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Abstract of “High order well-balanced numerical schemes for
hyperbolic systems with source terms,” by Yulong Xing, Ph.D., Brown University,
May 2006

Hyperbolic balance laws have steady state solutions in which the flux gradients are
nonzero but are exactly balanced by the source term. This thesis contains sev-
eral topics on constructing genuinely high order accurate well balanced numerical

schemes, which can preserve exactly these steady state solutions.

In the first part, we start our investigation by designing high order well bal-
anced WENO finite difference schemes for the still water solution of the shallow
water equations, and then generalize our idea to a general class of balance laws with
separable source terms. Well balanced high order finite volume weighted essentially
non-oscillatory (WENO) schemes and Runge-Kutta discontinuous Galerkin (RKDG)
finite element schemes, which are more suitable for computations in complex geome-
try and / or for using adaptive meshes, are also designed for the same class of balance
laws. The key ingredient in our design is a special decomposition of the source term
before discretization, which allows us to design specific approximations such that the
resulting schemes satisfy the well balanced property, and at the same time maintain
their original high order accuracy and essentially non-oscillatory property for general

solutions.

In the second part, we present a different approach to design high order well-
balanced finite volume WENO schemes and RKDG finite element methods. We
make the observation that the traditional RKDG methods are capable of maintain-
ing certain steady states exactly, if a small modification on either the initial condition
or the flux is provided. The computational cost to obtain such a well balanced RKDG
method is basically the same as the traditional RKDG method.



The third topic is related to the moving steady state solution of the shallow
water equation, which cannot be preserved by the above methods. We introduce a
new technique to obtain high order finite volume schemes for this problem, based
on a special treatment of the flux and source term. Extensive numerical simulations
are performed to verify high order accuracy, the well balanced property, and good

resolution for smooth and discontinuous solutions.
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Chapter 1

Introduction

1.1 Overview

We are interested in numerically solving the following hyperbolic conservation laws

with source terms, also referred to as hyperbolic balance laws:

ut+f1(u,x,y)z+f2(u,x,y)yZg(U,x,y) (11)

or in the one dimensional case

ur + f(u, ), = g(u, x) (1.2)

where u is the solution vector, fi(u,z,y) and fo(u,z,y) (or f(u,x)) are the fluxes
and g(u,z,y) (or g(u,z)) is the source term. Hyperbolicity refers to the fact that

the Jacobians afl(auf’y) and afz(;f’y) (or afg;,z)) always have real eigenvalues and

complete sets of eigenvectors. Often, this balance law would admit steady state
solutions in which the source term is exactly balanced by the flux gradient. Notice
that in such situations the solution u is typically a non-trivial function, hence a
straightforward numerical scheme may fail to preserve exactly this balance. Many

physical phenomena come from small perturbations of these steady state solutions,



which are very difficult to capture numerically, unless the numerical schemes can
preserve the unperturbed steady state at the discrete level. Schemes which can
preserve the unperturbed steady state at the discrete level are the so called well
balanced schemes. Our purpose is to design well balanced schemes without sacrificing
the high order accuracy and non-oscillatory properties of the scheme when applied
to general, non-steady state solutions.

A prototype example for the balance laws (1.2), which has been investigated
extensively in the literature, is the shallow water equation with a non-flat bottom
topology. The shallow water equations, also referred to as the Saint-Venant system,
are widely used to model flows in rivers and coastal areas. It has wide applications
in ocean and hydraulic engineering: tidal flows in estuary and coastal water region;
bore wave propagation; and river, reservoir, and open channel flows, among others.
This system describes the flow as a conservation law with additional source terms.
We consider the system with a geometrical source term due to the bottom topology.

In one space dimension, it takes the form

(hu); + <hu2 + %ghQ) = —ghb,,

Z

(1.3)

where h denotes the water height, u is the velocity of the fluid, b represents the
bottom topography and g is the gravitational constant. In the homogeneous case, the
system is equivalent to that of the isentropic Euler system. However, the properties
of the system change a lot due to the presence of the source term. The above system
is quite simple in the sense that only the topography of the bottom is taken into
account, but other terms could also be added in order to include effects such as
friction on the bottom and on the surface as well as variations of the channel width.

Research on numerical methods for the solution of the shallow water system has
attracted much attention in the past two decades. Many numerical schemes have

been developed to solve this system. Similar to other balance laws, this system



admits stationary solutions in which nonzero flux gradients are exactly balanced by

the source terms in the steady state case. The steady state solutions are given by
L
hu = constant and ¥ + g(h + b) = constant. (1.4)
A special case is the still water stationary solution, denoted by

u=0 and  h+ b= constant. (1.5)

1.2 History

A significant result in maintaining the stationary solution (1.5) is given by Bermudez
and Vazquez [5]. They have proposed the idea of the “exact C-property”, which
means that the scheme is “exact” when applied to the stationary case h + b =
constant and hu = 0. This property is necessary for maintaining the above balance.
A good scheme for the shallow water system should satisfy this property. Also, they
have introduced the first order Q-scheme and the idea of source term upwinding.
After this pioneering work, many other schemes for the shallow water equations with
such exact C-property have been developed. LeVeque [28] has introduced a quasi-
steady wave propagation algorithm. A Riemann problem is introduced in the center
of each grid cell such that the flux difference exactly cancels the source term. Zhou et
al. [51] use the surface gradient method for the treatment of the source terms. They
use h-+Db for the reconstruction instead of using hA. Russo [36] and Kurganov and Levy
[27] apply finite volume central-upwind schemes to this system, keeping higher-order
accuracy for the flux term and second order accuracy for the source term. Recently,
Vukovic and Sopta [44] have used the essentially non-oscillatory (ENO) and weighted
ENO (WENO) schemes for this problem. They applied WENO reconstruction not
only to the flux but also to a combination of the flux and the source term. For

related work, see also [2, 18, 23, 25, 27, 32, 34, 36, 50]. All of these works are for well



balanced numerical schemes for the stationary solution (1.5). Little in the literature
has been done for the more general steady state problem (1.4).

Most of the works mentioned above are for numerical schemes of at most second
order accuracy. There is a fundamental difficulty in maintaining genuine high order
accuracy for the general solutions and at the same time achieving the exact C-
property. The work mentioned above which addresses this issue is [44], see also
[45, 14]. They have applied the ENO and WENO schemes to the shallow water
equation to maintain the steady state. First, they split the flux term into the original
Q-scheme [5] and two modification terms (the WENO reconstruction of some function
w¥). In order to obtain a well-balanced scheme, they also discretize the source term
in a similar way: the sum of the source term in Q-scheme [5] and two modification
terms (the WENO reconstruction of the function v*, which is a discretization of the
source term). In the steady state case, the flux term and source term can be exactly
balanced one by one (w*=v*). Hence the well balanced property is obtained.

It is not easy to see whether the source term in [44] is discretized with high order
directly. After checking the Taylor expansion of the source term discretization, we
find the source term is approximated by: —ghd' + Z(R'V" — K"V)Az? + O(Az?),
which shows that actually it has only second order accuracy. In [44], the authors
did a convergence test to find the order of this scheme. The example they picked
is a steady state solution, which should be preserved. But for that example, the
maximum of the coefficient £ (h'0" — h"V') is 1.8 x 10°*. So the truncation error
given by £ (h'b" — h"b") Az? is only 4.5 x 107 if n = 20 grid points are used, which is
much smaller than the computed error (around 1073, see TABLE I of [44]). Even for
the case n = 320, the second order term is 1.8 x 10, which is also smaller than the
computed error 1.1 x 1078, So the truncation error is dominated by the high order
term. This is why we can see high order property for that example. Also, they have

extended the scheme to the one-dimensional elastic wave equations [45]. The order

of this scheme applied to a Cauchy problem in linear acoustics is also computed.



The Taylor expansion for this problem is: —up’ + WALEQ + O(Az*). We have
recomputed their scheme to obtain the following results: (since final time t=0.001s
is too small, we use t=0.1s instead. Numerical result at n = 10240 is used as a

reference solution in order to compute the errors.)

Table 1.1: The convergence result for the linear acoustics problem

Number pe pu
of cells L' error order L' error order

10 5.578E-002 4.408E-002
20 2.323E-002 1.2643 2.298E-002 0.9397
40 3.091E-003 2.9098 2.845E-003 3.0139
80 3.181E-004 3.2805 2.619E-004 3.4413
160 2.726E-005 3.5446 2.276E-005 3.5244
320 5.556E-006 2.2947 4.138E-006 2.4595
640 1.348E-006 2.0432 9.541E-007 2.1167
1280 3.327E-007 2.0185 2.294E-007 2.0563

Although it exhibits high order at first, the order approaches to 2 as we refine
the mesh. This shows that the schemes in [44] and [45] are high order accurate for
solutions of certain specific forms, but seem to be still only second order accurate

for the general solutions based on truncation error analysis and numerical results.

1.3 Well balanced high order schemes

Our goal is to design finite difference, finite volume WENO and RKDG finite ele-
ment schemes, which maintain the well balanced property and at the same time are
genuinely high order accurate for the general solutions of hyperbolic systems with
source terms. Several different approaches have been introduced in this thesis. We
first start from a special decomposition of the source term before discretization. By
applying WENO reconstruction on each component of the source term, we can then

design a well balanced scheme. This idea has been successfully applied on finite



difference, finite volume WENO and RKDG finite element schemes. We also observe
that the traditional RKDG methods are capable of maintaining certain steady states
exactly, if a small modification on either the initial condition or the flux is provided,
which provides us a new approach to obtain well balanced schemes. At the end, we
introduce a new well balanced scheme aimed for the moving steady state solution of
the shallow water equations.

We will briefly review the traditional high order finite difference, finite volume
WENO and RKDG finite element methods in Chapter 2, emphasizing the features of
the methods which are important for the design of well balanced high order schemes.

In Chapter Three, we concentrate on the shallow water equations, and design
a WENO finite difference scheme which maintains the exact C-property and at the
same time is genuinely high order accurate for the general solutions of the shallow
water equations. A key ingredient in our design is a special splitting of the source
term into two parts which are discretized separately.

In Chapter Four, we extend this idea of decomposition of source terms introduced
in Chapter Three to a general class of balance laws with separable source terms,
allowing the design of well balanced high order finite difference WENO scheme for
all balance laws falling into this category. This class is quite general, including the
elastic wave equation, the hyperbolic model for a chemosensitive movement, the
nozzle flow and a two phase flow model.

Well balanced high order finite volume WENO schemes and finite element RKDG
schemes on general triangulations are designed for the same class of balance laws in
Chapter Five. Compared with the finite difference schemes, they are more suitable
for computations in complex geometry and / or for using adaptive meshes. Even
though the detailed technical approaches are different, the framework of the algo-
rithm construction in this chapter follows that in Chapter Four.

In Chapter Six, we present a completely different setup for well balanced finite

volume WENO and RKDG methods, which can be considered as a generalization of a



well balanced high order scheme recently developed by Noelle et al. [30]. Traditional
RKDG methods with a special treatment of the flux are proven to be well balanced for
certain steady state solutions. Very little additional computational cost is involved
to obtain such property. Similar ideas are then applied to obtain well balanced finite
volume WENO schemes. Comparing with the well balanced schemes developed in
Chapter Five, the well balanced RKDG schemes here are simpler and involve less
modification to the original RKDG methods, while the well balanced WENO finite
volume schemes here and that in Chapter Five are comparable in computational
cost.

Moving steady state (1.4) of the shallow water equation is more difficult to be
maintained exactly, due to the presence of the nonlinear term %u2 + g(h +b) in the
steady state. In Chapter Seven, we present a different technique to design high order
well balanced finite volume WENO scheme for this problem.

All these works are based on a joint work with Professor Chi-Wang Shu, and
Chapter Seven is also a joint work with Professor Sebastian Noelle. Some contents

have previously appeared in [46, 47, 48, 49].



Chapter 2

Review of High Order Numerical

Schemes

2.1 Finite difference WENO schemes

In this section we give a short overview of the finite difference WENO schemes. For
more details, we refer to [29, 24, 4, 40, 41, 42].

First, we consider a scalar hyperbolic conservation law equation in one dimension
Uy + f(u’)$ = 07

with a positive wind direction f’(u) > 0. For a finite difference scheme, we evolve
the point values u; at mesh points z; in time. We assume the mesh is uniform
with mesh size Az for simplicity. The spatial derivative f(u), is approximated by a

conservative flux difference

=

Py, ~ o (Firs — i s). (2.1)

Ax

The numerical flux fZ +1 is computed through the neighboring point values f; =



f(u;). For a (2k-1)-th order WENO scheme, we first compute k£ numerical fluxes
k-1
fz(_:)% :Zcrjfifr-pj, 7':0,...,]{2—1,
=0

corresponding to k different candidate stencils S,(1) = {z; y, .., Ti pip1}, 7 =
0,....,k — 1. Each of these £ numerical fluxes is k-th order accurate. For example,
when £ = 3 (fifth order WENO scheme), the three third order accurate numerical
fluxes are given by:

~(0 1 5 1
i(+)1/2 = gfz' + 6fi+1 - 6fi+2a
1 1 5 1
i(+)1/2 = _éfi—l + éfi + gfz‘+1,

" 1 7 11
i(+)1/2 = gfi—z - éfi—l + Efi-

The (2k-1)-th order WENO flux is a convex combination of all these k& numerical

fluxes
k-1
P A(r)
oy = S,
r=0
The nonlinear weights w, satisfy w, > 0, Zf;é w, = 1, and are defined in the
following way:
d
W= —— = — (2.2)

>eso T+ B
Here d, are the linear weights which yield (2k-1)-th order accuracy, (3, are the so-
called “smoothness indicators” of the stencil S, (7) which measure the smoothness of
the function f(u(x)) in the stencil. ¢ is a small constant used to avoid the denomi-
nator to become zero and is typically taken as 107%. For example, when k = 3 (fifth

order WENO scheme), the linear weights are given by
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and the smoothness indicators are given by

Bo = 13 (fi = 2fir1 + fira)” +

12
B = g (fim1 = 2fi + fir1)” +

R

(3fi — Afis1 + fira)”
(fie1 = fir1)?
(fiio—4fi1+3f).

e il s

The procedure for the case with f/(u) < 0 is mirror symmetric with respect to i + 3.
More details can be found in [24, 40].

An upwinding mechanism, essential for the stability of the scheme, can be realized
by a global “flux splitting”. The simplest one is the Lax-Friedrichs splitting:

£ () = (7(w) + ), (23

where « is taken as a = max, |f'(u)|. The WENO procedure is applied to f*
individually with upwind biased stencils. Depending on whether the max is taken
globally (along the line of computation) or locally, such schemes are referred to as
the Lax-Friedrichs WENO scheme (WENO-LF) or the local Lax-Friedrichs WENO
scheme (WENO-LLF).

For hyperbolic systems such as the shallow water equations, we use the local
characteristic decomposition, which is more robust than a component by component
version. First, we compute an average state u,, 1 between u; and u;,1, using either
the simple arithmetic mean or a Roe’s average [35]. The right eigenvectors r,, and
the left eigenvectors [, of the Jacobian f'(u,, 1 ) are needed for the local characteristic

decomposition. The WENO procedure is used on

+ _ p-lgt
vj—R i

j in a neighborhood of i. (2.4)

where R = (ry,...,r,) is the matrix whose columns are the right eigenvectors of

I (g %). The numerical fluxes @i ; thus computed are then projected back into the
2
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physical space by left multiplying with R, yielding finally the numerical fluxes in the
physical space.

With the numerical fluxes f; 1, f (u), is approximated by (2.1) to high order ac-
curacy at x = x;. Together with a TVD high order Runge-Kutta time discretization
[41], this completes a high order WENO scheme. Multi-dimensional problems are
handled in the same fashion, with each derivative approximated along the line of the

relevant variable. Again, we refer to [24, 40] for further details.

2.2 Finite volume WENO schemes

In this section, we briefly review the basic ideas of finite volume WENO schemes.
For further details, we refer to [29, 38, 22, 24, 4, 40, 41, 42].

First, we consider a scalar hyperbolic conservation law equation in one dimension

ur + f(u)e =0, (2.5)

and discretize the computational domain with cells I; = [z,_ 1,1 1, i=1,---,N.
We denote the size of the i-th cell by Ax; and the center of the cell by z; =
: (:Ei_% +xi+%). Let a(x;,t) = fI u(z,t) dz denote the cell average of u(-,?)
over the cell /;. In a finite volume scheme, our computational variables are @;(t),

which approximate the cell averages @(z;, t).

For finite volume schemes, we solve an integrated version of (2.5):

7o) =~ (7 () ) =1 (vt y)t)).

This is approximated by the following conservative scheme:

d . .
ha0= -5k (1.

wh-‘

SN——
—~
N
D
~

[\'Jlb—‘



12

~

. . — + . . — + .
with fi 1 = F(ui+%,ui+%) being the numerical flux. Here Ui and U1 are the high
order pointwise approximations to u(z;, %,t), obtained from the cell averages by a
high order WENO reconstruction procedure. Flux F(a, b) is consistent if it reduces

to the true flux f for the case of constant flow, i.e.
F(a,a) = f(a) VaeR (2.7)

In order to obtain a stable scheme, the numerical flux F(a,b) needs to be a
monotone flux, namely F' is a nondecreasing function of its first argument a and a
nonincreasing function of its second argument b. There are many choices of these
fluxes, such as the Godunov flux, the Engquist-Osher flux and the Lax-Fridrichs
(LF) flux. The difference among these fluxes is significant for low order schemes
but becomes less significant for higher order reconstructions. The simplest and most

inexpensive monotone flux is the Lax-Friedrichs flux:

Fla,b) = 3(/(@) + £(b) — afb — a), 29

where o = max, |f'(u)|. Depending on whether the maximum is taken globally
(along the line of computation) or locally, this flux is referred to as the Lax-Friedrichs

(LF) or the local Lax-Friedrichs (LLF) flux.

The approximations u. , and uz+ , are computed through the neighboring cell

i+3 +3
average values @;. For a (2k-1)-th order WENO scheme, we first compute £ recon-
structed values

~ (1)
Uy

N =

k-1
- E erﬂi—r—{—j; r= 0, ceey k— 1,
=0

corresponding to k different candidate stencils
ST(Z) = {ﬂii_r, ---;xi—r—f—k—l}, r= O, ceey k—1. (29)

The coefficients c,; are chosen such that each of these k reconstructed values is k-th
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order accurate, see [40]. Also, we obtain the k reconstructed values ﬁgr_)l, of k-th
2

order accuracy, using

with

Crj = Cr—1,45,

based on the same stencils (2.9). The (2k-1)-th order WENO reconstruction is a

convex combination of all these k reconstructed values

k-1 k-1
- ~(7) + = = (7)
Upp1 = Zw" ity U1 = Wrth;_1-

r=0 r=0

The nonlinear weights w, satisfy w, > 0, Zf;é w, = 1, and are defined in the
following way:

Qo d,
Wy = —4—, o = ——. 2.10
S Lo, B (210

Here d, are the linear weights which yield (2k-1)-th order accuracy, (3, are the so-
called “smoothness indicators” of the stencil S, (7) which measure the smoothness of
the function u(x) in the stencil. ¢ is a small constant used to avoid the denominator

to become zero and is typically taken as 10 ¢. By symmetry, 1, is computed by:

- Oy N d,
Wy = ——, Gy = ————, 2.11
’ Z]:;é Qi ’ (e + Br)? ( )

with

dr = dg_14r- (2.12)

The exact form of the smoothness indicators and other details about the WENO
reconstruction can be found in [24, 40].

For hyperbolic systems such as the shallow water equations, we use the local
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characteristic decomposition, which is more robust than a component by component
version. First, we compute an average state ;. 1 between 4; and %4;,1, using either
the simple arithmetic mean or a Roe’s average [35]. The WENO procedure is used
on

v; = R"'4;, j in a neighborhood of i. (2.13)

where R = (ry,...,r,) is the matrix whose columns are the right eigenvectors of

* | thus computed are then projected back
it l

I (g, L ). The reconstructed values v .

into the physical space by left multiplying with R, yielding finally the reconstructed
values in the physical space.

With the reconstructed values ujjr L the right hand side of (2.6) can be computed
through (2.8) to high order accuracy. Together with a TVD high order Runge-Kutta
time discretization [41], this completes the description of a high order finite volume
WENO scheme.

Finite volume WENO schemes in the two dimensional case have the same frame-
work but are more complicated to implement. In this thesis, we consider only rectan-

gular cells for simplicity, although the technique also works for general triangulations.

Consider the two dimensional homogeneous conservation law

Ut+f1(u,$,y)x+f2(u,$,y)y:0, (214)

together with a spatial discretization of the computational domain with cells I;; =
[a:ifé,xi%] X [yjf%,y]ur%], i =1,---,Ng j =1,---,N,. As usual, we use the
notations:

Azx; = Tipl =T

o DY =Y Y

1
2

to denote the grid sizes.
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We integrate (2.14) over the interval I;; to obtain:

1

d _ + _ 1 yj+% " d yj+2 ; d
Eu(xzayﬁ ) - _m / fl(u(xi—k%:y’ )) y_/yv . fl(u(xi—%aya )) Yy

Yi-% i-%

iyl Tyl
T / folulz, g1, 8))da - / fo(ule,y,_1,0)do | (2.15)

i-3 i-3
where
1 Yi+d [T+
i v t) = —— t) déd
u(xi, yj,t) Aoy, /y 1 /z 1 u(&,m,t) dédn
) =3

is the cell average. We approximate (2.15) by the conservative scheme

d 1 : 5 1 N .
750 =5 (W= igy) = 2 (g = (Bhiyms) . 210)

where the numerical flux (f), +1,; 1s defined by

_|_
z+2,J Z Wal’ ( +5,yj+ﬂaﬂyj’UIH%,yj—i-ﬁaij) (2.17)

where (, and w, are the Gaussian quadrature nodes and weights, to approximate
the integration in y:

1 Yird
A—ya/y hu(ziig,y,1))dy.

The monotone flux F'(a, b) is the same as defined above (for example, Formula (2.8)).

+

Ui,y 5+Be 0 are the (2k — 1)-th order accurate reconstructed values obtained by a

WENO reconstruction procedure. In this procedure, for rectangular meshes, if we
use the tensor products of one dimensional polynomials, i.e. polynomials in Q*!,
things can proceed as in one dimension. A practical way to perform the reconstruc-
tion in two dimensions is given as follows. We first perform an one dimensional
reconstruction in one of the directions (e.g. the y-direction), obtaining one dimen-

sional cell averages of the function u in the other direction (e.g. the z-direction).
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We then perform a reconstruction in the other direction to obtain the approximated
point values, see [40, 38].

Similarly, we can compute the flux ( fQ)iyj 41 by

_|_
,]-I—é - Zwa < :vz-l—/a’aAccz,y i+l ) uzl—l—ﬂQAwl,yJ_i_l) . (218)

2.3 Discontinuous Galerkin methods

In this section, we give a short overview of another widely used high order scheme,
namely the Runge-Kutta discontinuous Galerkin method, which was first introduced
by Cockburn and Shu. We refer to [11, 10, 12, 8, 13] for more information.

Again, a scalar hyperbolic conservation law in one dimension is considered:
u + f(u); =0, u(z,0) = ug(x). (2.19)

As before, we discretize the computational domain into cells [; = [z, 1T 1], and
denote the size of the i-th cell by Ax; and the maximum mesh size by A = max; Ax;.
First, we multiply the equation (2.19) by an arbitrary smooth function v, inte-

grate it over cell I; and perform integration by parts to obtain

/8tu(act /f u(z,t))0zv(x)dx (2.20)
] (W01, 0)0(501) — Fulzyg, D) (o,

/Iu(x,O)v(x)dxz/I uo(z)v(z)dz.

j j
The main difference between the DG method and a traditional finite element method

lies in the choice of the test space and solution space. Here, we seek an approximation

uy, to u which belongs to the finite dimensional space

Vi=V¥={v:ol,; € P(I;),j=1,..,N}, (2.21)
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where P*(I) denotes the space of polynomials in I of degree at most k. Notice
that u, can be discontinuous at the cell boundary z; 1 In equation (2.20), we
replace the smooth functions v by test functions v, from the test space V},, and u
by the numerical solution uj. Together with the replacement of the nonlinear flux
f(u(a;jJr%,t)) by a numerical flux fj+% = F(uh(a:;r%,t),uh(x;%,t)), we obtain the
numerical scheme denoted by

/ Orup(z, t)vp(z)dz —

| f(un(z,t))0pvn(z)dz + fj+%’uh(x;+l) - fj_%vh(ﬂf-r ) =0,
I; b 2

/. up(z, 0)vp(x)dz = / uo(z)vp(x)dz.

I I
As before, F'(a,b) is chosen as a monotone flux to recover a finite volume monotone
scheme for the piecewise constant £ = 0 case. We could, for example, again use the
simple Lax-Friedrichs flux (2.8).

Another important ingredient for the RKDG method is that a slope limiter proce-
dure should be performed after each inner stage in the Runge-Kutta time stepping.
This is necessary for computing solutions with strong discontinuities. There are
many choices for the slope limiters, see, e.g. [33]. In this thesis we use the total
variation bounded (TVB) limiter in [39, 11, 9, 12]; we refer to these references for
the details of this limiter.

Together with a TVD high order Runge-Kutta time discretization [41], we have
then finished the description of the RKDG method.

Multi-dimensional problems can be handled in the same fashion. We also perform
an integration by parts (Green’s formula) first, and then replace the boundary values
by numerical fluxes. The main difference is that the fluxes are now integrals along
the cell boundary, which can be calculated by Gauss-quadrature rules. For more

details, we refer to [9, 12, 8].



Chapter 3

High Order Finite Difference
Well-balanced WENO Schemes for
the Shallow Water Equations

In this chapter we design high order well balanced finite difference WENO scheme
for the still water stationary solution (1.5) of the shallow water equations (1.3). In
Section 3.1, the WENO scheme which maintains the exact C-property and at the
same time is genuinely high order accurate for the general solutions of the shal-
low water equations is presented. Sections 3.2 and 3.3 contain extensive numerical
simulation results to demonstrate the behavior of our WENO schemes for one and
two dimensional shallow water equations, verifying high order accuracy, the exact

C-property, and good resolution for smooth and discontinuous solutions.

