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Abstract
The nonlinear shallow water equations (SWEs) are widely used to model the unsteady water
flows in rivers and coastal areas, with extensive applications in ocean and hydraulic engi-
neering. In this work, we propose entropy stable, well-balanced and positivity-preserving
discontinuous Galerkin (DG) methods, under arbitrary choices of quadrature rules, for the
SWEs with a non-flat bottom topography. In Chan (J Comput Phys 362:346–374, 2018), a
SBP-like differentiation operator was introduced to construct the discretely entropy conser-
vative DG methods. We extend this idea to the SWEs and establish an entropy stable scheme
by adding additional dissipative terms. Careful approximation of the source term is included
to ensure the well-balanced property of the resulting method. A simple positivity-preserving
limiter, compatible with the entropy stable property, is included to guarantee the non-negative
water heights during the computation. One- and two-dimensional numerical experiments are
presented to demonstrate the performance of the proposed methods.

Keywords Discontinuous Galerkin methods · Shallow water equations · Entropy stable ·
Entropy conservative · Well-balanced property · Positivity-preserving limiter

1 Introduction

The nonlinear shallow water system is a mathematical model for the fluid movement in
various shallow water environments, where the water depth is much smaller than the charac-
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teristic wave length. It has been widely used in the earth’s atmosphere, ocean, environment,
water engineering and the development and utilization of clean energy, such as tsunami and
storm surge prediction, sediment and pollutant transfer, tidal energy capture in estuaries and
offshore waters. In two-dimensional setting, the shallow water equations (SWEs) include the
governing equations of the water height h and the momentums, taking the form of

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ht + (hu)x + (hv)y = 0,

(hu)t +
(

hu2 + 1

2
gh2

)

x
+ (huv)y = − ghbx ,

(hv)t + (huv)x +
(

hv2 + 1

2
gh2

)

y
= − ghby,

(1.1)

where (u, v)T is the velocity vector, b(x, y) represents the bottom topography and g is the
gravitational constant.

All types of numerical methods, including finite volume, finite difference, and finite ele-
ment methods have been presented for the SWEs. In this paper, we will confine our attention
in the high order finite element discontinuous Galerkin (DG) methods. The DG methods
belong to a class of finite element methods, which use discontinuous piecewise polynomial
space as the solution and test function spaces (see [13] for a historic review). TheDGmethods
hold several advantages, including the high order accuracy, local conservativity, flexibility for
hp-adaptivity, easy handling of complicated geometries, and highly efficient parallel imple-
mentations. It has been used extensively in solving the SWEs [16,17,23,31] since the early
2000’s.

SWEs with a non-flat bottom topography belong to the family of hyperbolic balance
laws. This type of models admit steady state solutions, in which the flux gradients are exactly
balanced by the source term. To capture these steady state solutions or the small perturbations
of them, traditional numerical schemes cannot exactly balance the flux gradients and the
source term in the discrete level, and may introduce spurious oscillations. Well-balanced
methods [4] are designed to preserve exactly these steady state solutions up to machine error
with relatively coarse meshes. For the SWEs, the still-water steady state solution taking the
form of

u = v = 0, and h + b = const, (1.2)

is often considered in the applications. Many well-balancedmethods [2,4,19,28,29,38,39,41]
have been studied, and we refer to the survey paper [45] for a complete list of existing litera-
tures on this topic. On the other hand, the dry areas might appear in the natural environments
such as the dam-breaking problem over a dry land. Special attention needs to paid near
the wetting and drying front, as the non-physical negative water height may be generated
numerically in the simulations when using high order schemes. This may cause problems
in calculating the eigenvalues and renders the system neither hyperbolic nor well posed.
Many positivity-preserving schemes [3,6,7,20] were designed to preserve the positivity of
the water height. A few existing numerical methods [1,18,27,35,43,44] are able to maintain
both well-balanced and positivity-preserving properties at the same time.

For the hyperbolic balance laws including the SWEs, discontinuous solutions may appear
in finite time even with smooth initial conditions, which leads to the definition of weak
solutions. However these weak solutions could be non-unique. In order to find the unique,
physically relevant entropy solution from all the weak solutions, the second law of ther-
modynamics is imposed as the admissibility criterion, which can be interpreted as entropy
conditions in the form of entropy functions. Entropy stable methods refer to numerical meth-
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ods which can satisfy entropy inequalities in the discrete level. There have been tremendous
works on designing entropy stable methods for the system of hyperbolic conservation laws,
and we refer to a comprehensive survey [34] by Tadmor on this topic. The classic DGmethod
is known to satisfy a discrete entropy inequality, for the square entropy only and when the
conservation laws is scalar or symmetric system [25]. Recently, there have been many works
[8,9,11,22,37] on designing high order entropy stable DG methods. Most of these methods
are based on the recast of the DG methods in the nodal formulation [24,26]. One difficulty
in proving these entropy inequalities is that the integration by parts (IBP) property may not
hold any more, when the quadrature rules are used to approximate the integrals in the imple-
mentation. It was shown in [21] that, with the choice of Gauss–Lobatto quadrature points, the
corresponding discrete derivative operators satisfy the summation-by-parts (SBP) property,
an analogue of the IBP property. High order entropy stable and well-balanced nodal DG
methods are then designed for the SWEs in [22] based on a split formulation of the model,
which deals with the loss of chain rule in the discretization. The extension to two-dimensional
SWEs on unstructured curvilinear meshes is investigated in [37], and this method has been
combined with a positivity-preserving limiter and implemented on GPUs in [36]. In [11],
a unified framework of entropy stable high order nodal DG schemes has been constructed.
They demonstrated that, by introducing a special quadrature rule, the formulation of SBP
operators can be deduced even on the triangular meshes, which leads to an easy extension
of entropy stable nodal DG methods to unstructured triangular meshes. More recently, a
generalization of discretely entropy conservative methods was extended from diagonal-norm
SBP DG methods to a more general class of high order DG methods under arbitrary choices
of volume and surface quadrature rules in [9]. The differences between the sensitivity of
methods based on Gauss–Lobatto quadrature and methods based on Gauss quadrature rules
have also been studied. We refer to [12] for a recent review paper on discussion of these
entropy stable DG methods and more references in this area.

In this paper, we propose entropy stable, well-balanced and positivity-preserving DG
methods on Gauss quadrature rules for the SWEs with a non-flat bottom topography, by
extending the entropy conservative and entropy stable schemes presented in [9]. The main
contribution of this work is to demonstrate that the proposed entropy stable methods, coupled
with suitable source term approximation, satisfy bothwell-balanced and positivity-preserving
propertieswhen the non-flat bottom topography is considered in themodel. The entropy stable
scheme are constructed by adding additional dissipative terms to the entropy conservative
scheme. We provide a complete proof to show that the entropy inequality (now with the
bottom topography term) can be preserved in the discrete level, following that in [9]. The
local conservation property of the proposed DG methods has also been proven. To achieve
well-balanced property,we propose to use the samederivative operator to discretize the source
term, and demonstrate that the approximation of the flux gradient and the source term exactly
balance each other in the discrete level. To ensure the positivity-preserving property, we first
demonstrate that the positive cell average of water height is maintained under a suitable CFL
condition, and then incorporate the positivity-preserving limiter proposed in [43] for the
SWEs to ensure that the solution is positive everywhere in the domain. In addition, it is shown
that the positivity-preserving limiter itself does not increase entropy and is compatible with
entropy stable methods. Similar results on the positivity-preserving limiter have also been
studied in [30,36] for their entropy stable methods. One-dimensional SWEs is considered
first to present the proposed entropy stable, well-balanced and positivity-preservingmethods,
and their extension to two-dimensional problem on rectangular meshes is also provided. High
order entropy stable, well-balanced and positivity-preserving nodal DG methods were also
presented in [36,37] for the SWEs. Comparedwith theseworks, the proposedmethod is based
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on the modal formulations and allows arbitrary choices of volume and surface quadrature
rules, with the possibility of attaining better accuracy with smaller degrees of freedom.
Also, different dissipation terms were introduced to derive entropy stable methods. Although
derived from different motivation, the well-balanced technique presented here also involves
the approximation of the source term in both volume integral and interface terms. To achieve
the positivity-preserving property, all of these works extend the same positivity-preserving
limiter proposed in [43] for the SWEs. Only the rectangular meshes in two-dimensional
setting are considered in this paper as a first step to illustrate the idea, and our future work
involves the extension of these methods to curvilinear grids and triangular grids.

The paper is organized as follows. In Sect. 2, a brief review of the entropy conservative and
discretely entropy conservative schemes is provided. Section 3 starts with the construction of
entropy conservativemethods for the one-dimensional SWEswith a non-flat bottom. Entropy
stable, well-balanced, and positivity-preserving properties will be demonstrated. Section 4
presents the entropy stable DG scheme for the two-dimensional SWEs. We note that, for
simplicity and clarity of presentation, all the proofs are only provided in one dimension,
but the extension to two-dimensional problems on rectangular meshes is straightforward.
In Sect. 5, some classical one-dimensional and two-dimensional numerical examples are
presented to validate the proposed DG methods. Conclusions are given in Sect. 6.

