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UNIFORMLY HIGH-ORDER STRUCTURE-PRESERVING
DISCONTINUOUS GALERKIN METHODS FOR EULER
EQUATIONS WITH GRAVITATION: POSITIVITY AND

WELL-BALANCEDNESS*
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Abstract. This paper presents novel high-order accurate discontinuous Galerkin (DG) schemes
for the compressible Euler equations under gravitational fields. A notable feature of these schemes
is that they are well-balanced for a general known hydrostatic equilibrium state and, at the same
time, provably preserve the positivity of density and pressure. In order to achieve the well-balanced
and positivity-preserving properties simultaneously, a novel DG spatial discretization is carefully
designed with suitable source term reformulation and a properly modified Harten—Lax—van Leer-
contact (HLLC) flux. Based on some technical decompositions as well as several key properties of
the admissible states and HLLC flux, rigorous positivity-preserving analyses are carried out. It is
proven that the resulting well-balanced DG schemes, coupled with strong-stability-preserving time
discretizations, satisfy a weak positivity property, which implies that one can apply a simple existing
limiter to effectively enforce the positivity-preserving property, without losing high-order accuracy
and conservation. The proposed methods and analyses are illustrated with the ideal equation of
state (EOS) for notational convenience only, while the extensions to general EOS are straightforward
and are discussed in the supplementary material. Extensive one- and two-dimensional numerical
tests demonstrate the desired properties of these schemes, including the exact preservation of the
equilibrium state, the ability to capture small perturbation of such state, the robustness for solving
problems involving low density and/or low pressure, and good resolution for smooth and discontin-
uous solutions.
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1. Introduction. In this paper, we present highly accurate and robust numer-
ical methods for the compressible Euler equations with gravitation, which have wide
application in astrophysics and atmospheric science. In the d-dimensional case, this
model can be written as the following nonlinear system of balance laws:

(1) U, + V- -F(U) =8(U,x),

with
p pu 0

(2) U=|m|, FU=|puu+ply|, S(Ux)=| —pVo
E (E+p)u -m-V¢

Here m = pu denotes the momentum vector; p, u, and p denote the fluid den-
sity, velocity, and pressure, respectively; I; is the identity matrix of size d; and
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E = 1p|lul|? + pe is the total nongravitational energy with e denoting the specific in-
ternal energy. The source terms at the right-hand side of (1) represent the effect of the
gravitational field, and ¢(x) is the static gravitational potential. An additional ther-
modynamic equation relating state variables, the so-called equation of state (EOS),
is needed to close the system (2). A general EOS can be written as e = £(p, p). For

ideal gases it is given by

2
3) p=(v—1)pe=('y—1)<E—”?|)7

p
where the constant v > 1 denotes the adiabatic index. Although we will mainly focus
on the ideal EOS for better legibility, the methods and analyses presented in this
paper are readily extensible to general EOS as shown in the supplementary material.

Equations (1) with (3) form a hyperbolic system of balance laws and admit (non-
trivial) hydrostatic equilibrium solutions, in which the gravitational source term is
exactly balanced by the flux gradient, with two well-known examples being the iso-
thermal and polytropic equilibria. The astrophysical and atmospheric applications of-
ten involve nearly equilibrium flows, which are small perturbations of the hydrostatic
equilibrium states. Standard numerical methods may not balance the contribution of
the flux and gravitational source terms, and generate large numerical error, especially
for a long-time simulation, e.g., in modeling star and galaxy formation. To address
the issue, one may need to conduct the simulation on a very refined mesh, which can
be time-consuming especially for the multidimensional problems. To save the compu-
tational cost, well-balanced methods, which preserve exactly the discrete version of
these steady state solutions up to machine accuracy, are designed to effectively capture
these nearly equilibrium flows well on relatively coarse meshes. Study of well-balanced
methods has attracted much attention over the past few decades. Most of them were
proposed for the shallow water equations over a nonflat bottom topology, another pro-
totype example of hyperbolic balance laws; see, e.g., [4, 15, 23, 47, 1, 41, 46, 44] and
the references therein. In recent years, well-balanced numerical methods for the Euler
equations (1) with gravitation have been designed within several different frameworks,
including but not limited to the finite volume methods [24, 5, 19, 6, 25, 20, 21, 17],
gas-kinetic schemes [48, 29], finite difference methods [43, 12, 28], and finite element
discontinuous Galerkin (DG) methods [26, 7, 27, 35]. Most of these works assume
that the target equilibrium is explicitly known, which is also adopted in this paper.
Recently, there exist some efforts [11, 20, 8, 34, 3] on designing well-balanced methods
for the Euler equation with gravitation, requiring no a priori knowledge of the hy-
drostatic solution. A numerical comparison between the high-order DG method and
well-balanced DG methods was carried out in [35].

Besides maintaining the hydrostatic equilibrium states, another numerical chal-
lenge for the system (1) is to preserve the positivity of density and pressure. Such
positivity property is not only necessary for the physical nature of the solution, but
also crucial for the robustness of numerical computations. In fact, when negative
density and/or pressure are produced, numerical instability can develop and cause
the breakdown of numerical simulations. However, most high-order accurate schemes
for the Euler equations with gravity are generally not positivity-preserving, and thus
may suffer from a risk of failure when simulating problems with low density, low
pressure, and/or strong discontinuity. In recent years, high-order bound-preserving
numerical schemes have been actively studied for hyperbolic systems. Most of them
are built upon two types of limiting approaches: a simple scaling limiter [52] for the
reconstructed or evolved solution polynomials in finite volume/DG methods (see, e.g.,
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[51, 52, 46, 50, 38, 39]) or a flux-correction limiter [49, 18, 40]. For more developments
and applications, we refer to the recent review [31] and the references therein. Based
on the simple scaling limiter, high-order positivity-preserving DG schemes were con-
structed for the Euler equations without source term [52, 54] and with source terms
including the gravitational source term [53]. The bound-preserving framework was
also extended in [37] to the general relativistic Euler equations under strong gravita-
tional fields.