3.1 A balance of the flux and the source term

In this section we design a finite difference high order WENO-LF scheme for the
shallow water equation, with the objective of keeping the exact C-property without

reducing the high order accuracy of the scheme. The scheme reduces to the original

18
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WENO-LF scheme described in Section 2.1 when the bottom is flat (b, = 0). We
start with the description in the one dimensional case. First, we split the source
term into two separate terms in the discretization and prove, if written in this form,
any linear scheme can maintain the exact C-property. Next, we apply the nonlinear
WENO procedure with a small modification and prove that it can also maintain the
exact C-property without losing high order accuracy.

We now describe the details. For the shallow water equation (1.3), we split the

source term —ghb, into two terms (% gbz)w — g(h+0b)b,. Hence the equations become

3.1
(hu); + (hu2 + %th) = <%gb2> — g(h =+ b)by, (3.1)

which will be denoted by
U+ f(U); =G+ Gy (3.2)

where U = (h, hu)” with the superscript T' denoting the transpose, f(U) is the flux
term and G, G5 are the two source terms.

As we will see below, the special splitting of the source term in (3.1) is crucial
for the design of our high order schemes satisfying the exact C-property. It should
be noted that the two derivative terms on the right hand side of (3.1) involve only
known functions, not the solution A and u. It is important not to include any
derivatives of the unknown solution h and u on the right hand side source term.
Otherwise, conservation and convergence towards weak solutions will be problematic
for discontinuous solutions.

As usual, we define a linear finite difference operator D to be one satisfying
D(afi + bfy) = aD(f1) + bD(f;) for constants a, b and arbitrary grid functions f;
and fy. A scheme for (3.1) is said to be a linear scheme if all the spatial derivatives

are approximated by linear finite difference operators. For the still water stationary



20
solution of (3.1), we have
h + b = constant and hu = 0. (3.3)

For any consistent linear scheme, the first equation (hu), = 0 is satisfied exactly

since hu = 0. The second equation has the truncation error
2 1 .9 L s
Dy | hu® + §gh — D, §gb + g(h + b)Ds(b),

where D;, Dy and Dj are linear finite difference operators. Since hu = 0, this

truncation error reduces to
Ly L9
We further restrict our attention to linear schemes which satisfy
D1 == D2 - D3 - D (34)

for the still water stationary solutions. For such linear schemes we have

Proposition 3.1.1 Linear schemes for the shallow water equation (3.1) satisfying

(8.4) for the still water stationary solutions (8.3) can maintain the exact C-property.

Proof. For still water stationary solutions (3.3), linear schemes satisfying (3.4)

is exact for the first equation (hu), = 0, and the truncation error for the second
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equation reduces to

D (%ghQ) -D (%ng> + g(h + b)D(b)
1 2 1 2

= D(%g(h+b)2>
=0

where the first equality is due to the linearity of D and the fact that h+b = constant;
the second equality is just a simple regrouping of terms inside the parenthesis, and
the last equality is due to the fact that h + b = constant and the consistency of the
finite difference operator D. This finishes the proof. O

Of course, the high order finite difference WENO schemes described in the Section
2.1 are nonlinear. The nonlinearity comes from the nonlinear weights, which in turn
comes from the nonlinearity of the smooth indicators 3, measuring the smoothness
of the functions f* and f~. We would like to make minor modifications to these high
order finite difference WENO schemes, so that the exact C-property is maintained
and accuracy and nonlinear stability are not affected.

To present the basic ideas, we first consider the situation when the WENO scheme
is used without the flux splitting and the local characteristic decomposition. In this
case the smoothness indicators 5, measure the smoothness of each component of the
flux function f(U). The first equation in (3.1) does not cause a problem for the still
water solution, as hu = 0 and the consistent WENO approximation to (hu), is exact.
For the second equation in (3.1), there are three derivative terms, (hu2 + %ghQ)w,
(% gbZ)I and b,, that must be approximated. The approximation to the flux derivative
term (hu2 + % ghQ)z proceeds as before using the WENO approximation. We notice
that the WENO approximation to d, where d = hu®+1gh? can be eventually written
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out as

|y, Z ardirr = Dq(d); (3.5)

k=—r
where 7 = 3 for the fifth order WENO approximation and the coefficients a; depend
nonlinearly on the smoothness indicators involving the grid function d. The key idea
now is to use the difference operator D, with d = hu?+ % gh? fized, namely to use the
same coefficients a; obtained through the smoothness indicators of d = hu? + % gh?,

and apply this difference operator Dy to approximate (5b%) and b, in the source

1 2
(59” >z

terms. Thus

. 1 2 — 1 2 .
~ Z ag (égb )H—k :Dd (Egb >',

T=x; k=—r i

bmla::zi ~ Z akbﬂ_k = Dd(b)z

k=—r

Clearly, the finite difference operator Dy, obtained from the fifth order WENO pro-
cedure, is a fifth order accurate approximation to the first derivative on any grid
function, thus our approximation to the source terms is also fifth order accurate.
The approximation of (%ng)w can even be absorbed together with the approxima-
tion of the flux derivative term (hu2 + % ghQ)w in actual implementation to save cost
(of course, the smoothness indicators to determine the nonlinear weights in the ap-
proximation would still be based on hu? + % gh?). A key observation is that the finite
difference operator D,, with the coefficients a; based on the smoothness indicators

of d = hu® 4+ $gh? fixed, is a linear operator on any grid functions, i.e.

Dy(afi +bfs) = aDa(f1) + bDa(f2)

for constants a, b and arbitrary grid functions f; and fo. Thus the proof of Proposi-
tion 3.1.1 will go through and we can prove that the component-wise WENO scheme,

without the flux splitting or local characteristic decomposition, and with the special
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handling of the source terms described above, maintains exactly the C-property.

Next, we look at the situation when the local characteristic decomposition is in-
voked in the WENO procedure. When computing the numerical flux at z, 1 the
local characteristic matrix R, consisting of the right eigenvectors of the Jacobian at
Uiy L, is fixed, and neighboring point values of the grid functions needed for com-
puting the numerical flux are projected to the local characteristic fields determined
by R~!. Therefore, (3.5) still holds, with d = (hu, hu? + %gh2)T now being a vector
grid function and a; are 2 x 2 matrices depending nonlinearly on the smoothness
indicators involving the grid function d. The key idea is still to use the difference op-
erator Dy with d = (hu, hu® + 3 gh2)T fixed, and apply it to approximate (0, ng)Z
and (0,b)7 in the source terms. In actual implementation, we can still absorb the
approximation of (0,1 ng)Z into that of the flux derivative term (hu, hu® + %th):
to save computational cost. The remaining arguments stay the same as above, and
we can prove that the WENO scheme with a local characteristic decomposition, but
without the flux splitting, and with the special handling of the source terms described
above, maintains exactly the C-property.

Finally, we consider WENO schemes with a Lax-Friedrichs flux splitting, such as
the WENO-LF and WENO-LLF schemes. Now the flux f(U) is written as a sum of
ft(U) and f~(U), defined by

FEU) = £ s o " (3.6)
hu? + 1gh? hu
for the i-th characteristic field, where o; = max,|A;(u)| with A;(u) being the i-th

eigenvalue of the Jacobian f'(U), see [24, 40| for more details. We now make a modi-

h h+b
fication to this flux splitting, by replacing +o; in (3.6) with +a;
hu hu
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The flux splitting (3.6) now becomes

1 hu h+b
fEU) = = N R : (3.7)
hu + 5gh hu
This modification is justified since b does not depend on the time %, hence the

first equation in (1.3) can also be considered as an evolution equation for h + b

instead of for h. Similar techniques are used in the surface gradient method by

h+b
Zhou et al. [51]. Our motivation for using +a; instead of the origi-
hu
nal +q; in the flux splitting, is that the former becomes a constant vector

hu
for the still water stationary solution (3.3). Thus for this still water stationary
solution, by the consistency of the WENO approximation, the effect of this vis-
h+b

cosity term +q; towards the approximation of f(U), is zero. Clearly,
hu

(3.5) can represent the flux splitting WENO approximation, with a simple splitting
fEU) = 1f(U), with d = (hu, hu® + %ghg)T being a vector grid function and ay
being 2 x 2 matrices depending nonlinearly on the smoothness indicators involving
the grid function f*(U) in (3.7). What we have shown above is that, for the still
water stationary solution, this is also the flux splitting WENO approximation with
the modified Lax-Friedrich flux splitting (3.7). As before, the key idea now is to use
the difference operator Dy in (3.5) with smoothness indicators, hence the nonlinear
weights obtained from f*(U) in (3.7) fixed, and apply it to approximate (0, 5 ng):

and (0,b)7 in the source terms. This amounts to split also the two derivatives in the

source terms as

0 1 o0 1 o 0 1
Lgh? 2\ Lgv? g2 | b 2\ ) 2\

2 2 T T T T

N |
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and apply the same flux split WENO procedure to approximate them, namely, one
half of each source term is approximated by the difference operator with coefficients
ay, obtained from the computation of f*, and the remaining part by the difference
operator with coefficients a; obtained from the computation of f~. In actual im-
plementation, we can still absorb the approximation of (O, %ng)z into that of the
flux derivative term (hu, hu? + %ghQ): to save computational cost. The remaining
arguments stay the same as above, and we can prove that the WENO scheme with
a local characteristic decomposition and a flux splitting (3.7), and with the special
handling of the source terms described above, maintains exactly the C-property.
We now summarize the complete procedure of the high order finite difference
WENO-LF or WENO-LLF scheme with a local characteristic decomposition and a

flux splitting, for solving the shallow water equation (1.3):

1. Split the source term and write the equation in the form (3.1).

2. Perform the usual WENO-LF or WENO-LLF approximation on the flux deriva-
hu
tive , with a modified flux splitting (3.7) and using the local
hu? + 3gh?
characteristic decomposition.
3. Split the two derivative terms in the source terms on the right hand side of
(3.1) as in (3.8), and perform the same WENO approximation which is used

in step 2 above, using the local characteristic decomposition and the same

nonlinear weights, to approximate these two derivative terms. In actual imple-

mentation, the approximation of the first derivative term ) can be
2
390" )
: o o hu
absorbed into the approximation of the flux derivative , to
hu? + 3 gh?

xT
save computational cost.

4. Add up the residues and forward in time.
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With this computational procedure, we have already shown above the exact C-

property and high order accuracy.

Proposition 3.1.2 The WENO-LF or WENO-LLF schemes as stated above can

maintain the exact C-property and their original high order accuracy.

Even though we have described the algorithm using the WENO-LF and WENO-
LLF flux splitting form, the algorithm can clearly also be defined with the same
properties for other finite difference WENO schemes in [24, 40], such as WENO-Roe
and WENO-Roe with an entropy fix.

3.2 One dimensional numerical results

In this section we present numerical results of our fifth order finite difference WENO-
LF scheme satisfying the exact C-property for the one dimensional shallow water
equations (1.3). In all the examples, time discretization is by the classical fourth
order Runge-Kutta method, and the CFL number is taken as 0.6, except for the
accuracy tests where smaller time step is taken to ensure that spatial errors dominate.

The gravitation constant g is taken as 9.812m/s?.

3.2.1 Test for the exact C-property

The purpose of the first test problem is to verify that the scheme indeed maintains
the exact C-property over a non-flat bottom. We choose two different functions for

the bottom topography given by (0 < z < 10):
b(z) =5e 5@, (3.9)

which is smooth, and

4 if4<zx<8
b(x) = (3.10)
0 otherwise,
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which is discontinuous. The initial data is the stationary solution:

h+b=10, hu=0.

This steady state should be exactly preserved. We compute the solution until £ = 0.5
using N = 200 uniform mesh points. The computed surface level A + b and the
bottom b for (3.9) are plotted in Figure 3.1. In order to demonstrate that the exact
C-property is indeed maintained up to round-off error, we use single precision, double
precision and quadruple precision to perform the computation, and show the L' and
L* errors for the water height h (note: h in this case is not a constant function!)
and the discharge hu in Tables 3.1 and 3.2 for the two bottom functions (3.9) and
(3.10) and different precisions. We can clearly see that the L' and L* errors are at

the level of round-off errors for different precisions, verifying the exact C-property.

-
N

surface level h+b
bottom b

vy
Y

o \\\\I\\\\I\\\\I\\\\IHHIHHIHHIHHIHHIHH HHIHH

Y

surface level h+b
N W A OO0 O N O © O

g

(@)

Figure 3.1: The surface level A 4+ b and the bottom b for the stationary flow over a
smooth bump.
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Table 3.1: L' and L*® errors for different precisions for the stationary solution with
a smooth bottom (3.9).

L' error L error
precision h hu h hu
single 3.13E-07 1.05E-05 9.54E-07 4.85E-05
double 1.24E-15 2.34E-14 7.11E-15 8.65E-14
quadruple 1.62E-33 2.11E-32 6.16E-33 8.74E-32

Table 3.2: L' and L™ errors for different precisions for the stationary solution with
a nonsmooth bottom (3.10).

L' error L™ error
precision h hu h hu
single 2.28E-07 3.61E-06 1.91E-06 2.37TE-05
double 1.14E-15 9.05E-15 3.55E-15 4.46E-14
quadruple 1.30E-33 1.40E-32 4.62E-33 5.64E-32

We have also computed stationary solutions using initial conditions which are
not the steady state solutions and letting time evolve into a steady state, obtaining

similar results with the exact C-property.

3.2.2 Testing the orders of accuracy

In this example we will test the fifth order accuracy of our scheme for a smooth
solution. There are some known exact solutions (in closed form) to the shallow
water equation with non-flat bottom in the literature, e.g. [44], but these solutions
have special properties, making the leading terms in the truncation errors of many

schemes vanish, hence they are not generic test cases for accuracy. We have therefore
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chosen to use the following bottom function and initial conditions
b(z) = sin’(7z), h(z,0) =5+ e (hu)(z,0) = sin(cos(27z)), = € [0,1]

with periodic boundary conditions. Since the exact solution is not known explicitly
for this case, we use the same fifth order WENO scheme with N = 25,600 points to
compute a reference solution, and treat this reference solution as the exact solution
in computing the numerical errors. We compute up to ¢ = 0.1 when the solution
is still smooth (shocks develop later in time for this problem). Table 3.3 contains
the L' errors and numerical orders of accuracy. We can clearly see that fifth order
accuracy is achieved for this example. For comparison, we also list the L' errors and
numerical orders of accuracy when the original fifth order WENO scheme [24] with
the source term directly added to the residue as a point value at the grid x; (hence
not a C-property satisfying scheme) is used on the same problem. We can clearly see
that the errors of the two schemes are comparable. For this problem, the solution
is far from a still water stationary solution, hence our exact C-property satisfying
WENO scheme is not expected to have an advantage in accuracy. Table 3.3 shows
that it does not have a disadvantage either comparing with the traditional WENO

scheme using point value treatment of source terms.

3.2.3 A small perturbation of a steady-state water

The following quasi-stationary test case was proposed by LeVeque [28]. It was chosen
to demonstrate the capability of the proposed scheme for computations on a rapidly
varying flow over a smooth bed, and the perturbation of a stationary state.
The bottom topography consists of one hump:
0.25(cos(10m(z — 1.5)) +1) if14<zx<1.6

0 otherwise
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Table 3.3: L' errors and numerical orders of accuracy for the example in Section
3.2.2. “Balanced WENO” refers to the WENO scheme with exact C-property and
“original WENQO” refers to the WENO scheme with the source terms directly added
as point values at the grids.

balanced WENO

No. of | CFL h hu

points L' error  order | L! error order
25 0.6 | 1.70E-002 1.06 E-001
50 0.6 | 2.17TE-003 2.97 | 1.95E-002 2.45
100 0.6 | 3.33E-004 2.71 | 2.83E-003 2.78
200 0.6 | 2.36E-005 3.82 | 2.04E-004 3.80
400 0.6 | 9.67TE-007 4.61 | 8.38E-006 4.61
800 0.6 | 3.38E-008 4.84 | 2.94E-007 4.83
1600 0.4 | 1.08E-009 4.97 | 9.34E-009 4.97

original WENO

No. of | CFL h hu

points L' error  order | L! error order
25 0.6 | 1.96E-002 1.02E-001
50 0.6 | 2.46E-003 2.99 | 1.82E-002 2.49
100 0.6 | 3.19E-004 2.95 | 2.79E-003 2.70
200 0.6 | 2.50E-005 3.67 | 2.18E-004 3.68
400 0.6 | 1.03E-006 4.59 | 9.07TE-006 4.59
800 0.6 | 3.61E-008 4.84 | 3.15E-007 4.85
1600 0.4 | 1.156E-009 4.97 | 1.00E-008 4.98

The initial conditions are given with

(hu)(z,0) =0 and h(z,0)=

1—b(z)

1-b(z)+e ifl1<z<12

(3.12)

otherwise

where € is a non-zero perturbation constant. Two cases have been run: € = 0.2 (big

pulse) and € = 0.001 (small pulse). Theoretically, for small €, this disturbance should

split into two waves, propagating left and right at the characteristic speeds ++/gh.

Many numerical methods have difficulty with the calculations involving such small

perturbations of the water surface [28]. Both sets of initial conditions are shown in
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Figure 3.2: The initial surface level h + b and the bottom b for a small perturbation
of a steady-state water. Left: a big pulse e=0.2; right: a small pulse e=0.001.

Figure 3.2. The solution at time t=0.2s for the big pulse ¢ = 0.2, obtained on a 200
cell uniform grid with simple transmissive boundary conditions, and compared with
a 3000 cell solution, is shown in Figure 3.3. The one for the small pulse ¢ = 0.001 is
shown in Figure 3.4. For this small pulse problem, we take ¢ = 10~% in the WENO
weight formula (2.2), such that it is smaller than the square of the perturbation.
At this time, the downstream-traveling water pulse has already passed the bump.
In the figures, we can clearly see that there are no spurious numerical oscillations,

verifying the essentially non-oscillatory property of the modified WENO-LF scheme.

3.2.4 The dam breaking problem over a rectangular bump

In this example we simulate the dam breaking problem over a rectangular bump,
which involves a rapidly varying flow over a discontinuous bottom topography. This
example was used in [44].

The bottom topography takes the form:

8 if |z — 750| < 1500/8
b(x) = (3.13)
0 otherwise
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Figure 3.3: Small perturbation of a steady-state water with a big pulse. ¢=0.2s.
Left: surface level h + b; right: the discharge hu.
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Figure 3.4: Small perturbation of a steady-state water with a small pulse. t=0.2s.
Left: surface level h + b; right: the discharge hu.
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Figure 3.5: The surface level h + b for the dam breaking problem at time ¢=15s.
Left: the numerical solution using 500 grid points, plotted with the initial condition
and the bottom topography; Right: the numerical solution using 500 and 5000 grid
points.

for z € [0,1500]. The initial conditions are

20 — b(z) ifx <750
(hu)(z,0) =0 and h(z,0)= (3.14)

15— b(z) otherwise
The numerical results with 500 uniform points (and a comparison with the results
using 5000 uniform points) are shown in Figures 3.5 and 3.6, with two different ending
time t=15s and t=60s. In this example, the water height h(z) is discontinuous at the
points x=562.5 and x=937.5, while the surface level h(x)+b(z) is smooth there. Our
scheme works well for this example, giving well resolved, non-oscillatory solutions

using 500 points which agree with the converged results using 5000 points.

3.2.5 Steady flow over a hump

The purpose of this test case is to study the convergence in time towards steady flow
over a bump. These are classical test problems for transcritical and subcritical flows,

and they are widely used to test numerical schemes for shallow water equations. For
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Figure 3.6: The surface level h + b for the dam breaking problem at time ¢=60s.
Left: the numerical solution using 500 grid points, plotted with the initial condition
and the bottom topography; Right: the numerical solution using 500 and 5000 grid
points.

example, they have been considered by the working group on dam break modeling
[17], and have been used as a test case in, e.g. [43].

The bottom function is given by:

0.2 —0.05(x —10)? if8 <z <12
b(x) = ( ) - (3.15)
0 otherwise

for a channel of length 25m. The initial conditions are taken as
h(z,0) = 0.5 —b(z) and wu(z,0)=0.

Depending on different boundary conditions, the flow can be subcritical or transcrit-
ical with or without a steady shock. The computational parameters common for all
three cases are: uniform mesh size Az = 0.125 m, ending time t= 200 s. Analytical
solutions for the various cases are given in Goutal and Maurel [17].

a): Transcritical flow without a shock.

e upstream: The discharge hu=1.53 m?/s is imposed.
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Figure 3.7: Steady transcritical low over a bump without a shock. Left: the surface
level h + b; right: the discharge hu as the numerical flux for the water height h.

e downstream: The water height h=0.66 m is imposed when the flow is subcrit-

ical.

The surface level h+b and the discharge hu, as the numerical flux for the water height
h in equation (1.3), are plotted in Figure 3.7, which show very good agreement with
the analytical solution. The correct capturing of the discharge hu is usually more
difficult than the surface level h + b, as noticed by many authors. In Figure 3.8,
we compare the pointwise errors of the numerical solutions obtained with 200 and
400 uniform grid points. The convergence history, measured by the L' norm of the
residue, is given in Figure 3.9, left.

b): Transcritical flow with a shock.
e upstream: The discharge hu=0.18 m?/s is imposed.
e downstream: The water height ~=0.33 m is imposed.

In this case, the Froude number Fr = u/+/gh increases to a value larger than one
above the bump, and then decreases to less than one. A stationary shock can appear

on the surface. The surface level h + b and the discharge hu, as the numerical flux
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Figure 3.8: Steady transcritical flow over a bump without a shock. Pointwise error
comparison between numerical solutions using 200 and 400 grid points. Left: the
surface level h + b; right: the discharge hu as the numerical flux for the water height
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Figure 3.9: Convergence history in L' residue. Left: steady transcritical flow over a
bump without a shock; right: steady transcritical flow over a bump with a shock.
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Figure 3.10: Steady transcritical flow over a bump with a shock. Left: the surface
level h + b; right: the discharge hu as the numerical flux for the water height h.

for the water height A in equation (1.3), are plotted in Figure 3.10, which show non-
oscillatory results in good agreement with the analytical solution. In Figure 3.11,
we compare the pointwise errors of the numerical solutions obtained with 200 and
400 uniform grid points. The convergence history, measured by the L' norm of the
residue, is given in Figure 3.9, right.

¢): Subcritical flow.
e upstream: The discharge hu=4.42 m?/s is imposed.
e downstream: The water height h~=2 m is imposed.

This is a subcritical flow. The surface level h + b and the discharge hu, as the
numerical flux for the water height A in equation (1.3), are plotted in Figure 3.12,
which are in good agreement with the analytical solution. In Figure 3.13, we compare
the pointwise errors of the numerical solutions obtained with 200 and 400 uniform

grid points.
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tween numerical solutions using 200 and 400 grid points. Left: the surface level h+b;
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3.2.6 The tidal wave flow

This example was used in [5], in which an almost exact solution (a very good asymp-
totically derived approximation) was given. We use this example to further test our
scheme.

The bottom is defined by:

4 4 1
b(x) :10-1-%-1-103111 (’ﬂ' (%—§)>

where L=14,000 m is the channel length. If we take the initial and boundary condi-
tions as:
h(z,0) = 60.5 — b(x), (hu)(z,0) =0

4t 1

36,400 5)) . (h)(L,1) =0,

h(0,t) = 64.5 — 4sin (7r (

a very accurate approximate solution, based on the asymptotic analysis, can be given

by [5]

. 41 1
h(z,t) = 64.5 — b(z) — 4sin (7r (86, 100 + 5))
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Figure 3.14: Numerical and analytic solutions for the tidal wave flow. Left: water
height h; right: velocity u.

and

(hu)(z,t) = % cos (7r (ﬁ + %)) .

We use a uniform mesh size Az =70 m. A comparison of the numerical and analytical

results at ¢ = 7552.13 s is shown in Figure 3.14. Their agreements are very good.

3.3 Two dimensional shallow water systems

A major advantage of the high order finite difference WENO schemes is that it is
straightforward to extend them to multiple space dimensions, by simply approxi-
mating each spatial derivative along the relevant coordinate. It turns out that it is
also straightforward to extend the high order finite difference WENO schemes with

the exact C-property developed in Section 3.1 to two dimensions. The shallow water
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system in two space dimensions takes the form:

([ by + (), + (hv), = 0
1

o

2
1
(hv) + (huv), + <hv2 + éghz) = —ghb,

Y

\

where again h is the water height, (u, v) is the velocity of the fluid, b(z, y) represents
the bottom topography and g is the gravitational constant.

Finite difference WENO schemes are very easy to be extended to multidimen-
sional cases. The conservative approximation to the derivative from point values is
as simple in multi dimensions as in one dimension. In fact, for fixed 7, if we take
w(z) = f(u(z,y;)), then we only need to perform the one dimensional WENO ap-
proximation to w(z) to obtain an approximation to w'(z;) = fz(u(x;,y;)). See again
[24, 40] for more details.

The source term is again split as in the one dimensional case

1 1
—ghb, = (5962> — g(h + b)by, —ghb, = <§gb2> — g(h+b)by,

Y

and the one dimension procedure described in Section 3.1 is followed in each of the
x and y directions. The residues are then summed up and advancement in time is
again by a Runge-Kutta method.

All results proved in the one dimensional case, such as high order accuracy and
the exact C-property, are still valid in the two dimensional case.

We now give numerical experiment results for the exact C-property satisfying
fifth order WENO-LF scheme in two dimensions. Similar to the one dimensional
case, we use the classical fourth order Runge-Kutta time discretization and a CFL
number 0.6, except for the accuracy test problem where smaller time step is taken

to guarantee that spatial errors dominate.
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3.3.1 Test for the exact C-property in two dimensions

This example is used to check that our scheme indeed maintains the exact C-property

over a non-flat bottom. The two-dimensional hump
b(z,y) = 0.8¢ (=05 +(y=05)) z,y € [0,1] (3.17)

is chosen to be the bottom. h(z,y,0) =1 — b(x,y) is the initial depth of the water.
Initial velocity is set to be zero. This surface should remain flat. The computation is
performed to ¢ = 0.1 using single, double and quadruple precisions with a 100 x 100
uniform mesh. Table 3.4 contains the L' errors for the water height A (which is not
a constant function) and the discharges hu and hv. We can clearly see that the L'
errors are at the level of round-off errors for different precisions, verifying the exact

C-property.