2 On Discretely Entropy Conservation DGMethods

In this section, we first review the basic theory of the entropy conservation for hyperbolic
conservation laws, and then discuss the entropy conservative DG schemes studied in [9,10].

2.1 Entropy Solutions of Hyperbolic PDEs

We consider the system of nonlinear conservation laws in one dimension with n variables

∂Q
∂t

+ ∂f (Q)

∂x
= 0, (2.1)

whereQ = (Q1, Q2, . . . , Qn)
T is the unknown vector function and f (Q) is the flux function.

The Jacobian matrix is defined as
(
A (Q)

)

i j
= ∂ fi (Q)

∂Q j
. (2.2)

A convex function U (Q) is said to be an entropy function for (2.1) if there exists the
function F(Q), called entropy fluxes, such that the following integrability condition holds

U ′ (Q)
∂f
∂Q

= ∂F (Q)

∂Q
, (2.3)

where U ′ (Q) means the derivative of U (Q) with respect to Q. We denote the entropy
variables by e = U ′ (Q), and the entropy potential function ψ by

ψ (e) = eT f (Q (e)) − F (Q (e)) , (2.4)

which satisfies

ψ ′ (e) = f (Q (e)).
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In the smooth regions, we can multiply (2.1) on the left by eT = U ′ (Q)T , and obtain the
conservation of entropy

∂U (Q)

∂t
+ ∂F (Q)

∂x
= 0, (2.5)

following the definition of the entropy flux. When the solution contains discontinuity, we
require the entropy to dissipate, which leads to the following definition.

Definition 1 A weak solution Q of (2.1) is called an entropy solution, if for all entropy
functions U ,

∂U (Q)

∂t
+ ∂F (Q)

∂x
≤ 0, (2.6)

holds in the sense of distribution.

Entropy stable method refers to numerical method which can satisfy the integral version of
the entropy inequality (2.6) in the discrete level.

2.2 Notations

We start by introducing some necessary notations. Let’s decompose the domain � into non-
overlapping elements�k of size hk . We denote the maximal mesh size as h = max1≤ j≤K h j .
The piecewise polynomial space Vh is defined as

Vh =
{
v : v|�k ∈ PN (�k), in each element �k

}
, (2.7)

where PN (�k) denotes the space of polynomials of degree N on the cell �k .
The L2 norm and inner products over the element �k and the surface of the element ∂�k

are defined as

(Q,W )�k =
∫

�k
Q(s)W (s)ds, ‖Q‖2

�k = (Q, Q)�k , 〈Q,W 〉∂�k =
∫

∂�k
Q(s)W (s)ds.

We also define the local L2 projection operator P: L2(�k) → PN (�k) such that

(PQ,W )�k = (Q,W )�k , ∀ W ∈ PN (�k).

The projection error operator E of the variable Q is defined as

E(Q) = Q − PQ.

Since the approximation solution is allowed to be discontinuous at the cell interface, we
denote Q+(xk+1/2) as the values of Q at xk+1/2 evaluated on the neighboring elements, see
Fig. 1 for the illustration. At the domain boundary, we have Q+(xk+1/2) = Q(xk+1/2). We
denote �Q�k+1/2 = Q+(xk+1/2)−Q(xk+1/2) and {Q}k+1/2 = (Q+(xk+1/2)+Q(xk+1/2))/2
as the jump and the average of Q at the cell interface xk+1/2. nx denotes the x-component
of the outward normal vector.

2.3 Entropy Conservative DGMethods

In this subsection, the summary of the entropy conservation DG methods in [10, Sects. 3, 4]
will be provided, and we refer to [10, Sects. 3, 4] for the details.
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Fig. 1 The definition of Q+ on
the cell interfaces

The entropy conservative and entropy stablefluxes proposedbyTadmor [32,33] are defined
as follows:

Definition 2 Let fS (Ql ,Qr ) be a consistent and symmetric numerical flux. It is entropy
conservative if

(el − er )T fS (Ql ,Qr ) = ψl − ψr , (2.8)

holds for the entropy variables e j = e
(
Q j
)
and the scaler entropy potential ψ j =

ψ
(
e
(
Q j
))
, j = r , l. Similarly, the numerical flux fS (Ql ,Qr ) is entropy stable if

(el − er )T fS (Ql ,Qr ) ≤ ψl − ψr .

The following discrete numerical derivative operator is introduced in [10], which is one
of the key components in designing entropy conservative methods.

Definition 3 LetW (x) be a bounded function on each element�k . Define Dx
h : H1 (�h) →

Vh as the operator which satisfies
(
Dx
h Q,Wω

)

�

=
∑

k

[(
∂PQ

∂x
,Wω

)

�k
+ 1

2
〈Q+ − PQ,Wωnx 〉∂�k + 1

2
〈E(Q),P (Wω) nx 〉∂�k

]

,

(2.9)

for all ω ∈ Vh .

It was shown in [10] that this derivative operator Dx
h satisfies the global analogue of IBP

property
(
Dx
h Q,Wω

)

�
= − (Q, Dx

h (Wω)
)

�
+ 〈Qnx ,Wω〉∂�, (2.10)

for Q ∈ H1 (�h) and W ∈ Vh . If Wω = 1, we have
(
Dx
h Q, 1

)

�
= 〈Q, nx 〉∂�, (2.11)

since
(
Q, Dx

h1
)

�
= 0. The entropy conservative DG formulation on the entire computational

domain involving multiple elements is given by: find Q ∈ Vh , such that
(

∂Q
∂t

, ω

)

�

+
((
2Dx

h fS (Qe (x) ,Qe (y))
)∣
∣
y=x , ω

)

�
= 0, (2.12)

holds for all the test functions ω ∈ Vh , where Qe (x) is defined as Q (Pe(x)). In general, the
boundary terms appearing in Dx

h term [following the definition in (2.9)] interact with volume
terms, which can be simplified for diagonal norm SBP operators with boundary nodes.

The entropy conservation property of this method is provided in the following theorem:

123



Journal of Scientific Computing            (2020) 83:66 Page 7 of 32    66 

Theorem 1 By assuming that the numerical flux function fS admits an absolutely convergent
expansion [10], theDGmethods onmultiple elements (2.12)are globally entropy conservative
in the sense that

(
∂U (Q)

∂t
, 1

)

�

= 〈ψ, 1nx 〉∂� − 〈f (Qe) , (Pe) nx 〉∂�. (2.13)

An equivalent form of the DG methods (2.12), which uses the vector variables and local
matrices to guide the implementation, is available in [9].

3 Entropy Stable DGMethod for the One-Dimensional SWEs

In this section, we extend the entropy conservative DG methods [9] to the one-dimensional
SWEs with a non-zero source term representing the effect of a non-flat bottom topography.
By carefully discretizing the source term and adding a positivity-preserving limiter, we will
show that the resulting DG methods satisfy the properties of entropy stable, well-balanced
and positivity-preserving at the same time.

The one-dimensional SWEs with a non-flat bottom take the form of

∂Q
∂t

+ ∂f (Q)

∂x
= S(b,Q), (3.1)

with the conservation variables, the flux and source terms given by

Q =
[
h
hu

]

, f =
[
hu

hu2 + 1

2
gh2

]

, S =
[
0
−ghbx

]

,

where h (x, t) is the water height, u (x, t) is the velocity, m = hu is the momentum, b (x, t)
is the bottom topography, g is the gravitational constant. The entropy variables of the SWEs
with the non-flat bottom are

e =
⎡

⎣
e1

e2

⎤

⎦ =
⎡

⎢
⎣

g (h + b) − 1

2
u2

u

⎤

⎥
⎦ , (3.2)

with the entropy U and the entropy potential ψ taking the form of

U = 1

2
hu2 + 1

2
gh2 + ghb, ψ = 1

2
gh2u. (3.3)

3.1 Entropy Conservative DGMethods for the SWEs

We start by presenting the entropy conservative DG methods for the one-dimensional SWEs
with a non-flat bottom. The main idea follows the setup of the entropy conservative methods
in [10] (summarized in Sect. 2), with extra attention paid to the discretization of the new
added source term to ensure that it won’t affect the entropy conservation property and at the
same time achieves the well-balanced property.

The same weak derivative operator Dx
h defined in Definition 3 is adopted to derive the

entropy conservative DG methods for the SWEs, which take the form of
(

∂Q
∂t

, ω

)

�

+
((
2Dx

h fS (Qe (x) ,Qe (y))
)∣
∣
y=x , ω

)

�
=
(
0(− gheD

x
hbe, ω

)

�

)

, (3.4)
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where

Qe = Q(Pe) =
[
he
me

]

, he = 1

g

(

Pe1 + 1

2
(Pe2)

2 − gPb

)

, me = hePe2, be = Pb.