The main objective of this paper is to develop uniformly high-order DG methods,
which are well-balanced and at the same time provably positivity-preserving for the
Euler equations with gravitation. Most of the existing methods possess only one
of these two properties. A recent work to satisfy both properties was studied in
[32], based on a new approximate Riemann solver using a relaxation approach. The
accuracy of the schemes in [32] was limited to second-order, yet its extension to higher-
order is challenging. The framework established in this paper would be the first one, to
the best of our knowledge, that achieves this goal with arbitrarily high-order accurate
schemes. The efforts in this paper are summarized as follows.

e One key novelty of this work is to devise novel high-order well-balanced DG schemes,
with suitable source term treatments and proper well-balanced numerical fluxes, so
that the desired positivity-preserving property is also accommodated in the dis-
cretization at the same time.

e We use a properly modified Harten-Lax—van Leer-contact (HLLC) numerical flux,
instead of the modified Lax—Friedrichs (LF) fluxes employed in the previous well-
balanced DG study [26]. Motivated by the contact property of the HLLC flux
observed in [6], we will show in our framework that the HLLC flux can be properly
modified, in a unified way, to be well-balanced with our discrete source terms for an
arbitrary known hydrostatic equilibrium. The proposed modification to the HLLC
flux is novel and very different from the modifications to the LF flux in [26, 25],
which were not formulated in a unified way but were presented for two special
equilibria (isothermal and polytropic equilibria) in a separate case-by-case way.
More importantly, our new modification does not affect the high-order accuracy
and also retains the desired positivity-preserving property, which cannot be shown
for the existing modified LF fluxes when polytropic equilibrium is considered.

e Our source term discretization is motivated by [43], where the gravitational source
is first reformulated into an equivalent special form using the corresponding hydro-
static equilibrium solution. For the well-balancedness, the reformulation was made
based on either the cell-centered solution values (in a DG framework [26]) or the
cell average of the solution (in a finite volume framework [25]). In this work, we
first make the theoretical observation that the latter reformulation is advantageous
for establishing the positivity-preserving property under a milder CFL condition;
see Remark 3.7 for details. Moreover, for the theoretical positivity-preserving con-
siderations, we also observe that the source term in the energy equation should
be discretized in the same fashion as in the momentum equations, which is not
used/required for only the well-balancedness consideration.

e Based on some technical decompositions as well as several key properties of the
admissible states and HLLC flux, we will rigorously prove that the resulting well-
balanced DG schemes satisfy a weak positivity property, which implies that a simple
existing limiter [52, 36] can effectively enforce the positivity-preserving property
without losing high-order accuracy and conservation. The well-balanced modifi-
cation of the numerical flux and discretization of source terms lead to additional
difficulties in the positivity-preserving analyses, which are more complicated than
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the analyses for the standard DG methods in [52, 53].

It is also worth noting that, in the context of shallow water equations, several
positivity-preserving well-balanced schemes have been developed in the literature
[22, 46, 42]. In that context, the positivity refers to the nonnegativity of the water
height. In the Euler equations (1), the density is the analogue of the water height
and is evolved only in the continuity equation, which makes it relatively easy to en-
sure its positivity. However, it is much more difficult to guarantee the positivity
of pressure, since it depends nonlinearly on all the conservative variables {p, m, F'},
as shown in (3). More specifically, the pressure (internal energy) is computed by
subtracting the kinetic energy ||ml|?/(2p) from the total energy E. For high Mach
flows or very cold flows, when the numerical errors in E and ||m|?/(2p) are large
enough, negative pressure can be produced easily. Since the conservative quantities
{p,m, E} are evolved according to their own conservation laws which are seemingly
unrelated, the positivity of pressure is not easy to guarantee numerically. In theory, it
is indeed a challenge to make an a priori judgment on whether a numerical scheme is
always positivity-preserving under all circumstances or not. For these reasons, seeking
positivity-preserving well-balanced schemes for the Euler equations (1) with gravita-
tion is quite nontrivial and cannot directly follow any existing frameworks on shallow
water equations.

The rest of this paper is organized as follows. In section 2, we will introduce
the stationary hydrostatic solutions of (1) and present several useful properties of the
admissible state set and the HLLC flux. We first construct the positivity-preserving
well-balanced DG schemes for the one-dimensional (1D) system in section 3, and
then extend them to the multidimensional cases in section 4. We conduct numerical
tests to verify the properties and effectiveness of the proposed schemes in section 5,
before concluding the paper in section 6. The extensions of the proposed methods
and analyses to general EOSs are presented in the supplementary material, where we
also discuss the positivity of the well-balanced DG schemes with a modified LF flux
for the isothermal case.

2. Auxiliary results. This section introduces the stationary hydrostatic solu-
tions of (1) and presents several useful properties of the admissible state set and the
HLLC flux.

2.1. Stationary hydrostatic solutions. Under the time-independent gravita-
tion potential, the system (1) admits zero-velocity stationary hydrostatic solutions of
the form

(4) p=px), u=0, Vp=-—pVe

The relation (4) alone is not complete, since the density and pressure stratifications
are not uniquely defined; see [19]. We usually need to specify the profile of another
thermodynamic variable, for example, temperature or entropy, to determine a stable
equilibrium. Two important special classes of equilibria arising in the applications
are the polytropic [19] and isothermal [43] hydrostatic states. For an isothermal
hydrostatic state, we have T'(x) = Ty, where T' denotes the temperature. For an ideal
gas, it is given by

P = pPo €Xp _i ) u:O7 P = Po €Xp _i )
BTy RT,

where R is the gas constant; pg, pg, and Ty are positive constants satisfying py =
poRTy. A polytropic equilibrium is characterized by p = Kyp?, which leads to the
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form of

where Ky and C are both constant.

2.2. Properties of admissible states. In physics, the density p and the pres-
sure p are both positive, which is equivalent to the description that the conservative
vector U should stay in the set of physically admissible states, defined by

(5) G::{U:(p,m,E)T:p>0 G(U) := E—”r;pz>0},

where G(U) is a concave function of U if p > 0. It is easy to show that the admissible
state set G satisfies the following properties, which will be useful in our positivity-
preserving analysis.

LEMMA 2.1 (convexity). The set G is a convex set. Moreover, AUy + (1 —A)Up
€ G for any Uy € G,Uy € G, and X € (0,1], where G is the closure of G.

This property can be verified by definition and Jensen’s inequality; see [52].
LEMMA 2.2 (scale invariance). If U € G, for any A > 0, it holds that AU € G.

The proof is straightforward. Combining Lemmas 2.1 and 2.2, we immediately
obtain the following stronger property.

LEMMA 2.3. For any A\ > 0, X\p > 0, U; € G, and Uy € G, we have U =
MU + XU € G.

Proof. Let A := 5 +)\ € (0,1]. It follows from Lemma 2.1 that AU;+(1—-\)Ug €
G. Thus, we have U = (M + 20)(AUL + (1 — M)Uy) € G, according to Lemma 2.2. 0

LEMMA 24. For any A > 0, § € R, U = (p,m,E)T € G, and a € R?, if
|5|\”/i2l‘e < A, then

U= )\U—|—5(07pa,m~a)—r €q.

