) +

1

2
sin(2π(x+ y + (

√
2)t)),(4.2)

q(x, y, t) =

(√
2
4 sin(2π(x+ y − (

√
2)t))−

√
2
4 sin(2π(x+ y + (

√
2)t))√

2
4 sin(2π(x+ y − (

√
2)t))−

√
2
4 sin(2π(x+ y + (

√
2)t))

)
.(4.3)

We use the four-stage fourth-order explicit Runge–Kutta method3 [39] with the time
step τ = 1/(50Nmax(1,k/4)) for time discretization and compute upto T = 1/10.
The convergence rate is examined both on the structured triangular mesh and the
unstructured triangular mesh, as illustrated in Figure 4.1. The structured mesh
is created by splitting a uniform square mesh into triangles, and the unstructured
mesh is created with Netgen [36] with the maximum mesh size specified as 1/N .
The numerical tests and observed convergence rates are summarized in Table 4.1.
See also Tables 4.2–4.14 for details.

From the numerical tests, we see that for the proved cases: 1. β1 > 0 and β2 > 0;
2. β1 = 0, β2 > 0 and α �= 0, we do obtain optimal convergence rate for qh and uh

simultaneously on both the structured meshes and the unstructured meshes. The
cases that are not covered in the proof may fall into the following categories.

(1) β2 = 0 and

(a) β1 �= 0, α �= 0; (b) β1 = 0, α �= 0;

(c) β1 �= 0, α = 0; (d) β1 = α = 0.

(2) β2 > 0 and β1 = α = 0.

3We choose the fourth-order method because our numerical tests are primarily performed for
the cases with k ≤ 3. The purpose of using the fourth-order method is to avoid the temporal error
affect the exhibited convergence rate. Other high-order methods can also be used and we expect
similar results.
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We perform numerical tests for each of the listed cases. Note that the special case
β1 = β2 = 0 and α = ±1/2 in 1(b) is usually referred to as the alternating flux, and
has been studied in [10] in the context of the minimal dissipation local DG method
for convection-diffusion problems. The case α = β1 = β2 = 0 in 1(d) is also known
as the central flux proposed in Bassi and Rebay [4].

For all these listed choices, it can be seen that at least one of qh and uh converge
at a suboptimal rate on unstructured meshes. Hence the conditions in Lemma 3.1
should provide a complete characterization for parameters to guarantee simulta-
neous optimal convergence for both qh and uh. At the same time, we do observe
interesting convergence patterns for suboptimal cases. For example, if one uses
alternating flux, optimal convergence rates are still observed on structured triangu-
lar meshes; the central flux have the even-odd patterns, comparable to the recent
analysis on advection equation on Cartesian meshes in [30]; and if one adds jump
penalties for one of the unknowns, this unknown will exhibit optimal converging
rate, for which similar observation has been reported in [42] for Hamiltonian partial
differential equations. We postpone the analysis of these suboptimal behaviors to
our future work.

(a) Structured mesh. (b) Unstructured mesh.

Figure 4.1. Structured and unstructured meshes for accuracy
test with N = 10.

5. Conclusions

In this paper, we present optimal error estimates of the DG methods for the wave
equation (1.2) with generalized numerical fluxes. For the one-dimensional case, this
work completes the analysis in [6] by proving the optimal convergence rates which
match all previous numerical observations. The analysis is mainly based on char-
acteristic decomposition and uses generalized Gauss–Radau projections as building
blocks to construct the required projection pair. For the multi-dimensional case, we
introduce the technique with energy arguments to construct a global projection on
unstructured meshes, and obtain optimal error estimates for a family of numerical
fluxes. Two-dimensional numerical examples are provided to validate at least one
of the unknowns will degenerate to suboptimal rates if the assumed assumptions
are not satisfied.
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Table 4.1. Summary of the observed convergence rates in various
numerical tests. ι = k + mod (k + 1, 2). The sign ∗ indicates
unclean observed convergence rates. The DG scheme with central,
q-dissipative and u-dissipative fluxes are tested for k = 1, 2, 3, 4, 5.
All other schemes are tested for k = 1, 2, 3.

Flux Table
Parameters Structured Mesh Unstructured Mesh

α β1 β2 uh qh uh qh

Optimal schemes: β1 > 0 and β2 > 0

Upwind 4.2 0 1/2 1/2 k + 1 k + 1 k + 1 k + 1
Underupwinding 4.3 0 1/10 1/10 k + 1 k + 1 k + 1 k + 1
Overupwinding 4.4 0 1 1 k + 1 k + 1 k + 1 k + 1
Nondegenerate 4.5 −3/10 1/20 1/5 k + 1 k + 1 k + 1 k + 1

Optimal schemes: β1 = 0, β2 > 0 and α �= 0

αβ 4.6 1/2 0 1 k + 1 k + 1 k + 1 k + 1
non-αβ 4.7 −1/10 0 1/10 k + 1 k + 1 k + 1 k + 1

A few subopitmal schemes

β2-degenerate 4.8 1/2 1/2 0 k + 1 k + 1 k + 1 k
Alternating 4.9 1/2 0 0 k + 1 k + 1 k + 1 k
Underalternating* 4.10 −1/10 0 0 k + 1 k k + 1 k
Overalternating* 4.11 1 0 0 k + 1 k k + 1 k
Central 4.12 0 0 0 max(2, ι) ι max(2, ι) k
q-dissipative 4.13 0 0 1/2 max(2, ι) k + 1 max(2, ι) k + 1
u-dissipative 4.14 0 1/2 0 k + 1 ι k + 1 k

Table 4.2. Upwind flux (also an αβ-flux), α = 0 and β1 = β2 = 1/2.