(3.5)

The entropy conservative fluxes fS for the one-dimensional SWEs with a non-flat bottom
topography [19] are defined as follows.

Definition 4 Let fS (Ql ,Qr ) be a consistent and symmetric numerical flux. It is entropy
conservative for the shallow water system (3.1) if

(el − er )T fS (Ql ,Qr ) = (ψl − ψr ) + 1

2
g(bl − br )(ml + mr ), (3.6)

holds for the entropy variables e j = e
(
Q j
)
and the scaler entropy potentialψ j = ψ

(
e
(
Q j
))
,

j = l, r .

For the SWEs, the entropy conservative numerical flux fS [19] is given by

fS (Ql ,Qr ) =
⎡

⎣
f (1)
S

f (2)
S

⎤

⎦ =

⎡

⎢
⎢
⎢
⎣

1

2
(ml + mr )

1

4
(ml + mr ) (ul + ur ) + 1

2
ghlhr

⎤

⎥
⎥
⎥
⎦

. (3.7)

By expanding the definition of the weak derivative operator Dx
h , and using the fact that

Pω = ω when ω ∈ Vh , the DG methods (3.4) can be expanded as

∑

k

(
∂h

∂t
, ω

)

�k

+
(

∂Pme

∂x
, ω

)

�k

+
〈
f (1)
S

(
Q+

e , Qe
)− Pme, ωnx

〉

∂�k
= 0,

∑

k

(
∂m

∂t
, ω

)

�k

+ (I + II, ω)�k
+
〈
f (2)
S

(
Q+

e , Qe
)− III − IV, ωnx

〉

∂�k
+ V + VI = 0,

(3.8)

with the terms I−VI defined by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I = 1
2

(
∂
∂x (P(meue)) + ue

∂
∂x (Pme) + me

∂
∂x (ue)

)
,

II = ghe
∂
∂x (Phe + be) ,

III = 1
4 (2P(meue) + (Pme)ue + meue) ,

IV = 1
2 ghe

(
Phe − �be�

)
,

V = 1
4 〈E(me),P (ueω) nx 〉∂�k ,

VI = 1
2 g〈E(he),P (heω) nx 〉∂�k .

(3.9)

Remark 1 Although derived from different approaches, the resulting formulation is similar
to the one in [11] (where a nodal DG discretization is used, and the bottom b is constant):

∂hu

∂t
+ 1

2

∂hu2

∂x
+ 1

2
u

∂hu

∂x
+ 1

2
hu

∂u

∂x
+ gh

∂h

∂x
= 0, (3.10)
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and the skew-symmetric form in [22]:

1

2

(
∂hu

∂t
+ h

∂u

∂t

)

+ 1

2

(
∂hu2

∂x
+ hu

∂u

∂x

)

+ gh
∂h

∂x
= 0. (3.11)

Next, we will show that the proposed DGmethod for the SWEs is semi-discretely entropy
conservative.

Theorem 2 For the global domain �, the DG methods (3.4) is globally entropy conservative
in the sense that

(
∂U (Q)

∂t
, 1

)

�

= 〈ψ, 1nx 〉∂� − 〈f (Qe) ,Penx 〉∂�. (3.12)

Proof Taking Pe as test function (i.e., Pe1 as the test function of the first equation, Pe2 as
the test function of the second equation, and summing the resulting two equations up), the
DG method (3.4) becomes

(
∂Q
∂t

,Pe
)

�

+
((
2Dx

h fS (Qe(x),Qe(y))
)|y=x ,Pe

)

�
+ (

gheD
x
hbe,Pe2

)

�
= 0, (3.13)

and the first term yields
(

∂Q
∂t

,Pe (Q)

)

�

=
(

∂Q
∂t

, e (Q)

)

�

=
(

∂U (Q)

∂t
, 1

)

�

.

Following the definition, we can expand fS as

fS (Q(x),Q(y))

=

⎡

⎢
⎢
⎢
⎣

1

2
(m(x) + m(y))

1

4
(m(x)u(x) + m(x)u(y) + m(y)u(x) + m(y)u(y)) + 1

2
gh(x)h(y)

⎤

⎥
⎥
⎥
⎦

:=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

2∑

i=1

ζi (x)ηi (y)

7∑

i=3

ζi (x)ηi (y)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
2∑

i=1

⎡

⎣
ζi (Q(x))

0

⎤

⎦ ηi (Q(y)) +
7∑

i=3

⎡

⎣
0

ζi (Q(x))

⎤

⎦ ηi (Q(y))

:=
7∑

i=1

ζ̂i (Q(x))ηi (Q(y)),

where, for the ease of presentation, we introduced the notations
(
ζ1(Q(x)), ζ2(Q(x)), . . . , ζ7(Q(x))

) = (
m(x), 1,m(x)u(x),m(x), u(x), 1, gh(x)

)
,

and

(
η1(Q(y)), η2(Q(y)), . . . , η7(Q(y))

) = 1

4

(
2, 2m(y), 1, u(y),m(y),m(y)u(y), 2h(y)

)
.
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Therefore, the second term of (3.13) becomes

((
Dx
h fS (Qe(x),Qe(y))

)|y=x ,Pe
)

�
=
⎛

⎝

(

Dx
h

7∑

i=1

ζ̂i (Qe(x)) ηi (Qe(y))

)∣
∣
∣
∣
∣
y=x

,Pe(x)

⎞

⎠

�

=
7∑

i=1

(
Dx
h ζ̂i (Qe(x)) , ηi (Qe(x))Pe(x)

)

�

=
7∑

i=1

[
−
(
ζ̂i (Qe(x)) , Dx

h

(
ηi (Qe(x))Pe(x)

))

�
+
〈
ζ̂i (Qe(x)) ηi (Qe(x)) , Pe(x)nx

〉

∂�

]

= −
((

Dx
h (fS (Qe(y),Qe(x)) · Pe(x)) )|y=x , 1

)

�
+
〈
fS (Qe(x),Qe(x)) ,Pe(x)nx

〉

∂�

= −
((

Dx
h (fS (Qe(x),Qe(y)) · Pe(x)) )|y=x , 1

)

�
+
〈
f (Qe(x)) ,Pe(x)nx

〉

∂�
, (3.14)

where the third equality comes from the IBP property (2.10), and the last equality utilizes
the symmetry and consistency of the entropy conservative flux fS . Note that

((
Dx
h fS
(
Qe(x),Qe(y)

))∣∣
∣
y=x

,Pe(x)
)

�

=
((

Dx
h

(
fS (Qe(x),Qe(y)) · Pe(y))

)∣
∣
∣
y=x

, 1

)

�

.

Combining this with (3.14), the flux term in the DG method (3.13) becomes

((
2Dx

h fS (Qe(x),Qe(y))
)|y=x ,Pe

)

�

=
((

Dx
h

(
fS
(
Qe(x),Qe(y)

) · (Pe(y) − Pe(x)
)) )∣∣

∣
y=x

, 1

)

�

+
〈
f (Qe(x)) ,Pe(x)nx

〉

∂�
.

(3.15)

Using the fact that e
(
Q (Pe)

) = Pe, and the definition of entropy conservative flux fS in
(3.6), we have

fS
(
Qe(x),Qe(y)

) · (Pe(y) − Pe(x)
) = ψ(y) − ψ(x) + 1

2
g
(
be(y) − be(x)

)(
he(y)ue(y)

+he(x)ue(x)
)
,

and the Eq. (3.15) becomes

((
2Dx

h fS (Qe(x),Qe(y))
)|y=x ,Pe

)

�

=
(

Dx
h

(
ψ(y) − ψ(x) + g

2

(
be(y) − be(x)

)(
he(y)ue(y) + he(x)ue(x)

))∣∣
∣
y=x

, 1

)

�

+
〈
f (Qe) ,Penx

〉

∂�

=
〈
− ψ, 1nx

〉

∂�
+
〈
f (Qe) ,Penx

〉

∂�
+ 1

2
g
(
Dx
h

((
be(y) − be(x)

)(
he(y)Pe2(y)

+he(x)Pe2(x)
))∣∣
∣
y=x

, 1

)

�

, (3.16)

where the last equality follows from the global IBP property in (2.11) and the replacement
of ue by Pe2.
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Next, we apply the IBP property (2.10) to the third term of Eq. (3.13) and obtain
(
he(x)D

x
hbe(x),Pe2(x)

)

�

= −
(
be(x), D

x
h

(
he(x)Pe2(x)

))

�
+
〈
be(x)he(x)Pe2(x), nx

〉

∂�

= −
(
be(y)|y=x , D

x
h

(
he(x)Pe2(x)

))

�
+
〈
be(x)he(x)Pe2(x), nx

〉

∂�

= −
(
Dx
h

(
be(y)he(x)Pe2(x)

)∣∣
∣
y=x

, 1
)

�
+
〈
be(x)he(x)Pe2(x), nx

〉

∂�
.