Proof. If X\ = 0, it then follows from |§|||al|/v/2¢ < A that § = 0 or a = O,
which implies U=0€cG. If\ > 0, the first component of U equals Ap > 0, and
U = (A\p, \m + dpa, \E + ém - a) | satisfies

[Am + dpal* (
IAm ¥+ opall” _ .

G(U) = AE +om-a— ==

a a
o) ) o
where the last inequality follows from the condition |J]all/ Vv2e < M. Therefore,
Ued. O

LEMMA 2.5. For any U € G and any unit vector n € R%, we have U—AF(U)-n €
G, for any \ € R satisfying |\ on(U) < 1, where an(U) := [u-n| + /vp/p.
The proof of Lemma 2.5 can be found in [52, 50].

2.3. Properties of HLLC flux in one dimension. In this subsection, we
introduce several important properties of the HLLC numerical flux, whose properly
modified version will be a key ingredient of our numerical schemes presented later.
For notational convenience, we focus here on the properties of the HLLC flux in the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/12/21 to 140.254.87.149. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

DG METHODS FOR EULER EQUATIONS WITH GRAVITATION A477

1D case (d = 1), while the multidimensional extensions will be discussed in section
4.1.1.
In the 1D case, the HLLC flux (see, for example, [2, 33]) is defined by

F(U,) if 0<5y,
F.r if Sp<0<58,,
F.r if S, <0< Sg,
F(Ugp) if 0> Sg,

(6) FhllC(UL, UR) _

where Sy, and Sk are the estimated (left and right) fastest signal velocities arising
from the solution of the Riemann problem, and the middle wave speed S, and fluxes
are given by

_PrR—pPL+ prur(Sr —ur) — prur(Sr — UR)
pr(SL —ur) — pr(Sr — uR)
F..=F;+5(U, —-U;), i=1L,R,

S,

)

with the intermediate states given by

1
(7) U.i = pi S Ui S
SimS )\ s —uv)(S + i )
pi * g * pi(Si—uq)

With ar = u+ +/vp/p, the following estimates of S;, and Sk are used in our compu-
tation:

(8) S, =min{a_(Ur),a_(Ug)}, Sr =max{a(Upr),ar(Ug)}.

The HLLC flux possesses two important properties, namely the contact property
(see, e.g., [6]) and the positivity [2], as outlined below.

LEMMA 2.6. For any two states Ur, = (pr,0,p/(y—1))" and Ur = (pr,0,p/(v—
1)), the HLLC fluz (6) satisfies

FM(UL, Ug) = (0,p,0)".

The proof is straightforward. The importance of this property for the well-
balancedness was observed and used in [6].

LEMMA 2.7. For any two admissible states Uy, € G and Ug € G, the intermedi-
ate states defined in (7) satisfy

U, € G, U, € G.

The proof of this property for the Euler equations can be found in [2, section 5.3].
As a direct consequence of Lemma 2.7, we have the following conclusions, which are
relevant to the positivity of the HLLC scheme for the 1D Euler equations without
gravitation.

LEMMA 2.8. For any two admissible states Uy, Uy € G, one has

(9) U = U, — A (F(U)) — FM(U,p, Uy)) € G,
(10) U = Uy — A (F°(U,, U,) — F(Uy)) € G
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if A > 0 and satisfies

(11) A max  amax(U) < 1,
Ue{Uo, U1}

where
amax(U) = |u| + /7p/p = max{|a_(U)], |ay(U)[}.

Proof. Let Sy := Sr(Up, Uy), which satisfies A\|S1]| < 1. According to the defini-
tion of the HLLC flux, we derive that

A max{S1,0}
Ul — / R(z/A\ Uy, Up)de + (1 — Amax{S,0})Uy,
0

where R(z/t, UL, Ug) denotes the approximate HLLC solution to the Riemann prob-
lem between the states Uy, and Ug, i.e.,

Uy it <55,
U, if Sp <7 <65,
R(l‘/t,UL,UR) = U if S < zt < S
*R 1 * > 7 PR,
Ugr if %ZSR.

Thanks to Lemma 2.7, we have R(z/t,Uy,U;) € G for all x € R and ¢t > 0. The

convexity of G leads to Ug\l) € @ under the condition (11). A similar argument yields

U ea. O
LEMMA 2.9. For any three admissible states U, Uy, Ugr € G, one has

Uy =Uy-—2A (Fhllc(UJw,UR) — Fh”c(UL,UM)) eqd

if A > 0 satisfies

(12) A max max(U) <
UE{UL,ij,UR}

N | =

Proof. Under the condition (12), applying Lemma 2.8 leads to
Uy —2X (F(Uy) —F"e(UL, Uy)) € G, Uy —2X (FMe(Uy, Ug) —F(Uy)) € G.
Taking the average of the above two terms and using the convexity of G then yields

U, €G. O

As a generalization of Lemmas 2.8 and 2.9, the following results discuss the pos-
itivity of a properly modified HLLC flux, used in the construction of well-balanced
methods in section 3.

LEMMA 2.10. For any parameters (1, Ca, (3, (4 € RT and any two admissible
states Ug, Uy € G, if A > 0 and satisfies (11), we have

(13) (U1 — A (F((Uy) — FM'((1 U0, Uy)) € G,
(14) (U — A (F"'°((3U0, (4 Uy) — F((3Up)) € G.

This follows from Lemmas 2.8 and 2.2, and noting maxue{¢, uy,c,U,} @max(U) =
maXye{uy,U;} amaX(U)‘

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/12/21 to 140.254.87.149. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

DG METHODS FOR EULER EQUATIONS WITH GRAVITATION A479

LEMMA 2.11. For any parameters (1, (2, (3 € RT and any admissible states
U, Upn,Ug € G, if A > 0 satisfies (12), we have

QU — A (FM(GUY, 3UR) — FM°(( UL, &UN)) € G.

The proof directly follows from Lemma 2.9 by noting that (U, Uy, (3URr € G
(due to Lemma 2.2) and that maxyefc,u,,c, U ,cUx} @max(U) = MaxXuequ, Uy, Ug}
amax (U).