Structured Mesh Unstructured Mesh

uh qh uh qh

k N L2 error order L2 error order L2 error order L2 error order

10 6.8691e-03 - 9.1693e-03 - 9.7037e-03 - 3.4192e-02 -
20 1.7834e-03 1.95 2.2355e-03 2.04 2.3273e-03 2.06 5.9651e-03 2.52

1 40 4.5272e-04 1.98 5.5103e-04 2.02 6.0673e-04 1.94 1.2284e-03 2.28
80 1.1393e-04 1.99 1.3676e-04 2.01 1.5447e-04 1.97 2.7184e-04 2.18

10 3.6510e-04 - 4.7225e-04 - 6.9628e-04 - 1.1838e-03 -
20 4.6503e-05 2.97 5.7377e-05 3.04 7.5990e-05 3.20 1.1477e-04 3.37

2 40 5.8584e-06 2.99 7.0725e-06 3.02 9.8094e-06 2.95 1.4542e-05 2.98
80 7.3542e-07 2.99 8.7844e-07 3.01 1.2394e-06 2.98 1.8168e-06 3.00

10 1.1092e-05 - 1.5070e-05 - 2.7779e-05 - 5.0280e-05 -
20 7.1733e-07 3.95 9.0186e-07 4.06 1.4771e-06 4.23 2.4288e-06 4.37

3 40 4.5467e-08 3.98 5.5438e-08 4.02 9.5696e-08 3.95 1.5924e-07 3.93
80 2.8618e-09 3.99 3.4355e-09 4.01 6.1118e-09 3.97 1.0017e-08 3.99

Appendix A. Proof of Theorem 2.1

Proof. Let eq = q − qh and eu = u − uh. The consistency of the DG scheme (2.5)
gives

(A.1) ((eq)t, v) + ((eu)t, w) + ah(eq, eu; v, w) = 0.

With the projection error denoted by ηq = q − Π�
qq and ηu = u − Π�

uu, it can be
shown that

(A.2) eq = Π�
qeq + ηq and eu = Π�

qeu + ηu.
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Table 4.3. Upwind-biased flux (under-upwinding), α = 0 and
β1 = β2 = 1/10.

Structured Mesh Unstructured Mesh

uh qh uh qh

k N L2 error order L2 error order L2 error order L2 error order

10 7.6539e-03 - 3.4827e-02 - 1.0118e-02 - 6.0910e-02 -
20 1.6772e-03 2.19 8.3258e-03 2.06 2.1923e-03 2.21 1.2468e-02 2.29

1 40 4.1207e-04 2.03 1.9435e-03 2.10 5.5475e-04 1.98 2.9344e-03 2.09
80 1.0192e-04 2.02 4.5869e-04 2.08 1.3903e-04 2.00 6.9001e-04 2.09

10 3.4584e-04 - 5.6675e-04 - 7.6958e-04 - 2.0052e-03 -
20 4.0524e-05 3.09 5.7198e-05 3.31 7.5713e-05 3.35 1.6821e-04 3.58

2 40 4.9288e-06 3.04 6.5321e-06 3.13 9.1708e-06 3.05 2.0072e-05 3.07
80 6.0775e-07 3.02 7.9036e-07 3.05 1.1338e-06 3.02 2.4245e-06 3.05

10 8.9671e-06 - 6.2266e-05 - 2.4349e-05 - 1.5225e-04 -
20 8.2103e-07 3.45 3.7806e-06 4.04 1.3224e-06 4.20 7.5647e-06 4.33

3 40 7.0739e-08 3.54 2.2390e-07 4.08 1.0008e-07 3.72 4.9201e-07 3.94
80 5.0686e-09 3.80 1.3419e-08 4.06 7.1837e-09 3.80 3.0420e-08 4.02

Table 4.4. Upwind-biased flux (over-upwinding), α = 0, β1 =
β2 = 1.

Structured Mesh Unstructured Mesh

uh qh uh qh

k N L2 error order L2 error order L2 error order L2 error order

10 7.2307e-03 - 8.2040e-03 - 1.0953e-02 - 3.3382e-02 -
20 1.7641e-03 2.04 2.0067e-03 2.03 2.4806e-03 2.14 5.6655e-03 2.56

1 40 4.3410e-04 2.02 5.0060e-04 2.00 6.3209e-04 1.97 1.1265e-03 2.33
80 1.0762e-04 2.01 1.2531e-04 2.00 1.5847e-04 2.00 2.4270e-04 2.21

10 3.9554e-04 - 6.3507e-04 - 7.1351e-04 - 1.4281e-03 -
20 5.6902e-05 2.80 7.7403e-05 3.04 8.5794e-05 3.06 1.4408e-04 3.31

2 40 7.5662e-06 2.91 9.4806e-06 3.03 1.1743e-05 2.87 1.8097e-05 2.99
80 9.7325e-07 2.96 1.1709e-06 3.02 1.5252e-06 2.94 2.2494e-06 3.01

