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Abstract

Boussinesq type equations have been widely studied to model the surface water wave. In
this paper, we consider the abcd Boussinesq system which is a family of Boussinesq type
equations including many well-known models such as the classical Boussinesq system, the
BBM-BBM system, the Bona-Smith system, etc. We propose local discontinuous Galerkin
(LDG) methods, with carefully chosen numerical fluxes, to numerically solve this abcd
Boussinesq system. The main focus of this paper is to rigorously establish a priori error esti-
mate of the proposed LDG methods for a wide range of the parameters a, b, ¢, d. Numerical
experiments are shown to test the convergence rates, and to demonstrate that the proposed
methods can simulate the head-on collision of traveling wave and finite time blow-up behavior
well.

Keywords Local discontinuous Galerkin methods - Boussinesq equations - Coupled BBM
equations - Error estimate - Numerical fluxes - Head-on collision

Mathematics Subject Classification 65M12 - 65M15 - 65M60

1 Introduction

In this paper, we present and analyze the discontinuous Galerkin (DG) method for a family
of nonlinear dispersive water wave models: the abcd Boussinesq system of the form

N+ ty + M)y + altxxy — bNyxr =0,
2

u
ur +nx + (7) + cNyxx — duyy =0,
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where 1 denotes the proportional deviation of the free surface from its rest position, and
u represents the proportional horizontal velocity. Here, a, b, ¢, d are constant satisfying
a+b+c+d=1/3. Whena = b = ¢ = d = 0, this model reduces to the well-
known nonlinear shallow water equations (by replacing 1 4+ n with water height ). The
goal of the paper is to provide the numerical approximations of (1) via DG methods, and
establish rigorous error estimate on their convergence rate for a wide range of the parameters
a, b, c, d.Periodic boundary conditions are considered for simplicity, and similar analysis
can be extended to other types of boundary conditions.

Nonlinear dispersive water wave models have wide applications in engineering applica-
tions. One typical example frequently encountered in practical is the propagation of water
wave with small amplitude and long wavelength. For such applications, the Boussinesq
approximation for water waves is developed by Boussinesq [9], which leads to the Boussinesq
type equations. These models are derived from the full Euler equations, and have been fre-
quently used in modeling water waves in shallow seas and harbors. Many different Boussinesq
type equations have been proposed and studied, including the “good” Boussinesq equation
and the improved Boussinesq equation. In [6], Bona et al. introduced a generalized case of
the Boussinesq equations, which is called the abcd Boussinesq system (1). The constant
parameters a, b, ¢, d in (1) satisfy the following relation:

a+b=1<92—1>, c+d=1(1—92)>0 )
2 3 2
with the scaled height 6 € [0, 1]. & = 0 represents the bottom of the channel and 0 = 1 is the
free surface. Based on different choices of the parameters a, b, ¢, d, this family of equations
reduces to some well-known water wave models, including the classical Boussinesq system
(a=b=c=0,d = 1/3),the coupled Benjamin-Bona-Mahony (BBM) system (¢ = ¢ = 0,
b = d = 1/6), the coupled Korteweg-de Vries (KdV) system (b =d = 0,a = ¢ = 1/6),
and the Bona-Smith system (¢ = 0, b = d), etc.

Since the introduction of the abcd Boussinesq system, there have been many theoretical
and numerical studies of this model. In [7], Bona et al. showed that this system is (locally-
in-time) well posed in the following cases:

a, c<0andb,d>0 or a=c>0andb, d > 0.

The global existence of the solutions can only be shown for some special cases of the
parameters a, b, ¢, d. For instance in [7], Bona et al. confirmed the global existence for
the Bona-Smith system with the assumption that the initial value satisfies some smallness
condition. In [1], Amick proved the global existence for the classical Boussinesq system. In
contrast, previous works show that solutions to some models, for example the coupled BBM
system, could blow up in finite time when 1 4+ n < 0.

There have been many studies on various numerical methods for the special cases of the
abcd Boussinesq system (1). In [25], Peregrine developed a straight-forward finite difference
approximation to the classical Boussinesq system in order to study the propagation of undular
bore. In [3], Bona and Chen rewrote the coupled BBM system into a system of integral
equations, based on which they proposed a numerical scheme with fourth order accuracy in
both time and space. They also utilized this scheme to simulate the collision of solitary waves.
For the coupled KdV-KdV equations, Bona et al. [8] implemented the standard Galerkin
semidiscretization with periodic smooth spline basis of order k, and numerically obtained
(k 4 1)-th order of accuracy for spatial convergence rate. Besides these numerical works for
the special cases of the system (1), there have been several works to tackle the general family
of abcd Boussinesq system with a large class of parameters a, b, ¢, d. In [2], Antonopoulos
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et al. extended the scheme in [8] onto general a, b, ¢, d parameters and achieved optimal
order error estimate for the following categories:

(Cl) a, c<0, b,d>0;

(C2) b, d>0,a=c>0;

(C3) eitherb > 0,d =0orb =0,d > 0, and eithera, c <Qora =c > 0;
(C4) b, d >0,ac=0anda, ¢ <0.

Recently, Burtea and Courtes [11] presented fully discrete finite volume scheme for the
Boussinesq system (1), and proved the convergence rate of first order in time and second
order in space (when bd > 0, first order in space when bd = 0). The analysis is provided
for a broad range of the parameters a, b, ¢, d, which satisfies

a, c<0andb, d >0,

excluding the following cases: a = b = 0,d > 0,¢c < 0;a =d = 0,b > 0,¢c < 0O
a=b=d=0,c<0andb=d=0,a <0,c <O.

High-order DG methods are considered in this paper to provide efficient numerical approx-
imation of the abcd Boussinesq system (1). The DG method is a class of finite element
methods, which uses completely discontinuous basis functions, i.e., piecewise polynomials.
It inherits the advantages of both finite element and finite volume methods, and has been
widely applied in practical application in the last decade. We refer to [14,16,17], and [15]
for a historic review. The DG method has various advantages, such as hp-adaptivity flexibil-
ity, the local conservativity, efficient parallel implementation, easy coordination with finite
volume techniques, the ability of easy handling of complicated geometries and boundary
conditions and so on. For equations with high-order spatial derivatives, several types of DG
methods have been developed, including the interior penalty DG methods, local discon-
tinuous Galerkin (LDG) methods, ultra-weak DG methods, hybridizable DG methods and
many others. Among them, the LDG method was developed by Cockburn and Shu [18], and
the main idea was to rewrite the original equation into a system of first-order equations by
introducing auxiliary variables, and then discretize it with the standard DG methods. With
carefully chosen numerical fluxes, the stability and error estimate of the LDG methods have
been studied for many models with high order spatial derivatives, and we refer to the review
paper [27] for the development and applications of LDG methods.

The LDG method has been applied to the scalar generalized KdV equation

ur + f(U)y + €tyyy =0

by Xu and Shu [26], and the sub-optimal error estimate of the (k + 1/2)-th order was
obtained. Energy conserving ultra-weak DG and LDG methods for the KdV equation were
studied in [5,21], where energy conserving methods that exactly preserve the discrete energy
were shown to provide more accurate numerical approximation in the long time simulation.
In [23], energy-conserving LDG methods for the improved Boussinesq equation with the
optimal error estimate were studied. In [10], both energy conserving and energy dissipative
LDG methods are designed for the coupled BBM system. The optimal error estimate of the
LDG methods is carried out only for the linearized BBM system. It is usually challenging to
generalize the error estimate of the scalar nonlinear equation to a nonlinear system. In [24],
the sub-optimal error estimate is acquired for a family of symmetrizable first-order system.
In particular, the nonlinear shallow water equation, i.e., system (1) witha =b =c=d =0,
is a symmetrizable system. The error estimate of the nonlinear coupled BBM system was not
available in [10], due to the presence of both nonlinear first-order derivative and third-order
mixed derivative terms. Recently, an optimal error estimate of the energy conserving and
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energy-dissipative LDG method for the scalar BBM equation was presented in [22], by a
novel observation to discover the connection between the error of the auxiliary and primary
variables. In this paper, we consider the abcd Boussinesq system (1) and first rewrite the
model into several first order differential equations. The main contribution of this paper is
to design high-order accurate LDG methods, with carefully chosen numerical fluxes, for the
abcd Boussinesq system (1), and to establish rigorous error estimate of the proposed LDG
methods for a wide range of the parameters a, b, c, d, including the coupled nonlinear BBM
system that was not analyzed in [10]. More specifically, we will provide the error estimate for
the cases (C1)—(C4) of the parameters a, b, ¢, d, similar to those studied in [2], but different
analyses are needed to handle the numerical fluxes and boundaries terms arising from the DG
approximation. One important tool in our analysis is the connection between the error of the
auxiliary and primary variables, discovered in [22]. Numerical examples are also provided to
demonstrate the convergence rates and to show that the proposed method has the capability
to simulate the head-on collision and finite time blow-up behavior well.

The structure of this paper is as follows. Section 2 provides an introduction of the notations
used throughout the paper. In Sect. 3, the proposed LDG scheme and the corresponding
numerical fluxes are presented. Section 4 devotes to the main theoretical results on the error
estimate of the proposed methods. Depending on different cases of the parameters a, b, c, d,
several theorems are provided to discuss the convergence rate of the numerical methods.
Numerical results are provided in Sect. 5, which consists of two tests: accuracy test and wave
collisions. Conclusion remarks are given in Sect. 6.

2 Notations and Projections

The computational domain I can be divided into subintervals, denoted by I; = [x oL Xl ]

for 1,2, ---, N. The center of each cell is x; = %(xj_% +xj+%) and the mesh size of each

cellish; = x X 1 with the maximum mesh size denoted by 2 = max & ;. We further

j+y Y
assume that the mesh to be quasi-uniform, i.e., the ratio 2/h; always stay bounded for all
J during mesh refinement. Denote H kar ;) as the standard Hilbert space, and P*(I j) as the
space of polynomials of degree up to k on the cell /;. The piecewise polynomial space V}f‘ is

defined as
Vi =f{violy € PAUp. j =12, N).