3. Positivity-preserving well-balanced DG methods in one dimension.
In one spatial dimension, the Euler equations (1) take the form of

(15) U; + (F(U)), = S(U, 2),
with

p pu 0
(16) U=[m|, F(U) = pu2 +p |, S(U7$) = | —pds

E (E + p)u _md)r

3.1. Well-balanced DG discretization. Assume that the spatial domain 2
is divided into cells {I; = (x;_1/2,%41/2)}, and the mesh size is denoted by h; =
Tjy1/2 — Tj_1/2, with h = max;{h;}. The center of each cell is z; = (z;_1/2 +
T;41/2)/2. Denote the DG numerical solutions as Up(x,t), and for each t € (0, Ty,
each component of Uy belongs to the finite-dimensional space of discontinuous piece-
wise polynomial functions, V¥, defined by

VE = {u(m) € L3(Q) : ulw)|, €PH(Iy) w},

where P* (1 ;) denotes the space of polynomials of degree up to k in cell I;. Then the
semidiscrete DG methods for (15) are given as follows: for any test function v € VZ,
Uy, is computed by

(17) / (Up)vde —/ F(Up)vdx + fj+%v(xj_+l) - fj_%v(x+ ) = /1 Svdz,

i1
I I 2 J—3

+
j+1/2
indicate the associated limits at x;,,/2 taken from the left and right sides, re]s—ge/c—
tively, with Uj[+1 Jo = Uh(mﬁrl /2). For notional convenience, the ¢ dependence of all
quantities is suppressed hereafter.

Now, we construct the well-balanced DG methods which preserve a general equi-
librium state (4). Assume that the target stationary hydrostatic solutions to be
preserved are explicitly known and are denoted by {p®(x),p°(x),u®(x) = 0}. This

yields

(18) (0 (@)e = —p (@)ds,  u“(2) =0.

Let p(x) and p§(z) denote the projections of p¢(z) and p°(z) onto the space V¥,
respectively.

To render the DG methods (17) well-balanced, we consider the modified HLLC
numerical flux

where f‘j+1 /2 denotes the numerical flux at x;,1,5. The notations Tii1 and x

e, % e, %
~ p‘_;'_l pj+l
(19) Fji1= Fhile ( U, = U,
2 pi(ijr%) Jits pi(xj+%) Jits3
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where p;’:l is a suitable approximation to the equilibrium pressure at x; Y1 Here we
2

define it as
e,x 1 e/ +
(20) iy =5 (P, >+ph<xj+%>),
and other choices of p 1, including min {ph ) s (z } and max {ph ),

ps(xT 1), also work. ThlS modification does not affect the accuracy, pr0v1ded that
n\® J+—
2

p¢(x) and p®(z) are smooth. The element integral [, F 3 (Up)vgde in (17) is approxi-
mated by the standard quadrature rule

N
(21) / F(Up)vgde = h; ZWHF(Uh('T;M)))Um(xE'#)),

I pn=1

where {xﬁ” ), wphi<pu<n denote the N-point Gauss quadrature nodes and weights in
1.

Next, we consider the discretization of the integrals of the source terms in (17) to
achieve the well-balanced property. Let S =: (0, S RIS [3])T. Following the techniques
in [43, 26, 25], we reformulate and decompose the integral of the source term in the
momentum equation as

vadx:/ —pqﬁmvdx:/ %pgudx:/ (p bi +pj>vadw
9 I 1, P° L \pP° P P

(22)

B p P Pif e — - el + e
= [ (5 L) 2 <p (a5, oty )~ ot - [ vmdx) ,

J J

where (18) has been used in the second identity, and the notation (-) ); denotes the cell

average of the associated quantity over I;. We then approximate it by

e ) PR
/ S[Q]Udmwh Mzzlwu <i:§ (;); o Ep:)]> (pi)x(ﬁﬂgu))v(l”;m)

(ph)j e,x - % (u) (1) 2
+ . ijr%v(mﬂ%)—pji% ;% Zwﬂp v () | = <S[],v>j.

Similarly, we approximate the integral of the source term in the energy equation by
(24)
(u)
mp(x ) (mn); \ , .
/ SPhvdz ~ b Zw# ( - ) (5o (2o ()
j ,

p=1

I\J\»—a
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By combining them, we have the well-balanced DG methods of the form
(25)

/(Uh)tvdx—h Zwu (U ))va (@) — (B yolay, )~ By

I p=1

,
+(0.(s,0),(s¥,0) ) vwe Vi

Remark 3.1. We choose here the modified HLLC flux (19), instead of the modi-
fied LF fluxes as in [26], due to the following two considerations. First, the HLLC flux
satisfies the contact property (Lemma 2.6), which provides a unified modification ap-
proach to make the HLLC flux well-balanced for an arbitrary hydrostatic equilibrium;
whereas the modifications of the LF flux [26] have to be done separately for different
types of equilibria. Second, we will show that our modified HLLC flux (19) also meets
the positivity-preserving requirements, whereas the modification to the LF fluxes in
the polytropic equilibrium case may lose the positivity-preserving property. We can
prove the positivity of the well-balanced DG methods with the modified LF fluxes,
only when isothermal equilibria are considered (see the supplementary material).

Remark 3.2. Here, we approximate the integral f SBlydz in (24) in a way con-

sistent with the term [, S I SPlydz, while in [26] f S [3]vdx was approximated by the
standard quadrature rule For the well- balancedness only, either approach is fine, and
the standard one is even simpler. However, our analysis will indicate that it is impor-
tant to use a “consistent” approach for the purpose of accommodating the theoretical
positivity-preserving property at the same time.

THEOREM 3.3. For the 1D Euler equations (15) with gravitation, the semidiscrete
DG schemes (25) are well-balanced for a general known stationary hydrostatic solution
(18).

Ph
=17

Proof. At the equilibrium state (18), we have pj, = p§, up, = u§ =0, E) =
which leads to

Thanks to the contact property (Lemma 2.6), the modified HLLC numerical flux (19)
reduces to

-~ e,x T
It is easy to observe that the well-balanced property holds for the mass and en-

ergy equations of (25), as the first and third components of both the flux and
source term approximations become zero. For the momentum equation, thanks to

(@) p5(2%) = (on);/(05); = 1, we have
(P vy, = w5ty olay,y) = 5y olef ) = hy Y wupf (e o ().

i=z

Let FI? denote the second component of F. Since uj, = 0, the flux term F[?l (Uh(x§”)))
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reduces to pi(:cE” )). This, together with (26), implies

N
h > w R (U () v () — (Fm%v(gg;%) - FQVj_%v(xj"))
p=1
N
— hy 3 wph (@) (@0) = (057,07, ,) — 00T ),

1
2 )
p=1

which is exactly equal to —(S 21, v);. Therefore, the flux and source term approxima-
tions balance each other, which leads to the well-balanced property of our methods

(25). 0
The weak form (25) can be rewritten in the ODE form as
dU (¢
(27) w0 L),

after choosing a suitable basis of Vﬁ and representing Uy, as a linear combination of the
basis functions; see [9] for details. The semidiscrete DG schemes (27) can be further
discretized in time by some explicit strong-stability-preserving (SSP) Runge-Kutta
(RK) methods [14]. For example, with At being the time step size, the third-order
accurate SSP RK method is given by

U = Uy + AIL(UY),

2 3im 1 1
(28) UY = 2up + £ (U + arul))),
n 1 n 2 2 2
Uit = 2Up -+ S (U + AU

3.2. Positivity of first-order well-balanced DG scheme. In this and the
next subsections, we shall analyze the positivity of the well-balanced DG schemes (25).
The well-balanced modification of the numerical flux and discretization of source terms
leads to additional difficulties in the positivity-preserving analyses, which are more
complicated than the analyses for the standard DG methods.