10 1.2171e-05 - 1.2873e-05 - 3.2823e-05 - 4.9117e-05 -
20 7.0635e-07 4.11 7.4530e-07 4.11 1.6527e-06 4.31 2.2420e-06 4.45

3 40 4.2454e-08 4.06 4.5988e-08 4.02 1.0630e-07 3.96 1.4767e-07 3.92
80 2.6016e-09 4.03 2.8726e-09 4.00 6.7309e-09 3.98 9.2682e-09 3.99

Recall the property (2.11). One can then rewrite (A.1) as

(A.3)
(
(Π�

qeq)t, v
)
+((Π�

ueu)t, w)+ah(Π
�
qeq,Π

�
ueu; v, w) = −((ηq)t, v)− ((ηu)t, w).

Taking v = Π�
qeq and w = Π�

ueu in (A.3) leads to

1

2

d

dt

(
‖Π�

qeq‖2 + ‖Π�
ueu‖2

)
+ ah(Π

�
qeq,Π

�
ueu; Π

�
qeq,Π

�
ueu)

= −
(
(ηq)t,Π

�
qeq

)
− ((ηu)t,Π

�
ueu).

(A.4)

Note that ah(Π
�
qeq,Π

�
ueu; Π

�
qeq,Π

�
ueu) ≥ 0 under the stability assumption. After

using Cauchy–Schwarz inequality, it yields that
(A.5)
d

dt

(
‖Π�

qeq‖2 + ‖Π�
ueu‖2

) 1
2 ≤

(
‖(ηq)t‖2 + ‖(ηu)t‖2

) 1
2 ≤ Chk+1 (|qt|Hk+1 + |ut|Hk+1) .

Here we have used the fact (ηq)t = ηqt and (ηu)t = ηut
, as well as the approximation

estimate (2.10), in the last inequality. The estimate for
(
‖Π�

qeq‖2 + ‖Π�
ueu‖2

) 1
2 can
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Table 4.5. Nondegenerate flux, α = −3/10, β1 = 1/20 and β2 = 1/5.

Structured Mesh Unstructured Mesh

uh qh uh qh

k N L2 error order L2 error order L2 error order L2 error order

10 8.3802e-03 - 1.3567e-02 - 1.1764e-02 - 3.8089e-02 -
20 2.0548e-03 2.03 3.2707e-03 2.05 2.7154e-03 2.12 6.8594e-03 2.47

1 40 5.0956e-04 2.01 7.8743e-04 2.05 6.9580e-04 1.96 1.4946e-03 2.20
80 1.2720e-04 2.00 1.9189e-04 2.04 1.7528e-04 1.99 3.4404e-04 2.12

10 3.7079e-04 - 4.5639e-04 - 7.8061e-04 - 1.2925e-03 -
20 4.4681e-05 3.05 5.5149e-05 3.05 8.0687e-05 3.27 1.2152e-04 3.41

2 40 5.5117e-06 3.02 6.7612e-06 3.03 1.0128e-05 2.99 1.5549e-05 2.97
80 6.8493e-07 3.01 8.3824e-07 3.01 1.2653e-06 3.00 1.9372e-06 3.00

10 1.4030e-05 - 2.2236e-05 - 3.1754e-05 - 6.9300e-05 -
20 9.0716e-07 3.95 1.3665e-06 4.02 1.7441e-06 4.19 3.2556e-06 4.41

3 40 5.6901e-08 3.99 8.3301e-08 4.04 1.1507e-07 3.92 2.1349e-07 3.93
80 3.5681e-09 4.00 5.1398e-09 4.02 7.3423e-09 3.97 1.3573e-08 3.98

Table 4.6. αβ-flux, α = 1/2, β1 = 0 and β2 = 1/2.

Structured Mesh Unstructured Mesh

uh qh uh qh

k N L2 error order L2 error order L2 error order L2 error order

10 9.2272e-03 - 8.3926e-03 - 1.3941e-02 - 3.3658e-02 -
20 2.3118e-03 2.00 2.1224e-03 1.98 3.1460e-03 2.15 5.8153e-03 2.53

1 40 5.7642e-04 2.00 5.3535e-04 1.99 8.1850e-04 1.94 1.1819e-03 2.30
80 1.4380e-04 2.00 1.3444e-04 1.99 2.0615e-04 1.99 2.6044e-04 2.18

10 4.7203e-04 - 4.3965e-04 - 9.4417e-04 - 1.0413e-03 -
20 5.9159e-05 3.00 5.5626e-05 2.98 1.0193e-04 3.21 1.0284e-04 3.34

2 40 7.3770e-06 3.00 6.9560e-06 3.00 1.2890e-05 2.98 1.3517e-05 2.93
80 9.2110e-07 3.00 8.7157e-07 3.00 1.6188e-06 2.99 1.7063e-06 2.99

10 1.5993e-05 - 1.3628e-05 - 4.2163e-05 - 4.8535e-05 -
20 1.0039e-06 3.99 8.7343e-07 3.96 2.1147e-06 4.32 2.3227e-06 4.39

3 40 6.2776e-08 4.00 5.4328e-08 4.01 1.4311e-07 3.89 1.4521e-07 4.00
80 3.9040e-09 4.01 3.4155e-09 3.99 9.0260e-09 3.99 9.1382e-09 3.99

Table 4.7. Non-αβ-flux, α = −1/10, β1 = 0 and β2 = 1/10.