Table 3.4: L' errors for different precisions for the stationary solution in Section
3.3.1.

L' error
precision h hu hv
single 2.18E-08 2.32E-07 2.32E-07
double 7.71E-17 9.36E-16 9.36E-16
quadruple 7.64E-34 9.33E-34 9.33E-34

3.3.2 Testing the orders of accuracy

In this example we check the numerical orders of accuracy when the WENO schemes
are applied to the following two dimensional problem. The bottom topography and

the initial data are given by:

b(z,y) = sin(27wx) + cos(2my), h(z,y,0) = 10 4 5™ cos(2y),
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(hu)(z,y,0) = sin(cos(27x)) sin(27y), (hv)(z,y,0) = cos(2mx) cos(sin(27y))

defined over a unit square, with periodic boundary conditions. The terminal time is
taken as t=0.05 to avoid the appearance of shocks in the solution. Since the exact
solution is not known explicitly for this case, we use the same fifth order WENO
scheme with an extremely refined mesh consisting of 1600 x 1600 grid points to
compute a reference solution, and treat this reference solution as the exact solution
in computing the numerical errors. Table 3.5 contains the L' errors and orders
of accuracy. We can clearly see that fifth order accuracy is achieved in this two

dimensional test case.

Table 3.5: L' errors and numerical orders of accuracy for the example in Section
3.3.2.

Number h hu hv
of cells | CFL | L' error order | L' error order | L' error order
25 0.6 | 1.08E-002 3.23E-002 8.92E-002

90 0.6 | 1.30E-003 3.06 | 2.47E-003 3.70 | 1.19E-002 2.90
100 0.6 | 1.06E-004 3.61 | 1.47TE-004 4.07 | 9.06E-004 3.72
200 0.4 | 4.82E-006 4.46 | 6.25E-006 4.56 | 3.98E-005 4.51
400 0.3 | 1.79E-007 4.75 | 2.31E-007 4.76 | 1.41E-006 4.82
800 0.2 | 6.30E-009 4.83 | 8.19E-009 4.82 | 4.70E-008 4.91

3.3.3 A small perturbation of a two dimensional steady-state

water

This is a classical example to show the capability of the proposed scheme for the
perturbation of the stationary state, given by LeVeque [28]. It is analogous to the
test done previously in Section 3.2.3 in one dimension.

We solve the system in the rectangular domain [0, 2] x [0, 1]. The bottom topog-
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raphy is an isolated elliptical shaped hump:
b(z,y) =0.8 e~ 3(#-0.9)"=50(y—0.5) (3.18)

The surface is initially given by:

1 —b(z,y) +0.01 if 0.05 < z < 0.15
1—b(z,y) otherwise (3.19)
hu(z,y,0) = hv(z,y,0) =0

h(z,y,0) =

So the surface is almost flat except for 0.05 < x < 0.15, where h is perturbed upward
by 0.01. Figure 3.15 displays the right-going disturbance as it propagates past the
hump, on two different uniform meshes with 200 x 100 points and 600 x 300 points
for comparison. The surface level h + b is presented at different time. The results

indicate that our scheme can resolve the complex small features of the flow very well.
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Figure 3.15: The contours of the surface level h + b for the problem in Section 3.3.3.
30 uniformly spaced contour lines. From top to bottom: at time ¢ = 0.12 from
0.999703 to 1.00629; at time ¢t = 0.24 from 0.994836 to 1.01604; at time ¢ = 0.36
from 0.988582 to 1.0117; at time ¢t = 0.48 from 0.990344 to 1.00497; and at time
t = 0.6 from 0.995065 to 1.0056. Left: results with a 200 x 100 uniform mesh. Right:
results with a 600 x 300 uniform mesh.



Chapter 4

High Order Finite Difference
Well-balanced WENO Schemes for
a Class of Hyperbolic Systems

with Source Terms

In this chapter, we extend the idea designed in the previous chapter to a general
class of balance laws with separable source terms, and design well balanced high
order finite difference WENO scheme for all balance laws falling into this category.
In section 4.1, we describe the class of balance laws under consideration and develop
well balanced finite difference WENO schemes for such balance laws. In section 4.2,
we give several examples in applications which fall into the category of balance laws
discussed in section 4.1, and show selective numerical results to demonstrate the

behavior of our schemes.

46
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4.1 A general class of balance laws

The main idea in Chapter Three to design a high order finite difference WENO
scheme for the shallow water equation is to decompose its source term into a sum of
two terms, each of which is discretized independently using a finite difference formula
consistent with that of approximating the flux derivative terms in the conservation
law. In this section, we generalize this idea to a class of general balance laws (1.2).
We first consider the case that (1.2) is a scalar balance law. The case of systems
will be explored later. We are interested in preserving exactly certain steady state

solutions u of (1.2):

flu,x), = g(u, x). (4.1)

We make two assumptions on the equation (1.2) and the steady state solution u of

(4.1) that we are interested to preserve exactly:

Assumption 4.1.1 The steady state solution u of (4.1) that we are interested to
preserve satisfies
a(u, ) = constant (4.2)

for a known function a(u,x).
Assumption 4.1.2 The source term g(u,x) in (1.2) can be decomposed as

g(u,z) = sila(u, 2)) ti() (4.3)

i

for some functions s; and t;.

Before proceeding further, let us comment on Assumption 4.1.1. We consider a

special case of (1.2):

us + f(u)y = g(u) 2' () (4.4)

i.e. when the flux f does not depend explicitly on z and the source term g(u,x) in

(1.2) is separable as a product of a function in u and a function in z. Notice that the
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case g(u,x)=g(u) falls into this category with z(z) = z. The steady state solution

of the equation (4.4) is given by:

Clearly
F(w U= f,(u)u T = f(w)a x = | Z(x)dx = 2(x) + constan
[ Gytn= [ Gyrets = | Gt = [ #oxia = so) + constan.
Hence we have
a(u,x) = b(u) + z(x) = constant (4.5)
f(u

if we denote b(u) = — du. This is an example of (4.2).

o)

We would like to preserve exactly the steady state solutions u which satisfy
Assumption 4.1.1, for a balance law (1.2) with a source term satisfying Assumption
4.1.2. Following the ideas in Chapter Three, we will first consider a linear scheme
with an identical finite difference operator for the flux derivative and the derivatives
in the decomposed source terms. As usual, we define a linear finite difference operator
D to be one satisfying D(afi+bf2) = aD(f1)+bD(f2) for constants a, b and arbitrary
grid functions f; and f,. A scheme for (1.2) with a source term given by (4.3) is said

to be a linear scheme if all the spatial derivatives are approximated by linear finite

difference operators. Such a linear scheme would have a truncation error
Do(f(u,7)) = > si(a(u, x)) Di(ti(z)),

where D; are linear finite difference operators used to approximate the spatial deriva-

tives. We further restrict our attention to linear schemes which satisfy
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for the steady state solution. For such linear schemes we have

Proposition 4.1.3 For the balance law (1.2) with its source term given by (4.3),
linear schemes with (4.6) for the steady state solutions satisfying (4.2) can preserve

these steady state solutions exactly.

Proof. For the steady state solution u satisfying (4.2), the truncation error for

such linear schemes with (4.6) reduces to

D (f(u,z)) = Y si(a(u,z)) D (t:(x)) = D (f(u,l“) = silalu,2)) ti($)> (4.7)

i i

where the linearity of D and the fact that a(u,z) = constant for the steady state

solution u are used. Clearly, for such steady state solution u,

= f(u,x)s — Zsi(a(u, z))ti(z) = f(u,z); — g(u,z) =0,
that is, f(u,z) — >, si(a(u, x)) t;(x) is a constant. Hence the truncation error (4.7)

is 0 for any consistent finite difference operator D. This finishes the proof. O

We now consider high order nonlinear finite difference WENO schemes [24, 4], in
which the nonlinearity comes from the nonlinear weights and the smooth indicators.
We follow the procedures described in Chapter Three for the shallow water equations,
to treat the general balance laws (1.2) to obtain well balanced high order finite
difference WENO schemes.

To present the basic ideas, we first consider the situation when the WENO scheme
is used without a flux splitting (e.g. the WENO-Roe scheme as described in [24]).
We notice that the WENO approximation to d, where d = f(u, x) can be eventually

written out as

d$|m:mj ~ Z CLkd/H_j = Dd(d)] (48)
k=—r
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where r = 3 for the fifth order WENO approximation and the coefficients a; depend
nonlinearly on the smoothness indicators involving the grid function d. As explained
in [46], the key idea now is to use the finite difference operator Dy with d = f(u, x)

fized, and apply it to approximate ¢;(x) in the source terms. Thus

ti(z;) ~ Y apti(zey) = D (ti(x)); -
k=—r

Clearly, the finite difference operator Dy, obtained from the high order WENO pro-
cedure and when d = f(u, ) is fixed, is a high order accurate linear approximation
to the first derivative for any grid function. Therefore the proof for Propositions
2.3 will go through and we conclude that the high order finite difference WENO
scheme as stated above, without the flux splitting, and with the special handling of
the source terms described above, maintains exactly the steady state.

Now, we consider WENO schemes with a Lax-Friedrichs flux splitting, such as
the WENO-LF and WENO-LLF schemes described in [24]. Here the flux f(u,x) is

written as a sum of f*(u,z) and f~(u,z), defined by

fE(u,z) = % [f(u,z) + aul (4.9)

of(u,x)
ou

where o = maz,

gion (WENO-LLF) or a global region (WENO-LF), see [24, 40] for more details.

with the maximum being taken over either a local re-

We now make a modification to this flux splitting, by replacing +awu in (4.9) with
+asign (W) a(u, z). We would need to assume here that % does not change
sign. The constant « should be suitably adjusted by the size of w in or-
der to maintain enough artificial viscosity. The term a(u,z) can also be replaced
by p(a(u,x)) for any function p, whose choice should be such that p(a(u,zx)) is
as close to u as possible in order to emulate the original LF flux splitting with
+au. This modification does not affect accuracy, which relies only on the fact

flu,z) = f*(u,x) + f~(u,z). For the steady state solution satisfying (4.2), the ar-
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tificial viscosity term +a sign (W) a(u,z) (or +asign (W) p(a(u,x))) in
the Lax-Friedrichs flux splitting becomes a constant, and by the consistency of the
WENO approximation, the effect of these viscosity terms towards the approxima-
tion of f(u,x), is zero. The flux splitting WENO approximation in this situation
becomes simply f*(u,z) = % f(u,x), hence the steady state solution is preserved as
before, if we simply split the derivatives in the source term as:

! 1 ! 1 !

@) = 5t(a) + (), (110)
and apply the same flux splitting WENO procedure to approximate them with the
nonlinear coefficients a;, coming from the WENO approximations to f*(u, =) respec-

tively. This will guarantee (4.6). We have thus proved that

Proposition 4.1.4 The WENO-Roe, WENO-LF and WENO-LLF schemes as im-
plemented above are exact for steady state solutions satisfying (4.2) and can maintain

the original high order accuracy. O

We now discuss the system case. The framework described for the scalar case
can be applied to systems provided that we have certain knowledge about the steady
state solutions to be preserved in the form of (4.2). Typically, for a system with m

equations, we would have m relationships in the form of (4.2):
a1 (u, ) = constant, e am(u, ) = constant (4.11)

for the steady state solutions that we would like to preserve exactly. We would then
still aim for decomposing each component of the source term in the form of (4.3),
where s; could be arbitrary functions of a;(u, z),- - -, a,(u,x), and the functions s;
and t; could be different for different components of the source vector. The remaining
procedure is then the same as that for the scalar case and we again obtain well

balanced high order WENO schemes. Examples of such systems will be given in
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next section. We should also mention that local characteristic decomposition is
typically used in high order WENO schemes in order to obtain better non-oscillatory
property for strong discontinuities. When computing the numerical flux at x, 1 the
local characteristic matrix R, consisting of the right eigenvectors of the Jacobian
at u, 1 is a constant matrix for fixed 7. Hence this characteristic decomposition
procedure does not alter the argument presented above for the scalar case. We refer

to [46] for more details.

4.2 Applications

In this section we give several examples from applications which fall into the category
of balance laws considered in the previous section, and present well balanced high
order finite difference WENO schemes for them. Due to page limitation, only selected
numerical results are shown to give a glimpse of how these methods work. In the
numerical tests, time discretization is by the classical fourth order Runge-Kutta

method, and the CFL number is taken as 0.6.

4.2.1 Shallow water equations

The shallow water equations have wide applications in ocean and hydraulic engi-
neering and river, reservoir, and open channel flows, among others. We consider the
system with a geometrical source term due to the bottom topology. In one space

dimension, the equations take the form

1
(hu): + (hu2 + éghQ) = —ghb,,

x

(4.12)

where h denotes the water height, u is the velocity of the fluid, b(z) represents the

given bottom topography and g is the gravitational constant.
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We are interested in preserving the still water solution, which satisfies (4.11) in
the form

a1 = h + b = constant, as =u=0.
The first component of the source term is 0. A decomposition of the second compo-
nent of the source term in the form of (4.3) is

1
—ghb, = =g (h+b)b. + 39 (¥"),

ie. 51 =s1(a1) = —g(h+0), s2 = 1g, t1(z) = b(z), and ts(z) = b*(x).
More details of the high order finite difference WENQO scheme applied to this

system, and extensive numerical results, can be found in [46].

4.2.2 Elastic wave equation

We consider the propagation of compressional waves [3, 45] in an one-dimensional
elastic rod with a given media density p(x). The equation of motion in a Lagrangian

frame are given by the balance laws:

(pe): + (—pu)e = —u 'l

dz (4.13)
(pu)t + (=0)2 =0,

where ¢ = £(z,t) is the strain, u = u(z,t) is the velocity and o is a given stress-
strain relationship o(e,z). The equation of linear acoustics can be obtained from

the elasticity problem if the stress-strain relationship is linear,
ole,z) = K(z)e

where K (z) is the given bulk modulus of compressibility.

The steady state we are interested to preserve for this problem is characterized
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by

a; = o(e,x) = constant, as = u = constant

which is of the form (4.11). The second component of the source term is 0. The first
component of the source term is already in the form of (4.3) with s; = s1(a2) = —u
and t; = p(x).

We now show two numerical examples to demonstrate the fifth order well balanced
finite difference WENO scheme for (4.13). The first example, from [45], is to test the

fiftth order accuracy for smooth solutions, for which we take the initial conditions as

—1—1.5¢ ®)
1 — 0.5sin(wz))?’

pe(z,0) = ( u(z,0) =0

with the density p(z) and bulk modulus of compressibility K (z) given by:

1
11— 0.5sin(rz)’

p(z) K(z) =1—0.5sin(mz).

The computational domain is [-1,1] and periodic boundary condition is used. The
exact solution is unknown in this case, hence we use the same fifth order well balanced
WENO scheme with N = 5120 grid points to compute a reference solution and use
this reference solution as the exact solution in computing the numerical errors at
t = 0.1s. Table 4.1 contains the L! errors and numerical orders of accuracy. We can
clearly see that fifth order accuracy is achieved for this example.

Next, we present the numerical result for a linear acoustic test [3]. The properties

of the media are given by

c(x) = K(2) =1+ 0.5sin(107z), Z(z) = p(z)c(z) = 1+ 0.25 cos(107z)
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Table 4.1: L! errors and numerical orders of accuracy for the example in section
4.2.2.

balanced WENO

Number of pE pu
points L' error  order | L' error  order
20 2.33E-002 2.80E-002
40 3.21E-003 2.86 | 3.50E-003 3.00
80 3.75E-004  3.10 | 2.30E-004 3.93

1.10E-005 4.38
3.92E-007 4.81
1.25E-008 4.97

160 1.59E-005 4.56
320 5.20E-007 4.93
640 1.65E-008 4.97

and are shown in Figure 4.1. The initial conditions are given by

1. : 1
75 + 0.75 cos( Oﬁx), if 0.4 <z <0.6
c*(z)

p s(x, O) = _1 ’
, otherwise
(z)

u(z,0) = 0.

It is a test case where the impedance Z(x) and hence the eigenvectors are both
spatially varying. We perform the computation with 200 uniform cells, with the
ending time ¢ = 0.4s. An “exact” reference solution is computed with the same
scheme over a 2000 grid point uniform cells. The simulation results are shown in
Figure 4.2. The numerical resolution shows very good agreement with the “exact”

reference solution.

4.2.3 Chemosensitive movement

Originated from biology, chemosensitive movement [21, 15] is a process by which cells
change their direction reacting to the presence of a chemical substance, approach-

ing chemically favorable environments and avoiding unfavorable ones. Hyperbolic
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Figure 4.1: The impedance Z(z) and the sound speed c¢(z) for the smooth media.

models for chemotaxis are recently introduced [21] and take the form

ny + (nu), =0 (4.14)
(nu); + (nu® +n), = nx'(c)% — onu .

ox

where the chemical concentration ¢ = ¢(z,t) is given by the parabolic equation

%—DCAc:n—c.

Here, n(z,t) is the cell density, nu(z,t) is the population flux and o is the friction
coefficient. In [15], a well balanced WENO scheme is constructed based on a different
approach, which can maintain the steady state solutions with zero population flux to
the size of a small parameter ¢ in the nonlinear WENO weights. Here we construct

well balanced WENO schemes based on the framework in section 4.1, which does
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o(z) at time ¢ = 0.4s.

not have this restriction.
We would like to preserve the steady state solution to (4.14) with a zero popula-

tion flux, which satisfies

nx'(c)cy — ng = 0, nu = 0. (4.15)

where ¢ = ¢(x) does not depend on ¢ in steady state. The first equality above does

not seem to be of the form (4.11). However, (4.15) is equivalent to

a; = log(n) — x(c) = constant, as = nu =0,

which is clearly in the form of (4.11). The first component of the source term is 0.
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A decomposition of the second component of the source term in the form of (4.3) is

0 d
nX'(C)a—; — onu = o8 —x() @ex(c) — onu

ie. 51 = s51(a1) = 98X 55 = 55(ay) = onu, t1(z) = X)) and ty(z) = 2.
We now show two numerical examples to demonstrate the fifth order well balanced
finite difference WENO scheme for (4.14). The first example is to test the well

balancedness property of the scheme. We take the initial conditions as

n(z,0) = lio(l + ¢(x)), nu(x,0) = 0.

with

1 if |z] <0.5
c(r) = ; xle)=log(l+¢c), o=1
0.125 otherwise

The initial condition is a steady state solution which should be exactly preserved.
We compute the solution until £ = 2.0s using N = 500 uniform mesh points. In
order to demonstrate that the steady state is indeed maintained up to round-off
error, we use single precision, double precision and quadruple precision to perform
the computation, and show the L' errors for the cell density n (note: n in this case is
a discontinuous function!) and the population flux nu in Table 4.2 for these different
precisions. We can clearly see that the L! errors are at the level of round-off errors
for different precisions, verifying the steady state conservation.

The second example is to test the fifth order accuracy for smooth solutions, for

which we take the initial conditions as
n(z,0) =14 0.2 cos(mz), u(z,0) =0, z € [-1,1]

with
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Table 4.2: L' errors for different precisions for the stationary solution in section
4.2.3.

L' error
precision n nu
single 7.34E-07 3.16E-07
double 1.02E-15 3.96E-16
quadruple 9.13E-34 2.32E-34

with a periodic boundary condition. Since the exact solution is not known explicitly
for this problem, we use the same fifth order WENO scheme with N = 5120 points
to compute a reference solution and treat it as the exact solution when computing
the numerical errors. Final time ¢ = 0.5s is used to avoid the development of shocks.
Table 4.3 contains the L' errors and numerical orders of accuracy. We can clearly

see that fifth order accuracy is achieved for this example.

Table 4.3: L! errors and numerical orders of accuracy for the example in section
4.2.3.

balanced WENO

Number of n nu
points L' error order | L' error order
20 1.02E-002 5.99E-003
40 1.05E-003 3.29 | 7.70E-004 2.96
80 1.31E-004 3.00 | 1.07E-004 2.85

160 6.57TE-006 4.32 | 5.49E-006 4.29
320 2.44E-007 4.75 | 2.06E-007 4.73
640 7.58E-009 5.01 | 6.43E-009 5.00

4.2.4 Nozzle flow

In this subsection we consider the balance laws for a quasi one-dimensional noz-

zle flow [16]. The governing equations for the quasi-one-dimensional unsteady flow
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through a duct of varying cross-section can be written in conservation form as:

(pud); + ((pu® +p)A), = pA'(x) (4.16)
(EA), + ((E + p)ud), =0

where the quantities p, u, p and £ = %pu2 + ﬁ represent the density, velocity,
pressure and total energy, respectively. A = A(z) denotes the area of the cross
section. 7y is the ratio of specific heats.

As in [16], we are interested in preserving the steady state solution

p(z,t) = p(z), p(xz,t)=p, and wu(z,t)=0 (4.17)

where p(x) is an arbitrary function in = and p is a constant. The second condition
in (4.17)

a=p=p

is of the form (4.11). The first and third components of the source term are 0.
The second component of the source term is already in the form of (4.3) with s; =
s1(a1) = p and t; = A(z).

We now show two numerical examples to demonstrate the fifth order well balanced
finite difference WENO scheme for (4.16). The first example is to test the fifth order
accuracy for smooth solutions, for which we take the cross section area and the initial

conditions as
A(z) = 1+ sin®(r2), p(z) = cos(sin(27z)), u(z) =0, E(z) = (sin(2ma)

with periodic boundary conditions. As before, we compute a reference solution using
the same fifth order WENO scheme with N = 10240 points. Final time is chosen

as t = 0.25s when the solution is still smooth. Table 4.4 contains the L! errors and
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numerical orders of accuracy. We can clearly see that fifth order accuracy is achieved

for this example.

Table 4.4: L' errors and numerical orders of accuracy for the example in section
4.2.4.

balanced WENO

Number of pA puA EA
points L' error order | L' error order | L' error order
20 6.13E-003 3.90E-003 4.58E-003
40 2.14E-003 1.52 | 9.46E-004 2.04 | 8.90E-004 2.38
80 2.10E-004 3.35 | 9.72E-005 3.28 | 8.49E-005 3.37

160 1.01E-005 4.38 | 4.79E-006 4.34 | 4.11E-006 4.37
320 3.44E-007 4.88 | 1.60E-007 4.91 | 1.40E-007 4.87
640 1.04E-008 5.04 | 5.08E-009 4.98 | 4.29E-009 5.03

The purpose of the second test case is to study the convergence in time towards
steady flow. Proposed by Anderson in [1], it is concerned with a convergent-divergent

nozzle flow with a parabolic area distribution, which is given by
A(x) =1+2.2(z — 1.5)% 0<x<3. (4.18)

The shape of this section is illustrated in Figure 4.3.

The initial conditions are taken as
p(x,0) =1, u(z,0) =0 and  p(z,0) = 1.

The boundary conditions are taken as 1 bar of pressure at the left, 0.6784 bar of
pressure at the right, and 300°K of temperature at both ends. A shock is established
inside the pipe, and the exact solution for this, a steady state, can be easily calcu-
lated. In this case, the Froude number Fr = u/c increases to a value larger than

one, and then decreases to less than one.
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Figure 4.3: The shape of a convergent-divergent nozzle.

The computation is performed using N = 100 points. The pressure p(zx) is
plotted in Figure 4.4, which shows very good agreement with the analytical solution.
The numerical resolution is very good without oscillations, verifying the essentially

non-oscillatory property of the modified WENO-LF scheme.

4.2.5 Two phase flow

The dynamics of fluids consisting of several fluid components is of great interest
in a wide range of physical flows. In this subsection we are interested in a flow
model for the compressible 2-velocity 2-pressure system [37, 26], which is suitable to

describe liquid suspensions and bubbly flows. The balance equations are written for
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Figure 4.4: Steady state pressure for the nozzle flow.
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coupled with an additional equation for the volume fraction

(ag)e + ui(ag)e = —p(pr — py) (4.20)

and the algebraic relation for the volume fractions

ag +a; = 1.

Here, ax, k € {l,g} is the volume fraction of the k-th phase, and pg, ug, Ex =

Pk
Ye—1

%pku% + denote its density, velocity and energy, respectively. A is a velocity
relaxation parameter and p is a pressure relaxation parameter. The closure equations

for the interface pressure p; and the interface velocity u; are

(gPglUg + A1 P1U;
QgPg + Q1P

Pi = Qgpg + aipy, U; =

If the gravitation effect is ignored, one stationary solution for (4.19) is given by:

Pg = ﬁl(‘r)’ prL= ﬁQ(x)’ Ug = U = Oa Pg =D = P (421)
where py(x) and po(z) are arbitrary functions of z and p is a constant. We would
like to preserve this steady state solution exactly. (4.21) can clearly be written in

the form of (4.11):

a; = p; =p, az = u — ug =0, az = p —pg =0, ag =u; =0

and hence the source terms are already in the form of (4.3). For example, the second
component of the source term is of the form (4.3) with s; = s1(a1) = p;, t1 = a4(2),
Sy = so9(az) = AM(u; — ugy), to = x; the third component of the source term is of the
form (4.3) with s1 = s1(as,a1) = uipi, t1 = a4(x), S2 = So(as, a2) = Au;(w, — uy),

to = x, s3 = s3(a1, a3) = up;(p — pg), ts = x; etc.



Chapter 5

High Order Well-balanced Finite
Volume WENO Schemes and
RKDG Methods for a Class of

Hyperbolic Systems with Source

Terms

In this chapter, we design well balanced finite volume WENO and RKDG finite
element methods for the same class of balance laws as in Chapter Four. In Section
5.1, we describe the class of balance laws under consideration and develop well-
balanced finite volume WENO schemes, which at the same time are genuinely high
order accurate for the general solutions. The well-balanced generalization of the
RKDG schemes is presented in Section 5.2. In Section 5.3, we give several examples
in applications which fall into the category of balance laws discussed in Section 5.1,
and show selective numerical results in one and two dimensions to demonstrate the
behavior of our well balanced finite volume WENO schemes and RKDG schemes,

verifying high order accuracy, the well balanced property, and good resolution for

65
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smooth and discontinuous solutions.