Denote the cell average of Uy, over I; by

Uj(t):%/l Up(z, t)dz.
J S

Taking the test function v = 1 in (25), one can obtain the semidiscrete evolution
equations satisfied by the cell average as
dﬁj (t) 1 (A

(29) T:Lj‘(Uh) = _}Tj F]-Jr%—ij%)—‘,—Sj,

< <ol2 BT _ ... Gl
where S; = (0,5,7,5,") with S := h% <S[f1,1>j L 0=2, 3.7
When the polynomial degree k = 0, we have Up(x,t) = U,(¢) for all z € I;, and
the above DG methods (29) reduce to the corresponding first-order scheme with

pe,* pe,*
~ il il
(30) Fj 1 =F° <H¢2Uj7 pJ+2Uj+1> :

We start by showing the positivity property of the homogeneous case.
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LEMMA 3.4. If the DG polynomial degree k =0 and U; € G for all j, we have

At~ N

(31) Ui- g (Fﬁ% - F, %) cG Vi,

under the CFL-type condition

(32) 776 _ max amax(U) | < =.
hj pj Ue{U;-1,U;,0 41} 2

Proof. Using (30), we have

pe,* pe,* pe ok pe

P S 1 —

Fhile %Um j:rgU _ hile QUJ 1,],7Uj .
p; Pjit1 p] 1 pj

Note that the well-balanced modification leads to

pe,* e,%

i+3 J
—U; # —U;,
2 b,

so that the positivity of the standard HLLC scheme cannot be used directly. To
address this issue, we make the following decomposition:

N N
U, - — (Fj+; —Fj_%) =B (W1 +Ws),

hj 2
with
p;
Bj : €, % + €, > 07
Pijyy TP 1
and
p 3 A p€7* pE,* e, % pe,*
L1 t 1 1 T 1
W, -itQ UJ— - Fhllc -1""2 j7fje+2 Uj+1 _Fhllc -162 UJ, -1'22 UJ ,
Pj Bih pj 7 Pin j Pj
pe x A pe,* pe * pe,* pe x
T t , 1 Pl ‘ - T
W, = -lQQUj_ - Fhllc ]762 Uj, j;zQUj _Fhllc — QUJ 1= QUJ i
pj 5]‘ j pj pj Pj— pj

Applying Lemma 2.11 leads to W1, Wy € G under the condition (32). We can
conclude (31) by using Lemma 2.3, which completes the proof. O

= m B I g -
For all j, we define €; := %(Ej — ;%J) and a; := Ckf + af with
J J

€,% €,% €,% €,%
F R o pot, —po,
al = 2”277672 Cmax  omax(U), ajS — %
by Ue{U;-1,U;,Uj41} pj‘/er
THEOREM 3.5. If the DG polynomial degree k =0 and U; € G for all j, we have
(33) U, + AtL;(U,) € G Vj,

under the CFL-type condition
(34) oAt < hj.
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Proof. When k = 0, one has p§ = g fI o5, (x)dx > 0, p; = 1j fI]- P (x)dx > 0,

and
pe R _p T
<l J+2 ]—* _

If[pS7, —p5" | = 0, we have §; = 0, and U; +AtL;(Uy) = U, — 24 (F —F; 1) €
G, according to Lemma 3.4. Otherwise, decompose the scheme as

— — At o -~ - af 1
(36) U, + AtL;j(Uy) =U,; — — (Fj+; - Fj_;> +AtS; = L Wp + —Wg,
h; : 2 aj aj

where
— At -~
Wp:=U; - hyal (Fj+é - Fj—%) ’
~S¥T a.a5V 2¢; — _\"
W = a; U +a3AtSJfoz U; + Aty JT(O,pj,mj) .
J

The condition (34) implies |Ato¢ a8 2eJ | = T < @, which leads to, based on Lemma

2.4, Wg € G. With the aid of Lemma 3.4, we obtain Wr € G under the condition
(34). Finally, the combination of (36) and Lemma 2.3 yields (33). |

Theorem 3.5 indicates that the first-order (k = 0) well-balanced DG method (25),
coupled with a forward Euler time discretization, is positivity-preserving under the
CFL-type condition (34).

3.3. Positivity-preserving high-order well-balanced DG schemes. When
the polynomial degree k& > 1, the high-order well-balanced DG schemes (25) are
not positivity-preserving in general. Fortunately, a weak positivity property can be
proven for the schemes (25); see Theorem 3.6. As we will see, such weak positivity is
crucial and implies that a simple limiter can enforce the positivity-preserving property
without losing conservation and high-order accuracy.

3.3.1. Theoretical positivity-preserving analysis. Let {§§")}1§V§L be the
Gauss-Lobatto nodes transformed into the interval I;, and let {@W,}1<,<r be the
associated quadrature weights satisfying Zﬁ:l @, =1and U =& = ﬁ7 with
L > (k+ 3)/2 to ensure that the algebraic precision of the corresponding quadrature
rule is at least k. For each cell I;, we define the point set

(37) = (@ o U (el
and define oy as
pe,* pe,*
~ _~F | ~S | S ~F . ity imy
aj=a; +af +af, q; .:2max{pe(x_2 )’pe(x+2 )}U UElaXUi max(U),
WA\ jrg/ Fh\Yj—4 U1V
(38)
(w)
g ’(pi)x(xju )‘ ‘th]]j+2 + [pil;-2
Gl B e N
SH= ,oi(mj“) Zeh(mj“) PjN/ 4€j
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with [ppl;4 1 = p,i(:c;l) —p‘fl(x;r ), where af +65-9 = O(h;) and

1
2 2

Pl D1
max{ J+3 J % )}1+O(hk+1)

— )
p}c;,(x]+%) p}c;(xjfé

for smooth p°(x). Then we have the following sufficient condition for the high-order
scheme (27) to be positivity-preserving.

THEOREM 3.6. Assume that the projected stationary hydrostatic solutions satisfy
(39) pr(x) >0, pi(z) >0 VzeS;, Vj
and the numerical solution Uy, satisfies
(40) Up(z) e G Vx€S;, Vj;
then we have the weak positivity property
(41) U, + AtL;(Uy,) € G V5,
under the CFL-type condition
(42) a; At < Wrh;.