The numerical solutions that approximate the unknown functions u, n are denoted by
uy and np, in the solution space V,{‘ . For ease of presentation, the following notations are
introduced: for any function g(x), and x; inside the computational domain where A comes
from some index set, define

_ +_ I N P
g =8(x), & = lim g(x), [ghh=g, —g,., {g}’\_i(g* +8,)-

)C‘)X)i

In our analysis, we use the following norms:

e |[v]| = |lvll2, and ||v]|o denote the L? norm and L norm of v;
N
e v, = > (v’,iJr )2, where I', denotes the set of boundary points of all the elements
j=1 772
Ij;
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N 2
o V]| = El[v]ﬂ%.

Throughout this paper, C denotes a generic positive constant independent of the spatial and
temporal step sizes & and A¢, which may have different values at different occasions.

Next, we discuss some projection operators that will be used in the error estimate analysis,
and present their approximation property. We define the standard L2 projection P in the
following way: for any element /;,

/ (Pg — g(x)v(x)dx =0, Vu(x) e PX(I)).
I
The Radau projection P is defined such that for any element I j» we have

’

/ (Ptg — g(x)v(x)dx =0, Yu(x) e P*71(1;), and (7>+g)]f_l =g
I,' 2

1
2
/1, (P~g — g(x)v(x)dx =0, Yo(x) e P*'(1;), and (P_g);+% =841

The following approximation property of these projections has been studied in [12] and is
listed below:

1
IP*g — gl + hlIP*g — glloo +h2|P*g — gllp, < Ch*TY, 3)

where P* = P, P*.
Another useful tool to be used throughout this paper is the inverse property: for any
g€ V,i‘, we have

- -1
lecl <Ch Mgl llglly, < Ch™2lgl. “

3 The Local Discontinuous Galerkin Method

Following the idea of LDG method, we first rewrite the system of (1) as a system of first-order
equations

N +ux +Muy +agy — b0 =0, w=mn,, 0=C=uw,, (5a)
up+nx + fy +cix —dpr =0, v=uy, p=gq=uvy, (5b)

where f(u) = u2/2. Denote the nonlinear flux term as F (1, u) = (u + nu, n + u2/2)T, and
introduce its approximation via the standard Lax-Friedrichs numerical flux:

(©)

_ () = S0\
F= I 5 o =\z)
{nh}+5{uh}—§[uh] 2

where o = max(|u| + /|1 + n|) with the maximum taking over the whole region. The LDG

method for approximating (5) is given as follows: find ny,, us, v, Wh, P, On. gn, Cn € VF,
such that the following equations
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2

/ (mn — bOy) pdx — / (up + upnp + aqp) prdx + (F1+aqh)p —(F1+aqh) =0,

2

/(uh—dph)z,odx /(ﬂh+f(uh)+CCh)dex+(F2+C§h)/0 —(F2+C§h)P , =0,

/vh¢dx+/ unbedx —Tnd~ | +Wpt | =0,
Jj+3 J

I I 2

[ pvar s+ [ wpnax—givr, +007, =0
I; I; YAl J=2
- @)
/ gnedx +/ vp@xdx — Uh¢;+l +uet | =0,
1

1
. . J=2
i 1! 2 2

f whadx+/ Mhrdx —m%;l -i-ﬁh&;j+ , =0,

I I 2

/ ether/ whl//x x_whl// i+l +1/Dh§;_-'—_l =0,
1j 1j 72

Ch(zdx"'/ wy@rdx — l\ljha_ , + Eh~+ , =0
I I Itz J72

hold for all the test functions p, ¢, V¥, 0, a s g; 0, Q€ Vh". ‘We choose the following numerical
fluxes:

3)

h=qy

Ch=1¢,, Up=
at the cell interfaces, where sgn(a) represents the sign of parameter a and A is a positive
constant. Without loss of generality, A is taken as 1 in the remainder of this paper.

Notice that this choice of numerical fluxes is not unique. To ensure stability, the essential
guideline is to take gy and u;, from the opposite direction, ¢ and 7, from the opposite
direction. Another remark is that w, and v, are both approximated by two variables (0, ¢
and p, ¢g), which leads to two different fluxes for v;, and wy. This will be useful in our error

estimate. For short hand notation, we introduce the DG discretization operator A, defined
in the following way:

Ai(f, g )= fgxdx—<fg*> +(fg+> :
I it3 i-

1
2

h 8)

+ - > — Alvy,
Npr Wh =Wy, Wp=w, + sgn(a)M,
+

Up >

Th=v,, Uh= vh + sgn(c) =5 w”]

forany g € V,f and f € H*F1(I), with f being the numerical fluxes.

The initial data up(x, 0), nn(x,0), vy(x,0), wy(x,0), pp(x,0) are chosen in the fol-
lowing way to ensure the good approximation property of these initial data at t = 0. Given
initial condition u(x, 0) = up(x) and n(0, x) = no(x), define

up(x,0) = Pru(x,0), ny(x,0) =P n(x,0),

and let v, (x, 0), wy(x,0), pn(x,0) be the solutions to the following equations:

/ vh(bdx—i-/ updydx —Tih¢ I +uh¢ , =0, 9)
1 1j %
/ wpddx + / Mnbrdx =M + TG, =0, (10)
I‘/' Ij JT3 J=3
/ PthX—F/ vh\ﬁxdx—ﬁhw;l +3h1ﬁ’f_l =0. (11)
I; I; JT2 J72
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Lemma 1 The numerical initial conditions satisfy
lux, 0) — up(x, 0> + [vx, 0) — vy (x, 0)|> < ChHF2,
IGe, 0) = na(x, 01 + [lw(x, 0) — wy (x, 0)|* < ChHH2,
Ip(x,0) — pu(x, 0)|* < Ch*.

Proof By the projection property (3), we have

lu(x, 0) — up (x, 0| = [PTu(x, 0) — ulx, 0) < CHFL,
7Gx, 0) — np (x, 0| = 1P n(x, 0) — n(x, 0)]| < CAFFL.

Equation (9) leads to the error equation
[ @=vngar+ [ G- Prosar - (@= Pty + (- P,
I I;

J J

:O7

I\)

which reduces to
/ (v —vp)¢pdx =0,
1

as a result of the projection P*. Choose ¢ = Pv — vy, and decompose v — v, = (Pv —
vp) — (Pv — v). We have

(Pv — vh)zdx = (Pv—v)(Pv—uv,)dx =0.
1j 1j

Therefore, we conclude vy, (x, 0) = Pu(x, 0), and ||v(x, 0) — vy, (x, 0)|| < Ch**!. Similarly,
we can show that [|w(x, 0) — wy,(x, 0)|| < Ch**1. Equation (11) leads to

/(P ph)lﬁder/ (v = Po)Yudx — (v =Pv)"¥7) 1+((v—7’v) V), 1 =0

I\J

By choosing ¥ = Pp — p, and decomposing p — pp, = (Pp — pn) — (Pp — p), we have
2 _— — - —
/1_(7’p—ph) dx = ((Pv—v)"[Pp ph])H%
J

Summing over all cells /;, utilizing the inverse property (4) and the projection property (3),
we obtain

=

/ (Pp—piidx = 3" (Po =) 1Pp = i)

1

.
I

Mz

("3 Py =0 hiPp - pa)
1 i*3

(Pp — pp)?dx + Ch?*,

N\»—T
~

which leads to || p(x, 0) — pu(x, 0)|?

IN

Ch?F and finishes the proof.
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Note that the (suboptimal) initial error of pj, is only used in the proof of Theorem 5, and
the error estimate in that theorem is also suboptimal. One may construct a different choice
of the numerical initial values to ensure the optimal error of pj, as well, see for instance [20].

4 Error Estimate

In this section, we derive the error estimate of the proposed semi-discrete LDG method
(7). The analysis will be separated into five subsections, each corresponding to one of five
different cases of the parameters a, b, ¢ and d to be studied.

We start by defining the error terms and presenting the error equations. For any function
g and its numerical approximation gj, the error can be separated into two components

ef =g —gp =85 — €, (12)
where
£ =P'g—gn, € =Pg—g,

denote the error between a particular projection P* of g and the numerical solution, and the
projection error, respectively. Here P* could be P or P*, and may vary for different g. For
our unknown variables, the following projections are taken as

Py, PO, P¢,  Pw, Ptu, Pp, Pg, Pu.

We would like to comment that these projections are for the purpose of proving the error
estimate only, and will not be used in our numerical method (7) nor its numerical implemen-
tation.

Clearly the exact solutions also satisty the Eq. (7), and one can show that the following
error equations:

(67 =€) = bE = ipdx —ad; T — et p1 (§1 = €))
J

= [ €= e wn = wamods = (= P
+ (G = Fi)p*)_y, (13)

[ e = ety —aer - eryior - A6 — e 76— €))

=/ (E" =€)+ fu) = fup)pxdx — ((n+ f(u) — fz)f)’*)ﬁ%

+(+ fw) = Fph) ;1 (14)
fl (E" — epdx + A;(E" — €', 1 (€ — )) =0, (15)
J
[ @ —ermas e — et i€ e =0, (16)

/1 9 — eygdx + A, (s” gt ey 4 B ew]> —0, amn
J
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i (Y — €")pdx + A (E" — €, 5 (£ — M) =0, (18)
j

/[_(59 — )Py + A;EY — € P (6 —€)T) =0, (19)
/1 (65 — €)gdx + A, (sw —e G @ ey + g e”]) —0 Q0

hold for all the test functions p, ¢, ¥, 5, ¢, ¥, ¢, § € V}f.