5.1 Construction of well balanced finite volume

WENO schemes

In this section, we design a genuine high order finite volume WENO scheme for a
class of general balance laws (1.1). We will concentrate our discussion on the one
dimensional case (1.2). Generalization to the multi-dimensional case (1.1) can be
done in some situations, for example the cases discussed in [46, 47]; we present the
details for the two dimensional shallow water equations in Section 5.3.2.

Our main objective is to preserve certain steady state solutions while maintaining
high order accuracy for general solutions. The main idea in Chapter Three and Four
to design a well-balanced high order finite difference WENO scheme is to decompose
the source term into a sum of several terms, each of which is discretized indepen-
dently using a finite difference formula consistent with that of approximating the flux
derivative terms in the conservation law. We follow a similar idea here and decom-
pose the integral of the source term into a sum of several terms, then compute each
of them in a way consistent with that of computing the corresponding flux terms.
We first consider the case that (1.2) is a scalar balance law. The case of systems will
be explored later.

We are interested in preserving exactly certain steady state solutions u of (1.2):

flu,x); = g(u, x). (5.1)

As in [47], we make some assumptions on the equation (1.2) and the steady state

solution u of (4.1) that we are interested to preserve exactly:

Assumption 5.1.1 The steady state solution u of (5.1) that we are interested to
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preserve satisfies
u + p(x)

= constant 5.2
q(z) (5:2)

a(u,z) =
for some known functions p(z) and q(x).

Assumption 5.1.2 The source term g(u,x) in (1.2) can be decomposed as
g(u,2) = si(a(u,2)) t;(2) (5.3)
J

for some known functions s; and t;.

Note that Assumption 5.1.1 given here is more restrictive than that in Chapter
Four. This is due to the additional difficulties related to the finite volume formula-
tion.

We would like to preserve exactly the steady state solutions u which satisfy
Assumption 5.1.1, for a balance law (1.2) with a source term satisfying Assumption
5.1.2.

Now let us describe the details of the algorithm. We consider the semi-discrete

formulation of the balance law

70 =~ g )0 = e ) ) + 5 [ gm)ie (5)

2

The time discretization is usually performed by the classical high order Runge-Kutta
method. Before stating our numerical scheme, we first present the procedure to
reconstruct the pointwise values by the WENO reconstruction procedure, and then
decompose the integral of the source term into several terms, with the objective of
keeping the exact balance property without reducing the high order accuracy of the
scheme. The scheme is then finally introduced with a minor change on the flux term,

compared with the original WENO scheme.

The first step in building the algorithm is to reconstruct uil from the given
2
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cell averages #;, by the WENO reconstruction procedure explained in Section 2.2,
which are high order accurate approximations to the exact value u(z;, ) We use the
smoothness indicators 3, to measure the smoothness of the variable u. The WENO

reconstruction can be eventually written out as

l\)\»—A

l
+3

-1
= Z wiili g = Sy (), Z r=S, (@i (55)
k=—r4+1 k=—r
where r = 3 for the fifth order WENO approximation and the coefficients wy and
wy depend nonlinearly on the smoothness indicators involving the cell average u,
following (2.10)-(2.11). Here we obtain a linear operator Sz (v) (linear in v) which is
obtained from a WENO reconstruction with fixed coefficients wy;, calculated from the
cell averages 4. Once again, our purpose is to find a high order finite volume scheme
for a class of conservation laws which can preserve the steady state solution (5.2).
The key idea here is to use the linear operators S (v) and apply them to reconstruct

the functions p; and ¢;. Thus

p;;% = S5 (p)i = Z WkPi+ks Piy1 = Sa ( Z WkPitk
k=—r+1 k=—r
T
1 =SE@i= D wiliek, Qs =S @i = D B (5.6)
k=—r+1 k=—r

With the reconstructed values p 1 and q 1L we obtain the pointwise value of a(u,x)
2

+ +
ut | 4P’
+3 i
by a(u,z)E s MG

il = Clearly, p 1 and q L1 are high order accurate pointwise
2 2

i+t
approximation to the function of p(x) and ¢(z) at the cell boundary z;, L. Hence,

a(u,z)E | is a high order approximation to a(u(zH%), xi+%).

i+3
Now assume that u is the steady state solution satisfying (5.2), namely

u+p(z) = cq(z)
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for some constant c. If the cell averages u;, p; and §; are computed in the same fashion
(e.g. all computed exactly, or all computed with the same numerical quadrature)

from u, p(z) and ¢(x), then we clearly also have
Ui +Pi=Cq;

for the same constant c. Since the reconstructed values u;i 1 pjjr , and qiﬁ , are
2 2 2
computed from the cell averages u;, p; and g; with the same linear operators Sz (v),

we clearly have

+ + .+
Uit TP = Cs
for the same constant ¢, that is,
a(u,2)* | =c (5.7)
’L+§

for the same constant c.

Clearly, for a steady state solution u satisfying Assumptions 5.1.1 and 5.1.2,

a (f(u,:v) -3 sy (alu,)) tju))

J

= flu,x); — Zsj(a(u, z)) ts(x) = f(u,2)s — g(u, z) = 0.

Therefore, f(u,z) — >_;sj(a(u,))t;(z) is a constant. We would need to choose

suitably (tj)z?il, which should be high order approximations to ¢;(z; 1) such that
2

f(ujjr%) — Z s;(a(u, x);i%) (tj);—jr% = constant (5.8)
J

for a steady state solution u satisfying Assumptions 5.1.1 and 5.1.2. In the ap-

+

plications stated later in Section 5.3, we will specify the choices of (tj)i 1 in each
2

case.
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The integral of the source term takes the form

/Ii 9(u, z)dx = Z/I s;(a(u, o)), (x)dz.

We need to decompose it further in the following way in order to obtain a well-

balanced scheme

Z/I sj(a(u, ))t;(z)dx

= 3 (3 (statwnf )+ satwa)) [ s

J I;

+/Ii <8j(a(u,a:)) - % (Sj(a(u 2)] 1)+ 5(a (“’x)z;;))) t;-(x)da:>
- Z (% (5a(a(u z)- )+ s;(a(u, x);_%)) (tj($i+§) _ tj(l'i_%))

J

+ /I <Sj(a(u,33)) = % (silatw,)f,) + si(alu, ), %))) t;-(x)da:> . (5.9)

i

The purpose of this decomposition is to ensure the balance with the flux difference
term on the right hand side of (5.4), see the proof of Proposition 5.1.3 below. We re-
mark that ; <sj(a(u z)! ) + s;(a(u, z) +%)> can also be replaced by s; (HZ(Tigm))
where as usual the overbar denotes the cell average over the cell I;, which could be
used when there is a singularity at the boundary, for example, in the application in

Section 5.3.5.

Now we are ready to describe the final form of the algorithm

L) = — 5 (fis

1
- Az (5.10)
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where (), +1 is a high order approximation to t(z, 1 ), whose definition will be

described below, and g; ; is any high order approximation to the integral

/Ii <sj(a(U, T)) — % ( ja(u,2)f )+ s;i(a (u,x)H%») . (z) da. (5.12)

Comparing with (5.9), it is clear that g; is a high order approximation to the source
term in (5.4).
The numerical flux f ! is defined by a monotone flux such as the Lax-Friedrichs

flux (2.8)

f(u;_%) +f(u;:_%) —a(uz:% —u;_%) : (5.13)

Z?:_% — u;_%) in (5.13)

—a(u,z),, 1). The numerical flux now becomes
2

We need to make a modification to this flux, by replacing a(u

+

with asign(q(z))(a(u, 2)7, ,

fis ). (519

2

= & [Fup) + 7, — asien(a(a)) (alu, ), , —a(u,2);,

N\»—*

We would need to assume here that ¢(z) in (5.2) does not change sign. The constant

« should be suitably adjusted by the size of TZ) in order to maintain enough artificial

viscosity. This modification does not affect accuracy. For the steady state solution

asign(q(x))(a(u, x):;% — a(u, x);%) =0

because of (5.7). Hence, the effect of these viscosity terms becomes zero and the

numerical flux turns out to be in a simple form

A

I

v= o [ + s )] (5.15)

1
2
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Following this, we treat the approximation (Z;), 41 in (5.11) in a similar way:

- % (tj)ia + (tj);:%] (5.16)

where, as mentioned before, (tj),-i+ L are high order approximations to ¢;(z;, %) sat-
isfying (5.8). Note that we implement (5.16) for the general case, not only for the
steady solution. There is no viscosity term in the source term, compared with the
numerical flux (5.14).

For the remaining source term g;;, we simply use a suitable high order Gauss
quadrature to evaluate the integral. The approximation of the values at those Gauss
points are obtained by the WENO reconstruction procedure. It is easy to observe
that high order accuracy is guaranteed for our scheme, and even if discontinuities
exist in the solution, non-oscillatory property is maintained.

We now formulate the preservation of the steady state solution (5.2) by our

numerical scheme.

Proposition 5.1.3 The WENO-LF schemes as implemented above with (5.10), (5.11),
(5.14) and (5.16) are exact for steady state solutions satisfying (5.2) and can main-

tain the original high order accuracy for general solutions.

Proof. The high order accuracy is straightforward to observe. We only prove the
well balanced property here. First, for the steady state solution a(u,z) = ¢ for some
constant ¢, the reconstructed values a(u, a:);t_ ! are also equal to the same constant c,
see (5.7). Hence, we notice that the source term g; j, which is a high order numerical
approximation of the integral in (5.12) by a Gauss quadrature, is simply zero since

a(u, z) is equal to a(u, ac)l?'t_l at each Gauss point. Furthermore, in this case the flux
2
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terms take the form (5.15) and (5.16). Therefore, the truncation error reduces to

g+ oy + 305 (statw ) ) + sitatwa),)) (g - G)iy)

=+ 28Oy + Sy = D)y
J J

= 0

where we have used (5.7) for the first equality, and (5.8), (5.15) and (5.16) for the
second equality. This finishes the proof. O

We now discuss the system case. The framework described for the scalar case
can be applied to systems provided that we have certain knowledge about the steady
state solutions to be preserved in the form of (5.2). Typically, for a system with m

equations, we would have m relationships in the form of (5.2):
a1 (u, ) = constant, e am (u, x) = constant (5.17)

for the steady state solutions that we would like to preserve exactly. Here we

Dk brurtpi(x)
gj(z)

u = (U1, ,Up), by are arbitrary constants, and p,(r) and g¢;(z) are arbitrary

require that, for the steady state solution (5.17), a;(u,z) = , where
known functions of z. We would then still aim for decomposing each component
of the source term in the form of (5.3), where s; could be arbitrary functions of
ai(u, ), -+ ,am(u,x), and the functions s; and ¢; could be different for different
components of the source vector. The remaining procedure is then the same as that
for the scalar case and we again obtain well balanced high order WENO schemes.
Examples of such systems will be given in Section 5.3. We should also mention that
local characteristic decomposition is typically used in high order WENO schemes in
order to obtain better non-oscillatory property for strong discontinuities. When re-
constructing the point value at x,, L the local characteristic matrix R, consisting of

the right eigenvectors of the Jacobian at u,, 1 is a constant matrix for fixed 7. Hence
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this characteristic decomposition procedure does not alter the argument presented

above for the scalar case.

5.2 Construction of well balanced discontinuous
Galerkin schemes

In this section, we generalize the idea used in Section 5.1 to RKDG schemes. A
well-balanced high order RKDG scheme will be designed for a class of conservation
laws satisfying Assumptions 5.1.1 and 5.1.2. The basic idea is the same as that for
the finite volume schemes, such as the technique of decomposing the source term and
replacing the viscosity term in the numerical fluxes. We start with the description
in the scalar case.

Consider now the equation (1.2). Following the description in Section 2.3, the

semi-discrete DG scheme for (1.2) is

/Ij Byt (1, £)on () d — /Ij Fun, )Oson(a)da + iy yon(as ) — oyt )

= / g(up(z,t), t)vs(z)dz (5.18)

I;

/ up(x, 0)vp(x)dz = / uo(z)vp(z)dz. (5.19)
I; 1
First, we define a high order approximation ay(us, z) = % to a(up, ), where

pr and g, are L? projections of p and ¢ into V}, see (5.19) for such a projection. Now

assume that u is the steady state solution satisfying (5.2), namely

u(z) +p(x) = cq(x)

for some constant ¢, and uy, is the L? projection of this steady state solution. Clearly,
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since the L? projection is a linear operator,

up(z) + pr(x) = cqn(x)

for the same constant ¢ at every point z. This implies

ap(up, ) = —uh(x) + pn(7) =c

qn()

for the same constant c.

For such steady state solution u satisfying Assumptions 5.1.1 and 5.1.2, we have

d

. (f(u, 2) =Y si(alu, w))tj(ﬂ?)) =0.
J

We would need to suitably choose a function (t;)s, which should be a high order

approximation to ¢; and should satisfy the condition

f(un(z)) — Z s;j(an(un(z),z))(t;)n(z) = constant (5.20)
j
for all . The construction of (¢;), follows a similar procedure as that for the con-
struction of (tj)?jr ! for the finite volume well balanced scheme in Section 5.1. We
will describe in detail the construction of (¢;), for each application case in Section
5.3.
Similar to the decomposition of the source term in the well balanced finite volume

schemes (5.9), we decompose the integral of the source term on the right hand side
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o [ (ot o) =5 (slatmo)f) + ssatun.o), ) ) 6 e)und )

We then replace this source term with a high order approximation of it given by

5 (5 (santon ) ) +siantuno), ) 52

J

((fj)h,i+%vh(xi+%) - (fj)h,i—%vh(mztl) - / (@)h(@%(m)dm)

2 I;

(ot = (st ) + @m0 ) ) eyt

where (£;),;. 1 is a high order approximation to ti(z;, 1 ), whose definition will be
described below.

To deal with the “hat” terms (numerical fluxes and approximations to t;(z;,1)),
we use the relation between the finite volume schemes and the DG schemes. If we
simply take the test function v, in the DG scheme as the constant function 1, we
obtain the evolution of the cell averages similar to that for a finite volume scheme.
We have already explained the construction of the “hat” terms for well balanced

finite volume schemes. Here we simply copy those definitions (5.14) and (5.16) from
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Section 5.1 without further explanation

P ) + F((n);, ) — asign(a(@) (an(un, 2)7, , — an(un, 2)7,1)]

(hasy = 5 [nlag) + et y)]

A combination of the above equations gives the final version of our well-balanced
high order RKDG schemes if one more modification on the slope limiter procedure is
provided. Usually, we perform the limiter on the function u, after each Runge-Kutta
stage. Now, our purpose is to maintain the steady state solution v which satisfies
a(u,z) = constant. The above limiter procedure could destroy the preservation of
such steady state, since if the limiter is enacted, the resulting modified solution
may no longer satisfy ap(up,z) = constant. We therefore propose to first check
whether any limiting is needed based on the function ap,(up, ) in each Runge-Kutta
stage, where the cell averages of aj(up,x) (needed to implement the TVB limiter)
are computed by a suitable Gauss quadrature. If a certain cell is flagged by this
procedure needing limiting, then the actual limiter is implemented on u;, not on
ap(up, r). When the limiting procedure is implemented this way, if the steady state
u satisfying a(u, x) = constant is reached, no cell will be flagged as requiring limiting
since ap(up,x) is equal to the same constant, hence u, will not be limited and
therefore the steady state is preserved.

It is easy to compute the remaining integrals because wy, (¢;), and v, are all
piecewise polynomials in the space V},. This finishes the description of the RKDG
schemes. We can clearly observe that the accuracy is maintained. We also state
below the proposition claiming the exact preservation of the steady state solution
(5.2). The proof is similar to that of Proposition 5.1.3 for the finite volume schemes,

and is therefore omitted.

Proposition 5.2.1 The RKDG schemes as stated above are exact for steady state

solutions satisfying (5.2) and can maintain the original high order accuracy for gen-
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eral solutions.

The extension of the well-balanced high order RKDG schemes to the system case

follows the same idea as that for the well balanced finite volume schemes.

5.3 Applications

In this section we give several examples from applications which fall into the category
of balance laws considered in the previous sections, and present well balanced high
order finite volume WENO and discontinuous Galerkin schemes for them. Due to
page limitation, only selected numerical results are shown to give a glimpse of how
these methods work. Fifth order finite volume WENO scheme and third order finite
element RKDG scheme are implemented as examples. In all numerical tests, time
discretization is by the third order TVD Runge-Kutta method in [41]. For finite
volume WENO schemes, the CFL number is taken as 0.6, except for the accuracy
tests where smaller time steps are taken to ensure that spatial errors dominate. For
the third order RKDG scheme, the CFL number is 0.18. For the TVB limiter imple-
mented in the RKDG scheme, the TVB constant M (see [39, 11] for its definition)

is taken as 0 in most numerical examples, unless otherwise stated.

5.3.1 One dimensional shallow water equations

The shallow water equations have wide applications in ocean and hydraulic engi-
neering and river, reservoir, and open channel flows, among others. We consider the
system with a geometrical source term due to the bottom topology. In one space

dimension, the equations take the form

1
(hu): + (hu2 + §gh2> = —ghb,,

Z

(5.22)
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where h denotes the water height, u is the velocity of the fluid, b represents the given
bottom topography and g is the gravitational constant.
The steady state solution we are interested in preserving satisfies (5.17) in the

form

a1 = h + b = constant, ags =u = 0.

The first component of the source term is 0. A decomposition of the second compo-

nent of the source term in the form of (5.3) is
L o
—ghb, = —g (h + b) b, + 59 (v%),

ie. 51 =s1(a1) = —g(h+Db), s2 = 39, t:1(x) = b(z), and t5(z) = b*(z). For the finite
volume schemes, we apply the WENO reconstruction to the function (b(x),0)T, with

coefficients computed from (h, hu)?, to obtain b;'jr 1. We define
2

2
£ _ g £ _ (1*
(tl)i+% - bz‘+§’ (tz)i+§ - (bi+%) :

Under these definitions and if the steady state h + b = ¢, u = 0 is reached, we have
f(u;%) - Zsj (a(u, x);%) (tj);r;
J
—1h_21b_21h_ b ht b ) b-
- 59( i+§> - 59( i+§) +g§( i+ + i+l + i1 + F%) i+l

1
= go(riy i) (W, -0y +oe,



For the RKDG method, we define

(t)n(@) = bu(z),  (B2)n(z) = (ba(2))”

80

where by,(z) is the L? projection of b(z) to the finite element space V;,. A similar

manipulation as in the finite volume case leads to

Flum) = 3 s5onCun, 2) (1) = 59

J

when the steady state h + b = ¢, u = 0 is reached, satisfying our requirement.

Next, we provide numerical results to demonstrate the good properties of the

well balanced finite volume WENO and finite element RKDG schemes when applied

to the one dimensional shallow water equations. The gravitation constant g is taken

as 9.812m/s? during the computation.

5.3.1.1 Test for the exact C-property

The purpose of the first test problem is to verify that the schemes indeed maintain

the exact C-property over a non-flat bottom. We choose two different functions for

the bottom topography given by (0 < z < 10):

2

b(z) =5 e 5@5)”,

which is smooth, and

4 if4<xr<8
b(x) =
0 otherwise,

which is discontinuous. The initial data is the stationary solution:

h 4+ b =10, hu = 0.

(5.23)

(5.24)
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This steady state should be exactly preserved. We compute the solution until £ = 0.5
using N = 200 uniform cells. In order to demonstrate that the exact C-property is
indeed maintained up to round-off error, we use single precision, double precision and
quadruple precision to perform the computation, and show the L' and L* errors for
the water height A (note: h in this case is not a constant function!) and the discharge
hu in Tables 5.1 and 5.2 for the two bottom functions (5.23) and (5.24) and different
precisions. For the RKDG method, the errors are computed based on the numerical
solutions at cell centers. We can clearly see that the L' and L™ errors are at the

level of round-off errors for different precisions, verifying the exact C-property.

Table 5.1: L' and L*® errors for different precisions for the stationary solution with
a smooth bottom (5.23).

L' error L error

precision h hu h hu
single 4.07E-06 3.75E-05 | 1.33E-05 1.33E-04
FV double 2.50E-14 2.23E-13 | 7.64E-14 7.97E-13
quadruple | 3.49E-33 2.90E-32 | 1.39E-32 9.62E-32
single 6.44E-06 2.44E-05 | 2.57TE-05 1.75E-04
RKDG double 6.82E-15 2.90E-14 | 2.84E-14 2.14E-13
quadruple | 9.06E-31 3.92E-33 | 8.05E-29 1.12E-31

We have also computed stationary solutions using initial conditions which are
not the steady state solutions and letting time evolve into a steady state, obtaining

similar results with the exact C-property.

5.3.1.2 Testing the orders of accuracy

In this example we will test the high order accuracy of our schemes for a smooth
solution. There are some known exact solutions to the shallow water equation with
non-flat bottom in the literature, such as some stationary solutions, but they are

not generic test cases for accuracy. We have therefore chosen to use the following
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Table 5.2: L' and L errors for different precisions for the stationary solution with
a nonsmooth bottom (5.24).

L' error L error
precision h hu h hu
single 6.50E-06 2.61E-05 | 1.91E-05 1.53E-04
FV double 1.73E-14 5.88E-14 | 4.62E-14 2.43E-13
quadruple | 2.69E-32 9.30E-32 | 5.85E-32 3.04E-31
single 5.76E-07 3.54E-07 | 9.54E-07 1.18E-06
RKDG | double 1.41E-15 8.90E-16 | 3.55E-15 2.83E-15
quadruple | 2.69E-31 1.62E-35 | 8.06E-29 &8.18E-34

bottom function and initial conditions
b(z) = sin’(rz), h(z,0) =5+ e (hu)(z,0) = sin(cos(27z)), = € [0,1]

with periodic boundary conditions, see [46]. Since the exact solution is not known
explicitly for this case, we use the fifth order finite volume WENO scheme with
N = 12,800 cells to compute a reference solution, and treat this reference solution as
the exact solution in computing the numerical errors. We compute up to¢ = 0.1 when
the solution is still smooth (shocks develop later in time for this problem). Table 5.3
contains the L! errors for the cell averages and numerical orders of accuracy for the
finite volume and RKDG schemes, respectively. We can clearly see that fifth order
accuracy is achieved for the WENO scheme, and third order accuracy is achieved
for the RKDG scheme. For the RKDG scheme, the TVB constant M is taken as 32.
Notice that the CFL number we have used for the finite volume scheme decreases
with the mesh size and is recorded in Table 5.3. For the RKDG method, the CFL
number is fixed at 0.18.
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Table 5.3: L' errors and numerical orders of accuracy for the example in Section
5.3.1.2.

FV schemes
No. of | CFL h hu
cells L' error order | L' error order
25 0.6 | 1.48E-02 9.45E-02

50 0.6 | 2.40E-03 2.63 | 1.98E-02 2.26
100 0.4 | 297E-04 3.01 | 2.58E-03 2.93
200 0.3 | 2.43E-05 3.61 | 2.13E-04 3.60
400 0.2 | 1.02E-06 4.57 | 8.96E-06 4.57
800 0.1 | 3.26E-08 4.97 | 2.85E-07 4.97
RKDG schemes

No. of h hu

cells L' error order | L' error order
25 2.35E-03 2.12E-02
50 1.15E-04 4.36 | 1.01E-03 4.39
100 1.24E-05 3.20 | 1.09E-04 3.21
200 1.02E-06 3.59 | 8.97E-06 3.60
400 1.11E-07 3.19 | 9.79E-07 3.19
800 1.30E-08 3.09 | 1.14E-07 3.08

5.3.1.3 A small perturbation of a steady-state water

The following quasi-stationary test case was proposed by LeVeque [28]. It was chosen
to demonstrate the capability of the proposed scheme for computations on a rapidly
varying flow over a smooth bed, and the perturbation of a stationary state.

The bottom topography consists of one hump:

0.25(cos(10m(z —1.5))+1) if14<zx<1.6
bz) = (cos(10m( ) +1) <z< (5.25)
0 otherwise
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Figure 5.1: The initial surface level h + b and the bottom b for a small perturbation
of a steady-state water. Left: a big pulse e=0.2; right: a small pulse e=0.001.

The initial conditions are given with

(h)(z,0) =0 and h(z,0)= 4 ~ @ T ifllsTr<l (5.26)
1 —b(z) otherwise

where € is a non-zero perturbation constant. Two cases have been run: € = 0.2 (big
pulse) and € = 0.001 (small pulse). Theoretically, for small €, this disturbance should
split into two waves, propagating left and right at the characteristic speeds 4+/gh.
Many numerical methods have difficulty with the calculations involving such small
perturbations of the water surface [28]. Both sets of initial conditions are shown in
Figure 5.1. The solution at time t=0.2s for the big pulse ¢ = 0.2, obtained on a 200
cell uniform grid with simple transmissive boundary conditions, and compared with
a 3000 cell solution, is shown in Figure 5.2 for the FV scheme and in Figure 5.4 for
the RKDG scheme. The results for the small pulse € = 0.001 are shown in Figures
5.3 and 5.5. For this small pulse problem, we take ¢ = 107° in the WENO weight
formula (2.10), such that it is smaller than the square of the perturbation. At this
time, the downstream-traveling water pulse has already passed the bump. We can

clearly see that there are no spurious numerical oscillations.
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Figure 5.2: FV scheme: Small perturbation of a steady-state water with a big pulse.
t=0.2s. Left: surface level h + b; right: the discharge hu.
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Figure 5.4: RKDG scheme: Small perturbation of a steady-state water with a big

pulse. t=0.2s. Left: surface level h + b; right: the discharge hu.
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5.3.1.4 The dam breaking problem over a rectangular bump

In this example we simulate the dam breaking problem over a rectangular bump,
which involves a rapidly varying flow over a discontinuous bottom topography. This
example was used in [44].
The bottom topography takes the form:
8 if |z — 750| < 1500/8

b(x) = . (5.27)
0 otherwise

for x € [0,1500]. The initial conditions are

(h)(@.0)= 0 and h(z,0)= 4 20 0@ Ho<T750 (5.28)
15— b(z) otherwise

The numerical results obtained by the FV scheme with 400 uniform cells (and a
comparison with the results using 4000 uniform cells) are shown in Figures 5.6 and
5.7, with two different ending time t=15s and t=60s. Figures 5.8 and 5.9 demonstrate
the numerical results by the RKDG scheme, with the same number of uniform cells.
In this example, the water height h(x) is discontinuous at the points x=562.5 and
x=937.5, while the surface level h(z)+b(x) is smooth there. Both schemes work well
for this example, giving well resolved, non-oscillatory solutions using 400 cells which

agree with the converged results using 4000 cells.