Proof. The exactness of the L-point Gauss—Lobatto quadrature rule for polyno-
mials of degree up to k£ implies

L
= 1 ~ ~(v)
U; = A /Ij Up(z)dz = ;wVU;L(ajj ),

A1 (L ~ o~ . .
with x§ ) = Ti_1, :c§ ) = Tl and W1 = Wy,. We consider, for an arbitrary parameter

n € (0, 1], the following decomposition:

At

ﬁj + AtLj(Uh) = nﬁj — hf (i;\‘j-i-% — f‘j_%) + (1 — n)ﬁj + Atgj
J
L At [~ . _ _
=) BUAE") - - (FH% . Fj_%) +(1- )T, + AfS;
v=1 J

-1
- [n S5, ULEY)
v=2
+ [(1=n)U; + ALS;]
(43) = W; + W3 + W3,

~ + — o T~
+ {77“1 (U, +U,) - Ty (Fj+% - Fj—%)}

where W; € GU{0} C G according to Lemma 2.3. The parameter n could be simply
taken as 1/2, but this will lead to a restrictive condition for At. In the following
we would like to determine a suitable parameter n in (0,1] such that Wy € G and
Wj3 e G.
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Let us first consider Wo and reformulate it as follows:

Wy =no U, +n U,

_itthlm( pj;z% U- Pi+i Ut >
j .

+ _1 — iy 1
Z(.rj_%) J=3 pi(xﬁ_%) i+3
e, e,
Fhile P;_1 U, Py Ut
— _ 1 T _1
Py (z _%> Iz pi(my_%) 7732
Thanks to Lemma 2.11, we have W;E e Gif
Atpr*,
+1 1
ﬁ B Elax B 4 amax(U) S §a
et jph(xﬁi%) Vel 1YY Ying
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or, equivalently,

By applying Lemma 2.3 on (44), we obtain Wy € G under the condition (45).
Next, the term W3 is analyzed. Note that, for an arbitrary parameter A € [0, 1],
we have

<12]
(1 —n)m; + AtS;

=\l 7 j P NIt
N N (w)
pr(x;”)
=(1-n) [(1 —A)m;+ A prmh(%m) + At Zwu - ?m (ph)I(sc(“))
p=1 p=1 Pp\T;

Atﬁj e,% e,x e
— = —p7 = d
T <py+1 Pi—y /,j(ph)'” v

N
:(1—77)/\Zwumh($“ +AtZwu p fu)) h)i(xg»”))
pu=1 I]

Atp;1

+ 1= = Nm; + — ) ([[pi]]ﬂ% + [[p;‘;]]j-%) :

and similarly,

(u)
(1—mE; + A5 = (1 AZwﬂEh ) +Atzwﬂ (L)) (Ph)a (")
pu=1 Zj

=, (uphﬂm F Iy -

Therefore, we have

N
(46)  Wi=> w,W§ + Wi,
pn=1

(05)2 (")
ph( (M))
PRl s + [PRli— s _ T
+2h]p] ( Pjs mj)

(47) W= (1 AU + A (0. pna), ma(e)

(48) W3 = (1-n)(1- N0, + At

Thanks to Lemma 2.4, we have W3 € G and W:g“) € G for all p if

e (1) e e
(ARG 550, + I8,
At max d < (g, Al IR ooy,
1<p<N pi(xg_u)) th(xg-“)) 2hjpj V/ 2€;
or, equivalently,
(49) At <@rhj(1—n)\,  Ataf <@ihi(1—n)(1—N).
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By applying Lemma 2.3 on (46), we obtain W3 € G under the condition (49).
Combining these results, we conclude that if At satisfies

(50)

At e QY) = {T eRY: ral’ <niihy, @ < Bihy(1-n)A, @ < alhj(kn)(kx)},

then
W, Eé, W, € G, Wge@,

which implies (41), i.e., U; + AtL;(Up) = Z?Zl W, € G, following Lemma 2.3.
Since the two parameters 1 and A can be chosen arbitrarily in this proof, we would

like to specify the “best” n and A that maximize sup Q(J)\ =:g(n, A). Solving such an
optimization problem gives

cAdlhj @1hj
max JA) = oy Ax) = — — =—=",
ne(o,l],,\e[o,ug(n ) =9(n ) af+af+&f aj;
which is reached at n. = af /a;, A\ = % Therefore, the condition (50) reduces
to
At S 9(77*»)\*),
which is equivalent to (42). This finishes the proof. d

Theorem 3.6 gives a sufficient condition for the proposed high-order well-balanced
DG schemes (27) to ensure that the cell averages U, are in G, when combined with
the forward Euler time discretization. Since any high-order SSP-RK time discretiza-
tion can be written as a convex combination of the forward Euler method, the same
conclusion also holds when SSP-RK time discretization is used.

Remark 3.7. The well-balanced source term reformulation (22) involves the cell
average {p;,p;}, instead of the midpoint values {p(z;), p°(x;)} used in [26], which
also works for the purpose of the well-balanced property. However, in the latter case,
the vector W3 in (48) would become

[[pi]]j-‘r% + [[pi]]j—%
thpi (.13])

W = (1—77)(1—)\)Uj + At (07ph(1'j),mh(l'j))T,

and a more restrictive condition on At is required to ensure W3 € G, because, in
general, p,(z;) and mp(z;) are not necessarily components of Uj.

3.3.2. Positivity-preserving limiter. A simple positivity-preserving limiter
(cf. [52, 36]) can be applied to enforce the condition (40). Denote

G:::{uEVk —/ da:EGVj}

Gk .= {ue[VZ] Lol (@ er;veS],v]}

where S; is defined in (37). For any Uj, € @Z with Uh|1_ =: Uj(x), we define the
J

positivity-preserving limiting operator Iy, : G;, — G’,fb as

(51) LU, =6, (0;(2) - T;) +T; Vi,
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ith 6% = min {1, dU)=e2 1 G(U) defined in (5), Uj(x) := (5;(x),
with 0% = min {1, 2o O ), G(U) defined i (5), Uj(e) = (75(2)

mj(aj),Ej(x))T, and

~ 1 _ — 1 . pP;— €
(52) pj(x) = ey(‘ )(Pj(fﬂ) — D)+ Pjs QJ(» ) = min {1, 5 mijnzesj (@) } .
Here €; and €5 are two sufficiently small positive numbers, introduced to avoid the
effect of the round-off error. In the computation, one can take ¢; = min{10_13,ﬁj}
and €2 = min{10713,G(U;)}. Note that the positivity-preserving limiter keeps the
mass conservation |[ I I, (u)dz = | I udz Yu € @Z and does not destroy the high-
order accuracy; see [51, 52, 50] for details.