Before stating the main results on the error estimate, we would like to provide the following
lemma that will be frequently used in the proof. This lemma, presented in [22, Lemma 2.4],
provides the relation between the error of the variable g, and that of the other variable which
approximates gy.

Lemma2 Foruy, ny, vy, wy, defined in the DG method (7), there exist the following inequal-
ities:
_1 _1
1SN +AT20[E“ < CIEYNL  NIEI+ AT 2[[EM < ClIE™ .

To deal with the nonlinear term appearing in this model, we make the following a priori

error estimate assumption:
for h small enough, |u — up| + |7 — null < h.

The same technique has been studied in [22,26] to treat the nonlinear term in the KdV and

BBM equations. We refer to these papers for the detailed explanation of this technique, and
the verification to justify why such assumption could be made.

4.1 TheCaseofa, c<0Oandb, d >0

Theorem1 When a, ¢ < 0 and b, d > 0, let u, n be the exact solutions to the system (1)
which are sufficiently smooth and bounded. Let ny,, uj € V}f‘ be the numerical solutions of
the LDG scheme (7). For small enough h, there holds the following error estimate:

lu = upll® + In = nall® + v — va 1> + llw — wy||* < CAH*F Q1)

Choose the test functions p = —c&", p = —a&" in (13) and (14), ¢ = —ad&} +
actt, ¢ = —bcg +acg? in (15) and (18), ¥ = —ad&", § = —bcg" after taking the time
derivative of (16) and (19), and ¢ = —ac&"¥, ¢ = —ac&" in (17) and (20), respectively.
Summing up all these equations and applying the property of the projection operator, i.e.,

f e?pdx :/ egqbdx:/ e”qbdx:/ ew¢dx:/ €/ pdx
I I I I I

J J J J J

:/ e¢dx =0, Vo e Vf,
1

Jj

and
A€, 5 (€)= Aj(€", 43 (eNT) =0, Vpe Vi,
we have

Pj—Qj=—cH;—aCj, (22)
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where
Hj = /1 (6" =€)+ (un — wpma))§Ydx — ((u + qu = F)E™) 1
J
+ (= FE™™), 4, (23)
Cj= /1 (6" — €+ fu) = fan)Eidx — ((n + f ) = F2)5"7) 11
J
+ (0 + f) = FE"D) o, (24)
10
Pi=55 | (Se@E? =be")? —aE")? - ad(€")?) dx — be(§" " §"");
t I;
+bc(§tw,_én’+)j+%
—ad(&"7E" )1 +adETE ) 1 +acETEN) 1 —acTTE"T)
+aC(S§’7$M’+)J-_% — aC(§£’7§M’+)j+% —ac(EVTE 7)1 +ac@E” TEew 7)j+§,
(25)
Q; :/ (—c&"e] — a&"e!') dx + ac ((6‘1 TE), L= (€TETT) +(€8TEN)
1

~(TE ) 4 y)

v,+ 1 w 1 w w,+
—a6<@ _Ek }+5E D& L
J=3
+ac ((e” - ey 1[;:“)])5“*—)
2 2 j+%

—ad (76" ),y — (€6 )y ) —be (€8, y — (€ TEM) )

_ w,+_7 v 1 v v,+> ( w,+_7 v 1 v v,—)
aC((é 2[6 ]+2[S Dé +ac| (e 2[6 ]+2[E Dé

i~3 ihs:
(26)
Summing over all the cells /;, noting |a| = —a, |c| = —c, yields,
N N
dYPi=> Q= Zlclﬁj +Z|a|C 27)
j=1 j=1 j=1

We would like to first establish Lemmas 3 and 4, and the proof of this theorem is a direct
result of these two lemmas. Moreover, these lemmas will be used frequently in the proof of
other theorems in this section.

Lemma 3 For the terms P; and Q; defined in (25) and (26), we have

ZP, / (IcIEM? + Ibel (6") + alE) + lad|(EV)) dx,  (28)
j=1
N
ZQJ (I + IE™I + I 1> + 18V117) + Ch* ! (29)

j=1
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Proof By summing P; in (25) over all the elements /;, we have

N
19
D Pi =557 | (el +1bel ") + lal ") + lad|(E")?) dx,
‘ 1
j=1
where all the cell interface terms cancelled due to the periodic boundary conditions. Similarly,
summing Q; in (26) over all the elements /; yields

N
ZQj :/(—cf"e,’7 —a"el') dx
=1

1

M=

J+z

N
+ 3 ((bee” +acetIEN) | = ac (<e”‘+ ~ Sl + %[S“’D[é“’])

J

._.
-
Il

M=

+

-
«—mk?*+aa¢*ngq) —

its

wf_l v l v v
ac ((6 2[6 1+ 2[5 DIE ])

j+3

(30)

<

—

-
Il

By Young’s inequality and the projection property (3), we can easily show that

/ (_anftn - affue;l) dx < ||“§”||2 + ||§:'I||2 + Ch2k+2,
1

According to Young’s inequality, the projection property, and Lemma 2, we have

N
—lgnp2 2 2
i <CY h (6", +Ch (e lIF, + el 1T, )

N
Z ((—bce,w’_ + aceq'_)[g'l])
=1

j=1
< Clg” ) + Ch 2, 3D

Similarly, we have

N
> ((-ade?™ +acet ") | < It + CHA2,

j=1

itz

The Young’s inequality and the projection property (3) lead to

N N
: 1wy et 1
) (" 16" 11| < §_ li[gw]ﬁﬁc’q L
=

j=1
N N 1

Zl (1e"ME") 11| < Z} SIETy +Cnr,
j= ji=

Therefore,

and similarly,

@ Springer



Commun. Appl. Math. Comput.

Collecting all these approximations, (30) becomes

N
D Q< UE P+ IEZ + IEVI* + 1€ 1) + Ch* T,

j=1
which finishes the proof.
Lemma 4 For the approximation of the nonlinear terms 'H ; and C; defined in (23) and (24),

we have

N

D el < C (IE“ 1P + IE1* + 17 11%) + Ch* 2, 32)
j=1

lalC; < C (IIE“N* + I1ETI1* + 1EV)1%) + Ch? T2, (33)

Mz

1

Jj

Proof Following the definition (23) of {;, we have

S, = /«s —e>+un—uhnh>s"dx+2<u+un—Fl)[s"1) =T

Jj=1 j=1

which is separated into two terms to be treated differently. We start with providing the bound
of . It can be observed that

1
/, (" — e")gNdx = /, £"gldx < 5<||s"||2 +IEMH < CUE“ N>+ IEV 1),

where the first equality follows from the projection property and the last inequality uses
Lemma 2. Furthermore, the difference of the nonlinear term becomes

un—upnp =uE" —€") +nE" —€") — (ET—eNHE" —€). (34)

By applying Lemma 2 and the projection error (3), and utilizing the assumption that # and
n are uniformly bounded, we have

/u@” —eMENdx < CUETIP + 1€l + 1E71%) < CUIE™I? + 1€V I1P) + Ch*F2,
fn(é” —€Dldx < CAUIEI? + €1 + 1817 < CUE I + 15 17) + Ch**2,
I
and, since &* — € = u — uy, is also uniformly bounded by a priori assumption,

/(E”—f YET — NNy < CUIEIP + TP + 1€V 1%) + Ch**F2,

which leads to the estimate
L< CEY? + 1M1 + 16 )1%) + Ch?+2,

Next, we approximate the term II, which is separated into the sum of the following four
terms:
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N N
y o
= (= FIE™) ; (= ) = tanann) + S0DE")

.
Il
-

N N
1
(G = fanDIEM) 1+ 5 D (One = mfwDIEM) 1y 1 + (One = w DIEM) ;o
j=l1 Jj=1

Il
RS
| =

+3 Z([nh][s"]),-+%
j=1
=: 11} 4+ Il + I3 + 4.
By Young’s inequality and Lemma 2, we have

N

N
=" (8" — (D), y = Y (hEaE" — ephiien)

i= j= 7*2

Ch (||f§“||%,,+||e“||%,,)+cZh‘1
Jj=1

< € (Ilg") +n+2) + e (35)

Utilizing the decomposition (34) and applying Young’s inequality and Lemma 2 yield

1 N
I3 = Z] (@™ =" 4nE" ™ =" )= E" T =" T)ET =€) [E7) 1,1
j:
C (IE“17 + 1E712 + h%+2) + g™ (36)

1 = 0 as a result of

Following the similar analysis, and noting that (e”"*)i 4= (1) i+l
P 2 o 2

these Radau projections, we can obtain

I < CYIE“ >+ IIEMI) + ClIE™ |12,

and furthermore, since —[n,] = [n — np] = [€" — €],

N

N
W= 23 (1" = €M) 1y = 5 20 (1€ 1y — 5 DET,
j=1 j=1 j=1
< CIEY N + h**2) + ChIE™|>.

The combination of these results leads to
D Hy =T+ C (I8 + 18717 + 187 117) + Ch*+2
Following the similar line of the proof, we can obtain the approximation of C;,

N
D oCi < CUE N> + 1E™I> + IE°11%) + Ch**2,
=1

which finishes the proof.
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Combining the results of Lemma 3 and Lemma 4 with (27), we obtain

0
a ), (IclE™? + bl E™)* + lal(E")* + |ad|(E")?) dx

< C(IIE“I* + UEI* + NEVI* + 16 11%) + Ch* T

Applying the Gronwall’s inequality, combining with Lemma 1 on the optimal errors of the
initial conditions, and the optimal projection error of ||e*7V-"||, we have the error estimate
(21), which finishes the proof of Theorem 1.