5.3.1.5 Steady flow over a hump

The purpose of this test case is to study the convergence in time towards steady flow
over a bump. These are classical test problems for transcritical and subcritical flows,
and they are widely used to test numerical schemes for shallow water equations. For
example, they have been considered by the working group on dam break modelling

[17], and have been used as test cases in, e.g. [43].
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Figure 5.6: FV scheme: The surface level h + b for the dam breaking problem at
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The bottom function is given by:

0.2 — 0.05(x — 10)2 f8<xr <12
b(z) = (5.29)
0 otherwise

for a channel of length 25m. The initial conditions are taken as

h(z,0) =0.5—b(x) and wu(z,0)=0.

Depending on different boundary conditions, the flow can be subcritical or transcrit-
ical with or without a steady shock. The computational parameters common for all
three cases are: uniform mesh size Ax = 0.125 m, ending time t= 200 s. Analytical
solutions for the various cases are given in Goutal and Maurel [17].

a): Transcritical flow without a shock.

e upstream: The discharge hu=1.53 m?/s is imposed.

e downstream: The water height h=0.66 m is imposed when the flow is subcrit-

ical.

The surface level A + b and the discharge hu, as the numerical flux for the water
height A in equation (5.22), are plotted in Figures 5.10 and 5.11, which show very
good agreement with the analytical solution. The correct capturing of the discharge
hu is usually more difficult than the surface level h + b, as noticed by many authors.
The numerical errors for the discharge hu of our well-balanced finite volume WENO
and RKDG schemes are both very small.

b): Transcritical flow with a shock.

e upstream: The discharge hu=0.18 m?/s is imposed.

e downstream: The water height h=0.33 m is imposed.

In this case, the Froude number Fr = u/+/gh increases to a value larger than one

above the bump, and then decreases to less than one. A stationary shock can appear
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Figure 5.10: FV scheme: Steady transcritical flow over a bump without a shock.
Left: the surface level h + b; right: the discharge hu as the numerical flux for the
water height h.
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height h.

on the surface. The surface level h+b and the discharge hu, as the numerical flux for
the water height A in equation (5.22), are plotted in Figure 5.12 and 5.14, which show
non-oscillatory results in good agreement with the analytical solution. In Figure 5.13
and 5.15, we compare the pointwise errors of the numerical solutions obtained with
200 and 400 uniform cells. We have also performed such error comparisons for the
cases of the transcritical flow without a shock and of the subcritical flow, obtaining
qualitatively similar results. We have therefore omitted them to save space.

¢): Subcritical flow.
e upstream: The discharge hu=4.42 m?/s is imposed.
e downstream: The water height h~=2 m is imposed.

This is a subcritical flow. The surface level A + b and the discharge hu, as the
numerical flux for the water height h in equation (5.22), are plotted in Figure 5.16

and 5.17, which are in good agreement with the analytical solution.
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5.3.2 Two dimensional shallow water equations

The shallow water system in two space dimensions takes the form:

([ by + (), + (hv), = 0
1
) (hu): + (hu2 + §gh2) + (huv), = —ghb, (5.30)
1
(hv)s + (huv), + (hv2 + EghQ) = —ghb,
. v

where again h is the water height, (u,v) is the velocity of the fluid, b represents the
bottom topography and g is the gravitational constant.
We are interested in preserving the still water solution, which takes the form

(satisfying (5.17))

a; = h + b = constant, ay =u =0, a3 =v =0.

The first component of the source term is 0. Similarly as in one dimensional case,
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we decompose the second and third components of the source term as

1 1
—ghbs = —g (h+b) by + 59 (), —ghb, = —g(h+b) by + 59 (1Y),

b(z), to(z) = b*(z) for the second

ie. s1=s1(a1) = —g(h+1), 5 = 39, ta(2)
19, t1(z) = b(z), ta(x) = b*(z) for

component, and s; = s1(a1) = —g (h + b), s9

the third component.
For the finite volume scheme, we apply the WENO reconstruction to the function

+
cand b .
i+3,] ii+3

(b(z),0,0)7, with coefficients computed from (h, hu, hv)”, to obtain b:

We define, for the source term of the second equation,

2
+ _1=x + _ +
(tl)i+%,j - bi+%,j’ (tQ)H%J N (bi+%ﬂ') ’

and, for the source term of the third equation,

2
+ _1* + _ +
(tl)i,j+% - bi,j+%’ (tz)i,ﬂ-% - (bz',j+§) '

We can verify, similar to the one dimensional case, that these choices of t;-t will

maintain the requirement for the steady state solution satisfying h+b = ¢, u = v = 0.
For the RKDG method, we define

(tl)h(xa y) = bh(xa y)a (tQ)h(xay) = (bh(x’ y))2

where by (z,y) is the L? projection of b(x,y) to the finite element space V}, for the

source terms of both the second and the third equations.
We now show numerical examples to demonstrate the behavior of our well bal-

anced schemes for the two dimensional shallow water equations.
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5.3.2.1 Test for the exact C-property in two dimensions

This example is used to check that our schemes indeed maintain the exact C-property

over a non-flat bottom. The two-dimensional hump
b(z,y) = 0.8¢~ (=05 +(y=05)) z,y € [0,1] (5.31)

is chosen to be the bottom. h(z,y,0) =1 — b(x,y) is the initial depth of the water.
Initial velocity is set to be zero. This surface should remain flat. The computation is
performed to ¢ = 0.1 using single, double and quadruple precisions with a 100 x 100
uniform mesh. Table 5.4 contains the L' errors for the water height A (which is not
a constant function) and the discharges hu and hv for both schemes. We can clearly
see that the L' errors are at the level of round-off errors for different precisions,

verifying the exact C-property.

Table 5.4: L' errors for different precisions for the stationary solution in Section
5.3.2.1.

L' error

precision h hu hv
single 1.09E-06 8.87E-07 8.87E-07

FV double | 8.16E-16 9.31E-16 8.47E-16

quadruple | 7.30E-34 7.31E-34 7.34E-34
single 9.40E-08 3.58E-07 3.60E-07

RKDG | double | 6.20E-17 1.14E-15 1.16E-15

quadruple | 5.87E-34 8.35E-34 8.36E-34

5.3.2.2 Testing the orders of accuracy

In this example we check the numerical orders of accuracy when the schemes are

applied to the following two dimensional problem. The bottom topography and the
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initial data are given by:
b(z,y) = sin(27z) + cos(2my), h(z,y,0) = 10 + e cos(27y),

(hu)(z,y,0) = sin(cos(27x)) sin(27y), (hv)(z,y,0) = cos(2mz) cos(sin(27y))

defined over a unit square, with periodic boundary conditions. The terminal time
is taken as t=0.05 to avoid the appearance of shocks in the solution. Since the
exact solution is also not known explicitly for this case, we use the same fifth order
WENO scheme with an extremely refined mesh consisting of 1600 x 1600 cells to
compute a reference solution, and treat this reference solution as the exact solution in
computing the numerical errors. The TVB constant M in the limiter for the RKDG
scheme is taken as 40 here. Tables 5.5 and 5.6 contain the L! errors and orders of
accuracy for the cell averages. We can clearly see that, in this two dimensional test
case, fifth order accuracy is achieved for the finite volume WENO scheme and third

order accuracy is achieved for the RKDG scheme.

Table 5.5: FV scheme: L' errors and numerical orders of accuracy for the example
in Section 5.3.2.2.

Number h hu hv
of cells | CFL | L' error order | L' error order | L! error order
25 X 25 0.6 | 7.91E-03 2.12E-02 6.52E-02

50 x 50 0.6 | 1.13E-03 2.81 | 2.01E-03 3.40 | 9.23E-03 2.82
100 x 100 | 0.6 | 8.89E-05 3.66 | 1.25E-04 4.00 | 7.19E-04 3.68
200 x 200 | 0.4 | 4.07E-06 4.45 | 5.19E-06 4.59 | 3.30E-05 4.45
400 x 400 | 0.3 | 1.42E-07 4.84 | 1.84E-07 4.82 | 1.16E-06 4.84
800 x 800 | 0.2 | 4.38E-09 5.02 | 5.99E-09 4.94 | 3.63E-08 4.99
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Table 5.6: RKDG scheme: L' errors and numerical orders of accuracy for the example
in Section 5.3.2.2.

Number h hu hv

of cells L' error order | L' error order | L' error order
25 x 25 | 2.45E-03 1.36E-02 2.05E-02

50 x 50 | 5.73E-04 2.10 | 2.92E-03 2.22 | 4.75E-03 2.11
100 x 100 | 1.06E-04 2.43 | 5.31E-04 2.46 | 8.51E-04 2.48
200 x 200 | 1.71E-05 2.63 | 8.82E-05 2.59 | 1.39E-04 2.61
400 x 400 | 2.52E-06 2.76 | 1.32E-05 2.74 | 2.10E-05 2.73
800 x 800 | 3.52E-07 2.84 | 1.89E-06 2.80 | 3.01E-06 2.81

5.3.2.3 A small perturbation of a two dimensional steady-state water

This is a classical example to show the capability of the proposed scheme for the
perturbation of the stationary state, given by LeVeque [28]. It is analogous to the
test done previously in Section 5.3.1.3 in one dimension.

We solve the system in the rectangular domain [0, 2] x [0, 1]. The bottom topog-
raphy is an isolated elliptical shaped hump:

b(z,y) = 0.8 ¢~5(#—09)*~50(y—05) (5.32)
The surface is initially given by:
1—b(z,y)+0.01 if0.05 <z <0.15
h(z.y.0) = (z,y)
1—=b(z,y) otherwise (5.33)

hu(z,y,0) = hv(z,y,0) =0

So the surface is almost flat except for 0.05 < x < 0.15, where A is perturbed upward
by 0.01. Figures 5.18 and 5.19 display the right-going disturbance as it propagates
past the hump, on two different uniform meshes with 200 x 100 cells and 600 x 300

cells for comparison. The surface level h + b is presented at different times. The
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results indicate that both schemes can resolve the complex small features of the flow

very well.

5.3.3 Elastic wave equation

We consider the propagation of compressional waves [3, 45| in an one-dimensional
elastic rod with a given media density p(x). The equations of motion in a Lagrangian

frame are given by the balance laws:

(pE)e + (—pu)e = —u?

dz (5.34)
(pu)t + (=0)z =0,

where € = &(z,t) is the strain, u = u(z,t) is the velocity and o is a given stress-
strain relationship o(e,z). The equation of linear acoustics can be obtained from

the elasticity problem if the stress-strain relationship is linear,
ole,z) = K(z)e

where K (z) is the given bulk modulus of compressibility.
The steady state we are interested to preserve for this problem is characterized
by

a; = o(e,x) = constant, as = u = constant

which is of the form (5.17). The second component of the source term is 0. The
first component of the source term is already in the form of (5.3) with s; = s1(a2) =
—u = —Land ¢; = p(z).

For finite volume schemes, we apply the WENO reconstruction to the function

(0, p(z))T, with coefficients computed from (pe, pu)T, to obtain piﬁl. We then define

2
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Surface level at time t=0.12 Surface level at time t=0.12

L
7.5

Surface level at time t=0.48

W\\ |

00

Figure 5.18: FV scheme: The contours of the surface level h + b for the problem
in Section 5.3.2. 30 uniformly spaced contour lines. From top to bottom: at time
t = 0.12 from 0.99942 to 1.00656; at time ¢ = 0.24 from 0.99318 to 1.01659; at time
t = 0.36 from 0.98814 to 1.01161; at time ¢ = 0.48 from 0.99023 to 1.00508; and at
time ¢ = 0.6 from 0.99514 to 1.00629. Left: results with a 200 x 100 uniform mesh.
Right: results with a 600 x 300 uniform mesh.
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Surface level at time t=0.12 Surface level at time t=0.12

Surface level at time t=0.24

Figure 5.19: RKDG scheme: The contours of the surface level A + b for the problem
in Section 5.3.2. 30 uniformly spaced contour lines. From top to bottom: at time
t = 0.12 from 0.99942 to 1.00656; at time ¢ = 0.24 from 0.99318 to 1.01659; at time
t = 0.36 from 0.98814 to 1.01161; at time ¢ = 0.48 from 0.99023 to 1.00508; and at
time ¢ = 0.6 from 0.99514 to 1.00629. Left: results with a 200 x 100 uniform mesh.
Right: results with a 600 x 300 uniform mesh.
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(tl)ig = pir%, which leads to

satisfying our requirement. For the RKDG scheme, we define

(t)n(2) = pa(2)

where py,(1) is the L? projection of p(x) to the finite element space V;,. We can then

easily verify the requirement

Fun) = sjlan(un, ) (t;)n =0
J
for the steady state solution.
Next, we present the numerical result for a linear acoustic test [3]. The properties

of the media are given by

K(z)

=\ o

=1+ 0.5sin(107z), Z(z) = p(z)c(z) =14 0.25 cos(107z).

The initial conditions are given by

—1.75 + 0.75 cos(1
+0.75c05(10m2) 204 < 4 < 06
()

pe(z,0) = 1 , u(z,0) =0.
, otherwise
*(z)

It is a test case where the impedance Z(x) and hence the eigenvectors are both
spatially varying. We perform the computation with 200 uniform cells, with the
ending time ¢ = 0.4s. An “exact” reference solution is computed with the same
scheme over a 2000 uniform cells. The simulation results are shown in Figure 5.20.

The numerical resolution shows very good agreement with the “exact” reference
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Figure 5.20: The numerical (symbols) and the “exact” reference (solid line) stress
o(z) at time ¢t = 0.4s. Left: FV schemes; right: RKDG schemes.

solution.

5.3.4 Chemosensitive movement

Originated from biology, chemosensitive movement [21, 15] is a process by which cells
change their direction reacting to the presence of a chemical substance, approach-
ing chemically favorable environments and avoiding unfavorable ones. Hyperbolic

models for chemotaxis are recently introduced [21] and take the form

ne + (nu), =0 (5.35)
(nu); + (nu® +n)y = nx'(c)% —onu '

ox

where the chemical concentration ¢ = ¢(z,t) is given by the parabolic equation

%—DCAc:n—c.

Here, n(z,t) is the cell density, nu(z,t) is the population flux and o is the friction
coefficient.

We would like to preserve the steady state solution to (5.35) with a zero popula-
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tion flux, which satisfies
nx'(¢)cz —ngy =0, nu = 0. (5.36)

where ¢ = ¢(x) does not depend on ¢ in steady state. The first equality above does

not seem to be of the form (5.17). However, (5.36) is equivalent to

n
a1 = —— = constant, as = nu =0,
eX(C)

which is clearly in the form of (5.17). The first component of the source term is 0.

A decomposition of the second component of the source term in the form of (5.3) is

ie. sy =s1(a) = S S2 = s9(az) = onu, ty(x) = eX€@) and ty(z) = .

For the finite volume scheme, we apply the WENO reconstruction to the function
(ex(@) 0)T | with coefficients computed from (n,nu)”, to obtain (eX(C(m)))i%. We
define

(tl)iﬂi% - (eX(C(w)))jfi—%’ (tQ)iiJr% =Ty

In the case of steady state,
Z+l clT
f(“j:_%) - Zsj(a(ua x)j:_%)(tj)ir% = n;:_% - 72i(€><( ( )))i% =0,
j

which satisfies our requirement. For the RKDG scheme, we define

(t1)n(z) = (XD, (to)n(z) =2

where (eX(¢(#)), is the L? projection of eX(¢(*) to the finite element space V. A
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similar manipulation as in the finite volume case leads to
Fun) = silan(un, 2))(t)n = 0,
J

Our technique can also be applied to the two dimensional case of this application.
We give an numerical example here to test the high order accuracy for smooth

solutions for our schemes. The initial conditions are taken as
n(z,0) =14 0.2 cos(mz), u(z,0) =0, z € [-1,1]

with
o(z) = e 1%, x(c) =log(1 +¢), o=0

with a periodic boundary condition. Since the exact solution is not known explicitly
for this problem, we use the same fifth order WENO scheme with N = 5120 cells
to compute a reference solution and treat it as the exact solution when computing
the numerical errors for the cell averages. Final time ¢ = 0.5s is used to avoid the
development of shocks. The TVB constant M in the limiter for the RKDG scheme is
taken as 13 for this example. Table 5.7 contains the L' errors and numerical orders
of accuracy. We can clearly see that expected order accuracy is achieved for this

example.

5.3.5 A model in fluid mechanics with spherical symmetry

A classical singularity arising in fluid mechanics in case of spherical symmetry leads

to the following model equation

2
ut-l—(u—) = —u?, (5.37)

[NV
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Table 5.7: L' errors and numerical orders of accuracy for the example in Section
5.3.4.

FV schemes
No. of | CFL pe pU
cells L' error order | L' error order
20 0.6 | 9.70E-03 7.41E-03

40 0.6 | 1.03E-03 3.24 | 8.85E-04 3.07
80 0.5 | 1.07TE-04 3.26 | 8.80E-05 3.33
160 0.4 | 5.63E-06 4.25 | 5.63E-06 3.97
320 0.3 | 2.21E-07 4.67 | 1.89E-07 4.89
640 0.1 | 7.18E-09 4.94 | 6.07TE-08 4.96
RKDG schemes

No. of pE puU

cells L' error order | L' error order
20 1.27E-04 1.46E-04
40 1.75E-05 2.85 | 2.07TE-05 2.82
80 1.32E-06 3.73 | 1.89E-06 3.46
160 1.21E-07 3.45 | 1.97E-07 3.26
320 1.29E-08 3.23 | 2.27TE-08 3.12
640 1.57E-09 3.03 | 2.76E-09 3.04

which has been considered in [6]. Notice that the source term is a nonlinear function

of u. The steady state for this problem is given by

du _u = a(u,z) =

i = constant (5.38)

SHES

which is of the form (5.2) with p(z) = 0 and ¢(x) = x. The source term can be

rewritten as

2
which is in the form of (5.3) with s,(a) = a? = (%)2 and t1(z) = %-. Note that here

$1 1s a nonlinear function of a.

For finite volume schemes, we apply the WENO reconstruction to the function
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q(z) = z, with coefficients computed from u, to obtain qijjr 1. Since z is a polynomial
2

with degree 1, the reconstructed qz?il should be exactly z,, 1, NO matter how we
2

compute the WENO coefficients. Hence, we can use x; 1 directly, without applying

z2
WENO reconstruction on it. We then define (tl)j:Ll = z;%, which leads to
2

£l ) = 3 sylalu, )%, )6

satisfying our requirement. For the RKDG scheme, we define
2

(t)n(a) = 5

and we can then easily verify the requirement
Flun) = sj(an(un, ))(t;)n =0
J

for the steady state solution.
Next, we present a numerical result to demonstrate the well balanced property.

The initial and boundary conditions are given by
u(z,0) =0, x €[5, 5] (5.39)

u(x = —5,t) = 10, u(x = 5,t) = —10. (5.40)

The choice of these information allows us to compute the steady state, which is
v = —2x. Numerical computations are performed by the well-balanced version
of finite volume WENO schemes and RKDG methods. To see the benefit of well
balanced schemes, we also use a non well balanced finite volume WENO schemes

and RKDG methods, and compare the results. We use 100 uniform cells here. The
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Figure 5.21: Comparison of the convergence history in L' error. Left: FV WENO
schemes; right: RKDG schemes.

comparison of the convergence history, measured by the L' norm of the difference
with the steady state, is given in Figure 5.21. The advantage of the well balanced
schemes can be easily observed. Also, we compute the L' and L*® errors at time
t = 10, with single precision and double precision. The results are shown in Table
5.8. We can clearly see that the errors are at the level of round-off errors for different

precisions, verifying the well-balanced property.

Table 5.8: L' and L™ errors for different precisions for the steady state (5.38).

FV DG

precision | L' error L™ error | L' error L* error
single 6.06E-06 2.24E-05 | 2.63E-05 9.87E-05
double | 1.60E-14 7.42E-14 | 3.25E-14 2.16E-13

5.3.6 Other applications

There are many other application problems which admit steady states that can be

approximated by our well balanced schemes. These include the nozzle flow problem,
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a two phase flow model and a typical example with a stiff source term. We refer
to [47] for more details of the first two models. The model with a stiff source term
takes the form:

1
up +uy = ——u(u —1). (5.41)
€

We can easily check that our well balanced schemes can be applied to these models.
Due to page limitation, we do not include computational results for these models

here.



Chapter 6

A New Approach of High Order
Well-balanced Finite Volume
WENO Schemes and RKDG
Methods for a Class of Hyperbolic

Systems with Source Terms

In this chapter, we design a new approach of high order well balanced finite volume
WENO schemes and RKDG finite element schemes. The general setup to obtain
well balanced property is completely different from the one used in Chapter Five.
In Section 6.1, we develop genuine high order well-balanced RKDG schemes for the
shallow water equations. The well-balanced generalization of finite volume WENO
schemes is presented in Section 6.2. Section 6.3 contains extensive numerical simu-
lation results to demonstrate the behavior of our well balanced schemes for one and
two dimensional shallow water equations, verifying high order accuracy, the exact C-
property, and good resolution for smooth and discontinuous solutions. Application

of these ideas to other balance laws, together with some selective numerical tests,

111
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are presented in Section 6.4.

6.1 Construction of well balanced RKDG schemes
for shallow water equations

The traditional high order RKDG method has been presented in Section 2.3. In
this section, we claim that, for one-dimensional and two-dimensional shallow water
equations, this method is indeed a well balanced scheme for still water, based on a
suitable choice of the initial value or the flux. This choice will not affect the property
of the scheme, such as high order accuracy in smooth region and non-oscillatory shock
resolution, and it increases the computational cost only slightly.

For the shallow water equations (1.3), we are interested in preserving the still
water stationary solution (1.5). For this still water, the first equation (hu), = 0 is
satisfied exactly for any consistent scheme since hu = 0. Let us concentrate on the

second equation, which can be denoted by

(hu)e + f(U)s = g(h, b)

where U = (h, hu)” with the superscript 7" denoting the transpose.

As described in Section 2.3, in a RKDG method U is approximated by the piece-
wise polynomial U, which belongs to V}, defined in (2.21). We project the bottom
function b into the same space V},, to obtain an approximation b,. This implies that
hp, + by, = constant if h + b = constant.

Following the idea first introduced by Audusse et al. [2], and later used in the

recent paper by Noelle et al. [30], our numerical scheme has the form:

/5t(hu)hvhd$—/ f(Uh)amUhd$+f;+lvh($;+1)—ﬁ_lvh(x;r_l)=/ 9(hn, bn)vndz.
g I : 2 : 2 I
(6.1)
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Comparing with the standard RKDG scheme (2.22), we can see that the single valued
fluxes fj+; and fjfl have been replaced by the left flux fl. , and the right flux f.r 15
? 2 I3 i—3

respectively. We can rewrite the above scheme as:

A

/Bt(hu)hvhd:v—/ f(Uh)azUhdI+fj+%Uh($;+;)_ -
I; I ’

~ ~

[ ottmboda + Gy = Ly unter, ) = Gy = F7pontar ),

J

where fj+% = F(Uh(:c;+l,t),Uh(x;rl,t)). The left side of (6.2) is the traditional
2 2

RKDG scheme, and the right side is our approximation to the source term. The

design of the left flux f;’ L1 and the right flux fj’."_

; will be explained later, however

2

we point out here that fj y1— fl. . and f 11— fT , are high order correction terms at
2 Jit3 2 J—3

the level of O(Az**1) and stay bounded when the numerical solution itself is bounded

as dx is refined. Therefore, the scheme (6.1) is a (k+1)-th order conservative scheme

and will converge to the weak solution.

In order to obtain the well balanced property, we need the residue

)—/Ig(hh,bh)vhdiv (6.3)

J

N

its J=2 V=

R = —/ f(Uh)axvhd:v + le.Jrlvh(ac’ ) — f.T_lvh(ac“.L
I; 2

to be zero if the still water stationary state (1.5) is reached. The following three con-
ditions, which only need to be valid for the still water stationary state, are sufficient

to guarantee this zero residue property.

o All the integrals in formula (6.3) should be calculated exactly for the still water.
This can be easily achieved by using suitable Gauss-quadrature rules since hy,
b, and vy, are polynomials in each cell I;, hence f, g are both polynomials.

Note that (hu), = 0 for the still water.

e We assume that
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for the still water. Note that this condition is not obvious. Later we will

comment on how to make it possible for the RKDG method.

e We assume that Uy, which is the numerical approximation of U, is a steady

state solution of the equation (hu);+ f(U), = g(h, b), where by, has substituted

b. This is true since hy, + by, = constant and (hu), = 0, which imply (%ghﬁ)m =
—ghy(bg)z, or

0o f (Un) = g(hn, br). (6.5)

Proposition 6.1.1 RKDG schemes which satisfy the above three conditions for the

shallow water equations are exact for the still water stationary state (1.5).