Define the initial numerical solutions as U9 (x) := II,P,U(z,0). For the well-
balanced DG schemes (27) coupled with an SSP-RK method, if the positivity-preserving
limiter (51) is used at each RK stage, the resulting fully discrete DG methods are
positivity-preserving, namely the numerical solutions U} always satisfy (40), i.e.,
U € GY. For example, when the third-order method (28) is adopted, the proposed
high-order positivity-preserving well-balanced DG schemes of the form

Ul =10, [U} + AL(UR))],
3 1

u? =1, [ h (U + AtL(UE?))} :

(53) 4 4

1 2
Ut =11, {3 Rty (UEf’ + AtL(Uﬁ?))}

are positivity-preserving under the CFL-type condition (42).

Remark 3.8. If the projected stationary hydrostatic solutions pj, and pj do not
satisfy the condition (39) in Theorem 3.6, we can redefine pf, pj € VZ as

(54) (o0, 242 e, (#Fta.0.245) Ny

1 1

where P, denotes the L2-projection onto the space [V5]3. One can verify that p§ and
p§ defined by (54) always satisfy (39). In practice, if the exact stationary hydrostatic
solutions p® and p® do not involve low density or low pressure, the operator II; in
(54) would not be turned on. We remark that the positivity-preserving DG schemes
also retain the well-balanced property, if (54) is used.

Remark 3.9. Note that the CFL constraint (42) is sufficient rather than necessary
for preserving positivity. Also, for an RK time discretization, to enforce the CFL
condition rigorously, we need to obtain an accurate estimation of o for all the stages
of RK based only on the numerical solution at time level n, which is very difficult
in most of the test examples. An efficient implementation (cf. [45]) may be, if a
preliminary calculation to the next time step produces negative density or pressure,
we restart the computation from the time step n with half of the time step size. Our
numerical tests demonstrate that the proposed methods always work robustly with a
CFL number slightly smaller than &; and the restart is yet never encountered.

4. Positivity-preserving well-balanced DG methods in multiple dimen-
sions. In this section, we extend the proposed 1D positivity-preserving well-balanced
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DG methods to the multidimensional cases. For the sake of clarity, we shall focus on
the two-dimensional (2D) case with d = 2 in the remainder of this section, and the
extension of our numerical methods and analyses to the three-dimensional (3D) case
(d = 3) follows similar lines.

4.1. Well-balanced DG discretization. Assume that the 2D spatial domain
Q) is partitioned into a mesh 7}, which may be unstructured and consist of polygonal
cells. Throughout this section, the lowercase k is used to denote the DG polynomial
degree, while the capital K always represents a cell in 7,. Denote the DG numerical
solutions as Up(x,t), and for any ¢t € (0,T%], each component of Uy belongs to the
finite-dimensional space of discontinuous piecewise polynomial functions, Vﬁ, defined
by

Vi = {u(x) € L*(Q) : u(x)|, € P*(K) VK € Tp},

where P*(K) is the space of polynomials of total degree up to k in cell K. The semi-
discrete DG methods for (1) are given as follows: for any test function v € VZ, Uy is
computed by

(55)

/(Uh)t’UdX—/ F(Uh)VUdX+ Z /f‘ngK'Uint(K)dS:/ Svdx VUGVZ,
K K scok’E K

where K denotes the boundary of the cell K, Fy, ¢ denotes the numerical flux on
edge &, neg i is the outward unit normal to the edge & of K, and the superscripts
“int(K)” or “ext(K)” indicate that the associated limit of v(x) at the cell interfaces
is taken from the interior or the exterior of K.

Assume that the target stationary hydrostatic solutions to be preserved are ex-
plicitly known and are denoted by {p°(x), p°(x),u°(x) = 0}. Let pf (x) and pf (x) be
the projections of p(x) and p°(x) onto the space V¥, respectively. The design of our
multidimensional well-balanced DG methods is similar to the 1D case. More specifi-
cally, it is based on the well-balanced numerical flux and source term approximation
given as follows.

4.1.1. The modified HLLC numerical fluxes. For any unit vector n € R?,
let Fh¢ (U, Ug;n) denote the standard HLLC numerical flux in the direction n for
the 2D Euler equations. Details of the standard HLLC flux in the multidimensional
cases can be found in [2], and note that this HLLC numerical flux does not refer to
any genuinely multidimensional Riemann solver. Analogous to the 1D HLLC flux,
the 2D HLLC flux satisfies the following properties, whose proofs are similar to the
1D case and are omitted.

LEMMA 4.1. For any two states U, = (pr,,0,0,p/(y—1))" and Ugr = (pg,0,0,p/
(y—1))T, the 2D HLLC flux satisfies

F"c (UL, Ug;n) = (0,pn",0)".

LEMMA 4.2. For any parameters (1, (2 € RY and any two admissible states
Uy, U, € G, one has

¢G1Up— A [Fhllc(QUm ¢2Uy;n) — F(G1Uo) - n] €G
if A > 0 and satisfies

A an(U) <1, with  an(U) :=|u-n|+ +/vp/p.

max
UG{UU,Ul}
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Based on the above properties, our well-balanced numerical fluxes are chosen as
the modified HLLC flux

= _ phlle pZ’* int(K) pZ’* ext(K)
(56) F“é"‘K =F < e,int(K) Uh 7 eext(K) Uh ? Ing() ’
Py py

with pZ’* =3 (pz Ant(K) pZ’eXt(K)). Using the N-point Gauss quadrature with N =

k+1, we obtaln the following approximation to the edge integral of numerical flux in
(55):

N
(57) /g Fp, 0™ ds 2 6] w,Fa, , (x3)oi= 00 (1),

p=1
where |&| is the length of the edge &, and {x((;)7 wyt1<p<n denote the set of 1D
N-point Gauss quadrature nodes and weights on the edge &.