Remark 1 Asobservedin (5), two auxiliary variables (6 and ¢) are introduced to approximate
wy, and as a result, the 7,,; and 7y, terms are rewritten as 6; and ¢, respectively. We use
the alternating flux when evaluating 6, and the upwind flux when evaluating ¢j,. The extra
numerical dissipation introduced by this upwind flux is important in bounding the term Q;,
otherwise, the approximation will reduce to the order of 2% . For the same reason, the auxiliary
variables (p and ¢g) are introduced to approximate v,.

4.2 TheCaseofa=c>0, b, d >0

Theorem2 Whena =c > 0, b, d > 0, let u, n be the exact solutions to the system (1)
which are sufficiently smooth and bounded. Let ny,, uy € V,{‘ be the numerical solutions of
the LDG scheme. For small enough h, there holds the following error estimate:

lu = upll® + In = nall® + v — va 1> + lw — wy||* < CAH*FL 37)
In particular, if a = ¢ = 0, we have

lu —unl® + lln — nall® + v — val* + llw — wpl* < CH*F2, (38)

Proof The proof of this theorem is similar to that of Theorem 1. Below we will sketch the
proof and mainly present the different steps.

Choose the test functions p = &", p = &“ in (13) and (14), ¢ = d&’ — a&®, 5 =
b&" —a&9in (15) and (18), ¥ = d&", xZ = b&" after taking the time derivative of (16) and
(19),and ¢ = a&", @ = a&? in (17) and (20), respectively. Summing up all these equations
and applying the property of the projection operator, we obtain

N N N N
2P Q= i+ 0
Jj=1 Jj=1 j=1 j=1
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where the nonlinear term 7 ; and C; are defined in (23) and (24), and

ZP, T ((5") +bE) + (€D +dE)?) dx
N N
Z =/ (£"€ +E"¢)') dx + Z ((be,w’_ - aeq’_)[é”])‘ 1
j=1 j=1 Jt3
N 1
Z ((e”++ "] — 5[&“}1)[&"’])

its

N N 1
Z((de, —act ") Z ((ew— "] - S1&" ])[S”])

=:I+II—|—HI+IV+V.

Following the exactly same analysis as that in Lemma 3 yields

I+H+IV<C(”g'l”z_'_||Eu||2_|_”§w”2+||§v”2_+_h2k+2)’

then
N
M+ V = |q Z((e“++ 7[5 DIg” ])
j=1 itz
N 1
+3 ((ew T+ 5l - 5[&“])[&“]) ] < Clam
j=1 I*3
Therefore,

N N
PR IIE %83 () + BE™)? + E) + d(E")?) dx
= C (NP + 6“1 + 8™ 12 + 1612 + h*+2 4 Jajn?+1)
Combining this with the result in Lemma 4, we have
% /1 (EM? +bE™)? + ") +d(E)?) dx
< C(IE“I% + IE™ 1% + IE™I* + 1€V 1)
4C (h2k+2 + |a|h2k+1) 7
which leads to (37) when a # 0, and (38) when a = 0.

Remark 2 We would like to point out that when @ = ¢ = 0, this model reduces to the
coupled BBM equations. In [10], LDG methods were presented for this model, based on
slightly different reformulation of the original model. Both energy conserving and energy
dissipative methods were studied in that paper, however, optimal error estimate analysis was
obtained only for the linearized model. In this theorem, we are able to provide the optimal
error estimate for the fully nonlinear BBM-BBM equations.
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4.3 The Case of Eitherb >0, d =00orb =0, d > 0,and Eithera, c<Oora=c> 0
Two theorems will be presented in this subsection, with the first one on the case of d =
0, b > 0 and the other on the case of b =0, d > 0.

Theorem3 When b > 0, d = 0, either a, ¢ < 0 ora = ¢ > 0, let u, n be the exact
solutions to the system (1) which are sufficiently smooth and bounded. Let ny,, uj € V,f be
the numerical solutions of the LDG scheme (7). For small enough h there holds the following
error estimate

lu — un |+ lln — nall® + llw — wy|* < CAHFL (39)

Below we only present the proof for the case of @, ¢ < 0, which follows the steps as that in
Theorem 1. The other case of a = ¢ > 0 can be shown in a similar way, by combining the
proof below with that of Theorem 2.

Proof Whend =0, a, ¢ <0, b > 0, the system (1) reduces to

N+ ux + (Mu)x + autyxx — by =0,
(40)

2
ur + 1y + (%)x + cnrxx = 0.

Follow the step as in the proof of Theorem 1 to obtain

N N N N
D Pi=2 Q= leHi+) lalc;. (41)
j=1 j=1 j=1 j=1

where P;, Q;,H; and C; have the exact same definitions, except withd = 0. From Lemma 3,
we have

N

10
Y Pi =55 |, (ElED +1bel € + lal(€")%) dx, (42)
j=1

J
N N
>0y <C(IE P+ IEME + 1612 + B ) +ac Y (I8, @3)

=1 j=1

~.

j=l
where the last term in ) Q; cannot be bounded as what is done in Lemma 3 due to d = 0.

N
We refer to (32) for the estimate of H ;.
The approximation of C; needs to be handled differently, since we can not allow [[£]],
which does not appear in (42), to show up here. Recall that

N
> lalc; Z/Ial (S"—e'“r )S dx+Z|a|<< +——Fz> [E”]) :
j=1 ! it3

which can be separated into the linear term and nonlinear term

N

N 2 2
3 JalC; =/I|a|(s"—e")s;dx+z|a|(<n—{nh}> [s“])j+%+/l|a| (”2—“;) £

j=1 j=1

+ Z lal (( - f) [5“1>H1 (44)

2
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2
with f Fz — {nn} = == — Fun]. Applying the projection property and integration by
parts, the linear part can be reformulated as

f|a| e+ 3 lal (01— ) €” ),

j=1

— [ laleretas £ 3 fal (67 — ey ),

j=1

/|a|s”s dx—Z|a| (EME“ T+ (E"1(6"), 1+Z|a| (6" —eMig")
Jj=1 Jj=1
N

~ /1 lalgl"dx — 3 lal ({e")€"] + [6"1(&") ;1 - 45)

j=1

Utilizing Lemma 2, the first term can be bounded as

_/1 lalglE dx < lallEVNNIE" < CIE I + 1§11,

and the second term can be approximated by

N N N
= o lal (€T + M) 1y = = 3 (lalh 282 E") = 3 (lallenE")
j= j=1 2 j=1
N N N
SChTU Y IEE  +ChYIET ) = 3 (lalleE)
j=1 j=1 j=1
N
c (IE"17 +1€"1%) = Y (lalte™1g")), (46)

j=1

To estimate the nonlinear terms in (44), we introduce the following lemma, which is exactly
Lemma 3.4 and Lemma 3.5 in [26], and we will omit the proof here.

Lemma5 With f(u) and fdeﬁned above, there exists some positive number ot(f; up)
such that

/Ial(f(u) f(uh))fxdx+2|a| (f ) — PHIg" ])
j=l1
1

N
Z ; alf; Mh)[gu]Z)j+% +C (”f"”z + h2k+l) .

Combining all these estimates together, we have the following result:

N

N N
lalcy < € (I 1+ 1617 + 15 ) = 257 (@ Franle ), = 3 (e E"),.

j=I j=1 j=1

M=
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Recall that

N

N N N
Y Pi— Y Q=Y lelH;+ Y lalc;,
j=1 j=1

j=1 j=1

we have

N
1a 2 wy2 u\2 1 n uy2
33 [ (1lEn? + bel(€™)? +1ale"?) dx -+ 3 3 (o Fi e )iy

Jj=1

N
€ (1“1 + 071+ 16717 + 12T ) ae 3 (7 16), lalZ €NED 4y

j=1

which leads to

o (|c|<s") +lal(E")? + [bel(E™)?) dx = C (IE™I1* + IIE“ I + 1EV I17) + Ch** T,

by applying Young’s inequality and the projection error estimate (3). Then, the estimate (39)
follows from this, the Gronwall’s inequality, Lemma 1 on optimal initial conditions, and the
optimal projection error (3).

Theorem4 When b = 0, d > 0, either a, ¢ < 0 ora = ¢ > 0, let u,n be the exact
solutions to the system (1)which are sufficiently smooth and bounded. Let ny,, uj, € Vf be the
numerical solutions of the LDG scheme (7). For small enough h, there holds the following
error estimate

lu — wnll®* + Iln — nall* + llv — va|I* < CHHFL, (47)

Proof For the same reason, we only present the proof for the case of a, ¢ < 0. Follow the
steps in Theorem 1, we can derive

N N N N
S =0 =Y lelH; + Y lalc;.

j=1 j=1

with

N
2 Pi =5 ), (EIEN? + ladI€)” +1al")?) dx. 48)

~.
—_

N
> < (g 1P + 11 + g 12 +h2k+‘)+ac2 ),y @9

i=1 Jj=1

~.

j=1
following the result in Lemma 3, where the last term in ) Q ;j is different from that in the

N
proof of Theorem 3 due to b = 0. Another difference in the proof is that the term C; can now
be bounded as in (33), and the approximation of /; needs to be handled differently, since
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we can not allow [|£" || that does not appear in (48) to show up here. Recall that
N N
D= [ - enerax+ D (6= ) €7,
j= j=

1 - @ 1

+ [ G = wnngldx + 37 ((wn = twnma) + Sl ) 167) . (50)
! j=1 2 i+3

For the linear term, we can follow the same analysis as in (45) and (46) to derive

N N
/1(5“ —eEldx + ) ( — {ua) [E") 1,y < CUETIE + 18I + CR*H =5 7 ((e")E") 1, 1

j=1 j=1

For the nonlinear term, we decompose it as the sum of I1;, [Ty, I3, outlined below.