Proof. If these three conditions are satisfied, the residue R in (6.3) for still water

reduces to

R = —/ f(Uh)am’l)hd.T-f-]il-_Fl’Uh(.’Ej__i_l)—fjr_l’l)h(x;—_l)—/g(hh,bh)’l)hdl‘
I 2 2 2 2 I

J

= —/ f(Uh)azvhd:E+f(Uh($]._+l,t))vh($;+l)
I ? :

Sy )~ [ albnbr)unds

1
J=3 )
J

= /azf(Uh)Uhde—/g(hh,bh)vhdfﬂ
I :

I

— [ (@103 = gl bi)yunds =0

I

where the second equality is due to (6.4), the third equality follows from a simple
integration by parts, and the last equality follows from (6.5). O

Remark 6.1.2 For discontinuous solutions, the limiter on the function Uy, is usually
performed after each Runge-Kutta stage. This limiter procedure might destroy the
preservation of the still water steady state h + b = constant. Therefore, following

the idea presented in [2, 51], we apply the limiter procedure on the function (hy +
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b, (hu)p)T instead. The modified RKDG solution is then defined by hi"? = (h +
byt — by Since T = it D™ — By = (i 7 D) — by = Fm, we observe that
this procedure will not destroy the conservativity of hy, which should be maintained

during the limiter process.

For shallow water equations, the first and third conditions are obviously true,
hence the only one remaining for us to check is the second condition. In order to

fulfill it, we have two choices.

Choice A: Define the initial value and the approximation b, by continuous piecewise
polynomials. We would then have bh(:zcjjr 1, t) = bh(x;l,t). If the steady state
2 2
hy + by, = constant is reached, we will have a continuous hy, i.e. hh(fr;+;,t) =
2

by, (x;.:% ,t), which makes

fj—l—% = F(Uh(agj:r%,t), Uh(x;;%,t)) = f(Uh(:Ej_Jr%, t) = f(Uh(-T;':-%at))

We can therefore simply define the left and right fluxes as

A o ~ o
j+%_fj+%a f;'-_%_fj—%:

which will fulfill the second condition. This make our scheme (6.1) to be identical
to the traditional RKDG scheme without any modification.

In order to define the continuous piecewise polynomial approximations to the ini-
tial value and b, we can use the idea of essentially non-oscillatory (ENO) procedure

[19]. Based on the values u we can choose suitable stencils for each individual

its
cell I; by an ENO procedure, and then obtain a polynomial on I; through an in-

1 at the two cell boundaries.

terpolation. This polynomial equals to u; +1

and u;

1
2

Hence the global piecewise polynomial is continuous.

Choice B: Here we follow the idea of Audusse et al. [2]. After computing boundary
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values U FIETALC set

2

ot + + + —
hh,ﬁf max (0 h B +b; hgtl T max(bh 4l bh,j—i—%)) (6.6)
*,— - +
hy, j41 = max (O,hh 1t iy T max(bh +;’bh,g+2)) (6.7)
and redefine the left and right values of U as:
hot
Upt, = M (6.8)
3. 2 h
(.

Then the left and right fluxes le 41 and f]’.’_ ; are given by:
2 2

0

£l _ *,— *,4
Fiy =P LU ) + s sy (6.9)
2 h'aj+2 2 ,]"‘2
0
fr_1= F(Uy" 1, Uyl 1) + st v e (6.10)
’ ’ 5(hh,jf%) —5(hh’,j7%)

Here F' is a monotone flux as mentioned in Section 2.2. It is easy to check that
fj+% —fjl.+l and f;% —f;_l are indeed at the level of O(Az**1) for general solutions,
2 2
hence the original (k 4 1)-th order of accuracy is maintained. Under the still water
stationary state, hy + by, = constant, hence it is easy to see U~ , = U, “t . The
=j+§ h’a]+§
left flux then returns to:

N 0 . 0
.7+l = *,— 2 — *,—
? %(h’h’_ﬂ_%) %(hh,j+2) %(h’ ,j+2)
' £U;,,)
-\,
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Similarly,
i1 = T 0): (6.11)

Remark 6.1.3 Clearly Choice A provides a simpler scheme with smaller computa-
tional cost, hence it would be preferred if it provides comparable numerical results
to that of Choice B. Unfortunately, although it works well for small perturbation
solutions from still water for a smooth bottom, the numerical resolution for a discon-
tinuous bottom is not ideal. On the other hand, Choice B provides good numerical
results for all the test cases we have experimented. In Section 6.3, we will report

only the results obtained by Choice B to save space.

We now consider the extension of the well-balanced high order RKDG schemes

to 2-D shallow water equations

([ by + (hu)y + (hv), = 0
1
(hu)s + (hu2 + §9h2) + (huv)y = —ghb, (6.12)

T

o

1
(hv); + (huv), + <hv2 + §gh2> = —ghb,

\ Y

where again A is the water height, (u,v) is the velocity of the fluid, b represents the
bottom topography and g is the gravitational constant. The still water stationary

solution we are interested to preserve is
h + b = constant, hu = 0, hv = 0. (6.13)

It is straightforward to extend our well balanced RKDG schemes to this two-dimensional

problem. Also, the scheme can be applied on any triangulation.
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6.2 Construction of well balanced finite volume
WENO schemes for shallow water equations

In this section, we generalize the idea used in Section 6.1 to design a well balanced
finite volume WENO schemes for the shallow water equations. The basic idea is the
same as that for the RKDG methods. The only extra step is due to the fact that we
only have the reconstructed pointwise values U;:L 1 and would need to first define an
approximation function U,. We can then follow the procedure as before.

As before, we denote U]fr L 38 the reconstructed left and right values at the inter-
face z; 41 The still water is given by h; +b; = constant where as before the overbar
denotes the cell average. We would like to have the reconstructed values to satisfy

h 1t b+ 1= constant as well. This can be achieved by the approach that we used

in [48]. Basically, the WENO reconstruction can be eventually written out as

T r—1
Uty = > i, Uss = > Uy (6.14)

k=—r+1 k=—r
where r = 3 for the fifth order WENO approximation and the coefficients wy and
wy depend nonlinearly on the smoothness indicators involving the cell average % and
satisfy > . ., wp = Zz;ir Wy, = 1. We then use the same coefficients wy and

computed from above on B = (b,0)T to obtain

T r—1
B, = > wiBjsk, B, = > By (6.15)
k=—-r+1 k=—r
Hence,
T r—1
Ui+ Bl = k >y 1 w(Ujsr + Bjaw),  Upa + B = kz @y, (Ujir + Bjyr),
=—7r+ =—7

from which we know that the reconstructed values satisfy h;ﬂr 1t bjjr 1 = constant
2 2
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for still water.
For the well balanced property, we only need to consider the second equation of

(1.3). Our well balanced finite volume WENO scheme is given by

d— ~ N
Py (1) =~ (g — F1,) + /I o(h, b)dz (6.16)

J

where fjl 41 and f;_l are the left and right fluxes as defined in Section 6.1. The
2

2
residue R is denoted by the right side of the equation (6.16).

Here we also give three conditions which need to be valid for the still water

stationary state (1.5):

e We use interpolation to obtain a high order polynomial h;, on the cell I;, based

on the boundary values h™ ,, h. ,
U A

values. For example, we can use h]f+3, h
3

and several other neighboring boundary
4 h,;.t% and h;i 3 to interpolate a
third degree polynomial. Similarly, we can use the same interpolation on b to
obtain a polynomial by, and then use them to compute [ L g(hp, by)dx exactly
by using a suitable Gauss quadrature. In order to obtain (2k)-th order accuracy
for the approximation of the source term, h, and b, need to approximate h

and b with (k4 1)-th order accuracy. We observe from the definition of hj, and

by, that the interpolated polynomials satisfy the following properties:

hn(@si3) = by ha(zig) = hys ba(zgey) = by bl g) =07y,
_ : + +
hy, + by, = constant if hj+ 1 + bj+ L= constant.

e We assume that the left and right fluxes fjl ; and f]’"_

2

, satisfy (6.4).

e We assume that interpolated polynomial Uy(z,t) above, is a steady state solu-
tion of the equation (hu); + f(U), = g(h,by), where b, has substituted b. As

before, this is true since hy, + b, = constant and (hu), = 0.
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Proposition 6.2.1 Finite volume WENQ schemes which satisfy the above three con-

ditions for shallow water equations are well balanced for still water stationary state

(1.5).

Proof. If these three conditions are satisfied, the residue R for still water reduces

to

Ro= ~fiy+ g+ [ olnbids

I

— Iy, )+ FOGa] )+ [ gl

J

(M

- _/4 8mf(Uh)dx+/'g(hhabh)dx

I I

= - / (02 f (Un) = g(hn,br))dz =0

I]
where the second equality is due to (6.4), and the last equality follows from (6.5). O

Note that the first and third conditions are obviously true for the still water of
the shallow water equations. As to the second one, we follow Choice B in Section

6.1, i.e. (6.8), (6.9) and (6.10).

Remark 6.2.2 During the WENQO reconstruction, we reconstruct k polynomials on

the cell I;, based on different stencils, and then define the boundary values uj_+l
2

and u;.t L G5 conves combinations of those polynomials. We emphasize that such
convezx combination, when viewed as a function, is not a polynomial on I;, due to
the nonlinear nature of the weights. Therefore, the interpolated polynomial uy is not
that convex combination and must be recomputed. However, if we use ENQ instead

of WENQO schemes, we can directly take up as the ENO reconstructed polynomial on

I;, thereby saving the computational cost to obtain it again by interpolation.

Remark 6.2.3 Audusse et al. [2] introduced a second order well balanced finite

volume scheme, and recently, Noelle et al. [30] generalized it to higher order accuracy.
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The idea proposed here is a generalization of these schemes, by allowing more freedom
in defining the polynomials hy, and by, to save computational cost. If we interpolate
hy and by, based on the two boundary values plus the center value of the cell I; (which
must be reconstructed), this will give us the fourth order discretization of the source

term as introduced in [30].

Now let us consider the 2D shallow water equations (6.12) with the still water
stationary solution (6.13) to be balanced. It is straightforward to extend our well
balanced WENO schemes to this two-dimensional problem, at least for rectangular
meshes. Let us look at the second equation in (6.12) for instance. As we mentioned

in Section 2.2, the numerical scheme is given by:

d 1/, . 1/, .
0 = =5 (Mg, = (1) - s (515 = (2)isms) +is (617)

with
(F)is Zwa Fi(eyyi + BalSy)) ) (6.18)

and similarly for ( f2) ., and

+

1
9i5; = _Axi;wa (/Ig(hb;c

9 (hba)(w, y; + ﬁaij)dx) (6.19)

|
- ghb,dxdy
Az Ay; g, I;

where the first quadrature summation in the y direction must be accurate to the

Q

order of the scheme and the integration in the x direction must be computed exactly

(by Gauss-quadrature with enough exactness). If the still water stationary solution
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(6.13) is given, the right side of the numerical scheme (6.17) becomes:

1 A R
_ASL'Z' ((fl)é+%,j - (fl);_%,j) - A—x, Zwa </I1 q (hbw)(x,yj + ﬁaij)dx)
= —Alxi > wa ((ﬁ(-,yj + BaNy;))iy 1 — (fily; + ﬁaij));_%)

o

Alx. Zwa (/I g (hby)(z,y; + ,Baij)dx> :

We can balance (f; (-, yj+ﬂaij))i+% —(f1(-, Y, —i—ﬁaij));”_% with fIi g (hbg)(z, y; +
BaAy;)dz for each fixed «, by the same technique used in the 1D case. This means
that at each Gauss point in the y direction, we interpolate polynomials as functions
of x, and use them to compute the source term. Well balanced property is thus

obtained. Similarly, we can handle the third equation in (6.12) in the same fashion.

Remark 6.2.4 Both the well-balanced RKDG and finite volume WENQ schemes are
developed here. The RKDG schemes involve less modification for the well balanced
property to hold, and are more flexible for general geometry, adaptivity and parallel
implementation. On the other hand, the RKDG schemes rely on limiters to con-
trol spurious oscillations for discontinuous solutions, which are less robust than the
WENQO reconstruction procedure in the capability of maintaining accuracy in smooth
regions and controlling oscillations for strong discontinuities simultaneously. We

refer to [52] for a comparison of these two types of schemes.

6.3 Numerical results for the shallow water equa-
tions

In this section we provide numerical results to demonstrate the good properties of
the well balanced finite volume WENO and finite element RKDG schemes when
applied to the shallow water equations. Fifth order finite volume WENO scheme
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and third order finite element RKDG scheme are implemented as examples. In all
numerical tests, time discretization is by the third order TVD Runge-Kutta method
in [41]. For finite volume WENO schemes, the CFL number is taken as 0.6, except
for the accuracy tests where smaller time steps are taken to ensure that spatial errors
dominate. For the third order RKDG scheme, the CFL number is 0.18. For the TVB
limiter implemented in the RKDG scheme, the TVB constant M (see [39, 11] for its
definition) is taken as 0 in most numerical examples, unless otherwise stated. The

gravitation constant g is taken as 9.812m/s? during the computation.

6.3.1 Test for the exact C-property

The purpose of the first test problem is to verify that the schemes indeed maintain
the exact C-property over a non-flat bottom. We choose two different functions for

the bottom topography given by (0 < z < 10):
b(z) =5e 3@, (6.20)

which is smooth, and

4 if4<2x<8
b(z) = (6.21)
0 otherwise,

which is discontinuous. The initial data is the stationary solution:
h+b =10, hu = 0.

This steady state should be exactly preserved. We compute the solution until £ = 0.5
using N = 200 uniform cells. In order to demonstrate that the exact C-property is
indeed maintained up to round-off error, we use single precision, double precision and
quadruple precision to perform the computation, and show the L' and L* errors for
the water height A (note: h in this case is not a constant function!) and the discharge

hu in Tables 6.1 and 6.2 for the two bottom functions (6.20) and (6.21) and different
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precisions. For the RKDG method, the errors are computed based on the numerical
solutions at cell centers. We can clearly see that the L' and L™ errors are at the

level of round-off errors for different precisions, verifying the exact C-property.

Table 6.1: L' and L*® errors for different precisions for the stationary solution with

a smooth bottom (3.16).

L' error L error

precision h hu h hu
single 3.00E-05 1.10E-04 | 4.39E-05 5.19E-04
FV double 5.04E-14 2.99E-13 | 1.12E-13 1.26E-12
quadruple | 6.48E-33 3.45E-32 | 2.17TE-32 1.54E-31
single 8.41E-06 3.15E-05 | 3.72E-05 2.06E-04
RKDG double 3.02E-15 3.59E-15 | 1.60E-14 7.22E-14
quadruple | 8.06E-31 2.92E-33 | 8.05E-29 1.07E-31

Table 6.2: L' and L errors for different precisions for the stationary solution with

a nonsmooth bottom (6.21).

L! error L error

precision h hu h hu
single 1.80E-05 1.40E-04 | 3.24E-05 2.41E-04
FV double | 4.41E-14 2.57E-13 | 1.05E-13 1.30E-12
quadruple | 4.27E-32 3.71E-31 | 1.07E-31 1.46E-30
single 5.72E-07 1.22E-07 | 9.54E-07 3.41E-07
RKDG double 1.40E-15 3.16E-16 | 3.55E-15 7.77E-15
quadruple | 8.06E-31 1.65E-34 | 8.06E-29 4.12E-33

We have also computed stationary solutions using initial conditions which are not
the still water stationary solutions and letting time evolve into a still water stationary
solution, obtaining similar results with the exact C-property, i.e. the errors are at

the level of round-off errors for different precisions.
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6.3.2 Testing the orders of accuracy

In this example we will test the high order accuracy of our schemes for a smooth

solution. We have the following bottom function and initial conditions
b(z) = sin®(rz), h(z,0) =5+ ) (hu)(zx,0) = sin(cos(2rz)), = € [0,1]

with periodic boundary conditions, see [46]. Since the exact solution is not known
explicitly for this case, we use the fifth order finite volume WENO scheme with
N = 12,800 cells to compute a reference solution, and treat this reference solution as
the exact solution in computing the numerical errors. We compute up to ¢ = 0.1 when
the solution is still smooth (shocks develop later in time for this problem). Table 6.3
contains the L! errors for the cell averages and numerical orders of accuracy for the
finite volume and RKDG schemes, respectively. We can clearly see that fifth order
accuracy is achieved for the WENO scheme, and third order accuracy is achieved
for the RKDG scheme. For the RKDG scheme, the TVB constant M is taken as 32.
Notice that the CFL number we have used for the finite volume scheme decreases
with the mesh size and is recorded in Table 6.3. For the RKDG method, the CFL
number is fixed at 0.18.

6.3.3 A small perturbation of a steady-state water

The following quasi-stationary test case was proposed by LeVeque [28]. It was chosen
to demonstrate the capability of the proposed scheme for computations on a rapidly
varying flow over a smooth bed, and the perturbation of a stationary state.
The bottom topography consists of one hump:
0.25(cos(10m(z — 1.5)) +1) if14<zx<1.6

b(z) = (6.22)
0 otherwise
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Table 6.3: L' errors and numerical orders of accuracy for the example in Section
6.3.2.

FV schemes
No. of | CFL h hu
cells L' error order | L' error
25 0.6 | 1.28E-02 1.16E-01

50 0.6 | 2.25E-03 2.50 | 2.25E-02 2.37
100 0.4 | 3.26E-04 2.79 | 2.75E-03 3.03
200 0.3 | 2.33E-05 3.80 | 2.00E-04 3.79
400 0.2 | 9.54E-07 4.61 | 8.20E-06 4.60
800 0.1 | 2.99E-08 4.99 | 2.58E-07 4.99
RKDG schemes

No. of h hu

cells L' error order | L' error order
25 2.35E-03 2.12E-02
50 1.14E-04 4.36 | 1.01E-03 4.39
100 1.24E-05 3.20 | 1.09E-04 3.21
200 1.02E-06 3.59 | 8.97E-06 3.60
400 1.12E-07 3.19 | 9.79E-07 3.19
800 1.30E-08 3.09 | 1.14E-07 3.08

The initial conditions are given with

1-b(z)+e ifl1<zx<12
(hu)(z,0) =0 and h(z,0)= (6.23)
1—b(z) otherwise

where € is a non-zero perturbation constant. Two cases have been run: € = 0.2 (big
pulse) and € = 0.001 (small pulse). Theoretically, for small ¢, this disturbance should
split into two waves, propagating left and right at the characteristic speeds 4+/gh.
Many numerical methods have difficulty with the calculations involving such small
perturbations of the water surface [28]. Both sets of initial conditions are shown in
Figure 6.1. The solution at time ¢t=0.2s for the big pulse € = 0.2, obtained on a 200

cell uniform grid with simple transmissive boundary conditions, and compared with
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Figure 6.1: The initial surface level h + b and the bottom b for a small perturbation
of a steady-state water. Left: a big pulse e=0.2; right: a small pulse e=0.001.

a 3000 cell solution, is shown in Figure 6.2 for the F'V scheme and in Figure 6.4 for
the RKDG scheme. The results for the small pulse ¢ = 0.001 are shown in Figures
6.3 and 6.5. At this time, the downstream-traveling water pulse has already passed

the bump. We can clearly see that there are no spurious numerical oscillations.

6.3.4 The dam breaking problem over a rectangular bump

In this example we simulate the dam breaking problem over a rectangular bump,
which involves a rapidly varying flow over a discontinuous bottom topography. This
example was used in [44].
The bottom topography takes the form:
8 if |z — 750| < 1500/8

b(x) = . (6.24)
0 otherwise

for x € [0,1500]. The initial conditions are

(h)(@,0) = 0 and h(z,0) = 4 2 0@) w750 (6.25)

15 — b(x) otherwise
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Figure 6.2: FV scheme: Small perturbation of a steady-state water with a big pulse.
t=0.2s. Left: surface level h + b; right: the discharge hu.
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Figure 6.3: FV scheme: Small perturbation of a steady-state water with a small
pulse. t=0.2s. Left: surface level h + b; right: the discharge hu.



129

12
= nx=3000 I nx=3000
115F nx=200 04r E nx=200
11 F
E 02F
Qo F F
HosF E
s F g
e 2o
o = -
£ =
30.95 E
=3 0.2F
09F E
085 F 04F
] ] ] E ] ] ]
08, 05 1 15 2 0 0.5 1 15 2
X X

Figure 6.4: RKDG scheme: Small perturbation of a steady-state water with a big
pulse. t=0.2s. Left: surface level h + b; right: the discharge hu.
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Figure 6.5: RKDG scheme: Small perturbation of a steady-state water with a small
pulse. t=0.2s. Left: surface level h + b; right: the discharge hu.



130

h+b a nx=4000
77777777777 initial h+b - o nx=400
bottom b ‘ 3

surface level h+b, bottom b
surface level h+b

R TR |
0 250

L Jdo v b L L L L L L L L | L L L L
500 750 1000 1250 1500 0 500 1000 1500
X X

Figure 6.6: FV scheme: The surface level A + b for the dam breaking problem at
time t=15s. Left: the numerical solution using 400 grid cells, plotted with the initial
condition and the bottom topography; Right: the numerical solution using 400 and
4000 grid cells.

The numerical results obtained by the FV scheme with 400 uniform cells (and a
comparison with the results using 4000 uniform cells) are shown in Figures 6.6 and
6.7, with two different ending time t=15s and t=60s. Figures 6.8 and 6.9 demonstrate
the numerical results by the RKDG scheme, with the same number of uniform cells.
In this example, the water height h(x) is discontinuous at the points x=562.5 and
x=937.5, while the surface level h(z)+b(x) is smooth there. Both schemes work well
for this example, giving well resolved, non-oscillatory solutions using 400 cells which

agree with the converged results using 4000 cells.

6.3.5 Steady flow over a hump

The purpose of this test case is to study the convergence in time towards steady flow
over a bump. These are classical test problems for transcritical and subcritical flows,
and they are widely used to test numerical schemes for shallow water equations. For
example, they have been considered by the working group on dam break modelling

[17], and have been used as a test case in, e.g. [43].
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Figure 6.7: FV scheme: The surface level h + b for the dam breaking problem at
time t=60s. Left: the numerical solution using 400 grid cells, plotted with the initial
condition and the bottom topography; Right: the numerical solution using 400 and

4000 grid cells.
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Figure 6.8: RKDG scheme: The surface level h + b for the dam breaking problem at
time t=15s. Left: the numerical solution using 400 grid cells, plotted with the initial
condition and the bottom topography; Right: the numerical solution using 400 and

4000 grid cells.
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Figure 6.9: RKDG scheme: The surface level h + b for the dam breaking problem at
time t=60s. Left: the numerical solution using 400 grid cells, plotted with the initial
condition and the bottom topography; Right: the numerical solution using 400 and
4000 grid cells.

The bottom function is given by:

0.2 —0.05(x — 10)? if8 <z <12
b(z) = (6.26)

0 otherwise

for a channel of length 25m. The initial conditions are taken as
h(z,0) =0.5—b(x) and wu(z,0)=0.

Depending on different boundary conditions, the flow can be subcritical or transcrit-
ical with or without a steady shock. The computational parameters common for all
three cases are: uniform mesh size Az = 0.125 m (200 cells), ending time t= 200 s.
Analytical solutions for the various cases are given in Goutal and Maurel [17].

a): Transcritical flow without a shock.
e upstream: The discharge hu=1.53 m?/s is imposed.

e downstream: The water height h=0.66 m is imposed when the flow is subcrit-
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Figure 6.10: FV scheme: Steady transcritical flow over a bump without a shock.
Left: the surface level h + b; right: the discharge hu as the numerical flux for the
water height h.

ical.

The surface level A + b and the discharge hu, as the numerical flux for the water
height A in equation (1.3), are plotted in Figures 6.10 and 6.11, which show very
good agreement with the analytical solution. The correct capturing of the discharge
hu is usually more difficult than the surface level h + b, as noticed by many authors.

b): Transcritical flow with a shock.
e upstream: The discharge hu=0.18 m?/s is imposed.
e downstream: The water height h=0.33 m is imposed.

In this case, the Froude number Fr = u//gh increases to a value larger than one
above the bump, and then decreases to less than one. A stationary shock can appear
on the surface. The surface level h 4+ b and the discharge hu, as the numerical flux
for the water height A in equation (1.3), are plotted in Figure 6.12 and 6.13. In
Figure 6.12 for the FV scheme, some minor oscillations can be observed near the

jump. Here we also plot the numerical result with 400 uniform cells in Figure 6.14,
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Figure 6.11: RKDG scheme: Steady transcritical flow over a bump without a shock.
Left: the surface level h + b; right: the discharge hu as the numerical flux for the
water height h.

where we can observe that the oscillation is completely removed. The reason for this
phenomenon is still not known.

¢): Subcritical flow.
e upstream: The discharge hu=4.42 m?/s is imposed.
e downstream: The water height h=2 m is imposed.

This is a subcritical flow. The surface level A + b and the discharge hu, as the
numerical flux for the water height A in equation (1.3), are plotted in Figure 6.15

and 6.16, which are in good agreement with the analytical solution.

6.3.6 Test for the exact C-property in two dimensions

This example is used to check that our schemes indeed maintain the exact C-property

over a non-flat bottom for 2D shallow water equations. The two-dimensional hump

b(z,y) = 0.8¢ XU(z-05)°+y-05)) z,y € [0,1] (6.27)
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Figure 6.12: F'V scheme: Steady transcritical flow over a bump with a shock. Left:
the surface level h + b; right: the discharge hu as the numerical flux for the water
height h.

0.45 0.2
analytic h+b I analytic discharge
0.4 o numeical h+b I o numerical discharge
F bottom b i
035 F 019l
203fF I
203} L
= r -
%o.zs F % I
Q I 0.18
(%)
[ - K] L
3 02 I ° |
T
Z0.15F r
o1 b 017 B
0.05 F L
L. L1 L1 L1 ‘ L. L1 L1 L1 L1 ‘
%5 5 15 20 25 0165 5 10 15 20 25
X

Figure 6.13: RKDG scheme: Steady transcritical flow over a bump with a shock.
Left: the surface level h + b; right: the discharge hu as the numerical flux for the
water height h.
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Figure 6.14: FV scheme with 400 uniform cells: Steady transcritical flow over a
bump with a shock. Left: the surface level h + b; right: the discharge hu as the
numerical flux for the water height A.
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Figure 6.15: FV scheme: Steady subcritical flow over a bump. Left: the surface level
h + b; right: the discharge hu as the numerical flux for the water height A.
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Figure 6.16: RKDG scheme: Steady subcritical flow over a bump. Left: the surface
level h + b; right: the discharge hu as the numerical flux for the water height h.

is chosen to be the bottom. h(z,y,0) =1 — b(x,y) is the initial depth of the water.