(3.17)

Using again the fact that
(
he(x)D

x
hbe(x),Pe2(x)

)

�
=
(
Dx
h

(
be(x)he(y)Pe2(y)

)∣∣
∣
y=x

, 1
)

�
,

the source term (3.17) can be manipulated to yield
(
he(x)D

x
hbe(x),Pe2(x)

)

�
= 1

2

(
he(x)D

x
hbe(x),Pe2(x)

)

�
+ 1

2

(
he(x)D

x
hbe(x),Pe2(x)

)

�

= 1

2

(
Dx
h

(
be(x)he(y)Pe2(y) − be(y)he(x)Pe2(x)

)∣
∣
y=x , 1

)

�
+ 1

2

〈
be(x)he(x)Pe2(x), nx

〉

∂�
.

(3.18)

The sum of the flux term (3.16) and the source term (3.18) yields
((
2Dx

h fS (Qe(x),Qe(y))
)|y=x ,Pe

)

�
+
(
ghe(x)D

x
hbe(x),Pe2(x)

)

�

=
〈
− ψ, 1nx

〉

∂�
+
〈
f (Qe) ,Penx

〉

∂�

+ g

2

(

Dx
h

((
be(y) − be(x)

)(
he(y)Pe2(y) + he(x)Pe2(x)

))∣∣
∣
y=x

, 1

)

�

+ g

2

(
Dx
h

(
be(x)he(y)Pe2(y) − be(y)he(x)Pe2(x)

)∣
∣
y=x , 1

)

�
+ g

2

〈
be(x), he(x)Pe2(x)nx

〉

∂�

=
〈
− ψ, 1nx

〉

∂�
+
〈
f (Qe) ,Penx

〉

∂�
+ g

2

(
Dx
h

(
be(y)he(y)Pe2(y) − be(x)he(x)Pe2(x)

)∣
∣
y=x , 1

)

�

+ g

2

〈
be(x), he(x)Pe2(x)nx

〉

∂�

=
〈
− ψ, 1nx

〉

∂�
+
〈
f (Qe) ,Penx

〉

∂�

+ g

2

[
−
(
Dx
h

(
be(x)he(x)Pe2(x)

)
, 1
)

�
+
〈
be(x), he(x)Pe2(x)nx

〉

∂�

]

=
〈
− ψ, 1nx

〉

∂�
+
〈
f (Qe) ,Penx

〉

∂�
.

Combined with the Eq. (3.13), this leads to the entropy conservation property (3.12). 
�

3.2 Local Conservation Property

The entropy conservative DG methods (3.8) involve the approximation of the derivatives
in the non-conservative form. As it is well-known from the Lax–Wendroff theorem, any
numerical methods for the hyperbolic conservation laws should be in the conservative form
to ensure that the solution will converge to the weak solution. In this subsection, we will
demonstrate that the entropy conservative DG methods written in the form of (3.8) indeed
have the local conservation property, which is summarized in the following theorem.
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Theorem 3 When the test function ω = 1, the DG method (3.8) reduces to

(
∂h

∂t
, 1

)

�k

+
〈
f (1)
S

(
Q+

e ,Qe
)
, nx

〉

∂�k
= 0,

(
∂m

∂t
, 1

)

�k

+
〈
f (2)
S

(
Q+

e ,Qe
)
, nx

〉

∂�k
= −

(

ghe
∂

∂x
be, 1

)

�k

−
〈
1

2
ghe�be�, nx

〉

∂�k
.

(3.19)

When the bottom topography b is flat, it becomes

(
∂Q
∂t

, 1

)

�k
+ 〈 fS

(
Q+

e ,Qe
)
, nx 〉∂�k = 0.

This means our method is locally conservative, similar as the conventional DG methods for
the SWEs.

Proof By taking the test function ω = 1 in the element �k and ω = 0 everywhere else, the
DG method (3.8) reduces to

(
∂h

∂t
, 1

)

�k

+
(

∂Pme

∂x
, 1

)

�k

+
〈
f (1)
S

(
Q+

e ,Qe
)− Pme, nx

〉

∂�k
= 0, (3.20)

(
∂m

∂t
, 1

)

�k

+ (I + II, 1)�k
+
〈
f (2)
S

(
Q+

e ,Qe
)− III − IV, nx

〉

∂�k
+ V + VI = 0, (3.21)

with the terms I−IV defined in (3.9), and

V = 1

4
〈E(me)Pue, nx 〉∂�k , VI = 1

2
g〈E(he)Phe, nx 〉∂�k . (3.22)

It is easy to observe that

(
∂Pme

∂x
, 1

)

�k
= 〈Pme, nx 〉∂�k ,

therefore, the first Eq. (3.20) reduces to

(
∂h

∂t
, 1

)

�k

+
〈
f (1)
S

(
Q+

e ,Qe
)
, nx

〉

∂�k
= 0.

To simplify the second Eq. (3.21), we first notice that ue = me/he = Pe2 ∈ Vh , following
the definition of Qe in (3.5), therefore, P (ue) = ue. By utilizing the following equalities

(
∂

∂x
P (meue) , 1

)

�k
= 〈P (meue) , nx 〉∂�k ,

(

ue
∂

∂x
Pme + me

∂

∂x
ue, 1

)

�k
=
(

ue
∂

∂x
Pme + (Pme)

∂

∂x
ue, 1

)

�k
= 〈Pmeue, nx 〉∂�k ,

(

he
∂

∂x
Phe, 1

)

�k
=
(

Phe
∂

∂x
Phe, 1

)

�k
=
〈
1

2
PhePhe, nx

〉

∂�k
,
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we can show that

(I, 1)�k − 〈III, nx 〉∂�k + V

= 1

2
〈P (meue) , nx 〉∂�k + 1

2
〈(Pme) ue, nx 〉∂�k

−
〈
1

2
P(meue) + 1

4
(Pme)ue + 1

4
meue, nx

〉

∂�k
+ 1

4
〈E(me), (Pue) nx 〉∂�k

= 1

2
〈Pmeue, nx 〉∂�k − 1

4
〈(Pme)ue + meue, nx 〉∂�k + 1

4
〈me − Pme, uenx 〉∂�k = 0,

and

(II, 1)�k − 〈IV, nx 〉∂�k + VI

=
(

ghe
∂

∂x
Phe + ghe

∂

∂x
be, 1

)

�k

− g

2

( 〈
hePhe − he�be�, nx

〉

∂�k − 〈he − Phe, (Phe) nx 〉∂�k

)

=
(

ghe
∂

∂x
be, 1

)

�k

+
〈
1

2
ghe�be�, nx

〉

∂�k
.

Therefore, the second Eq. (3.21) reduces to
(

∂m

∂t
, 1

)

�k

+
〈
f (2)
S

(
Q+

e ,Qe
)
, nx

〉

∂�k
= −

(

ghe
∂

∂x
be, 1

)

�k

−
〈
1

2
ghe�be�, nx

〉

∂�k
,

which completes our proof. 
�

3.3 Entropy Stable Scheme

The proposed DG method (3.8) is shown to be entropy conservative, which is desirable
for smooth solutions. However, for the numerical solutions of the hyperbolic balance laws
which may develop discontinuity, entropy stable methods are usually preferred when the
discontinuity appears in the solution. In this subsection, we present how to obtain the entropy
stable DG methods for the SWEs and provide the analytical proof of it.

Following the idea of the Lax–Friedrichs numerical flux, we could add additional dissi-
pative terms at the element interfaces, and construct the entropy stable DG methods in the
form of

(
∂Q
∂t

, ω

)

�

+
( (

2Dx
h fS (Qe(x),Qe(y))

) |y=x , ω
)

�

−
∑

k

α

2

〈
�M�, ωnx

〉

∂�k =
(
0(− gheD

x
hbe, ω

)

�

)

, (3.23)

where α = max(|u| + √
gh) denotes the maximum eigenvalue of the Jacobian matrix of the

flux. The extra term −∑k
α
2 〈�M�, ωnx 〉∂�k , with M =

(
he + be
(he + be)ue

)

, represents addi-

tional numerical dissipation. Note that 〈�he+be�, ωnx 〉∂�k , which reduces to 〈�he�, ωnx 〉∂�k

when the bottom function be = 0, is used for the purpose of well-balanced property to be
explained in the next subsection. The proof of the entropy stable property is provided below.
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Theorem 4 The DG method (3.23) is semi-discretely entropy stable in the sense that
(

∂U (Q)

∂t
, 1

)

�

≤ 〈ψ, 1nx 〉∂� − 〈f (Qe) ,Penx 〉∂�. (3.24)

Proof By taking the test function ω = Pe in (3.23), and following the same steps in the proof
of the entropy conservative property, we can obtain
(

∂U (Q)

∂t
, 1

)