Structured Mesh Unstructured Mesh

uh qh uh qh

k N L2 error order L2 error order L2 error order L2 error order

10 8.5013e-03 - 3.4512e-02 - 1.0745e-02 - 6.0297e-02 -
20 1.8383e-03 2.21 8.1529e-03 2.08 2.3561e-03 2.19 1.2223e-02 2.30

1 40 4.4447e-04 2.05 1.9165e-03 2.09 5.9555e-04 1.98 2.8660e-03 2.09
80 1.1007e-04 2.01 4.4986e-04 2.09 1.4887e-04 2.00 6.7383e-04 2.09

10 3.8131e-04 - 6.0458e-04 - 8.2656e-04 - 2.0093e-03 -
20 4.2426e-05 3.17 6.1937e-05 3.29 8.0893e-05 3.35 1.7145e-04 3.55

2 40 5.0922e-06 3.06 7.1245e-06 3.12 9.6360e-06 3.07 2.0571e-05 3.06
80 6.2543e-07 3.03 8.5722e-07 3.06 1.1828e-06 3.03 2.4963e-06 3.04

10 1.8385e-05 - 6.0208e-05 - 3.2836e-05 - 1.4697e-04 -
20 1.6217e-06 3.50 3.6273e-06 4.05 2.2783e-06 3.85 7.1396e-06 4.36

3 40 1.1465e-07 3.82 2.1849e-07 4.05 1.6332e-07 3.80 4.6616e-07 3.94
80 7.5798e-09 3.92 1.3338e-08 4.03 1.1098e-08 3.88 2.9112e-08 4.00
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Table 4.8. β2-degenerate flux, α = 1/2, β1 = 1/2 and β2 = 0.

Structured Mesh Unstructured Mesh

uh qh uh qh

k N L2 error order L2 error order L2 error order L2 error order

10 7.7938e-03 - 1.0573e-02 - 1.2369e-02 - 6.1832e-02 -
20 1.8935e-03 2.04 2.6601e-03 1.99 2.7261e-03 2.18 1.6980e-02 1.86

1 40 4.6578e-04 2.02 6.6814e-04 1.99 7.1042e-04 1.94 8.0946e-03 1.07
80 1.1551e-04 2.01 1.6750e-04 2.00 1.7861e-04 1.99 3.7740e-03 1.10

10 3.9345e-04 - 5.3209e-04 - 8.6998e-04 - 5.4702e-03 -
20 4.8139e-05 3.03 6.6892e-05 2.99 8.9484e-05 3.28 8.0084e-04 2.77

2 40 5.9444e-06 3.02 8.3302e-06 3.01 1.1126e-05 3.01 1.8873e-04 2.09
80 7.3863e-07 3.01 1.0409e-06 3.00 1.3886e-06 3.00 4.3113e-05 2.13

10 1.2197e-05 - 1.9543e-05 - 3.2702e-05 - 2.8946e-04 -
20 7.5333e-07 4.02 1.2214e-06 4.00 1.6560e-06 4.30 2.1453e-05 3.75

3 40 4.6334e-08 4.02 7.6398e-08 4.00 1.1472e-07 3.85 3.1700e-06 2.76
80 2.8546e-09 4.02 4.7653e-09 4.00 7.3417e-09 3.97 3.9948e-07 2.99

Table 4.9. Alternating flux, α = 1/2 and β1 = β2 = 0.

Structured Mesh Unstructured Mesh

uh qh uh qh

k N L2 error order L2 error order L2 error order L2 error order

10 7.4932e-03 - 8.5840e-03 - 1.2034e-02 - 3.1136e-01 -
20 1.8871e-03 1.99 2.0795e-03 2.05 2.4554e-03 2.29 1.3124e-01 1.25

1 40 4.6821e-04 2.01 5.3759e-04 1.95 7.2169e-04 1.77 8.0050e-02 0.71
80 1.1438e-04 2.03 1.3395e-04 2.00 1.7451e-04 2.05 4.1493e-02 0.95

10 3.9653e-04 - 4.5186e-04 - 8.2522e-04 - 3.7836e-02 -
20 4.5740e-05 3.12 5.6208e-05 3.01 8.9414e-05 3.21 7.1534e-03 2.40

2 40 6.3587e-06 2.85 6.8942e-06 3.03 1.1309e-05 2.98 1.9966e-03 1.84
80 6.8097e-07 3.22 8.6548e-07 2.99 1.4579e-06 2.96 4.9252e-04 2.02

10 1.1002e-05 - 1.4215e-05 - 3.1286e-05 - 2.2610e-03 -
20 6.6831e-07 4.04 8.8831e-07 4.00 1.7160e-06 4.19 2.1120e-04 3.42

3 40 5.0516e-08 3.73 5.4327e-08 4.03 1.1233e-07 3.93 3.5116e-05 2.59
80 3.1901e-09 3.99 3.4331e-09 3.98 7.2164e-09 3.96 4.6718e-06 2.91

Table 4.10. Under-alternating flux, α = −1/10 and β1 = β2 = 0.