Initial velocity is set to be zero. This surface should remain flat. The computation is

performed to ¢ = 0.1 using single, double and quadruple precisions with a 100 x 100

uniform mesh. Table 6.4 contains the L' errors for the water height A (which is not

a constant function) and the discharges hu and hv for both schemes. We can clearly

see that the L! errors are at the level of round-off errors for different precisions,

verifying the exact C-property.

Table 6.4: L' errors for different precisions for the stationary solution in Section

6.3.6.

L! error

precision h hu hv
single 8.77E-07 7.49E-07 6.93E-07
FV double | 1.49E-15 2.31E-15 2.30E-15
quadruple | 1.04E-33 9.87E-34 1.01E-33
single 9.43E-08 4.84E-07 4.94E-07
RKDG | double | 6.98E-17 2.31E-15 2.31E-15
quadruple | 6.14E-34 1.52E-33 1.53E-33
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6.3.7 Testing the orders of accuracy

In this example we check the numerical orders of accuracy when the schemes are
applied to the following two dimensional problem. The bottom topography and the

initial data are given by:
b(z,y) = sin(27z) + cos(2my), h(z,y,0) = 10 + €52 cos(27y),

(hu)(z,y,0) = sin(cos(27x)) sin(27y), (hv)(z,y,0) = cos(2mz) cos(sin(27y))

defined over a unit square, with periodic boundary conditions. The terminal time is
taken as t=0.05 to avoid the appearance of shocks in the solution. Since the exact
solution is also not known explicitly for this case, we use the same fifth order WENO
scheme with an extremely refined mesh consisting of 1600 x 1600 cells to compute a
reference solution, and treat this reference solution as the exact solution in computing
the numerical errors. The TVB constant M in the limiter for the RKDG scheme is
taken as 40 here. Tables 6.5 and 6.6 contain the L' errors and orders of accuracy
for the cell averages. We can clearly see that, in this two dimensional test case, fifth
order accuracy is achieved for the finite volume WENO scheme and close to third

order accuracy is achieved for the RKDG scheme.

Table 6.5: FV scheme: L' errors and numerical orders of accuracy for the example
in Section 6.3.7.

Number h hu hv
of cells CFL | L! error order | LI error order | L error order
25 x 25 0.6 | 7.91E-03 2.12E-02 6.52E-02

90 x 50 0.6 | 1.13E-03 2.81 | 2.01E-03 3.40 | 9.22E-03 2.82
100 x 100 | 0.6 | 8.89E-05 3.66 | 1.25E-04 4.00 | 7.19E-04 3.68
200 x 200 | 0.4 | 4.07E-06 4.45 | 5.19E-06 4.59 | 3.30E-05 4.45
400 x 400 | 0.3 | 1.42E-07 4.84 | 1.84E-07 4.82 | 1.15E-06 4.84
800 x 800 | 0.2 | 4.38E-09 5.02 | 5.99E-09 4.94 | 3.63E-08 4.99
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Table 6.6: RKDG scheme: L' errors and numerical orders of accuracy for the example
in Section 6.3.7.

Number h hu hv

of cells L' error order | L' error order | L' error order
25 x 25 | 2.45E-03 1.36E-02 2.05E-02

50 x 50 | 5.73E-04 2.10 | 2.92E-03 2.22 | 4.75E-03 2.11
100 x 100 | 1.06E-04 2.43 | 5.31E-04 2.46 | 8.51E-04 2.48
200 x 200 | 1.71E-05 2.63 | 8.81E-05 2.60 | 1.39E-04 2.61
400 x 400 | 2.53E-06 2.75 | 1.32E-05 2.74 | 2.11E-05 2.72
800 x 800 | 3.52E-07 2.84 | 1.88E-06 2.81 | 3.01E-06 2.81

6.3.8 A small perturbation of a two dimensional steady-state

water

This is a classical example to show the capability of the proposed scheme for the
perturbation of the stationary state, given by LeVeque [28]. It is analogous to the
test done previously in Section 6.3.3 in one dimension.

We solve the system in the rectangular domain [0, 2] x [0, 1]. The bottom topog-
raphy is an isolated elliptical shaped hump:

b(z,y) = 0.8 ¢~5#—09)°=50(y—05) (6.28)
The surface is initially given by:
1—>b(z,y) +0.01 if 0.05 <z <0.15
Moo =4 LY
1—b(z,y) otherwise (6.29)

hu(z,y,0) = hv(z,y,0) =0

So the surface is almost flat except for 0.05 < x < 0.15, where h is perturbed upward
by 0.01. Figures 6.17 and 6.18 display the right-going disturbance as it propagates
past the hump, on two different uniform meshes with 200 x 100 cells and 600 x 300
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cells for comparison. The surface level h + b is presented at different times. The
results indicate that both schemes can resolve the complex small features of the flow

very well.

6.4 Other applications

In this section, we generalize high order well balanced schemes, designed in Sections
6.1 and 6.2, to other balance laws introduced in [47], including the elastic wave
equation, the hyperbolic model for a chemosensitive movement, the nozzle flow, a
model of fluid mechanics and a two phase flow model. Due to page limitation, only
the elastic wave equation and chemosensitive movement model are investigated here,
however our technique can also be applied to the other three cases. Some selective

numerical tests are presented to show the good properties of our well balance schemes.

6.4.1 Elastic wave equation

We consider the propagation of compressional waves [3, 45] in an one-dimensional
elastic rod with a given media density p(x). The equations of motion in a Lagrangian

frame are given by the balance laws:

(pE)e + (—pu)s = —u?

dz (6.30)
(pu)e + (—0)e = 0,

where € is the strain, u is the velocity and o is a given stress-strain relationship
o(e,z). The equation of linear acoustics can be obtained from above if the stress-

strain relationship is linear,

ole,z) = K(z)e
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Surface level at time t=0.12 Surface level at time t=0.12

L
7.5

00

Figure 6.17: FV scheme: The contours of the surface level h + b for the problem
in Section 6.3.8. 30 uniformly spaced contour lines. From top to bottom: at time
t = 0.12 from 0.99942 to 1.00656; at time ¢ = 0.24 from 0.99318 to 1.01659; at time
t = 0.36 from 0.98814 to 1.01161; at time ¢ = 0.48 from 0.99023 to 1.00508; and at
time ¢ = 0.6 from 0.99514 to 1.00629. Left: results with a 200 x 100 uniform mesh.
Right: results with a 600 x 300 uniform mesh.
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Surface level at time t=0.12 Surface level at time t=0.12

L L
G.5 il 7.5

Surface level at time t=0.24 Surface level at time t=0.24

L
7.5

L
1.5 O(_)

00

Figure 6.18: RKDG scheme: The contours of the surface level A + b for the problem
in Section 6.3.8. 30 uniformly spaced contour lines. From top to bottom: at time
t = 0.12 from 0.99942 to 1.00656; at time ¢ = 0.24 from 0.99318 to 1.01659; at time
t = 0.36 from 0.98814 to 1.01161; at time ¢ = 0.48 from 0.99023 to 1.00508; and at
time ¢ = 0.6 from 0.99514 to 1.00629. Left: results with a 200 x 100 uniform mesh.
Right: results with a 600 x 300 uniform mesh.
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where K(z) is the given bulk modulus of compressibility. The steady state we are

interested to preserve for this problem is characterized by
a; = o(e, ) = constant, as = u = constant.

Here we only show the well balanced property for the RKDG schemes. Similar
idea can be used for the finite volume WENO schemes.

First, we project the initial value to obtain U, = ((pe)n, (pu)s)T, and also apply
the same procedure for p to obtain p,. Then, we check the three conditions in Section
6.1 one by one. Only the first equation in (6.30) must be considered for the well
balanced property.

1: If the steady state is reached, u, = (pp% is constant and pj is a polynomial,

hence the integral of the source term can be calculated exactly.

2: We set

*, 4 (,0 )’—:J‘F% 4 _
(pu)y s = ﬂmax(l)h“%:/}hﬁ%) (6.31)
)Ty
(pu), 11
*,— . ,J+§ _|_ —
(pu)h7j+% = ﬁ maX(ph,ﬂ_%, ’Oh,j—|—%) (632)
5] 2

(0E); 41
st = Mita (6.33)
WJts (pu)*,:l:
hyj+3
Then we define the left and right fluxes as:
; e . —(pu), . 1+ (pu)y 1
oy =FU U ) + hits hits (6.34)
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—(pu)y ;1 + (pu)y7

[l =FU Uit s) + 0 hi=s | | (6.35)

h:]_z h’j_%

The max in (6.31)-(6.32) was chosen in [2] to guarantee positive water height and
was referred to as “hydrostatic reconstruction” there. Here it does not have a clear
physical meaning and could be replaced by minimum or average as well.
3: (pu)p, satisfying u, = constant, is also a steady state solution of :
dpn

(—pu)y = —u— .

With these three conditions, we can repeat the proof of Proposition 6.1.1 to show

that our schemes are indeed well balanced and high order accurate.

Remark 6.4.1 When performing the limiting on the function (pu)y after each Runge-
Kutta stage to control spurious oscillations, we keep in mind that our purpose is to
maintain the steady state solution (pu), which satisfies up, = constant. Here we fol-
low the idea used in [48], and first check whether any limiting is needed based on the
function uy, in each Runge-Kutta stage. If the answer is yes, then the actual limiter

is implemented on (pu)y.

Next, we present the numerical result for a linear acoustic test [3]. The properties

of the media are given by

K(x)
p(z)

c(z) = =1+ 0.5sin(107z), Z(z) = p(z)c(x) =14 0.25 cos(107z).

The initial conditions are given by

—1. . 1
75 4 0.75 cos( Omﬁ), f0d4<x2<06
c?(z)

pe(z,0) = 1 , u(z,0) = 0.
, otherwise
*(z)

It is a test case where the impedance Z(x) and hence the eigenvectors are both
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Figure 6.19: The numerical (symbols) and the “exact” reference (solid line) stress
o(z) at time t = 0.4s. Left: FV schemes; right: DG schemes.

spatially varying. We perform the computation with 200 uniform cells, with the
ending time ¢ = 0.4s. An “exact” reference solution is computed with the same
scheme over a 2000 grid point uniform cells. The simulation results are shown in
Figure 6.19. The numerical resolution shows very good agreement with the “exact”

reference solution.

6.4.2 Chemosensitive movement

Originated from biology, chemosensitive movement [21, 15] is a process by which cells
change their direction reacting to the presence of a chemical substance, approach-
ing chemically favorable environments and avoiding unfavorable ones. Hyperbolic

models for chemotaxis are recently introduced [21] and take the form

ne + (nu), =0

(6.36)
(nu); + (nu® +n), = nx'(c)g—; —onu
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where the chemical concentration ¢ = ¢(z,t) is given by the parabolic equation

%—DCAc:n—c.

Here, n(z,t) is the cell density, nu(z,t) is the population flux and o is the friction
coefficient.
We would like to preserve the steady state solution to (6.36) with a zero popula-

tion flux, which satisfies

n
=@ = constant, nu = 0. (6.37)

where ¢ = ¢(z) does not depend on t in steady state.
Here we only show the well balanced property for the RKDG schemes. Similar
idea can be used for the finite volume WENO schemes.

T

First, we project the initial value to obtain U, = (ny, (nu),)", and also project

eX(¢) to obtain (eX(?)),. Then, we check the three conditions in Section 6.1 one by

one. Only the second equation in (6.36) is relevant for the well balanced property.

n_d

@ %GX(C) — onu. If the steady state is

1: The source term can be written as:
reached, 7 is constant and (eX(9)), is a polynomial, hence the integral of the source

term can be calculated exactly.

2: We set
+
n, .
R = M e (XOYE L (X)) (6.38)
h7.7+§ (eX(C));J l ha]+§’ h1]+§
T3
n, . 1
w— _ _ hity x(©)\+ x(e)y—
mith T (ex@)- max((€9), 511 (€59, 541) (6.39)
JT35
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and redefine the left and right values of U as:

*,+
n’
U= | (640
2 (nu)h,ﬂ%
Then we define the left and right fluxes as:
Lo =FU U )+ 0 (6.41)
ity 0\ hg+d byt T —nhT '
h7]+§ ha]+§
Ty =FU" U )+ 0 (6.42)
j*% h,j—%’ h,j—% TL+ . —’I’L*’+ . .
haj_§ ha]_§

3: We note that (nu), = 0 and ny, satisfying (e%% = constant, is the steady

state solution of :
n d

—(eX(9)),, — onu.

2 —
(nu +n)z - (ex(c))h dr

With these three conditions, we can repeat the proof of Proposition 6.1.1 to show
that our new schemes are indeed well balanced and high order accurate.

The limiter procedure is performed similarly as in Section 6.4.1. We refer to [48]
for more details.

The following example is to test the fifth order accuracy for smooth solutions,

for which we take the initial conditions as
n(z,0) =1+ 0.2 cos(nz), u(z,0) =0, z € [-1,1]

with
c(z) = e 107, x(c) =log(1l+¢), oc=0

with a periodic boundary condition. Since the exact solution is not known explicitly

for this problem, we use the same fifth order WENO scheme with N = 5120 points
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to compute a reference solution and treat it as the exact solution when computing

the numerical errors. Final time ¢ = 1.0s is used to avoid the development of shocks.

The constant M is taken as 13 and the CFL number is 0.18 in the RKDG code.

Table 6.7 contains the L' errors and numerical orders of accuracy. We can clearly

see that the expected order accuracy is achieved for this example.

Table 6.7: L' errors and numerical orders of accuracy for the example in Section
6.4.2.
FV schemes

No. of | CFL pe pU

points L' error order | L' error order
20 0.6 | 1.10E-002 8.76E-003
40 0.6 | 1.20E-003 3.20 | 1.02E-003  3.10
80 0.5 | 1.19E-004 3.34 | 9.81E-005 3.38
160 0.4 | 6.27TE-006 4.25 | 5.32E-006  4.20
320 0.3 | 2.48E-007 4.66 | 2.12E-007 4.65
640 0.1 | 8.09E-009 4.95 | 6.85E-008 4.96

DG schemes

No. of pE puU

points L' error order | L' error order
20 1.13E-004 1.13E-004
40 1.56E-005 2.86 | 1.42E-005 2.99
80 1.06E-006 3.88 | 9.58E-007  3.89
160 8.91E-008 3.57 | 8.09E-008  3.56
320 8.93E-009 3.32 | 8.10E-009  3.32
640 1.06E-009 3.07 | 9.59E-0010 3.08




Chapter 7

High Order Finite Volume
Well-balanced WENO Schemes for
the Moving Steady State of the

Shallow Water Equations

In this chapter, we are interested in exactly preserving the moving steady state

solution

1
hu = constant, §u2 + g(h + b) = constant (7.1)

of the shallow water equations (1.3), which has many applications in the world. This

steady state problem does not belong in the class of balance laws introduced in Chap-
ter Four, nor can it be balanced by the method used in Chapter Six. A new well
balanced finite volume WENO scheme is presented here. Only one dimensional prob-
lem is discussed in this thesis. In Section 7.1, we introduce some notations to be used
later. The algorithm to construct well balanced schemes is then introduced in Sec-

tion 7.2. Section 7.3 contains extensive numerical simulation results to demonstrate

149
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the behavior of our well balanced WENO schemes, verifying high order accuracy, the

well balanced property, and good resolution for smooth and discontinuous solutions.

7.1 Conservative and equilibrium variables

In this section we introduce the sets of conservative variables U and equilibrium
variables V' upon which our well-balanced scheme relies. As usual, the conservative

variables are denoted by U = (h,m) = (h, hu). Let
1 2
E = gU T+ g(h+) (7.2)

be the total energy. For smooth solutions, the shallow water equations may be

rewritten as

Thus the steady states (4.5) are given by m = constant, E = constant. This

motivates the introduction of the equilibrium variables
V= (m,FE). (7.5)

In order to construct our well-balanced scheme, it is essential to transform the con-
servative variables U into the equilibrium variables V' and vice versa. Due to the

nonlinearity of the energy, it is not straightforward to establish such a transform.

7.1.1 Variable transformations

Given conservative variables U and a bottom function b, the energy E (and hence

the equilibrium variables V' = V(U)) can be easily computed by (7.5). The difficulty
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lies in finding the inverse transform U = U(V'). For this, we introduce the Froude

number
Fr:=|ul//gh, (7.6)

which plays the same role as the Mach number in gas dynamics: A state is called

sonic, sub- or supersonic if the Froude number equals, falls below or exceeds unity.

We label the different flow regimes by the sign function
o =sign(Fr—1), (7.7)

SO

1 supersonic flow
o= 0 sonic flow (7.8)

-1 subsonic flow.

Suppose now that V' = (m, F) and b are given. Under which conditions can we

recover the conservative variable A from this information, and thus establish the
desired transform U = U(V)? Let us denote the part of the energy depending on h
by

2

o(h) i= 25 + gh. (7.9)

Here m is considered to be a fixed parameter. Our task is to find a unique solution
h such that

o(h) = E — gb. (7.10)
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If m = 0, then one can solve (7.10) as long as E' — gb > 0. If m # 0, then ¢(h) is

positive and convex. Its unique minimum is (hg, ¢o) with
3
gho = (g|m\)2/3, Yo = §(Q|m\)2/3- (7.11)

Note that hg is exactly the sonic point for the prescribed value of m. We also have

a lower bound for the energy, given by
3
Ey = o+ gb= §(g|m|)2/3 + gb. (7.12)

If E < Ejy, there is no solution to (7.10). If E = Ej, there is the unique solution

h = hy. If F > Ej, there are two solutions, one super- and the other one subsonic.

It is instructive to normalize the variables via h := h/ho, ¢ := ©/@o. Then

N 2 1 -
ph)=-|—==+nh 7.13
o0 =3 (s +h). (7.3

and the Froude number may be written as

Fr(h) = h™3/2. (7.14)

This shows that h = 1, h>1 resp. h<1 correspond to sonic, sub- and supersonic

states, see Figure 7.1. If we introduce E := (E — gb)/¢o, then (7.10) becomes

A

p(h) = E. (7.15)

We summarize our results in the following Definition and Lemma.

Definition 7.1.1 Let m € R be given. A pair (E,a) € Rx{-1,0,1} (resp. a triple
(E,b,0) € R? x {—1,0,1}) is an admissible state if either

c=0 and E=1 (resp. E=E) (7.16)
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50 -

20+

Figure 7.1: The normalized function @(h). Supersonic (h < 1), sonic (h = 1) and
subsonic (h > 1) regions.

or

lo|=1 and E>1 (resp. E > Ep). (7.17)

Lemma 7.1.2 Let m be given, and suppose that the pair (E, o) is admissible. Then

there exists a unique solution

h = h(E,0) (7.18)
such that
h<1 foro=1 (supersonic flow)
h=1 foro=0 (sonicflow) (7.19)
h>1 foro=—1 (subsonic flow).

We call h(E, o) the admissible solution of (7.15).
Written in non-scaled variables (h, m, E, b) we have shown

Corollary 7.1.3 Let m be given, and suppose that the triple (E,b, o) is admissible.
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Then the unique admissible solution h = h(m, E,b,0) of (7.10) is given by

1 A A
h(m,E,b,0) = E(gm)z/?’h(E, o). (7.20)

Given admissible values (E’ ,0) it is straightforward to find the corresponding solution
h by Newton’s method: if ¢ = 0, then h =1. If 0 = 1, make sure that the starting
value 7% in Newton’s method satisfies 2 < 1 and $(h%) > E. Then the sequence
hn generated by Newton’s method is monotone and converges quadratically towards
h(E,o). Analogously, if ¢ = —1, assure that h° > 1 and @¢(h°) > E in order to

obtain monotone, quadratic convergence.

7.2 High order well-balanced finite volume scheme

In this section, we design a high order finite volume WENO scheme for the shallow
water equation (1.3), with the objective to maintain the general moving steady state
solution (7.1). We start with the one dimensional case, and left the two dimensional
problem for further investigation. The basic framework of the well balanced scheme
follows the one introduced by Audusse et al. [2], and later used in the recent papers
[30, 49]. However, the approximation of the flux and source terms requires more
attention due to the complexity of the moving steady state. For simplicity, we

denote the shallow water equations (1.3) by

where U represents (h, hu), f(U) is the flux and s(U, b) stands for the source term.
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7.2.1 Framework of the discretization

We discretize the computational domain with cells I; = [z, 1, Ty L l,i=1,---,N.
We denote the size of the i-th cell by Az; and the center of the cell by z; =
% (:cif 14T ) The computational variables are U;(t), which approximate the
cell averages U (z;,t) = fI (z,1) dz.

We solve an mtegrated version of (7.21) over the interval I;, Our conservative

finite volume scheme takes the classical semidiscrete form

d— 1 A

where fz +1 is a consistent, Lipschitz continuous numerical flux for the homogeneous
shallow water equations and s; is a high order approximation to the integral of the
source term fIi s(h(x,t),b(x))dz. For later reference, we call the RHS of (7.22) the
residual r;/Az;. Thus a well-balanced scheme is one for which all residuals vanish
at steady state.

As to the formal accuracy of the scheme, we have the following lemma

Lemma 7.2.1 The numerical scheme (7.22) is formally k-th order accurate if the
following holds in smooth regions:

i) fi+l = fU(ziy1,1)) + O((Ax;)*), where the O term is smooth.

i) f] (h,b)dz + O((Az;)F 1)

The following Lax-Wendroff theorem proves that the numerical solution converges

to a weak solution of this conservation law.

Lemma 7.2.2 The numerical approzimation computed with scheme (7.22) converges
to a weak solution of (7.21), if the following conditions are satisfied:

i) the numerical flux fH% is a consistent flux (2.7);

i) the approzimation to the source term Aixis,- stay bounded when the numerical

solution itself is bounded, as the grid size Az is refined.
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The proof of these lemmas are straightforward.

We choose a TVD Runge-Kutta discretization [41] in time. In order to complete
the definition of the scheme, we need to introduce the spatial reconstruction, the
source term discretization, and the numerical fluxes. This will be done in Sections

7.2.2 and 7.2.3.

7.2.2 Equilibrium-limited reconstructions in the cell interior

Assume the initial values U; and b; are given. We apply the WENO reconstruction
procedure on b; to obtain bi,bii+ . and the approximations of b(x) at the relevant
Gaussian points. If b(x) is known at all points, this WENO reconstruction procedure
is unnecessary.

At each time step t", we first apply the WENO reconstruction procedure to the
variables U; to obtain Ui%, ai L and hence V;j—: L The reconstructed values Uj,
o; and V; at the center of the cell are also needed for the purpose of source term
discretization.

Now we need to address one of the more subtle points of the well-balanced al-
gorithm. Even if the initial data are in perfect equilibrium, say V(z) = V for
some constant equilibrium state V, the WENO-reconstructed values U;, Uii% and
hence V;, Vi% may not be in equilibrium any more. The problem is the total energy
FE = %uQ + g(h +b). First of all, the topography b may be a general function of z.
Second, the velocity depends nonlinearly on height and momentum. For the lake at
rest, the second problem disappears since v = 0. The first problem can be fixed by
reconstructing not b, but h+b and recovering b;, bl?i% as (h+0b); —h;, (h-l—b)z?i% —hzfr%,
see [2, 30].

For moving equilibria, this is much less straightforward. Our solution proceeds

as follows: first we define a local reference state V; for each cell I; as the solution of
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the implicit equation

0, = Alxi /1 UV, b(z), o(T)) da, (7.23)

where the conservative cell average Uj; is considered to be given. By definition, these

reference values satisfy

Lemma 7.2.3 Suppose the function U(z) is in equilibrium, i.e. there is an equilib-

rium state V' such that

Then

V=V forall i. (7.24)

In actual implementation, we use a Gauss quadrature of sufficient accuracy to ap-
proximate the integral in (7.23). That is, the reference energy F; is implicitly defined

by the equation

_ 1 - _ _
hi = sz ; wah(hui, EZ', bz’—l—a, O'(UZ)) (725)

A Newton iteration is then used to solve (7.25) with the initial guess of E; being

The conclusion of Lemma 7.2.3 still holds for the reference value E; defined in (7.25).
The relevance of Lemma 7.2.3 (and its discrete analogue) is that it provides an indi-
cator that we have reached equilibrium, since in this case all the values V; coincide.

Next we show how to use the local reference values V; to modify the WENO

reconstructed values er ; and V; in such a way that they maintain any present
2
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global equilibrium state V. For this we use the TVD type limiter function
hm(w, ’U_)i, wi:l:l) = wW; + m(w — ’U_)i, U_)H—l - U_)Z', W; — ’lIJi_l), (726)

where

s$min a,| if s = sign(ar) = sign(as) = sign(az),
m(al,GQ,ag) — 15"S3| n‘ g ( 1) g ( 2) g ( 3) (727)
0, otherwise.

Of course, other limiters should be possible as well.

We apply the limiter separately to momentum m and energy E, and write the

result symbolically as

Vi; = lim(‘/;i%; Vis Vit)- (7.28)

Similarly, we compute the limited pointwise values Vi. Note that non-negative ener-

gies Eil will remain non-negative. We have the following well balanced property,
2

which is important for the following steps:

Lemma 7.2.4 At steady state, where V(z) =V, the limited values (7.28) satisfy

Vi =V,=V,=V forall i. (7.29)

Therefore we call (7.26)—(7.28) the equilibrium limiter.

Proof. If V(z) = V, then V; = V for all i due to (7.24). Therefore, the function
m in (7.26)—(7.27) vanishes, and

lim(‘/;i%; Vis Vi) = Vi= V. (7.30)

We still have to modify our reconstructed values ‘v/jr , and V; once more due to
2
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the following observation:

Remark 7.2.5 We may only have first order accuracy at smooth extrema if the

above TVD limiter is used.

To improve the accuracy, we have two choices.