�

= 〈ψ, 1nx 〉∂� + 〈f(Qe),Penx 〉∂� + α

2

∑

k

〈
�M�,Penx

〉

∂�k

= 〈ψ, 1nx 〉∂� + 〈f(Qe),Penx 〉∂� − α

2

∑

k

�M�
∣
∣
x
k+ 1

2

�Pe�
∣
∣
∣
x
k+ 1

2

. (3.25)

For simplicity, let us denote Pe = [ê1, ê2]T . From the definition (3.5), we have he + be =
1
g

(
ê1 + 1

2 ê
2
2

)
and ue = ê2. Using the equality that

�ab� = �a�{b} + {a}�b�,

where �·� and {·} stand for the jump and cell average, the last term of Eq. (3.25) at the interface
xk+1/2 (this subindex is ignored in the following formula) satisfies

−
(

�he + be�
�(he + be)ue�

)

�Pe� =
[

(he + be)
+ − (he + be)

(me)
+ − me

]

·
[
ê1 − ê+

1
ê2 − ê+

2

]

= − 1

g

(

�ê1��ê1� + 1

2
�ê22��ê1� + �ê1ê2��ê2� + 1

2
�ê32��ê2�

)

= − 1

g

(

�ê1�
2 + {ê2}�ê2��ê1� + �ê1�{ê2}�ê2� + {ê1}�ê2�2 + {ê2}2�ê2�2 + 1

2
{ê22}�ê2�2

)

= − 1

g

(

(�ê1� + {ê2}�ê2�)2 + {ê1 + 1

2
ê22}�ê2�2

)

= − 1

g

(
(�ê1� + {ê2}�ê2�)2 + g{he + be}�ê2�2

)

≤ 0,

where the last inequality follows from the fact that he + be stays non-negative (see the
positivity-preserving proof in Sect. 3.5). Therefore, the last term of (3.25) should always stay
non-positive, and this leads to the entropy stable property (3.24). 
�
Remark 2 As in Theorem 3, one can easily observe that the entropy stable scheme (3.23) is
also locally conservative, after replacing f (1)

S

(
Q+

e ,Qe
)
by f (1)

S

(
Q+

e ,Qe
)− α

2 �M� in (3.19).

A slope limiter procedure is usually needed in the DG methods when the solution contains
discontinuities. In this paper, we use the characteristic-wise total variation bounded (TVB)
limiter in [15], with a corrected minmod function [14] defined by

m̂ (a1, . . . , an) =
{
a1, if |a1| ≤ M	x2,
m (a1, . . . , an) , otherwise ,

(3.26)

where M is the TVB parameter, and the minmod function m is given by

m (a1, . . . , an) =
{
smini |ai | , if s = sign (a1) = · · · = sign (an),
0, otherwise .

(3.27)
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For the purpose of well-balanced, the slope limiter is applied on the variable (h + b,m)T .
We refer to [11] for the discussion on the compatibility of the entropy stable property and
the TVD/TVB limiter.

3.4 Well-Balanced Property

Another desirable property of numerical methods for the SWEs is the well-balanced property
for the still water steady state solution (1.2). Below, we will show that, with the proposed
source term discretization, our entropy stable methods are well-balanced.

Theorem 5 The entropy conservative DG method (3.8) and the entropy stable DG method
(3.23) are both well-balanced for the still-water steady state solution, denoted by

u = 0 and h + b = constant C. (3.28)

Proof Suppose the initial condition is at the still-water steady state (3.28), therefore, h +
b = C and u = 0. This leads to the entropy variable e = (gC, 0)T , hence he = h and
(he + be)ue = 0 following the definition of Qe in (3.5). Below we will present the proof of
well-balanced property of the entropy conservative method (3.8) only, and that of the entropy
stable method follows directly, as the added viscosity term disappears at the steady state.

Using the fact that (he + be)ue = 0, it is easy to observe that the first equation of the DG
method (3.8) is well-balanced, and the second equation becomes

∑

k

(
∂m

∂t
, ω

)

�k

+
(

ghe
∂

∂x
(Phe + be) , ω

)

�k

+
〈
1

2
gheh

+
e − 1

2
ghePhe + 1

2
ghe�be�, ωnx

〉

∂�k

+ 1

2
g〈he − Phe,P (heω) nx 〉∂�k = 0.

(3.29)

Since he = h ∈ Vh , be = b ∈ Vh , we have Phe = h, Pbe = b, and he + be = C , hence
�he + be� = 0. Therefore,

∑

k

(
∂m

∂t
, ω

)

�k

= 0,

holds exactly in the discrete level, and the well-balanced property is obtained. 
�

3.5 Positivity-Preservation Limiter

In this section, the positivity-preserving limiter in [43] will be incorporated into the proposed
entropy stable, well-balanced DG methods, and we will show that this will not affect the
entropy stable property.

To ensure the positivity-preserving property, we propose with the following modification
of thewell-balanced and entropy stablemethods (3.23), by introducing the updated numerical
fluxes at the cell interface. We first define

h∗
e = max(he, 0), m∗

e = h∗
e
me

he
, (3.30)

at the cell interface, which gives us Q∗
e , as well as Q

∗,+
e , at every cell interface ∂�k . Note

that the updated cell interface values Q∗
e share similar formulation of the hydrostatic recon-
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struction

h∗ = max
(
h + b − max(b, b+), 0

)
,

which was employed in [43] to obtain positivity-preserving and well-balanced DG methods
for the SWEs. The updated numerical methods take the form of

∑

k

(
∂h

∂t
, ω

)

�k

+
(

∂Pme

∂x
, ω

)

�k

+
〈
f (1)
S

(
Q∗,+

e , Q∗
e

)− α

2
�h∗

e + be� − Pme, ωnx
〉

∂�k

= 0,

∑

k

(
∂m

∂t
, ω

)

�k

+(I+II, ω)�k
+
〈
f (2)
S

(
Q+

e , Qe
)− α

2
�(he + be)ue� − III − IV, ωnx

〉

∂�k

+ V + VI = 0, (3.31)

with the same terms I−VI defined in (3.9).
As outlined in [43,46], the key components to achieve the positivity-preserving property

are two items: the positivity of the proposed methods in the first order version, and a simple
positivity-preserving limiter. For simplicity, we only consider the simple forward Euler time
discretization, and the same results can be generalized to total variation diminishing (TVD)
high order Runge–Kutta methods as shown in [43,46].

Take the test function to be v = 1 in the entropy stable methods (3.23). The first order
version of the resulting equation for the cell average of the water height is given by

h
n+1
k = h

n
k − λ

(
f̂ (1)
S ((Q∗

e)
n
k+1, (Q

∗
e)

n
k ) − f̂ (1)

S ((Q∗
e)

n
k−1, (Q

∗
e)

n
k )
)

, (3.32)

where n refers to the time step, λ = �t
�x is the ratio of time and space mesh size and

f̂ (1)
S ((Q∗

e)
n
k+1, (Q

∗
e)

n
k ) = f (1)

S ((Q∗
e)

n
k+1, (Q

∗
e )

n
k ) − α

2

(
(h∗

e)
n
k+1 − (h∗

e)
n
k

)

= 1

2

(
(m∗

e)
n
k+1 + (m∗

e)
n
k − α((h∗

e )
n
k+1 − (h∗

e)
n
k )
)
,

is the numerical flux, which is very similar to the standard Lax–Friedrichs flux (with h, m
replaced by he and me). Easy to observe the following positivity-preserving property of this
first order method.

Lemma 1 Under a standard CFL condition λα ≤ mink
(

hnk
(h∗

e )
n
k

)
with α = max(|ue|+√

ghe),

the scheme (3.32) is positivity-preserving in the sense that if the numerical solution h
n
k is

non-negative then the update solution h
n+1
k is also non-negative.