N
/I(un — upnp)§)dx + X=: ((’m — fwnm} + %[nh]) [gn])H%

=

/u@"—e")s”dx D (W = ("DIEM)

Jj=1

N
+ e = enerax + 3 (Ime — i)
Jj=l1

Z( [nh][s"]) =T+ T+ T, 51)
f

One can easily observe that

M = i(‘;[e" —s"][s”])j+l =i(‘;[e”1[s"1)/ . ﬁj( [£"] ) ,

j=1 j=1 : j=1 2

To bound I, we rewrite it into the following form by adding and subtracting the same term:

M = Z f IE — el + 3 ) (18 — € YWEM) s

j=1

+ Z /1 (= (x))) (" — €Eldx
i J

~
= 0

2

+ 3 ({(mn = ) E* = €9FE™) 41 -
j=1

Applying integration by parts, Young’s inequality, Lemma 2, the definition of the projection
and its optimal error estimate (3), we obtain
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Z / ICEE — €9Tr + 3 e (16 — e

j=1

—Z / 7 (x )" sgdx+znh<x]) (E1EM), me]) (€)EM);,

j=1

= —Z/ na (xj)EENdx — me,) [E“UEM) Znh(x,) €1EM)
j=1
a
<C N2 v 2 h2k+l n
&7 + 11 + Ch* T+ - > (1€7F)
j=1
Noting the fact that n;, (x) —n,(x;) = O(h) forany x € I, we can apply Young’s inequality,
projection property (3), and the inverse inequality (4) to obtain

(0 — ma(x))) (6" — €)&7dx + Z {mn =) " =€} 1EM)

Jj=1

N

< Z/; Ch|(§u _eu)sgldx =+ Z |Ch{§” — eu}[sn]|j+% < C(”suHZ + Hsr]”Z) + Ch2k+2‘
j=1"4 =

Therefore, we obtain the following estimate:

N
My < CIETIP + 1817 + 16“1%) + Ch*H! + % > (ign?
j=1

Next, we will estimate the term IT;. From integration by parts and the property of projec-
tion, we have

Z/ u(x,)(S”—é”)S”dX+Z u@x)EMIEN) ;g =0 (52)

j=1

Therefore, we obtain

N N
m = Z/I u" = MEldr + Zj (u(E") — (€"DIEM) 1y 4

—Zf u(xj)(E" — eMEldx — Z (CepDEMIE™) 4y
j=1
N

N
Z/ (1= ) € — NElds + 37 (= e ) (€M) | — 3 (uleEM).
j=1 j=1

2
j=1
Since u(x) —u(x;) = O(h) for any x € I;, applying Young’s inequality, inverse inequality
(4), and projection property (3) yields
N N
Z/ (= u(xj))(E" — eMEldx < Z/ CIE" — eMh&l|dx < CIE"* + h* ),
i Ij . Ij
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N N
2 (e = uGep) EMIEM) 1,y < 3 (CRIEMIEM) 1y < CIIEI,
Jj=1 j=1

N

=3 (ufemEm) < ¥ 4 2 Z (15"7)

Jj=1 ] 1

Therefore, we obtain the estimate of I as
o
712 2k+1 el 712
M < CUE™IT+ A7) + 2 A§l([s )isy
j=

and the estimate of the nonlinear term is given by

N
o 2 B
[ = wmerar + > ((on = o) + 51m0) (€7F) | =T+ M4 1

< CUEMP + 1817 + I1E“ 1) + ChP ! — % D (E"P) s

As a result, we have shown that

2
j=1 j=1

N N
D H; < CUETIP + IEV I + 18 1P) + ChPH! — gZ([s"]) = (€1E™)
Recall the relation

N N N N
Y Pi— Y Q=Y lelH;+ Y lalc;,
j=1 j=1 j=1 j=1

we have
N
13 2 v)2 uy2 lc 2
251, (11D +1adIE) + lal(€")?) dx Tg([sﬂ )1
N N
S CUEMP + 1817 + 180 + Ch*H ac 37 (€0 71EM) 14— D (IelteME™) 1 -
j=1 j=1

which leads to
a
o / (IelE™? + lad|(*)? + lal(6")?) dx < CEM + 17117 + 15"1%) + Ch*+.
I
The estimate (47) follows from the Gronwall’s inequality, Lemma 1, and the optimal projec-

tion error (3).

4.4 TheCaseofb, d >0,ac=0anda, c <0

Theorem 5 Whenb, d > 0,ac = 0anda, ¢ < 0, letu, n be the exact solutions to the system
(1) which are sufficiently smooth and bounded. Let ny, uj, € V}f be the numerical solutions
of the LDG scheme (7). For small enough h, there holds the following error estimate

lu — wnll> + Iln — nall> + llv — va > + llw — wull> + I p — pull*> < ChH*. (53)
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Below we only prove the case ¢ = 0, and the other case of @ = 0 can be done following a
similar idea. One more projection of v, defined as

E'=Pv—uy, =P v—u, with €V — &V = v — vy,

is needed in the proof, and this leads to the following extra error equations, in addition to
(13)-(20):

G eptdr kA - € 9% " — €T =0, (54)

(EP —ePyyrdx + A;(E" — & Y% (' —&)7) =0. (55)

1j

Proof Different set of test functions is chosen here, since the term c¢n,y, disappears when
¢ = 0. Choose the test functions p = &7, p = & + a&? in (13) and (14), ¢ = d&}, 5 =
b&Y —a(§? —&P)in (15) and (18), ¥ = —a&™, ¢ = a&", ¥* = —a&} in (16), (17), and
(55), and ¥ = d&*, {5 = b&", ¢* = —a{” after taking the time derivative of (16), (19)
and (54), respectively. Summing up all the equations involved above, applying the projection
properties, and noting that ¢ = 0, we have

— Q5 =H;+C; —Dj, (56)
where
Pr= [ (€24 +bE" +dEY — al) — ad")?) dr

S[v —Su +>/ |- ( v —Su,+)j+l)

2 2

J,

+b ((s ) - (é,“’*‘s"*)]ﬂ)
(
|

(
O A G ) B (e TR Y
(51) —Sw +)] (v—sw )j-i—%)
(678, (e ). (57)
b

_ (éq»*gnﬁ)ﬂr%), (58)
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‘H; and C; are defined in (23)-(24), and

D; = / (f @) = fap)laleldx — (Grf = () + f@) — Plalg”™)
+ (O — oy + @) = Plalg™ ),

=

Summing over all the elements /;, we obtain

N N N N N
Y P-Y Q=) Hi+) .Ci—) Dj
j=1 j=1 j=1 j=1 j=1

where

N

d
S P = atf(@”) €+ bE)? +dEY + alE)?

j=1
N
+ad|(€")?) dx — lal Y (€M) 1,1
j=1
and

N

N
gl Q= /1 (e8" +ef€" +ag?) —ae]E)dx + 3 ((—ac +be/" M) |

N N - N 2
+20 (caet i)+ D (a1 Z NE") -
j=1 j=1 j=1

Recall Lemma 4, we have
D (Hi+C) < CIE“N + IEI1 + 18I + 1E7117) + Ch* 2.
j=1

Applying Young’s inequality and the projection property (3) leads to

fl(e?s" + €' (6" +ag) —asfE") dx < € (1612 + 1717 + 1671 + 1E°11?)
+Ch2k+2,

and utilizing Lemma 2 (and its analogue for [5”]) yields

N N N
> ((—aer+ be,w’_)[S"])H% + Z;<—ae:"+[§”]> bt ;(de, TIE" D
j= Jj=

j=1
< C(IEV NP+ IEPI* + I1EV1I%) + Ch* T2,

We can apply Young’s inequality, the projection property (3) and the inverse inequality (4)
to obtain

N N
[N oy = D0 (h 2 R E™) | < CIEVIP 4+ Cn.

j=1 j=I

N\
I\)
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Combining these results leads to
N
Y aoi<c (||s“||2 +IETZ + NP7 + NV + 1E7N% + ||s”||2) +Cn.

j=1

j=1
Next, we would like to estimate ) D i» which takes the form of
N

N N
Y D = lal /1 (f @) = f @) &0dx +lal Y (0o — )+ S @) = DIEYY) 11
j=1 j=1

=t |a|Ay + |a| As.

Notice that

_u2 (up)? 1 1 u u
f(u)—f(uh)—f— > —E(u+uh)(u—uh)—§(u+uh)($ —€).

If we define £L(x) = (u+up)/2, then by mean value theorem we have | L(x) — L(x;)| = O (h)
for x € I;. Applying integration by parts, together with Young’s inequality, the inverse
inequality (4), Lemma 2 and the projection property (3), we have

N N
Ml =3 [ e = etar| =Y [ e - ensdas
j=1"1 j=1""%

N N
= Z/I (L(x) = L(x))) (" — e")ELdx + Z/I Lx;)(E" — ")l dx
j=1"%1 j=1"4

/N

N N N

> [ e —enmielian+ |- Y [ copeterar— Y cwpieter
j=17% j=174 j=1

< € (6“1 + 16712 + H*+2) 4+ C (16" 12 + €7 1) + € (1”1 + 18”11) .

We now turn to the approximation of A;, which has the following explicit expression:

Ay =

M=

(O — ) + £ @) = DIET) 1

1

~.
Il

I
M=

2 2
{un})™  «
i — () + 5 — + ﬂm;])[é”])
1 ( h 2 2 2 jd

~.
Il

Applying Young’s inequality, the projection property (3), the inverse inequality (4) and
Lemma 2, we have
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N N
1
(0 = mDIED | = 521([5”—6 ™) 1| < € (112 + 16717 + 1)
j= =
Yo N oo N
2}5 ([unlI£7]) j+i| = 2}5 [uh—u][gl’])j% <C2‘([€M_5u][5p])j+%
J= J= j=

<C (NI + g+ ).