1: We have the pointwise values V;il which are high order accurate for general

2
solutions, but do not equal to a constant for the moving steady state solution. On

the other hand, we have the limited values ‘v/:Ll which satisfy the well balanced

2
requirement for steady states, but are only first order accurate at smooth extrema

for general solutions. The idea is to use a convex combination of the two candidate

values

%

= Vi Hiflag (Vi = Vi) (7.31)

The goal is to weight the combined value f/jr , toward XV/:L , for steady state soutions,
2 2

and toward er L away from them. One possible definition of the indicator ‘iflag’ is
based on a wide support. The idea we follow is: We find 2v/N (N is the number of
cells) consequent points on two sides of cell I;, and sum min(V;y; — V;,V; — V;_1)
over any j falling into this category. If we denote this result as ¢, the indicator ‘iflag’
is then defined as exp(—¢N), which will be one if it is near steady state, i.e. ¢ is
near zero. Numerical results to be presented later show that this works well.

2: Another way to improve the accuracy at the extreme points is to change the
TVD limiter procedure m to a new limiter. Instead of using the information from
a wide support, we are trying to approximate the high derivative. The details are
given below.

We first define these three values:
1 - _ _ _ _
dl = §||Vz'+1—Vi—1||a d2 = ||Viy1 =2V, + V4],

d= Vi, = Vill +2IVi = Vil + V., = Vill,
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where d1, d2 are the approximations to absolute value of the first and second deriva-
tives of V. If our V is a smooth function, by the Taylor’s expansion, we can know

that actually the following relation can be obtained:

d = ||V;:r%—‘_/;||+2||V;—‘_/Z||+||V;J_r%—l_/z||

VII VI VII VII VI

~ ||—Az?+ —A 2| — Az? —Az2 - A
155 80+ 2l + 2 L aa? + | VA - g
12 By g 222
12 2 24 12 2

< d1+d2

- 4

Consider the flag value 2 . For smooth V', we know this flag value must be

d1+d2/4
d

greater than 1 (even near the extreme). However, if the steady state solution is

reached, V is constant and then d1 and d2 are both zero, hence this flag value equals

to zero. If we define the limited value as

Vi = V; + min(1,

1 2/4. - _
SLRALILTAN 0 (7.32)

2

this would give us a high order approximation, which also satisfies our well balanced

requirement. V:l and V; can be defined in a similar way.
2

To summarize, the equilibrium balanced variables f/;fa and f/;fa are given either
directly

e by the TVD limited values ffia and ‘ufia in (7.28), or

e by the weighted switch (7.31), or

e by the limiter type switch (7.32).

The corresponding conservative variables are given by

Pt
Uiio

N 1
=U(VZ,, bt 05,) for o€ {0, 5} (7.33)

i+a) Vit Yita

As an immediate consequence of Lemma 7.2.4 we have
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Corollary 7.2.6 If Vii, =V, then the equilibrium-limited values (7.33) satisfy

V (Ui, b)) = V(Uzi%,bj;%) = V.. (7.34)

The well balanced numerical test in Section 7.3 shows that the second method gives
better results than the third, since the steady state cannot be preserved up to the
roundoff error by using the latter method. The errors are at the level of 1078 for
double precision. But it can capture the small perturbation of the steady state well.

Among all our numerical tests, we will use the second one, i.e. (7.31) together with

(7.33).

7.2.3 A well-balanced quadrature rule for the source term

Suppose we have any points x;, < xr with corresponding values (U, b);, and (U, b)g.

Then we define the numerical residuum of the cell [z, zg] by

ri o= —Dfi + 57
= —f(Ur) + f(Ur)
hr + hy, mrmg(hg — hL)Q
e ( 2 2mgme(he + he) - 4g(hL)2(hR)2> (br —br) (7.35)

Let us denote the central bracket on the RHS of (7.35) by ;zf and thus rewrite the

source term as
st = —ghf (br —br). (7.36)

Note that this quadrature of the source term generalizes the well-balanced discretiza-

tion for the lake at rest (i.e. my = mpg = 0), which is

hr + hg
2

(br — br). (7.37)
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The quadrature (7.35) is motivated by analyzing the flux difference for moving equi-

libria. In this case we have m; = mgr = m and E;, = Eg. Let h := (hy, + hg)/2.

Now the flux difference becomes

f(Ur) = f(UL)

1 , m? 1 , m?
= ig(hR) + T ég(hL) T hy
—(gp— ™ (hg — h) (7.38)
=1\9 hihn R L .
Now we use the relation
ghih
hg —hy =—(bgp — b)) —55——= 7.39
R~ NL (br L)gh%h%—mQh’ (7.39)
which holds if E;, = Ei. Combining (7.38) and (7.39) yields
Lemma 7.2.7 Suppose that V (UL, b)) = V(Ug,bgr). Then
f(UR) = f(UL) = =g h{ (br — br), (7.40)

s0 the residuum r¥ vanishes at steady state.

In the following two paragraphs we treat the interior residual and the residual in

the boundary of each cell separately.

7.2.3.1 The cell boundary residual

At the boundary, both the conservative variables ﬁil

2
exhibit a jump discontinuity. As usual, the jump in the conservative variables is

and the topography birl
2

treated by an approximate Riemann solver. The jump in the topography will give
rise to a d-singularity in the source term, which has to be taken into account.
To derive our scheme, we separate the boundary into two layers, see Figure 7.2.

Take, for example the left boundary of cell ;. We introduce points x¢ = T 1 <



163

topographic layer in b

|
¢}
of T T T T T 1]
¢}
¢}
[}
a

=

convective layer in U

U
o
I L A

Figure 7.2: The boundary layer model. Top: discontinuous topography b. Bottom:
shock-discontinuity in U. Transition layers are marked by dotted lines.

xp < x4 which are separated by an infinitesimal distance. Together with these we

introduce the values

(Ua, ba) := (U}, b)), (7.41)
(Up,bp) = (Uitl,?)i,%), (7.42)
(Uo,be) = (Ui_1,b;1). (7.43)

The values at point x4 are adjacent to the interior of the cell. The value bj_ ;18

~ 2
the WENO reconstructed bottom topography, and Uitl is the WENO reconstructed
2
and equilibrium limited conservative variable (7.33). At the point xp the topography

from the left of cell ¢ and the right of cell ¢+ — 1 is merged,
b0 (7.44)

The equilibrium variable remains constant, Vg = V4, and the conservative variable

changes accordingly to the new value

Uby i=UWVE b0t y). (7.45)
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Between the points zp and x¢ the topography remains unchanged. The point z¢

marks the interface between cells 7 and 7 — 1. The interface value U,

i—1 symbolizes

the solution of the approximate Riemann problem,

fO_)=fir=FU_,, U ,). (7.46)

2

We can therefore distinguish two boundary layers within each cell. We call [z¢, 5]

the convective and [zg,x 4] the topographic layer. In the convective layer, the to-
pography is constant, so the source term s disappears and the residuum becomes

a pure flux difference

A

i = —f(Us) + f(Uc) = =f(U1) + F(U_1) (7.47)

1
=3

as for the homogeneous conservation law.

In the topographic layer the bottom b changes while the equilibrium variables V' =

(m, E) remain constant. According to Lemma 7.2.7 the overall residuum vanishes,

P =, (7.48)

and by definition (7.35) of the residuum

s = f(Up) — f(Ua) = F(UF,) — F(TF,). (7.49)

1—5 1_5

Thus we can express the source term as the convective flux difference and vice versa.

7.2.3.2 The interior residual

Based on the reconstructed values Ui , in (7.45) we now define the residual in the
2

interior of the cell as

rint =l (7.50)
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with (Ug, br) = (Uit%, b;%) and (Ug,bg) = (Uijr%, b;L%). This residual is so far only
second order accurate. But we can directly adapt the extrapolation idea used in the
paper of Noelle et al. [30], and obtain a high order discretization.

We first subdivide each cell into N subcells and apply the quadrature (7.36) to
all subcells. Then we can have the following quadratures Sy:

N
Sy = st(US 4, U7, bf 4, b7) (7.51)

»Yj—12"g
j=1

where the subscript j means the value at the point Tj_1+ jAz/N. In the case of

steady state, we have the following fact:

N
SN = Z Sg(U]tla Uj_a b_;'tla b]_)
JNl
= Y (fU;) - £U )
j=1

= JUN) - JU) = [U,) - FUL).

=3

This shows that Sy is also a second order well balanced approximation to the source
term. Note that the quadrature S; (7.36) is second order accurate and symmetric,

therefore, there exists an asymptotic expansion:

Az\? Az\*
SN:S+C1 (W) +CQ(W> +"‘, (752)

where S represents the source term. Then the idea of extrapolation can provide an
approximation to S with any order of accuracy by the combination of Sy. A well

balanced fourth order approximation is given by:

455 — 51

. (7.53)

Compared with the second order discretization (7.36), the fourth order well bal-
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anced scheme here needs one additional reconstructed point value at the cell center

per cell, which is necessary for the computation of S,.

7.2.4 Summary of the scheme

The fourth order well-balanced scheme is given by

d - 1
_Uz =

(—F(U— U+ )+ PO, U+ )—i—si). (7.54)

i1 1 _1
ity 3 t—3 T3

Here the function F(-,-) is a conservative, Lipschitz continuous numerical flux con-
sistent with the shallow water flux, i.e. F/(U,U) = f(U) for all U. The left and right

values Ui ; at the cell interface are defined in (7.45).

The total source term s; is given by

45, -8

2 2 2 2
The extrapolated interior source term (4S5, — S1)/3 is defined by
Sp= 55(0;:1; ﬁi:_lvb:__lab;_l) (7.56)
Sy = (sf(f]il, 03, b 4, b) + 703, U, b, b;l)) (7.57)
=3 3 T3 T3

and the well-balanced quadrature of the source term s¥ is given by

hR+hL _ mLmR(hR—hL)2
2 2mpmg(hy + hg) — 4g(hr)*(hg)’

s¥(UL,Ugr, by, br) = —g ( ) (br — b1)

(7.58)

The scheme is completed by a TVD Runge-Kutta discretisation [41] in time.

Algorithm 7.2.8 An implementation of this algorithm may follow the following

steps:

1. Compute the initial cell average of U and bottom b based on the initial data.
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Apply the WENQO reconstruction on b; to obtain point values of b (may be

ignored if bottom b is prescribed as a function of x.

2. At each time step, perform the usual WENO-LF or WENO-LLF approzimation
on the cell average U;, and obtain Uil, hence V:rl Compute U; and V; to
2 2

obtain fourth order accuracy.
3. Compute the reference value V; as the implicit solution of equation (7.23).

4. Apply the equilibrium limiter (7.26) on the cell averages Vi, Viz1, and on the
pointvalues V:Ll,VZ-, to get the limited values 17;:*:1 and V;. Then apply the
limiter (7.31) to obtain Vil and V;.

2

5. Compute the numerical fluzes on the RHS of (7.54).
6. Compute the high order discretization to the source term (7.55)—(7.58).

7. Apply a TVB Runge-Kutta scheme [41] to (7.54) to advance U;(t) in time.

Collecting the results of this section it is straightforward to prove the following

Theorem 7.2.9 The WENO scheme (7.54)—(7.58) maintains the moving steady
state solution (4.5) exactly and is high order accurate. The same holds for the fully

discrete scheme.

Proof. Suppose that the initial data are a moving steady state, V(z) = V. Then
Lemma 7.2.3 implies that all reference values V; coincide with V. Corollary 7.2.6

implies that V (U, b)) = V(U%,,b%,) = Vi. Now Lemma 7.2.7 implies that the
2 2

interior residual vanishes, r = 0. Since we know from (7.48) that there is no

t,

residual in the topographic layer, 7;°”° = 0, it remains to show that the residual in

the convective layer, r{°"” vanishes as well. For this we study not only the values

(A]: , and UZ; 1 but also the corresponding value [7; ; from the neighboring cell I;_;.
2 2
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Since V; | = V;, it follows that UZ:% = IAJZ.JZ% and hence fi% = f([A]:%) Therefore
= fiy = FUF) =0 (7:59)
and
ri =T 4 %P0 4 pem = ) (7.60)

so both the semidiscrete and the fully discrete schemes will preserve moving steady

states.
We can easily check the two conditions of Lemma 7.2.1 are satisfied for our

scheme. This proves the high order accuracy. O

Remark 7.2.10 The steady state solution we are trying to maintain in the previous
well balanced scheme is m = constant and E = constant globally. There also exists
the cases when a shock appears in the steady state, hence m, E are both piecewise
constants, and satisfy the Rankine-Hugoniot jump condition at the shock. In that
case, we may meet problems near the shock position — the condition of the theorem

(7.2.7) is not true any more.

Here we only deal with the case when the shock position is exactly on the cell
boundary and leave the general case for further investigation. Suppose we already
know the shock position at the beginning, then we perform the one sided limiter

procedure on the cells next to the shock. This will make sure that erl equal to

2
constant piecewisely. Since the Roe’s flux is the only one which can capture the

shock exactly, we use WENO-Roe instead of WENO-LF here. And the condition
of the theorem (7.2.7) is still true since the shock is exact on the boundary and
IA/Z.:L% = V:% is true for any . Then we can still have a well balanced scheme for this
special case.
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7.3 One dimensional numerical results

In this section we present numerical results of our fourth order finite volume WENO
scheme satisfying the well balanced property for the one dimensional shallow water
equations (1.3). In all the examples, time discretization is by the classical third order
Runge-Kutta method, and the CFL number is taken as 0.6, except for the accuracy
tests where smaller time step is taken to ensure that spatial errors dominate. The

gravitation constant g is taken as 9.812m/s%

7.3.1 Well balanced test

The purpose of the first test problems is to verify the well balanced property of our
algorithm towards the moving steady state solution. These steady state problems
are classical test cases for transcritical and subcritical flows, and they are widely
used to test numerical schemes for shallow water equations. For example, they have
been used as a test case in, e.g. [43]. Here, our purpose is to maintain these steady
state solutions exactly.

The bottom function is given by:

0.2 —0.05(x —10)? if8 <z <12
0 otherwise
for a channel of length 25m. Three steady states, subcritical or transcritical flow

with or without a steady shock will be investigated.

a): Transcritical flow without a shock. The initial condition is given by:

Eo 19 L 9819 x 0.6 — 1.53 (7.2)
T 2x0662 oY =0 '

together with the boundary condition

e upstream: The discharge hu=1.53 m?/s is imposed.
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e downstream: The water height h=0.66 m is imposed when the flow is subcrit-

ical.

This steady state should be exactly preserved. We compute the solution until ¢ = 20
using N = 200 uniform mesh points. The computed surface level h + b and the
bottom b are plotted in Figure 7.1. In order to demonstrate that the steady state is
indeed maintained up to round-off error, we use single precision, double precision and
quadruple precision to perform the computation, and show the L' and L* errors for
the water height h (note: h in this case is not a constant function!) and the discharge
hu in Tables 7.1 for different precisions. We can clearly see that the L' and L errors

are at the level of round-off errors for different precisions, verifying the well balanced

property.

Table 7.1: L' and L* errors for different precisions for the transcritical flow without
a shock.

L' error L*> error
precision h hu h hu
single 3.43E-05 5.61E-05 9.35E-04 6.56E-05
double 5.63E-16 1.51E-15 2.05E-15 6.66E-15
quadruple 5.38E-34 2.14E-33 1.73E-33 6.55E-33

b): Transcritical flow with a shock. The initial condition is given by:

2
_0.18° 1 9812 x 0.41372 ifz < 11.665511784112317

2

E=q 25043157 m = 0.18,
m +9.812 x 0.33 otherwise

(7.3)

together with the boundary condition
e upstream: The discharge hu=0.18 m?/s is imposed.

e downstream: The water height h=0.33 m is imposed.
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Figure 7.1: The surface level h+b and the bottom b for the transcritical flow without
a shock.

This steady state should be exactly preserved. As we mentioned in Section 7.2, we
only discuss the case when the shock is exactly located at the cell boundary. Hence
we shift the computational domain to put the shock at the cell boundary. Also, we
mentioned that the left and right approximated values of bottom at the shock must
be exact, so that the Roe’s flux can capture this shock exactly. Here we compute
the solution until ¢ = 20 using N = 400 uniform mesh points. The computed surface
level h + b and the bottom b are plotted in Figure 7.2. In order to demonstrate that
the steady state is indeed maintained up to round-off error, we use single precision,
double precision and quadruple precision to perform the computation, and show the

L' and L* errors for the water height h and the discharge hu in Tables 7.2 for
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different precisions. We can clearly see that the L' and L™ errors are at the level of

round-off errors for different precisions, verifying the well balanced property.

0.45

surface level h+b
bottom b
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0.35
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Figure 7.2: The surface level h + b and the bottom b for the transcritical flow with
a shock.

¢): Subcritical flow. The initial condition is given by:

E =22.06605, m =4.42, (7.4)

together with the boundary condition
e upstream: The discharge hu=4.42 m?/s is imposed.

e downstream: The water height h=2 m is imposed. when the flow is subcritical.
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Table 7.2: L' and L™ errors for different precisions for the transcritical flow with a
shock.

L' error L error
precision h hu h hu
single 7.20E-06 1.38E-06 2.03E-03 1.42E-05
double 4.26E-18 4.01E-18 2.22E-16 2.22E-16

This steady state should be exactly preserved. We compute the solution until ¢ = 20
using N = 200 uniform mesh points. The computed surface level A + b and the
bottom b are plotted in Figure 7.3. In order to demonstrate that the steady state
is indeed maintained up to round-off error, we use single precision, double precision
and quadruple precision to perform the computation, and show the L' and L* errors
for the water height h and the discharge hu in Tables 7.3 for different precisions. We
can clearly see that the L' and L® errors are at the level of round-off errors for

different precisions, verifying the well balanced property.

Table 7.3: L' and L* errors for different precisions for the subcritical flow.

L' error L error
precision h hu h hu
single 2.39E-05 8.51E-05 3.97E-05 1.86E-04
double 2.66E-16 3.03E-15 1.11E-15 9.77E-15
quadruple 1.34E-35 4.87TE-34 5.78E-34 3.08E-33

7.3.2 Testing the orders of accuracy

In this example we will test the high order accuracy of our schemes for a smooth

solution. Following the examples presented in [46], we have the bottom function and
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Figure 7.3: The surface level h + b and the bottom b for the subcritical flow.

initial conditions
b(z) = sin®*(7x), h(xz,0) = 545 (hu)(z,0) = sin(cos(27x)), z €[0,1]

with periodic boundary conditions. Since the exact solution is not known explicitly
for this case, we use the fifth order finite volume non well-balanced WENO scheme
with N = 12,800 cells to compute a reference solution, and treat this reference
solution as the exact solution in computing the numerical errors. We compute up
to t = 0.1 when the solution is still smooth (shocks develop later in time for this

problem). Table 7.4 contains the L' errors for the cell averages and numerical orders
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of accuracy for the finite volume schemes, respectively. Notice that the CFL number
we have used decreases with the mesh size and is recorded in Table 7.4. We can easily
observe the fifth-order accuracy for the WENO schemes. Note that the fifth-order
WENO reconstruction has been used in space, but the source term is approximated
by a fourth order accurate extrapolation. Hence the approximation of the source
term in the algorithm contributes less to the overall error. This phenomena has been

investigated in [30].

Table 7.4: L' errors and numerical orders of accuracy for the example in Section
7.3.2.

No. of | CFL h hu
cells L' error order | L' error order
25 0.6 | 8.60E-04 1.77E-02

50 0.6 |4.21E-05 4.35 | 1.26E-03 3.81
100 0.4 | 1.38E-06 4.93 | 5.32E-05 4.56
200 0.3 | 5.55E-08 4.64 | 2.42E-06 4.46
400 0.2 | 1.83E-09 4.93 | 8.42E-08 4.84
800 0.1 | 4.39E-11 5.37 | 1.76E-09 5.58

7.3.3 A small perturbation of a moving steady-state water

The following test case is chosen to demonstrate the capability of the proposed
scheme for computations on the perturbation of a steady state solution, which cannot
be captured well by a non well balanced scheme.

In the subsection 7.3.1, we present three steady state solutions and show that our
numerical schemes do maintain them exactly. In this test case, we impose to them
a small perturbation 0.01 on the height in the interval [5.75,6.25].

Theoretically, this disturbance should split into two waves, propagating left and
right. Many numerical methods have difficulty with the calculations involving such

small perturbations of the water surface. The solution obtained on a 200 cell uniform
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grid with simple transmissive boundary conditions, compared with the results using
2000 uniform cells, is shown in Figure 7.4 for the transcritical flow without a shock, in
Figure 7.5 for the transcritical flow with a shock and in Figure 7.6 for the subcritical
flow. The stopping time 7" is set as 1.5 for the first and third flow, 3 for the second
flow. At this time, the downstream-traveling water pulse has already passed the
bump. We can clearly see that there are no spurious numerical oscillations and the

resolution for the propagated small perturbation is very good.
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Q0.7

0.6

level,

805

A ke

Lov2

o4

0.3

nx=2000
nx=200
bottom

0.2

0.1

| | I | | I | | I | | I | |
0 20 25

o
(631
—
o
-
(¢

Figure 7.4: Small perturbation of the transcritical flow without a shock.
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Figure 7.5: Small perturbation of the transcritical flow with a shock.

7.3.4 The dam breaking problem over a rectangular bump

In this traditional test case we simulate the dam breaking problem over a rectan-
gular bump, which produces a rapidly varying flow over a discontinuous bottom
topography. This example was used in [44, 46, 30].

The bottom topography takes the form:

8 if |x — 750| < 1500/8
b(x) = if |- = 750} < 1500/ (7.5)

0 otherwise
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Figure 7.6: Small perturbation of the subcritical flow.

for x € [0,1500]. The initial conditions are

20 — b(z) ifx <750
(hu)(z,0) =0 and h(z,0)= (7.6)

15— b(z) otherwise
We use open boundary conditions on both sides. In the beginning, we observe
the standard rarefaction and shock waves which form the solution of the Riemann
problem of the homogeneous shallow water equations. The numerical results with
400 uniform cells (and a comparison with the results using 4000 uniform cells) are
shown in Figures 7.7 at ending time t=15s. At time T=17, the waves reach the

discontinuous edges of the bottom. After that, a part of the wave is transmitted,
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another part reflected, and a remaining part becomes a standing wave. Later on,
this wave system keeps interacting. When the time T reaches 60, six waves appears
in our solution. The numerical results with 400 uniform cells (and a comparison with
the results using 4000 uniform cells) are shown in Figures 7.8 at ending time t=60s.

In this example, the water height h(z) is discontinuous at the points x=562.5
and x=937.5. Our scheme works well for this example, giving well resolved, non-
oscillatory solutions using 400 cells which agree with the converged results using 4000

cells.

n
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Figure 7.7: The surface level h + b for the dam breaking problem at time ¢=15s.
Left: the numerical solution using 400 grid cells, plotted with the initial condition
and the bottom topography; Right: the numerical solution using 400 and 4000 grid
cells.
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Figure 7.8: The surface level h + b for the dam breaking problem at time ¢=60s.
Left: the numerical solution using 400 grid cells, plotted with the initial condition
and the bottom topography; Right: the numerical solution using 400 and 4000 grid
cells.



Chapter 8

Conclusion

8.1 Summary

The main contribution of this thesis is the design of well balanced high order nu-
merical schemes for a class of hyperbolic systems with separable source terms. This
class of hyperbolic systems includes the shallow water equations, the elastic wave
equation, the hyperbolic model for a chemosensitive movement, the nozzle flow, a
two phase flow model, a model of fluid mechanics in case of spherical symmetry and
other systems.

In Chapter Two, we give a short review of three common used high order nu-
merical schemes, including finite difference WENO, finite volume WENO and finite
element discontinuous Galerkin schemes.

In Chapter Three, Four and Five, we first design high order well balanced WENO
schemes for the still water solution of the shallow water equations, and then gener-
alize our idea to a general class of balance laws with separable source terms. Well
balanced high order finite volume WENO schemes and finite element discontinuous
Galerkin schemes are also designed for the same class of balance laws, which are more
suitable for computations in complex geometry and / or for using adaptive meshes.

The key ingredient in our design is a special decomposition of the source term be-
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fore discretization, which allows us to design specific approximations such that the
resulting WENO schemes satisfy the well balanced property, and at the same time
maintain their original high order accuracy and essentially non-oscillatory property
for general solutions.

We discuss a new approach of high order well balanced finite volume WENO
schemes and RKDG finite element schemes in Chapter Six. Traditional RKDG
methods with a special treatment of the flux are proven to be well balanced for
certain steady state solutions, and can maintain their original high order accuracy
and essentially non-oscillatory property for general solutions. Finite volume WENO
schemes can be modified due to similar ideas to obtain those properties. Compar-
ing with the well balanced schemes developed in Chapter Five, the well balanced
RKDG schemes here are simpler and involve less modification to the original RKDG
methods, while the well balanced WENO finite volume schemes here and that in
Chapter Five are comparable in computational cost. Similar idea can be generalized
to the finite difference WENO scheme, but it is more complicated compared with
the scheme presented in Chapter Three. Hence we do not include it in this thesis.

In Chapter Seven, a high order well balanced finite volume WENO scheme has
been designed for the moving steady state solution of the shallow water equations.
Only one dimensional case is considered so far. This example can not be treated
by the numerical schemes introduced in the previous chapters, and need different
techniques to obtain the well balanced property. A special discritization of the

source term and the flux terms is introduced there.

8.2 Ongoing and Future Work

In this thesis, we have designed high order well balanced numerical schemes for a
class of hyperbolic systems with source terms. Our long term plan is to develop such

schemes for more general systems, and explore more applications in the framework
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of well balanced schemes.

Stiff source term problems arising from chemical reaction, combustion and tur-
bulent modeling have attracted more and more attention in these years. They have
wide application in the real world. There are some connections between the well bal-
anced schemes and those problems. Several stiff source term problems can already
be solved using the framework mentioned in this thesis. More connections will be
explored.

Designing well balanced schemes for multi-layer shallow water equations and high
order numerical scheme for general nonconservative systems will also be investigated.
The two-layer shallow water equations involve nonconservative terms, which also
appear in many other models from physical world, such as two phase flows. The
presence of nonconservative products makes it difficult to define weak solutions.
Pares and Castro et al. [31, 7] have designed some numerical methods, which depend
on the choice of the family of paths, and their high order version is not consistent
with conservative schemes for the hyperbolic problems. Application of the idea of

“well balanced property” there would be interesting.
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