Proof The scheme (3.32) can be written as

hn+1
k = hnk − λα(h∗

e )
n
k + 1

2
λ(α − unk+1)(h

∗
e)

n
k+1 + 1

2
λ(α + unk−1)(h

∗
e)

n
k−1

=
(

hnk
(h∗

e)
n
k

− λα

)

(h∗
e)

n
k + 1

2
λ(α − unk+1)(h

∗
e)

n
k+1 + 1

2
λ(α + unk−1)(h

∗
e)

n
k−1. (3.33)

Here, hn+1
k is a linear combination of (h∗

e)
n
k , (h

∗
e)

n
k−1 and (h∗

e)
n
k+1 with non-negative coeffi-

cients. Thus, hn+1
k is non-negative. 
�

For the high order entropy stable DG method (3.8), we have shown in Theorem 3 that
(

∂h

∂t
, 1

)

�k
+
〈
f (1)
S

(
Q∗,+

e ,Q∗
e

)
, 1nx

〉

∂�k
= 0,
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The main step to show the positivity-preserving property of this method is listed below, and
we refer to [43] for the details. We introduce the M-point (with 2M − 3 ≥ N ) Legendre
Gauss–Lobatto quadrature rule (for the proof of positivity-preserving only, and not used
in the implementation) on the interval I j , and denote these quadrature points by Sk ={
xk− 1

2
= x̂1k , x̂

2
k , . . . , x̂

M−1
k , x̂ Mk = xk+ 1

2

}
, with the corresponding quadrature weights ŵr

for the interval [− 1/2, 1/2] satisfying∑M
r=1 ŵr = 1. It can be shown that if the numerical

solution hnk (x) is non-negative on these quadrature points Sk , then the update solution h
n+1
k

is also non-negative under the suitable CFL condition

λα ≤ ŵ1 min
k

(
h±
k+1/2

(h∗
e)

±
k+1/2

)

. (3.34)

The following positivity-preserving limiter [43,46] is then applied on the DG polynomial
Qn

j (x) = (hnk (x),m
n
j (x))

T ,

Q̃n
k (x) = θ

(
Qn

k (x) − Q
n
k

)
+ Q

n
k , θ = min

{

1,
h
n
k

h
n
k − dk

}

, (3.35)

with

dk = min
x∈Sk

hnk (x) = min
r=1,...,M

hnk (x̂
r
k ). (3.36)

With this choice of dk , we can show that h̃nk (x̂
r
k ) ≥ 0 (r = 1, . . . , N ), and this limiter

maintains the local conservation of the variable Qn
k (x). The modified polynomial Q̃n

j (x),
instead of Qn

j (x), is then used in the entropy stable methods (3.31). Following the proofs in
[43,46], we can verify that the entropy stable methods coupled with this positivity-preserving
limiter are high order accurate, positivity-preserving and mass conservation under the CFL
condition (3.34). For the DG method, the CFL condition (3.34) is comparable with the
standard linear stability CFL condition, but if one wants to take larger time step, we could
implement the time step restriction (3.34) only when a preliminary calculation of the water
height at the next time step has negative cell average.

Next, we show that this limiter won’t affect the entropy stable property. Similar result has
also been available in [11], as well as in [30,36].

Theorem 6 The entropy stable method (3.31) is compatible with the positivity-preserving
limiter (3.35).

Proof For any convex entropy function U , we have

U (Q̃k) = U (θQk + (1 − θ)Qk) = θU (Qk) + (1 − θ)U (Qk)

≤ θU (Qk) + (1 − θ)U (Qk) (since U is convex) = θU (Qk) + (1 − θ)U (Qk)

≤ θU (Qk) + (1 − θ)U (Qk) (via Jensen’s inequality) = U (Qk).

Therefore, the modified polynomial Q̃ has a entropy which is less than or equal to the
original entropy, and we can conclude that the positivity-preserving limiter does not increase
the entropy of the system. 
�
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4 Entropy Stable DGMethod for the Two-Dimensional SWEs

The one-dimensional entropy stable, well-balanced DG methods can be easily extended to
two dimensions, which will be explained in this section. The two-dimensional SWEs with a
non-flat bottom topography take the form of

∂Q
∂t

+ ∂f (Q)

∂x
+ ∂g (Q)

∂ y
= S, (4.1)

with the conservative variables

Q =
⎡

⎣
h
m1

m2

⎤

⎦ =
⎡

⎣
h
hu
hv

⎤

⎦ ,

the fluxes and source terms given by

f =
⎡

⎢
⎣

hu

hu2 + 1

2
gh2

hvu

⎤

⎥
⎦ , g =

⎡

⎢
⎣

hv

huv

hv2 + 1

2
gh2

⎤

⎥
⎦ , S =

⎡

⎣
0
−ghbx
−ghby

⎤

⎦ .

The two-dimensional entropy variables are

e =
⎡

⎣
e1
e2
e3

⎤

⎦ =
⎡

⎢
⎣

g(h + b) − 1

2
u2 − 1

2
v2

u
v

⎤

⎥
⎦ ,

and the corresponding entropy, entropy potentials are

U = 1

2
h(u2 + v2) + 1

2
gh2 + ghb, ψ1 = 1

2
gh2u, ψ2 = 1

2
gh2v.

The two-dimensional symmetric and consistent entropy conservative numerical fluxes
fS (Ql ,Qr ) and gS (Qb,Qt ), which satisfy the following definition

(el − er )T fS (Ql ,Qr ) = (
ψ1,l − ψ1,r

)+ g

2
(bl − br )(m1,l + m1,r ),

(eb − et )T gS (Qb,Qt ) = (
ψ2,b − ψ2,t

)+ g

2
(bb − bt )(m2,b + m2,t ),

(4.2)

have been studied [11] and are given by

fS (Ql ,Qr ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

f (1)
S

f (2)
S

f (3)
S

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

2

(
m1,l + m1,r

)

1

4

(
m1,l + m1,r

)
(ul + ur ) + 1

2
ghlhr

1

4

(
m2,l + m2,r

)
(ul + ur )

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.3)
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gS (Qb,Qt ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

g(1)
S

g(2)
S

g(3)
S

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

2

(
m2,b + m2,t

)

1

4

(
m1,b + m1,t

)
(vb + vt )

1

4

(
m2,b + m2,t

)
(vb + vt ) + 1

2
ghbht

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.4)

The entropy conservative DG methods for two-dimensional SWEs (4.1) are given by
(

∂Q
∂t

, ω

)

�

+ ((
2Dx

h fS
(
Qe(x, y),Qe(x̂, ŷ)

)) |x̂=x,ŷ=y, ω
)

�
+

((
2Dy

hgS
(
Qe(x, y),Qe(x̂, ŷ)

)) |x̂=x,ŷ=y, ω
)

�
+
⎛

⎝
0(
gheD

x
hbe, ω

)

�(
gheD

y
hbe, ω

)

�

⎞

⎠ = 0,

(4.5)

where Qe and be are given by

Qe = Q(Pe) =
⎡

⎣
he
m1,e

m2,e

⎤

⎦ , he = 1

g

(

Pe1 + 1

2
((Pe2)

2 + (Pe3)
2) − gPb

)

,

m1,e = hePe2, m2,e = hePe3, be = Pb.

The derivative operator Dy
h follows the same definition as Dx

h in (2.9), except the normal
vector nx is replaced by ny . The expansion of the two-dimensional entropy stableDGmethods
(4.5), after plugging in the derivative operators Dx

h and the entropy conservative numerical
fluxes (4.3) and (4.4), are listed in “Appendix A”. For the proposed methods, we have the
following theorem, which states that the nice properties of the one-dimensional methods also
hold for the two-dimensional methods.

Theorem 7 The two-dimensional method outlined in (4.5) for the SWEs is entropy conser-
vative, locally conservative and well-balanced for still-water steady state solutions.

The detailed proof is omitted here. It exactly follows the steps of those for the one-
dimensional results, but becomes slightly more complicated due to the two-dimensional
effects.

By adding additional dissipative terms at the element interfaces, as done for the one-
dimensional case in (3.23), the semi-discrete entropy stable can also be derived and proven
for two-dimensional problems. The two-dimensional positivity-preserving limiter [43,46] is
given by

Q̃n
i j (x, y) = θ

(
Qn

i j (x, y) − Q
n
i j

)
+ Q

n
i j , θ = min

{

1,
h
n
i j

hni j − di j

}

, (4.6)

where

di j = min
(x,y)∈Si j

hni j (x, y),

Si j =
{
(x, y) : x ∈ Sx

i , y ∈ S y
j , or x ∈ Sx

i , y ∈ S y
j

}
.

(4.7)

and the sets of one-dimensional Gauss–Lobatto quadrature points, denoted by Sx
i =

{
x̂ri : r = 1, . . . , N

}
, S y

j =
{
ŷrj : r = 1, . . . , N

}
, are used. Again, this limiter does not

affect the entropy stable property.
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Table 1 L1 errors and
convergence rate of the entropy
stable DG method for the test in
Sect. 5.1

N h hu

L1 error Order L1 error Order

25 5.55E−4 4.28E−3

50 6.56E−5 3.08 5.65E−4 2.92

100 6.55E−6 3.32 5.58E−5 3.33

200 6.42E−7 3.35 5.48E−6 3.35

400 7.50E−8 3.10 6.43E−7 3.09

800 9.17E−9 3.03 8.45E−8 2.93

5 Numerical Experiments

In this section we present numerical results to demonstrate the performance of the proposed
entropy stable and well-balanced DG methods. In addition to the well-balanced properties,
we also demonstrate the positivity-preserving feature, high order accuracy, as well as other
aspects. The third order DG method with quadratic polynomials is tested. For the two-
dimensional problem, the tensor product polynomial space Q2 is used as the solution space.
For the explicit time discretization, the third order TVDRunge–Kutta method is applied. The
gravitation constant g is taken as 9.812 and the CFL condition is taken as 0.18. The TVB
slope limiter is implemented to eliminate the spurious oscillation, and in most numerical
examples, the TVB constant M is set as 0 unless stated otherwise.