Similarly, utilizing the fact that u + {uy,} is uniformly bounded leads to

Yo ) IS
2(2‘ JEht] = 5 | (0t )~ (DiEn)
= J
< C (K12 + 16717 + 1),
Therefore,

|A2] < C (IIEYIP + IEP 1% + 1E™11%) + Ch?,

which leads to

N
> Dj
j=1

= a1 +ahal < lal (A1]+ A2 < € (1§17 + 16712 + 16" 1 + 1817 + n*F)

Finally, recall the equality

ZP* Z(ij+c,»+H,-—Dj),

Jj=1

and by Lemma 2 and Young’s inequality,

N
2 (8" 106) 1y <

j=1

C (IE71% + 1E17) ,
we obtain
%/;((S")2+($”)2+b(gw)2 +d(gv)2+|a|(éu)z+|ad|(gp)2) W
C (IE“I7 + 1E7I2 + 1§12 + 1612 + 1812 + €112 + 1)

We can apply the Gronwall’s inequality and the estimate (53) follows from Lemma 1 and the
optimal projection error (3).

4.5 TheCaseofa=b=c=d=0

Theorem6 Whena = b =c =d =0, let u, n be the exact solutions to the system (1) which
are sufficiently smooth and bounded. Let ny,, up, € V}f‘ be the numerical solutions of the LDG
scheme (7). For small enough h, there holds the following error estimate:

lu — wpll®> + Iln — nall* < ChHFL (59)
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Under this assumption, the abcd Boussinesq system reduces to the nonlinear shallow water
equations, which is a first-order symmetrizable system of conservation law. Therefore, the
above theorem is a direct application of [24, Theorem 2.1].

5 Numerical Experiments

The numerical results of the proposed LDG methods are presented in this section. The
third-order strong stability preserving Runge-Kutta methods [19] are used as the temporal
discretization. We first perform the accuracy test for different choices of the parameters
a, b, c,d, and then present several wave collision tests, including a simulation with finite-
time blow-up wave, to demonstrate the performance of our methods.

5.1 Accuracy Test

Based on different choices of the parameters a, b, ¢, d studied in Sect. 4, several accuracy
tests are carried out to compare the numerical solutions with the exact solutions (specified
for each test below). Uniform meshes are considered. Nx denotes the total number of spatial
cells, and Nt denotes the number of temporal steps. Periodic boundary conditions are applied
for each examples. Note that some exact solutions, for instance the solitary-wave solutions,
are not periodic in space. Thanks to their exponential decaying property, their values at two
boundaries are very small, hence one can treat them as periodic functions and use this trick
to check for accuracy. We choose the final time 7' to be small such that the error due to
periodic boundary conditions could be negligible. We implemented the LDG schemes with
both k = 1 and k = 2, which correspond to piecewise linear basis and piecewise quadratic
basis functions, respectively.

Case 1 (Theorem 1). First, we consider the parameters a = —37—0, b= % c= —%, d=
%, which match the assumptions in Theorem 1. For such choice of parameters, the following
traveling-wave exact solutions have been provided in [13]:

n(x,t) = %sech2 <%\/§<x —20— %t)) ,
u(x,r) = 21% sech? (%\/g (x —20— %t)) .

The computational domain is set as I = [0, 40]. The initial conditions of u(x, 0) and n(x, 0)
are obtained by setting + = 0 in (60), and the numerical errors are computed at the final
stopping time T = 0.8. The numerical errors in L? and L® norms and the corresponding
convergence rates are presented in Table 1 for k = 1 and in Table 2 for £ = 2. Under both
cases, the optimal convergence orders, i.e., (k 4 1)-th order, in both u and n can be observed,
which indicated that the error estimate of (k 4+ 1/2)-th order in Theorem 1 is not sharp. As
we can observe that the lost of 1/2 accuracy in the proof is due to the third-order spatial
derivative terms #yyy, Nxxx, and one may try the idea presented in [28] to provide optimal
error estimate for linear high-order wave equations. The main idea there was to derive energy
stability for the various auxiliary variables via using the scheme and its time derivatives with
different test functions. Due to the existence of the nonlinear terms, we expect this procedure
to be very cumbersome, and will investigate this in a future work.

(60)
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Table 1 Numerical errors and convergence rates of Case 1, with k = 1

Nx Nt llewll 2 Rate llenll 2 Rate llewll oo Rate llenlloo Rate

20 20  0.05225 0 0.050 56 0 0.026 11 0 0.018 57 0

40 40 0.01359 19426 0.01211 2.0620 0.01433 0.8653 9.159E-3 1.0196
80 80  2952E-3 22029 2926E-3 2.0492 4.152E-3 1.7878 3.895E-3 1.2377
160 160 6.805E—4 2.1172 7.078E—4 2.0474 1.167JE-3 1.8310 1.208E—3 1.6886
320 320 1.657E—4 2.0380 1.748E—4 2.0174 3.105E—4 19099 3.273E—4 1.8842

Table 2 Numerical errors and convergence rates of Case 1, with k = 2

Nx Nt llewlly 2 Rate llenlly 2 Rate llewll oo Rate llen Nl oo Rate

20 20 5578E-3 O 6.824E-3 0 3.188E-3 0 4951E-3 0

40 40  7.203E—4 29532 7.834E—4 3.1228 1.202E-3 14071 8.763E—4 2.4983
80 80  9.575E-5 29113 9.584E-5 3.0312 1940E—4 26319 1.727E—4 23428
160 160 1.276E—5 29078 1.321E-5 2.8589 2.695E—5 2.8472 2.690E-5 2.6830
320 320 1.645E—6 29557 1.732E—6 29311 3498E—-6 29456 3.645E—6 2.8836

Case 2 (Theorem 2 with a = ¢ # 0). Here, we consider the parametersa = ¢ = ﬁ b=
1—18, d= é, which match the assumptions in Theorem 2. As the exact solution is not available,
we consider the following manufactured “exact” solution of the form:

n(x,t) = cos(x + 1),
u(x,t) =sin(x + 1),

and modify the abcd Boussinesq system to be

Nt + Uy + (W)x + ﬁuxxx - %nxxt = COS(ZX + Zt) + % COS(x + [) - % Sin(x + Z)’

2 . .
U + nyx + (“7) + ﬁnmx — éuxx, = %sm(Zx +21) + % cos(x + 1) — % sin(x + 1),
X

by adding some source terms on the right-hand side. The computational domain is set as
I = [0, 2 t]. The initial conditions of u(x, 0) and n(x, 0) are obtained by setting t = 0
in the “exact” solutions, and the numerical errors are computed at the final stopping time
T = 71t/50. The numerical errors in L? and L norms and the corresponding convergence
rates are presented in Table 3 for k = 1 and in Table 4 for k = 2. Again, the optimal
convergence orders, i.e., (k + 1)-th order, in both ©# and 7 can be observed, which indicated
that the error estimate of (k 4+ 1/2)-th order in Theorem 2 is not sharp. The same remedy
discussed in Case 1 may be applied to improve the error estimate.

Case 3 (Theorem 2 with a = ¢ = 0). In Theorem 2, we are able to prove the optimal
convergence rate when ¢ = ¢ = 0, under which case the abcd Boussinesq system reduces
to the coupled BBM equations. In the following test, we choose the parameters a = ¢ =
0, b=d = % and the corresponding traveling-wave exact solutions, provided in [10], are
given by
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Table 3 Numerical errors and convergence rates of Case 2, with k = 1

Nx Nt llewll 2 Rate llenll 2 Rate llewll oo Rate llenlloo Rate

20 20  9.183E-3 O 0.010 57 0 0.014 09 0 0.015 81 0

40 40  2732E-3 1.7492 2772E-3 19306 4.132E-3 1.7697 4.171E-3 19231
80 80  6.789E—4 2.0085 6.732E—4 2.0422 1.028E-3 2.0069 1.020E-3 2.0312
160 160 1.697E—4 2.0004 1.691E—4 19935 2571E—4 19995 2563E—4 19931
320 320 4.240E-5 2.0005 4.232E-5 19980 6427E-5 20000 6.418E-5 19979

Table 4 Numerical errors and convergence rates of Case 2, with k = 2

Nx Nt Jeul)2 Rate llenl ;2 Rate llewlloo Rate llew lloo Rate

20 20 3395E-4 O 3.281E-4 0 6.426E—4 0 4.727E-4 0

40 40 3705E-5 3.1958 3.671E-5 3.1599 6.561E—-5 3.2920 6.795E-5 2.7984
80 80  4.262E—6 3.1200 4.510E-6 3.0252 7.926E—6 3.0492 8431E-6 3.0106
160 160 5.413E—7 29769 5422E-7 3.0562 1.010E-6 29721 1.015E—6 3.0539
320 320 6.747E—8 3.0042 6.734E—8 3.0093 1264E-7 29991 1.259E-7 3.0109

Table 5 Numerical errors and convergence rates of Case 3, with k = 1

Nx Nt llewll 2 Rate llenll;2 Rate llexlloo Rate llenlloo Rate
20 20 0.6819 0 1.8824 0 0.795 6 0 1.5628 0

40 40 03377 1.0139 0.2893 277018 0.4860 07111 03183 22956
80 80 0.1108 1.6077 0.189 8 0.6084 0.2138 1.1846  0.309 1 0.042 4

160 160  0.028 12 19784 0.05000 19241 0.06636 1.6879 0.1255 1.2999
320 320 7.057E-3 19944 001261 19872 0.01745 19268 0.03474 1.8534

n(x,t) = 14—5 (—2 ~+ cosh <\/15E (x — 20— %t))) sech? ( % (x — 20— %t)) ,

u(x,t) = %sech2< = (x— L %t))

The computational domain is set as I = [0, 40]. The initial conditions of u(x, 0) and n(x, 0)
are obtained by setting + = 0 in the exact solutions, and the numerical error are computed
at the final stopping time 7 = 0.01. The numerical error in L? and L® norms and the
corresponding convergence rates are presented in Table 5 for k = 1 and in Table 6 for k = 2.
The optimal convergence orders in both u and 7 can be observed, which matches the optimal
error estimate analysis in Theorem 2.