Structured Mesh Unstructured Mesh

uh qh uh qh

k N L2 error order L2 error order L2 error order L2 error order

10 9.0098e-03 - 7.4649e-02 - 1.0694e-02 - 1.2251e-01 -
20 2.3119e-03 1.96 2.8799e-02 1.37 2.6285e-03 2.02 4.3635e-02 1.49

1 40 5.6043e-04 2.04 1.2191e-02 1.24 6.8009e-04 1.95 1.9692e-02 1.15
80 1.4049e-04 2.00 5.5256e-03 1.14 1.7988e-04 1.92 9.1492e-03 1.11

10 3.8036e-04 - 1.1562e-03 - 8.3339e-04 - 6.2218e-03 -
20 4.4149e-05 3.11 1.6267e-04 2.83 8.3654e-05 3.32 1.0372e-03 2.58

2 40 5.6599e-06 2.96 3.0007e-05 2.44 9.9132e-06 3.08 2.6203e-04 1.98
80 6.2220e-07 3.19 6.5691e-06 2.19 1.2533e-06 2.98 6.2988e-05 2.06

10 1.6588e-05 - 2.0653e-04 - 4.0395e-05 - 5.4798e-04 -
20 2.1448e-06 2.95 2.2071e-05 3.23 3.5180e-06 3.52 4.9863e-05 3.46

3 40 4.6719e-08 5.52 2.5061e-06 3.14 1.5914e-07 4.47 6.4415e-06 2.95
80 3.5514e-09 3.72 2.9723e-07 3.08 1.5932e-08 3.32 7.8985e-07 3.03
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Table 4.11. Over-alternating flux, α = 1 and β1 = β2 = 0.

Structured Mesh Unstructured Mesh

uh qh uh qh

k N L2 error order L2 error order L2 error order L2 error order

10 7.5445e-03 - 5.3818e-02 - 1.1570e-02 - 8.6852e-02 -
20 1.6139e-03 2.22 1.7616e-02 1.61 2.3281e-03 2.31 2.4799e-02 1.81

1 40 3.8453e-04 2.07 6.0410e-03 1.54 6.4049e-04 1.86 9.2793e-03 1.42
80 1.0052e-04 1.94 2.2353e-03 1.43 1.5789e-04 2.02 3.7932e-03 1.29

10 4.9145e-04 - 3.9924e-03 - 9.5467e-04 - 8.0941e-03 -
20 6.8313e-05 2.85 7.1245e-04 2.49 1.0700e-04 3.16 1.3089e-03 2.63

2 40 8.0090e-06 3.09 1.3552e-04 2.39 1.5096e-05 2.83 2.7658e-04 2.24

80 9.9967e-07 3.00 2.8106e-05 2.27 1.8251e-06 3.05 6.0775e-05 2.19

10 1.0466e-05 - 1.4046e-04 - 3.3397e-05 - 4.2220e-04 -
20 6.1685e-07 4.08 1.1292e-05 3.64 1.5874e-06 4.40 2.8180e-05 3.91

3 40 4.0218e-08 3.94 1.0319e-06 3.45 1.1596e-07 3.77 3.2837e-06 3.10
80 2.4527e-09 4.04 1.0490e-07 3.30 7.3146e-09 3.99 3.7745e-07 3.12

Table 4.12. Central flux, α = β1 = β2 = 0.

Structured Mesh Unstructured Mesh

uh qh uh qh

k N L2 error order L2 error order L2 error order L2 error order

10 8.0547e-03 - 8.1528e-02 - 1.1561e-02 - 1.2912e-01 -
20 2.0318e-03 1.99 3.1726e-02 1.36 2.6735e-03 2.11 4.6672e-02 1.47

1 40 3.6300e-04 2.48 1.3536e-02 1.23 6.5505e-04 2.03 2.1016e-02 1.15
80 8.8736e-05 2.03 6.1701e-03 1.13 1.4980e-04 2.13 9.7653e-03 1.11

10 5.2336e-04 - 1.0297e-03 - 1.0457e-03 - 6.3339e-03 -
20 5.5574e-05 3.24 1.0768e-04 3.26 1.0053e-04 3.38 1.0470e-03 2.60

2 40 7.1120e-06 2.97 1.2208e-05 3.14 1.1529e-05 3.12 2.6773e-04 1.97
80 8.9970e-07 2.98 1.4562e-06 3.07 1.3755e-06 3.07 6.4992e-05 2.04

10 3.5774e-05 - 2.2620e-04 - 6.0198e-05 - 5.8612e-04 -
20 5.2642e-06 2.76 2.4305e-05 3.22 6.4845e-06 3.21 5.4978e-05 3.41

3 40 7.6318e-07 2.79 2.7756e-06 3.13 8.7760e-07 2.89 7.0664e-06 2.96
80 1.0198e-07 2.90 3.3033e-07 3.07 1.1370e-07 2.95 8.6774e-07 3.03

5 3.4217e-07 - 1.9074e-06 - 2.5687e-06 - 2.6427e-05 -
10 1.1691e-08 4.87 5.0967e-08 5.23 6.1250e-08 5.39 1.0179e-06 4.70

4 20 4.1002e-10 4.83 1.4759e-09 5.11 1.5999e-09 5.26 6.3606e-08 4.00
40 9.5362e-12 5.43 4.2700e-11 5.11 4.7353e-11 5.08 3.8146e-09 4.06