5.1 Accuracy Test

We start with an accuracy test to demonstrate the high order accuracy of our schemes for a
smooth solution of the SWEs. Following the setup in [39], the bottom topography and initial
conditions are:

⎧
⎨

⎩

b(x) = sin2(πx),
h(x, 0) = 5 + ecos(2πx),

hu(x, 0) = sin(cos(2πx)),
(5.1)

in the computational domain [0, 1] with periodic boundary conditions. The final time is
picked as t = 0.1, when the solution is still smooth. Since the exact solution is not known
explicitly, we use the fifth order finite volume WENO scheme presented in [40] with 12,800
uniform cells to compute a reference solution, and compute the numerical errors by treating
this reference solution as the exact solution. The TVB slope limiter procedure is turned off
in this accuracy test. Table 1 shows the L1 errors and order of accuracy of the numerical
solutions, from which we can clearly see that, for the proposed entropy stable DG method,
third order accuracy is achieved for this test. We have also tested the accuracy of the entropy
conservative DGmethod (i.e., without adding the dissipation term), and the results are shown
in Table 2, where again the third order convergence rate is observed as we refine the mesh.

5.2 TheWell-Balanced Test

In this example, we test the well-balanced property of our proposed methods to ensure that
the still-water steady state is exactly preserved. We consider two different choices of the
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Table 2 L1 errors and
convergence rate of the entropy
conservative DG method for the
test in Sect. 5.1

N h hu

L1 error Order L1 error Order

25 3.00E−3 2.77E−2

50 3.34E−4 3.17 2.92E−3 3.25

100 1.05E−5 4.99 9.09E−5 5.00

200 5.71E−7 4.20 4.86E−6 4.22

400 7.22E−8 2.98 6.19E−7 2.98

800 9.01E−9 3.00 7.72E−8 3.00

Table 3 L1 and L∞ errors for
the stationary solution with a
smooth bottom, for the test in
Sect. 5.2

N L1 error L∞ error

h hu h hu

100 1.0E−13 5.8E−14 1.4E−13 2.9E−13

200 1.4E−13 9.1E−14 1.9E−13 4.1E−13

400 2.1E−13 1.1E−13 3.1E−13 4.9E−13

Table 4 L1 and L∞ errors for
the stationary solution with a
discontinuous bottom, for the test
in Sect. 5.2

N L1 error L∞ error

h hu h hu

100 1.1E−13 5.4E−14 1.5E−13 3.7E−13

200 1.1E−13 5.0E−14 1.6E−13 3.2E−13

400 1.2E−13 4.0E−14 1.7E−13 2.6E−13

bottom topography in the computational domain (0 ≤ x ≤ 10), with one being smooth

b(x) = 5 exp

(

− 2

5
(x − 5)2

)

,

and the other being discontinuous

b(x) =
{
4, if 4 ≤ x ≤ 8,
0, otherwise.

The initial condition is taken as the stationary state

h + b = 10, hu = 0,

which should be exactly preserved.
We solve the problem using double precision until the final time t = 0.5, with three

different meshes of 100, 200 and 400 uniform elements. The L1 error and L∞ error for the
water height h and the momentum hu are shown in Tables 3 and 4. We can observe that all
the errors for both smooth and discontinuous bottom topography cases are at the level of
roundoff errors, which verifies the well-balanced property.
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Fig. 2 A small perturbation test in Sect. 5.3, with a big pulse ε = 0.2 at time t = 0.2. Left: the water surface
h + b; right: the momentum hu

5.3 A Small Perturbation Test

To demonstrate the capability of the proposed DG methods in computing a rapidly varying
flow over a smooth bed, we test the following quasi-stationary test case [28], which is a small
perturbation of the steady state solution.

In the computational domain [0, 2], the bottom topography b(x) is given by

b(x) =
{
0.25(cos(10π(x − 1.5)) + 1), if 1.4 ≤ x ≤ 1.6,
0, otherwise,

and the initial conditions of h and hu are

h(x, 0) =
{
1 − b(x) + ε, if 1.1 ≤ x ≤ 1.2,
1 − b(x), otherwise,

hu(x, 0) = 0, (5.2)

where ε is a given constant representing the size of the perturbation. Two cases with the
big pulse (ε = 0.2) and small pulse (ε = 0.001) have been tested to the final stopping
time t = 0.2, with simple transmissive boundary conditions. Theoretically, this perturbation
splits into two waves, propagating to different direction. The small perturbation case with
ε = 0.001 is usually difficult to capture for non-well-balanced numerical methods.

The total water surface h + b and momentum hu for the case with big pulse ε = 0.2
and 200 uniform elements, compared with a reference solution with 3000 uniform element,
are shown in Fig. 2. The same results for the case with small pulse ε = 0.001 are shown in
Fig. 3. At this time, the water pulse traveling to the right has already passed the bump. We
can clearly observe that both cases are well resolved and the solutions do not have spurious
numerical oscillations.

5.4 One-Dimensional Dam Breaking Problem

The one-dimensional dam breaking problem over a rectangular bump, considered in [39],
is tested in this example. It involves a rapidly varying flow over a discontinuous bottom
topography.
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Fig. 3 A small perturbation test in Sect. 5.3, with a small pulse ε = 0.001 at time t = 0.2. Left: the water
surface h + b; right: the momentum hu
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Fig. 4 The surface level h + b for the dam breaking problem at t = 15, for the dam-breaking test in Sect. 5.4

The computational domain is set as [0, 1500], and the discontinuous bottom topography
takes the form of

b(x) =
{
8, if |x − 750| ≤ 1500/8,
0, otherwise.

(5.3)

The initial conditions of h and hu are

h(x, 0) =
{
20 − b(x), if x ≤ 750,
15 − b(x), otherwise,

u(x, 0) = 0. (5.4)

We run the simulation until the final stopping time t = 60.
In this example, the water height h contains discontinuities at the points x = 562.5 and

x = 937.5 (coming from the discontinuities of the bottom b), while the surface level h + b
is smooth there. In Figs. 4 and 5, the numerical results obtained with both 200 and 3000
uniform elements at two different ending times t = 15 and t = 60 are demonstrated. It is
clear that the entropy stableDG schemeworkswell for this example, providingwell-resolved,
non-oscillatory solutions using 200 cells which agree well with the reference solutions using
3000 cells.
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Fig. 5 The surface level h + b for the dam breaking problem at t = 60, for the dam-breaking test in Sect. 5.4

5.5 Positivity-Preserving Test

The following dam-breaking test with a dried river bed is used to examine the positivity-
preserving feature of the proposedDGmethod.The computational domain is set as [− 20, 20].
Reflective boundary conditions are used, the bottom topography b is set as zero, and the initial
conditions are given by

h(x, 0) =
{
10, if x ≤ 0,
0, otherwise,

hu(x, 0) = 0.

The water surface level obtained with 100 uniform elements at time t = 0.2, t = 0.5
and t = 1 are shown in Fig. 6. The positivity-preserving limiter works well in avoiding the
nonphysical negative water height. Without the use of the positivity-preserving limiter, this
test case crashes immediately and cannot run unless something is done at the drying and
wetting front.

5.6 Entropy Glitch Test

In this section, we follow the example studied in [36] and consider a specific dam-breaking
problem to show the necessity of the entropy stable feature. It was shown in [36, Fig. 8]
that standard DG method with a local Lax–Friedrichs numerical flux develops an unphysical
discontinuity, called an “entropy glitch”, at x = 0, while the entropy stable method is able
to capture the solution well on the coarse mesh.

The initial conditions are taken as

h(x, 0) =
{
1.0, if x ≤ 0,
0.1, otherwise,

u(x, 0) = 0, (5.5)

on the computational domain [− 1, 1], with the flat bottom b = 0. To match the setup in [36],
we take the gravity constant g to be 10 and the final stopping time to be 0.2. 100 uniform
elements are used, and the numerical results are shown in Fig. 7, where we can observe that
no unphysical discontinuity appears near x = 0 and our entropy stable method does not
produce the entropy glitch for this test.
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Fig. 6 The surface level h + b for the dam breaking problem with a dried river bed in Sect. 5.5 at t = 0.2,
t = 0.5 and t = 1.0

Fig. 7 The water height h for the entropy glitch test case in Sect. 5.6 at t = 0.2

5.7 Two-Dimensional Accuracy Test

We have also tested the proposed entropy stable DG methods on two-dimensional prob-
lem with rectangular meshes. This example is used to check the numerical accuracy of our
two-dimensional methods. Following the setup in [39], the bottom topography and initial
conditions are given by
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Table 5 L1 errors and numerical orders of accuracy for the test in Sect. 5.7

N h hu hv

L1 error Order L1 error Order L1 error Order

25 × 25 3.00E−2 1.80E−1 2.49E−1

50 × 50 7.31E−3 2.04 3.75E−2 2.26 5.77E−2 2.11

100 × 100 1.49E−3 2.29 7.71E−3 2.38 1.12E−2 2.40

200 × 200 2.88E−4 2.37 1.29E−4 2.48 2.02E−3 2.47

⎧
⎪⎪⎨

⎪⎪⎩

b(x, y) = sin(2πx) + cos(2π y),
h(x, y, 0) = 10 + esin(2πx) cos(2π y),
hu(x, y, 0) = sin(cos(2πx)) sin(2π y),
hv(x, y, 0) = cos(2πx) cos(sin(2π y)),

(5.6)

in the computational domain [0, 1] × [0, 1], and periodic boundary conditions are used. The
final time is set as t = 0.05. Since the exact solution is not known explicitly for this test case,
we use the third order standard DG scheme with 800 × 800 rectangular meshes to compute
a reference solution and compute the numerical errors. The TVB constant M is taken as 40
in this test, to avoid the reduction of accuracy near the extreme points. The L1 errors and
orders of accuracy are demonstrated in Table 5.