Case 4 (Theorem 3). Here, we consider the parametersa = ¢ = %, b= %, d = 0, which
match the assumptions in Theorem 3. As the exact solution is not available, we consider the
following manufactured “exact” solution of the form:

n(x,t) =cos(x +1),
u(x,t) =sin(x +1),
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Table 6 Numerical errors and convergence rates of Case 3, with k = 2

Nx Nt llewll 2 Rate llenll 2 Rate llewll oo Rate llenlloo Rate

20 20 04594 0 0.459 1 0 0.706 6 0 0.5598 0

40 40 0.1025 2.1637 02525 0.8626 0.1830 19491 04554 0.2979
80 80  0.01054 3.2832 0.03005 3.0707 0.021 08 3.1175 0.07503 2.6015
160 160 1.335E—3 29808 3.668E—-3 3.0341 3.300E-3 2.6756 0.01056 2.8282
320 320 1.676E—4 29933 4.629E—4 29862 4.195E—4 29758 1.350E-3 29682

Table 7 Numerical errors and convergence rates of Case 4, with k = 1

Nx Nt llewll 2 Rate llenllz2 Rate llew ]l oo Rate llen lloo Rate

20 1000 0.2329 0 0.2327 0 0.1329 0 0.1375 0

40 2000  0.05657 2.0418 0.056 45 2.0436 0.040 02 1.7315 0.040 48 1.764 3
80 4000 0.01779 1.6694 0.017 14 1.7194 0.013 18 1.6018 0.013 02 1.636 1
160 8000 5.131E-3 1.7935 5.044E-3 17649 3.841E-3 17794 3.818E-3 1.7701
320 16000 1.339E-3 19382 1.331E-3 19221 1.007E-3 19319 1.005E-3 1.9259

Table 8 Numerical errors and convergence rates of Case 4, with k = 2

Nx Nt llewll 2 Rate llenll ;2 Rate llewll oo Rate llen lloo Rate

20 1000  0.03777 0 0.03034 O 9.041E-3 0 9.676E-3 0

40 2000 5.215E-3 28563 3.617TE-3 3.0683 7.160E—4 3.6584 1.651E—-3 25512
80 4000 5.268E—4 33074 4.844E—4 29005 2.896E—4 13062 3.663E—4 2.1721
160 8000 6.488E—5 3.0214 6430E-5 29132 5.508E-5 23943 5.629E-5 2.7023
320 16000 8.480E—6 29356 8.372E—6 29411 7.814E—6 28173 7.663E—6 2.8767

and modify the abcd Boussinesq system to be

M+t + () + Glry = Gilexr = COSQ2X +21) + § cos(x + 1) — g sin(x + 1),
u; +ny + (%) + éﬂxxx = %cos(Zx + 2t) + cos(x +1t) — %sin(x + 1)
X

by adding some source terms on the right-hand side. The computational domain is set as
I = [0, 8 mt]. The initial conditions of u(x, 0) and n(x, 0) are obtained by setting t = 0
in the “exact” solutions, and the numerical errors are computed at the final stopping time
T = 0.04. The numerical errors in L> and L> norms and the corresponding convergence
rates are presented in Table 7 for k = 1 and in Table 8 for k = 2. The optimal convergence
orders, i.e., k 4+ 1-th order, in both # and 1 can be observed.

Case 5 (Theorem 4). Here, we consider the parametersa =c=b =0, d = %, which
match the assumptions in Theorem 4. An exact solution is presented in [11] as follows:

n (x ’ t) =-1

ulx,t) = % + sech? (%(
The computational domain is set as I = [0, 40]. The initial conditions of u(x, 0) and n(x, 0)
are obtained by setting + = 0 in the exact solutions, and the numerical error are computed

x—zo—z)).
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Table 9 Numerical errors and convergence rates of Case 5, with k = 1

Nx Nt llewll ;2 Rate llenllz2 llewlloo Rate llenlloo

20 20 0.057 29 0 7.615E—16 0.074 59 0 2.220E—-16
40 40 0.035 81 0.6779 7.322E—16 0.055 36 04301 2.220E—-16
80 80 9.578E—-3 1.9027 7.167TE—16 0.018 49 1.5820 2.220E—-16
160 160 2.413E-3 1.9889 7.347E—16 5.020E-3 1.8812 2.220E—-16
320 320 6.045E—4 1.997 1 7.697E—16 1.290E-3 1.960 3 2.220E—-16

Table 10 Numerical errors and convergence rates of Case 5, with k = 2

Nx Nt llewll ;2 Rate llenll 2 llewlloo Rate llenlloo
20 20 0.045 38 0 1.772E—15 0.065 66 0 1.221E-15
40 40 5.871E-3 2.950 4 2.296E—15 0.01028 26750 1.221E-15

80 80 6.758E—4 3.1190 4.429E—-15 1.342E-3 29372 3.109E—15
160 160 8.530E—5 2.986 0 4.197E—14 1.819E—4 2.8837 3.109E—14
320 320 1.069E—5 2.996 1 6.027E—14 2.313E-5 2974 8 3.020E—14

at the final stopping time 7 = 0.01. The numerical errors in L? and L norms and the
corresponding convergence rates are presented in Table 9 for k = 1 and in Table 10 for
k = 2. For this case, we can observe that ||e, || ;2 demonstrates a (k 4 1)-th order of accuracy,
and |ley||;2 presents the machine error at the level of 10~'4. This is due to the fact that the
exact solution 7(t, x) = —1 is a constant, hence its approximation via polynomial is exact
and the update equation for 7 is also exact.

Case 6 (Theorem 5). The parameters a = 0, b = d = % c = —%, which match the
assumptions in Theorem 5, are chosen in this test. A set of exact solutions, studied in [11],
takes the form of

n(x7 t) = _17
u(x, 1) = 1 + 6sech? (% (x —20— 3t)) .

The computational domain is set as I = [0, 40]. The initial conditions of u(x, 0) and n(x, 0)
are obtained by setting # = 0 in the exact solutions, and the numerical errors are computed
at the final stopping time 7 = 0.01. The numerical errors in L? and L> norms and the
corresponding convergence rates are presented in Table 11 for k = 1 and in Table 12 for
k = 2. We can observe that ||e, || ;> demonstrates a (k + 1)-th order of accuracy, and, for the
same reason as in Case 5, |le; || ;2 presents the machine error.

Case 7 (KdV-KdV system). In this last example for accuracy test, we consider the case of
b = d = 0, under which case the abcd Boussinesq system reduces to the coupled KdV-KdV
equations. Note that we were not able to provide an error estimate analytically for this system.
Lletb=d =0, a=c= %, there exits exact solutions of the form [13]

n(x, 1) = —1+ 3 sech? <\/§(x —20— ﬁt)) ,

u(x, 1) = 35 sech? <\/§(x —20— ﬁr)) .
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Table 11 Numerical errors and convergence rates of Case 6, with k = 1

Nx Nt lewll 2 Rate llenlly 2 llewlloo Rate llenlloo

20 20 0.346 1 0 7.608E—16 0.383 1 0 2.220E—-16

40 40 0.2149 0.687 3 7.322E—16 0.3037 0.3354 2.220E—-16

80 80 0.057 55 1.9011 7.175E—16 0.107 1 1.503 1 2.220E—-16

160 160 0.01450 1.988 4 7.460E—10 0.030 42 1.816 4 2.220E—-16

320 320 3.633E-3 1.996 9 8.008E—16 7.792E-3 1.964 7 2.220E—-16
Table 12 Numerical errors and convergence rates of Case 6, with k = 2

Nx Nt lewll 72 Rate llenlly 2 llewlloo Rate llenlloo

20 20 02722 0 1.800E—15 03726 0 1.332E—15

40 40 0.035 17 29519 2.313E—-15 0.062 20 2.5826 1.332E—15

80 80 4.064E—3 3.1137 4.538E—15 8.324E-3 2.9016 3.109E—-15

160 160 5.132E—4 29852 4.278E—14 1.113E-3 2.9022 3.331E—-14

320 320 6.432E—-5 2.996 1 6.325E—14 1.406E—4 29850 3.331E—-14
Table 13 Numerical errors and convergence rates of Case 7, with k = 1

Nx Nt llewll 72 Rate lleyliz2 Rate llexll oo Rate llen lloo Rate
20 200 0.3526 0 0.2514 0 0.364 5 0 0.2503 0

40 400 0.097 91 1.8486  0.089 20 14950 0.1663 1.1325 0.124 4 1.008 8
80 800 0.067 58 0.5349 0.05326 0.7440 0.1493 0.1558 0.1133 0.1351
160 1600 0.018 77 1.8478 0.01352 19783 0.05732 13807 0.04096 14675
320 3200 4.820E-3 19618 3423E-3 19815 0.01598 1.8340 0.01131 1.8563
Table 14 Numerical errors and convergence rates of Case 7, with k = 2

Nx Nt llewll 2 Rate llegliz2 Rate llew ll oo Rate llenll oo Rate
20 200 0.144 9 0 0.134 6 0 0.2870 0 0.2335 0

40 400 0.07251 0.9989 0.05373 1.3243  0.1599 0.8439 0.1178 0.987 4
80 800 8.667E—3 3.0645 6394E-3 3.0710 0.021388 2.8693 0.01675 2.8138
160 1600 1.087E—-3 2.9953 7.816E—4 3.0322 3.703E-3 25629 2701E-3 2.6326
320 3200 1.402E—4 29548 9.963E-5 29719 5.021E—4 28828 3.572E—4 29185

The computational domain is set as I = [0, 40]. The initial conditions of u(x, 0) and n(x, 0)
are obtained by setting # = 0 in the exact solutions, and the numerical errors are computed
at the final stopping time 7 = 0.01. The numerical errors in L? and L norms and the
corresponding convergence rates are presented in Table 13 for k = 1 and in Table 14 for
k = 2. The optimal convergence orders in both « and 1 can be observed numerically. This is
consistent with the Galerkin approximation of the KdV-KdV equations in [8].
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5.2 Wave Collisions

Motivated by the experiments in [4, 11], we consider two examples of traveling-wave colli-
sions in this section. The head-on collision, namely, two waves travel in opposite direction,
is considered here.