5 1.4612e-08 - 2.3973e-07 - 7.5295e-08 - 1.1371e-06 -
10 4.1897e-10 5.12 6.7241e-09 5.16 1.8766e-09 5.33 2.4269e-08 5.55

5 20 1.3005e-11 5.01 1.9870e-10 5.08 5.2950e-11 5.15 8.6451e-10 4.81
40 4.0247e-13 5.01 9.0715e-12 4.45 1.7536e-12 4.92 3.0559e-11 4.82

be obtained after integration from t = 0 to t = T . Then we apply the triangle
inequality

(A.6)
(
‖eq‖2 + ‖eu‖

) 1
2 ≤

(
‖Π�

qq‖2 + ‖Π�
uu‖

) 1
2 +

(
‖ηq‖2 + ‖ηu‖

) 1
2 ,

and the approximation estimate (2.10) to complete the proof. �
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Table 4.13. q-dissipative flux, α = 0, β1 = 0 and β2 = 1/2.

Structured Mesh Unstructured Mesh

uh qh uh qh

k N L2 error order L2 error order L2 error order L2 error order

10 1.4881e-02 - 1.1676e-02 - 1.7837e-02 - 3.5105e-02 -
20 3.4331e-03 2.12 3.1640e-03 1.88 3.9628e-03 2.17 6.4256e-03 2.45

1 40 8.5600e-04 2.00 8.1205e-04 1.96 9.7125e-04 2.03 1.3775e-03 2.22
80 2.1257e-04 2.01 2.0537e-04 1.98 2.4227e-04 2.00 3.1647e-04 2.12

10 6.0834e-04 - 4.3773e-04 - 1.1920e-03 - 1.0406e-03 -
20 6.8614e-05 3.15 5.1948e-05 3.07 1.1414e-04 3.38 1.0235e-04 3.35

2 40 8.4038e-06 3.03 6.3438e-06 3.03 1.3905e-05 3.04 1.3380e-05 2.94
80 1.0388e-06 3.02 7.8970e-07 3.01 1.7222e-06 3.01 1.6796e-06 2.99

10 3.9384e-05 - 2.2997e-05 - 6.5884e-05 - 5.8191e-05 -
20 5.8770e-06 2.74 1.5047e-06 3.93 6.5714e-06 3.33 3.1109e-06 4.23

3 40 8.4586e-07 2.80 9.8013e-08 3.94 8.7841e-07 2.90 2.0501e-07 3.92
80 1.1400e-07 2.89 6.2875e-09 3.96 1.2493e-07 2.81 1.3664e-08 3.91

5 7.5218e-07 - 4.3217e-07 - 2.8923e-06 - 1.9451e-06 -

10 2.1901e-08 5.10 1.1739e-08 5.20 6.1400e-08 5.56 4.2881e-08 5.50
4 20 6.7750e-10 5.01 3.6661e-10 5.00 1.7827e-09 5.11 1.4807e-09 4.86

40 2.1541e-11 4.98 1.0975e-11 5.06 5.5384e-11 5.01 4.7525e-11 4.96

5 4.6857e-08 - 1.8869e-08 - 1.4166e-07 - 1.0427e-07 -
10 1.9530e-09 4.58 3.3150e-10 5.83 3.1429e-09 5.49 1.2317e-09 6.40

5 20 7.2504e-11 4.75 5.6570e-12 5.87 1.0517e-10 4.90 1.9082e-11 6.01
40 2.5106e-12 4.85 2.0747e-13 4.77 3.8834e-12 4.76 4.0028e-13 5.58

Table 4.14. u-dissipative flux, α = 0, β1 = 1/2 and β2 = 0.

Structured Mesh Unstructured Mesh

uh qh uh qh

k N L2 error order L2 error order L2 error order L2 error order

10 7.6423e-03 - 8.0092e-02 - 1.1034e-02 - 1.2915e-01 -
20 1.7911e-03 2.09 3.1504e-02 1.35 2.4093e-03 2.20 4.6686e-02 1.47

1 40 4.3343e-04 2.05 1.3478e-02 1.22 6.1943e-04 1.96 2.1030e-02 1.15
80 1.0686e-04 2.02 6.1556e-03 1.13 1.5486e-04 2.00 9.7687e-03 1.11

10 3.7076e-04 - 1.3085e-03 - 8.3589e-04 - 6.6912e-03 -
20 4.0230e-05 3.20 1.4661e-04 3.16 8.0815e-05 3.37 1.0723e-03 2.64

2 40 4.8534e-06 3.05 1.7309e-05 3.08 9.4463e-06 3.10 2.6957e-04 1.99
80 5.9924e-07 3.02 2.0996e-06 3.04 1.1502e-06 3.04 6.5135e-05 2.05

10 1.8558e-05 - 2.6631e-04 - 4.0826e-05 - 6.0453e-04 -
20 1.2137e-06 3.93 3.0866e-05 3.11 2.1479e-06 4.25 5.7666e-05 3.39

3 40 8.1576e-08 3.90 3.6862e-06 3.07 1.4224e-07 3.92 7.3768e-06 2.97
80 4.8797e-09 4.06 4.4932e-07 3.04 9.6926e-09 3.88 9.0796e-07 3.02