5.8 The Two-DimensionalWell-Balanced Test

The purpose of this example is to verify the well-balanced property of our DG methods to
preserve the steady state solution in two dimensions. The rectangular computation domain
[0, 1] × [0, 1] is used, and the non-flat bottom topography is given by

b(x, y) = 0.8 exp

(

− 50

(

x − 1

2

)2

− 50

(

y − 1

2

)2
)

, (5.7)

The initial condition is taken as the stationary solution

h(x, y, 0) = 1 − b(x, y), hu(x, y, 0) = hv(x, y, 0) = 0, (5.8)

and periodic boundary condition is used.
The flat water surface should be exactly preserved. We compute the solution until the final

time t = 0.1 using double-precision, with three different meshes of 50× 50, 100× 100 and
200 × 200 rectangular meshes. Table 6 shows the L1 and L∞ errors for the water height h
(which is not a constant function) and the momentums hu, hv. We can observe that all the
errors are at the level of roundoff errors, which verifies the well-balanced property.

5.9 A Small Perturbation of Two-Dimensional Steady State

In this section, we consider a classical example, studied by LeVeque [28], to demonstrate the
capability of the proposed scheme in capturing a small perturbation of the stationary state.
The computation domain is [0, 2] × [0, 1]. The bottom topography consists of an elliptical
shaped hump

b(x, y) = 0.8 exp
(− 5(x − 0.9)2 − 50(y − 0.5)2

)
, (5.9)
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Table 6 L1 and L∞ errors for the stationary solution, for the test in Sect. 5.8

N × M L1 error L∞ error

h hu hv h hu hv

50 × 50 1.2E−15 2.8E−15 2.5E−15 3.2E−11 3.1E−14 3.2E−14

100 × 100 9.4E−16 3.1E−15 3.0E−15 1.8E−11 3.4E−14 3.2E−14

200 × 200 6.6E−16 3.6E−15 3.7E−15 1.4E−11 3.7E−13 3.8E−14
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Fig. 8 The contours of the surface level h+b for the small perturbation problem in Sect. 5.9 at times t = 0.12,
t = 0.24, t = 0.36 and t = 0.48 with 200 × 100 uniform meshes

and the initial conditions of h, hu and hv are

h(x, y, 0) =
{
1 − b(x, y) + 0.01, if 0.05 ≤ x ≤ 0.15,
1 − b(x, y), otherwise,

hu(x, y, 0) = hv(x, y, 0) = 0,

which means that the surface is almost flat except for the region 0.05 ≤ x ≤ 0.15, where
h is perturbed by a size of 0.01. Figure 8 displays the surface level h + b at different times
t = 0.24, t = 0.36 and t = 0.48 with 200 × 100 uniform meshes. We can see that the
right-going disturbance propagates past the hump naturally, and the complex small features
of the flow can be resolved very well.

5.10 Oblique Two-Dimensional Dam Break

In this section, we consider a two-dimensional dam break problem, studied in [3,42]. In the
computational domain [− 0.5, 0, 5] × [− 0.5, 0, 5], the initial condition is set as

h(x, y, 0) =
{
1 if x + y ≤ 0,
0 otherwise

and hu(x, y, 0) = hv(x, y, 0) = 0, (5.10)
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Fig. 9 Oblique 2D dam break problem in Sect. 5.10. Surface level at different times in the central cross section

Fig. 10 Oblique 2D dam break problem in Sect. 5.10. The surface level at t = 0 (left) and t = 0.06 (right)

with the flat bottom b = 0. Still water appears in half of the area, and dry areas appear in the
other half. This produces a moving front which inclines 45◦ to the boundary of the domain.

The analytic solution of this test is available in [5]. The comparison of the numerical
results and the analytical solutions is provided in Fig. 9, for the surface elevations on the
central cross section (the x = y plane) at different times t = 0, 0.02, 0.06 and 0.1 with
100 × 100 uniform cells. Figure 10 shows the three-dimensional plot of the initial surface
and the water surface at t = 0.6. We can observe a good agreement between the numerical
and analytical solutions, and the positivity-preserving limiter works well in avoiding the
nonphysical negative water height.
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6 Conclusion

In this work, we present entropy stable, well-balanced and positivity-preserving DGmethods
for the nonlinear SWEs with a non-flat bottom topography. The entropy stable property,
local conservation, well-balanced property and positivity-preserving feature are validated for
the one-dimensional method, and these proofs could be easily extended to two dimensions
on rectangular meshes. Both one- and two-dimensional numerical results are provided to
demonstrate the performance of the proposed DG methods. Only the rectangular meshes in
two-dimensional setting are considered in this paper as a first step to illustrate the idea, and
our future work involves the extension of these methods to curvilinear grids and triangular
grids, when domain with complex geometry is considered.
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Appendix A: Two-Dimensional DGMethods

The two-dimensional entropy stable DG methods (4.5), after following the definition of the
derivative operators Dx

h in Definition 3 and the entropy conservative numerical fluxes (4.3)
and (4.4), can be expanded as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

k

(
∂h

∂t
, ω

)

�k
+
(

∂Pm1,e

∂x
+ ∂Pm2,e

∂ y
, ω

)

�k

+
〈
f (1)
S

(
Q+
e , Qe

)− Pm1,e, ωnx
〉

∂�k
+
〈
g(1)
S

(
Q+
e , Qe

)− Pm2,e, ωny
〉

∂�k
= 0,

∑

k

(
∂m1

∂t
, ω

)

�k
+
(
1

2

∂

∂x

(
P(m1,eue)

)+ 1

2
ue

∂

∂x

(
Pm1,e

)+ 1

2
m1,e

∂

∂x
ue + ghe

∂

∂x
(Phe) , ω

)

�k

+
(

ghe
∂

∂x
be, ω

)

�k
+
(
1

2

∂

∂ y

(
(Pm2,e)ue

)+ 1

2
ue

∂

∂ y

(
Pm2,e

)+ 1

2
m2,e

∂

∂ y
ue, ω

)

�k

+
〈
f (2)
S

(
Q+
e , Qe

)+ I, ωnx
〉

∂�k
+ V +

〈
g(2)
S

(
Q+
e , Qe

)+ II, ωny
〉

∂�k
+ VI = 0,

∑

k

(
∂m2

∂t
, ω

)

�k
+
(
1

2

∂

∂x

(
(Pm1,e)ve

)+ 1

2
ve

∂

∂x

(
Pm1,e

)+ 1

2
m1,e

∂

∂x
ve, ω

)

�k

+
(
1

2

∂

∂ y

(
P
(
m2,eve

))+ 1

2
ve

∂

∂ y

(
Pm2,e

)+ v
1

2
m2,e

∂

∂ y
ve+ghe

∂

∂ y
(Phe) , ω

)

�k
+
(

ghe
∂

∂ y
be, ω

)

�k

+
〈
f (3)
S

(
Q+
e , Qe

)+ III, ωny
〉

∂�k
+ VII +

〈
g(3)
S

(
Q+
e , Qe

)+ IV, ωny
〉

∂�k
+ VIII = 0,

123



   66 Page 30 of 32 Journal of Scientific Computing            (2020) 83:66 

with the terms I - VIII defined by

I = �(m1,e, ue) − 1

2
ghe

(
Phe − �be�

)
, II = �(m2,e, ue),

III = �(m1,e, ve), IV = �(m2,e, ve) − 1

2
ghe

(
Phe − �be�

)
,

V = 1

4
�x (m1,e, ue) + 1

2
g�x (he, he), VI = 1

4
�x (m2,e, ue),

VII = 1

4
�y(m1,e, ve), VIII = 1

4
�y(m2,e, ve) + 1

2
g�y(he, he),

where the notations

�(a, b) = −1

2
P(ab) + 1

4
(Pa + a)b, �x (a, b) = 〈E(a),P(bω)nx 〉∂�k , �y(a, b)

= 〈E(a),P(bω)ny〉∂�k ,

are used. An equivalent form of the DG methods, which uses the vector variables and local
matrices to guide the efficient implementation, is available in [9].
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