5.2.1 Finite Time Blow Up

First, we consider the experiment performed in [4, 11] for the coupled BBM equations with
the choice of parametersa = ¢ =0, b =d = %. The system admits the traveling wave
exact solution of the form

ne(x,t) = sech2 (f (x + 4)) 45 gech? (% (x + %t)) ,

ui(x,t)::}: sechz(f (xj: ))

traveling at opposite direction. The initial conditions are set as

nx,0) =ni(x —x4,0) +n-(x —x-,0),
ux,0)=uy(x —x4,0)+u_(x —x_,0),

where x+ = %7 in the computational domain / = [—14, 14]. Initially, the waves are centered
at 7 and —7, and will propagate towards each other.

We use the LDG scheme with k = 2 and 7 = 0.175 to simulate this example. The time step
size is chosentobe At = 0.001 07h uptot = 3.24,and At = 0.000 52/ for3.24 < ¢ < 4.4.
The numerical solutions u;, and 7, at various times (before the blow-up) are shown in Fig. 1.
We can observe that the Ly,-norm of the numerical solutions n;, at t = 4.4 reaches 120,
which indicates the possible blow-up of the 1, as well as the spatial derivative of uj,. This
is consistent with the observations in [4, 11].

5.2.2 Head-on Collision

We consider the system equations with the choice of parameters a = —%, b = %, c =

%, d= % and the initial conditions given in [11]:

n(x,0) =ny(x) +n-(x),  wlx,0)=uy(x)+u_(x),

ne(x) = sech2 <\/» (x —
ui(x) = :I:% sech? (g(x + xi)> .

Here, the computational domain is set as / = [—14, 14], and x4 = +7. Two waves travel
towards each other, and collide around ¢t = 6.

We use the LDG scheme with k = 2 and 2 = 0.175 to simulate this example. The time
step size is chosen to be At ~ 0.002 14h. The numerical solutions u;, and 7 at various times
(before and after the collision) are shown in Fig. 2. Numerically, we can observe that these
two waves merge, and then split up and continue to travel independently.

where
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Fig.1 The numerical solutions uj and ny, of the finite time blow-up test at different times
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Fig.2 The numerical solutions uj, and n, of the head-on collision test at different times
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6 Conclusion Remark
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In this paper we developed and analyzed the LDG methods for the abcd Boussinesq system.
By utilizing the connection between the error of the auxiliary and primary variables, we
proved the optimal error estimate for our LDG scheme applied to the BBM-BBM system,
and sub-optimal error estimate for a wide range of parameters a, b, ¢,d > 0. Numerical
experiments are provided to test the accuracy of our methods, and optimal error estimates
are observed for all the cases, including the KdV-KdV system which is not covered in our
theoretical analysis. We also simulate wave collisions of traveling wave solutions and observe

finite time blow-up behavior of the numerical solutions.

Acknowledgements The work of J. Sun and Y. Xing is partially sponsored by NSF grant DMS-1753581.

Compliance with Ethical Standards

Conflict of Interest The authors declare that they have no conflict of interest.

@ Springer



Commun. Appl. Math. Comput.

References

20.

21.

22.

23.

24.

25.

26.

27.

28.

Amick, C.J.: Regularity and uniqueness of solutions to the Boussinesq system of equations. J. Differ.
Equ. 54, 231-247 (1984)

Antonopoulos, D.C., Dougalis, V.A., Mitsotakis, D.E.: Galerkin approximations of periodic solutions of
Boussinesq systems. Bull. Greek Math. Soc. 57, 13-30 (2010)

Bona, J.L., Chen, M.: A Boussinesq system for two-way propagation of nonlinear dispersive waves.
Physica D 116, 191-224 (1998)

Bona, J.L., Chen, M.: Singular solutions of a Boussinesq system for water waves. J. Math. Study 49,
205-220 (2016)

Bona, J.L., Chen, H., Karakashian, O., Xing, Y.: Conservative, discontinuous-Galerkin methods for the
generalized Korteweg-de Vries equation. Math. Comput. 82, 1401-1432 (2013)

Bona, J.L., Chen, M., Saut, J.-C.: Boussinesq equations and other systems for small-amplitude long waves
in nonlinear dispersive media: I. Derivation and linear theory. J. Nonlinear Sci. 12, 283-318 (2002)
Bona, J.L., Chen, M., Saut, J.-C.: Boussinesq equations and other systems for small-amplitude long waves
in nonlinear dispersive media: II. The nonlinear theory. Nonlinearity 17, 925-952 (2004)

Bona, J.L., Dougalis, V.A., Mitsotakis, D.E.: Numerical solutions of KdV-KdV systems of Boussinesq
equations I. The numerical scheme and generalized solitary waves. Math. Comput. Simul. 74, 214-228
(2007)

Boussinesq, J.: Théorie de I’intumescence liquide appelée onde solitaire ou de translation se propageant
dans un canal rectangulaire. Comptes Rendus de 1’ Acadmie de Sciences 72, 755-759 (1871)

. Buli, J., Xing, Y.: Local discontinuous Galerkin methods for the Boussinesq coupled BBM system. J. Sci.

Comput. 75, 536-559 (2018)

. Burtea, C., Courtes, C.: Discrete energy estimates for the abcd-systems. Commun. Math. Sci. 17,243-298

(2019)

Ciarlet, P.: The Finite Element Method for Elliptic Problem. North Holland, USA (1975)

Chen, M.: Exact traveling-wave solutions to bidirectional wave equations. Int. J. Theor. Phys. 37, 1547—
1567 (1998)

Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite
element method for conservation laws I'V: the multidimensional case. Math. Comput. 54, 545-581 (1990)
Cockburn, B., Karniadakis, G., Shu, C.-W.: The development of discontinuous Galerkin methods. In:
Cockburn B., Karniadakis G.,Shu C.-W., eds. Discontinuous Galerkin Methods: Theory, Computation
and Applications. Lecture Notes in Computational Science and Engineering, Part I: Overview, vol. 11,
pp. 3-50 Springer, Berlin, Heidelberg (2000)

. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge-Kautta local projection discontinuous Galerkin finite

element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90-113 (1989)

. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element

method for conservation laws II: general framework. Math. Comput. 52, 411-435 (1989)

. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin finite element method for convection-

diffusion systems. STAM J. Numer. Anal. 35, 2440-2463 (1998)

. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods.

SIAM Rev. 43, 89-112 (2001)

Hufford, C., Xing, Y.: Superconvergence of the local discontinuous Galerkin method for the linearized
Korteweg-de Vries equation. J. Comput. Appl. Math. 255, 441-455 (2014)

Karakashian, O., Xing, Y.: A posteriori error estimates for conservative local discontinuous Galerkin
methods for the generalized Korteweg-de Vries equation. Commun. Comput. Phys. 20, 250-278 (2016)
Li, X., Xing, Y., Chou, C.-S.: Optimal energy conserving and energy dissipative local discontinuous
Galerkin methods for the Benjamin-Bona-Mahony equation. J. Sci. Comput. 83, 17 (2020)

Li, X., Sun, W,, Xing, Y., Chou, C.-S.: Energy conserving local discontinuous Galerkin methods for the
improved Boussinesq equation. Journal of Computational Physics 401, 109002 (2020)

Luo, J., Shu, C.-W., Zhang, Q.: A priori error estimates to smooth solutions of the third order Runge-
Kautta discontinuous Galerkin method for symmetrizable systems of conservation laws. ESAIM: M2AN
49, 991-1018 (2015)

Peregrine, D.H.: Calculations of the development of an undular bore. J. Fluid Mech. 25, 321-330 (1966)
Xu, Y., Shu, C.-W.: Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear
convection-diffusion and KdV equations. Comput. Methods Appl. Mech. Eng. 196, 3805-3822 (2007)
Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for high-order time-dependent partial differ-
ential equations. Commun. Comput. Phys. 7, 1-46 (2010)

Xu, Y., Shu, C.-W.: Optimal error estimates of the semi-discrete local discontinuous Galerkin methods
for high order wave equations. SIAM J. Numer. Anal. 50, 79-104 (2012)

@ Springer



	Local Discontinuous Galerkin Methods for the abcd Nonlinear Boussinesq System
	Abstract
	1 Introduction
	2 Notations and Projections
	3 The Local Discontinuous Galerkin Method
	4 Error Estimate
	4.1 The Case of a, c< 0 and b, d>0
	4.2 The Case of a=c 0,  b, d >0
	4.3 The Case of Either b>0, d=0 or b=0, d>0, and Either a, c<0 or a=c0
	4.4 The Case of b, d>0, ac=0 and a, cleqslant0
	4.5 The Case of a=b=c=d=0

	5 Numerical Experiments
	5.1 Accuracy Test
	5.2 Wave Collisions
	5.2.1 Finite Time Blow Up
	5.2.2 Head-on Collision


	6 Conclusion Remark
	Acknowledgements
	References