5 3.6692e-07 - 2.2798e-06 - 2.0421e-06 - 2.7528e-05 -
10 9.5674e-09 5.26 6.7639e-08 5.07 4.3293e-08 5.56 1.0388e-06 4.73

4 20 2.8146e-10 5.09 2.0648e-09 5.03 1.1560e-09 5.23 6.3943e-08 4.02
40 8.5796e-12 5.04 6.2591e-11 5.04 3.6656e-11 4.98 3.8220e-09 4.06

5 2.2108e-08 - 2.9250e-07 - 5.4020e-08 - 1.1670e-06 -
10 3.9557e-10 5.80 9.1281e-09 5.00 7.3914e-10 6.19 2.5465e-08 5.52

5 20 6.7129e-12 5.88 2.8716e-10 4.99 1.3607e-11 5.76 9.0183e-10 4.82
40 1.4282e-13 5.55 1.1507e-11 4.64 2.6472e-13 5.68 3.1748e-11 4.83
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Appendix B. Proof of Theorem 2.4

Proof. For any fixed τ ≤ T , we use the superscript t to indicate the integration in
time from t to τ , for example,

(B.1) qth(x, t) =

∫ τ

t

qh(x, s)ds and ut
h(x, t) =

∫ τ

t

uh(x, s)ds.

We define the bilinear form
(B.2)

ăh(qh, uh; v, w) = (ut
h, vx) + (qh, w

t
x) +

∑
j

(
Fu(u

t
h, q

t
h) �v� + Fq(qh, uh)

�
wt

�)
j+ 1

2

.

It can be shown that

(B.3) ăh(qh, uh; qh, uh) =
1

2

d

dt

∑
j

(
β1

�
ut
h

�2
+ β2

�
qth

�2
)
.

Since the time integration commutes with the projection operator Π�
q and Π�

u, we

have (ηq)
t = ηqt and (ηu)

t = ηut . It can be shown that

(B.4) ăh(ηq, ηu; v, w) = 0.

Note we have the error equations

((eu)tt, w) + (eq, wx) +
∑
j

(Fq(eq, eu) �w�)j+ 1
2
= 0,(B.5)

(eq, v) + (eu, vx) +
∑
j

(Fu(eu, eq) �v�)j+ 1
2
= 0.(B.6)

Using the chain rule and replacing w with wt, (B.5) implies
(B.7)

((Π�
ueu)t, w)+

(
eq, w

t
x

)
+
∑
j

(
Fq(eq, eu)

�
wt

�)
j+ 1

2

=−
(
(ηu)tt, w

t
)
− d

dt

(
(Π�

ueu)t, w
t
)
,

where we have used the fact (wt)t = −w. Integrating (B.6) in time from t to τ
gives

(B.8)
(
(Π�

qeq)
t, v

)
+
(
(eu)

t, vx
)
+
∑
j

(
Fu((eu)

t, (eq)
t) �v�)

j+ 1
2

= −
(
(ηq)

t, v
)
.

Combining the two equations and noting (ηu)tt = ηutt
, (ηq)

t = ηqt , it then yields
that (

(Π�
qeq)

t, v
)
+ ((Π�

ueu)t, w) + ăh(eq, eu; v, w)(B.9)

= −(ηqt , v)−
(
(ηutt

), wt
)
− d

dt

(
(Π�

ueu)t, w
t
)
,

Hence by taking v = Π�
qeq and w = Π�

ueu, one can apply (B.4) to obtain that

(B.10)

1

2

d

dt

(
‖Π�

ueu‖2 − ‖(Π�
qeq)

t‖2
)
+ ăh(Π

�
qeq,Π

�
ueu; Π

�
qeq,Π

�
ueu)

= −
(
ηqt ,Π

�
qeq

)
−
(
(ηutt

), (Π�
ueu)

t
)
− d

dt

(
(Π�

ueu)t, (Π
�
ueu)

t
)
.
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Combining it with (B.3), we have
(B.11)

1

2

d

dt

⎛
⎝‖Π�

ueu‖2 − ‖(Π�
qeq)

t‖2 +
∑
j

(
β1

�
(Π�

ueu)
t
�2

+ β2

�
(Π�

qeq)
t
�2
)
j+ 1

2

⎞
⎠

= −
(
ηqt ,Π

�
qeq

)
−
(
(ηutt

), (Π�
ueu)

t
)
− d

dt

(
(Π�

ueu)t, (Π
�
ueu)

t
)
.

We then integrate t from 0 to τ and note wt|t=τ = 0 to obtain

(B.12)

1

2
‖Π�

ueu‖2
∣∣
t=τ

− 1

2

(
‖Π�

ueu‖2 − ‖(Π�
qeq)

t‖2
) ∣∣

t=0

=
1

2

∑
j

(
β1

�
(Π�

ueu)
t
�2

+ β2

�
(Π�

qeq)
t
�2
)
j+ 1

2

∣∣∣∣
t=0

−
∫ τ

0

(
ηqt ,Π

�
qeq

)
+
(
(ηutt

), (Π�
ueu)

t
)
dt+

(
(Π�

ueu)t, (Π
�
ueu)

t
)∣∣

t=0

:= I + II + III.

Using our previous estimates, we have

(B.13) I ≤ T 2

2
sup

t∈[0,τ ]

∑
j

(
β1 �Π�

ueu�2 + β2

�
Π�

qeq
�2
)
j+ 1

2

≤ CT 2h2k+2.

By applying the Cauchy–Schwarz inequality, it can be shown that

II ≤ C sup
t∈[0,T ]

(
‖ηqt‖2 + ‖ηutt

‖2 + T 2‖Π�
ueu‖2 + ‖Π�

qeq‖2
)

≤ CT 2h2k+2 +
1

4
sup

t∈[0,T ]

‖Π�
ueu‖2.

(B.14)

With the special choice of initial condition, we have III = 0.
Substitute the estimates above into (B.12) and take supreme with respect to

t ∈ [0, T ]. It yields that

(B.15) sup
t∈[0,T ]

‖Π�
ueu‖ ≤ C(T + 1)hk+1.

The estimate of ‖u− uh‖ then follows from the approximation property of Π�
u. �

Appendix C. Dimension count

Note that total number of equations in (3.17) is

(C.1) Nequation =
∑

K∈Th

(dim(Pk−1(K)) + dim(Pk−1(K))) + 2
∑
F∈Γ

dim(Pk(F )).

The total degree of freedom is

(C.2) Nunknown =
∑

K∈Th

(dim(Pk(K)) + dim(Pk(K))) .
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Since 2|Γ| = (d+ 1)|Th| and

dim(Pk−1(K)) + dim(Pk−1(K)) =

(
k − 1 + d

d

)
× (d+ 1) ,(C.3)

dim(Pk(F )) =

(
k + d− 1
d− 1

)
,(C.4)

we have

(C.5) Nequation =

((
k − 1 + d

d

)
+

(
k + d− 1
d− 1

))
× (d+ 1)× |Th|.

On the other hand, it can be seen that

(C.6) Nunknown =

(
k + d
d

)
× (d+ 1)× |Th|.

We can deduce Nequation = Nunknown by recalling the combinatorial identity

(C.7)

(
k − 1 + d

d

)
+

(
k + d− 1
d− 1

)
=

(
k + d
d

)
.

Appendix D. Proof of Lemma 3.3

Proof. We denote by P⊥
k (K) the orthogonal complement of Pk−1(K) with respect

to Pk(K). Similar to the equivalence of (3.30c)-(3.30d) and (3.31), one can show
that (3.36c)-(3.36d) lead to

(D.1) 〈δu − δq · n, μ〉F = 〈ξ − ζ · n, μ〉F , ∀μ ∈ Pk(F ), ∀F ∈ ∂K, ∀K ∈ Th.

(3.37a)–(3.37b) implies that δq|K ∈ P⊥
k (K) and δu|K ∈ P⊥

k (K). Note that
(D.2)

〈δq · n, w〉∂K =

∫
K

∇·(δqw)dx =

∫
K

(∇·δq)wdx+
∫
K

δq·∇wdx=0, ∀w∈P⊥
k (K).

Taking μ = δu|K ∈ P⊥
k (K) in (D.1) and summing over all F ∈ ∂K, it can be shown

that

(D.3) ‖δu‖F ≤ ‖δu‖∂K ≤ ‖ζ · n‖∂K + ‖ξ‖∂K ,

where F ∈ ∂K be any face of K. One can also use a scaling argument to show
[13, Lemma A.1]

(D.4) ‖δu‖K ≤ Ch
1
2 ‖δu‖F .

Combine (D.3) with (D.4), take the square, and then sum over all elements K. It
gives

(D.5) ‖δu‖2 ≤ Ch
(
‖ζ · n‖2Γ + ‖ξ‖2Γ

)
.

We now estimate ‖δq‖. Let us first choose an arbitrary face F � ∈ ∂K and consider
a fixed face F ∈ ∂K\{F �}. Rearranging terms in (D.1), it gives

〈δq · n, μ〉F = 〈ζ · n− ξ + δu, μ〉F , ∀μ ∈ Pk(F ).(D.6)

We can then take μ = δq · nF and apply (D.3) to obtain

(D.7) ‖δq · nF ‖F ≤ ‖ζ · nF ‖F + ‖ξ‖F + ‖δu‖F ≤ 2 (‖ζ · n‖∂K + ‖ξ‖∂K) .
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Note we have δq · nF ∈ P⊥
k (K) for a fixed nF . Using the scaling argument as that

for (D.4), one can obtain ‖δq · nF ‖K ≤ Ch
1
2 ‖δq · n‖F . With the estimate in (D.7),

it can be seen that

(D.8) ‖δq · nF ‖K ≤ Ch
1
2 (‖ζ · n‖∂K + ‖ξ‖∂K) .

Note that δq =
∑

F∈∂K\{F�}(δq · nF )ñF , where ñF is the dual of nF such that

ñF · nF = δFF� . Therefore, we have

(D.9) ‖δq‖K ≤
∑

F∈∂K\{F�}
‖δq · nF ‖K ≤ Ch

1
2 (‖ζ · n‖∂K + ‖ξ‖∂K) .

Finally, we take the square of (D.9) and then sum over all elements K to obtain

(D.10) ‖δq‖2 ≤ Ch
(
‖ζ · n‖2Γ + ‖ξ‖2Γ

)
.

The combination of (D.5) and (D.10) leads to (3.39), which finishes the proof. �
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