4.1.2. Source term approximations. Let S =: (0,S[? SBHT with SPI .=
—pV . We decompose the integral of the source terms in the momentum equations
as

/S[z]vdx—/ —pV¢vdx—/ —Vp© vdx—/ (p—pf—l- )Vp vdx
K I e Pk Pk

Z / e :Lnt(K)ng’de_/

:/ <pe—p£<>vadx+
K \P PK Pk ECOK K

where Vp® = —p°V¢ has been used in the second identity, and the notation GK
denotes the cell average of the associated quantity over the cell K. This source term
is then approximated by

(a)
58 S[Z]de ~|K w, ph( ) ph)[(> Ve X(q) v X(q)
o / | |qz; <Ph( (q)) (Ph) x P o)

Ph Lin "
[Z (ﬂzwﬂp x4 t<K><x2)>ng,K>

Ph E€OK

~ |K| qupﬂxﬁ?)w(x&?)] = (8P, 0) .,
g=1

perdx> ,

—

+

~~

where | K| is the area of the cell K, and {xgg), wK }1<q<Q denote a set of 2D quad-
rature nodes and weights in K. Similarly, we approximate the integral of the source
term in the energy equation by

(9)
59 Jode ~ |K M XK),(mh) ) Vs (x(@)p (x@
(59) / ||Z ( ) )

i [ 5 (Ifflzww 1nt<K><xg>>ng,K)

(ph)K EcOK

|K|quph (q) Vu(x (I?))] =: <S[3]’U>K

—~

+
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4.1.3. Well-balanced DG methods. The element integral [,. F(Uy) - Vudx
should be approximated by the same 2D quadrature set

Q

(60) /K F(Uy) Vodx ~ |K| Y @, F(Up(x)) - Vo(xi).

q=1

Substituting the approximations (56)—(60) into (55) gives the following DG formula-
tion:

Q T
/(Uh)tvdx— K]S @ F(Uh(x)) - Volx) + (0,(8[21,v>j,<5[31,u>j)
qg=1
(61) v
- > <|g|Zqung,K<x%‘>>vim(K><x<;>>) Vo € Vi,
EcOK pn=1

THEOREM 4.3. For the 2D Euler equations (1) with gravitation, the semidiscrete
DG schemes (61) are well-balanced for a general known stationary hydrostatic solution

(4)-

The proof is similar to that of Theorem 3.3 and is thus omitted.

4.2. Positivity of first-order well-balanced DG scheme. Denote the cell
average of Up(x,t) over K by Ug(t), and take the test function v = 1 in (61). We
obtain the semidiscrete evolution equations satisfied by the cell average as

N
<|éa| ZW#FH&K OL))) + SKv

p=1

o T pe) = ¥
E€OK

where S = (0,5, 5y¢) " with 8y == L (S1.1)  for £ =2.3.
We start with showing the positivity of the first-order (k = 0) well-balanced DG
scheme (61). For each K € Tp, let K¢ denote the adjacent cell that shares the edge

& with K, and define

~F Tr) @)l 6 = HZ&@KWWZ{*KH&KH
Qp = max gﬂel%)f(ang,lk K 76,12%>I((O‘n£,}< Keg ) O 1= |K‘ﬁ§(\/ﬂ )

where pZ:fK = (P% + Pk, )/2.

THEOREM 4.4. If the DG polynomial degree k =0 and Ui € G for all K € Ty,
we have

(63) ﬁK + AtLK(Uh) eG VK eT,

under the CFL-type condition

(64) ( K] > I@@Ip“ +a§<> <1

EECOK
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Proof. Note that, for k =0, Uy (x,t) = Uk () for all x € K. We have

_ — At qQ
UK + AtLK(Uh) = UK - ? Z |£|Fhllc <p; KUK, p(@ KUKé,,l’lg K) + AtSK
K

=€
K] EcOK Ke

— At e —
—Ux — X > <|£| SEp(Uk) - ng,K> + AtSk
EcOK Pk

At p
Z|<§| (gK >'né’,K

geaK

p p

— Fhile éEKUK, ,éa Uk,inex | |,
Pk ng

where the homogeneous property F(aU) = aF(U) for any a € R* has been used. We
further split Ug 4+ AtLg (Uy,) into four parts as

(65) ﬁK + AtLK(Uh) =W+ Wy + W3+ Wy,

with

W1 =

’\F e*
— At ay || Uk,
( \K| Z pK )1

EECOK

At o PEK [ 1 — SO
Wg = Z |é"|a§ ;;G’K (UK — aiFF(UK) . l’l(go’K) s Wg, = At (Ol}g(UK + SK) s

K] EEOK K K
At _p | PEK— 1 Pék— Pk
Wii= o Y 6l = Uk — — [F" | =2 Uk, == Uk,ine
K| !
K| S5 P K Pk Pice

—F (pCiKUK> . ng7K‘| }
Pk

By using Lemma 2.2, it is easy to observe that W; € G under the condition (64).
Lemma 2.5 leads to U — ﬁ F(Uk)- ng g € G, which implies Wy € G with the aid

of Lemma 2.3. Note that

1 _ _ T e
aKUK+SK—aKUK+ |K‘76 (O, Pia, mK-a) s a: .= Z |£)‘p£§fKHg7K,
EEOK
and |K|p \/H"iK = aK This yields & UK + Sk € G by Lemma 2.4. Thus W3 € G.
K

Sequentially, using Lemmas 4.2 and 2.3 yields W4 € G. Because W1, W3 € G and
Wy, W, € G, we conclude from (65) that Ug + AtLk(Uy) € G, which completes
the proof. 0

Theorem 4.4 indicates that the first-order (k = 0) well-balanced DG method (61),
coupled with the forward Euler time discretization, is positivity-preserving under the
CFL-type condition (64).

4.3. Positivity-preserving high-order well-balanced DG schemes. When
the DG polynomial degree k > 1, the high-order well-balanced DG schemes (61) are
not positivity-preserving in general. Similar to the 1D case, we can prove that our
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schemes satisfy a weak positivity property, which is crucial and implies that a simple
limiter can enforce the positivity-preserving property without losing conservation and
high-order accuracy.

4.3.1. Theoretical positivity-preserving analysis. Assume that there exists
a special 2D quadrature on each cell K € 7T, satisfying the following:
(i) The quadrature rule has positive weights and is exact for integrals of polyno-
mials of degree up to k£ on the cell K;
(ii) The set of the quadrature points, denoted by Sg), must include all the Gauss

quadrature points x(;), uw=1,...,N, on all the edges & € K.
In other words, we would like to have a special quadrature such that

N Q
1 ~ ~ o~
(66) @/ u(x)dx = E E wi@”)u(ng)) + E wqu(x%)) Vu € PF(K),
K ECOK p=1 a=1

where {i%)} are the other (possible) quadrature points in K, and the quadrature

weights z%(g“ ) and W, are positive. For rectangular cells, this quadrature was construc-

ted in [51, 52] by tensor products of Gauss quadrature and Gauss—Lobatto quadrature.
For triangular cells and more general polygons, see [54, 10] for how to construct such
quadrature. We remark that this special quadrature is only used in the proof and
the positivity-preserving limiter presented later, and will not be used to evaluate any
integral in the numerical implementation. With this, we can define the point set

(67) Sk :=SPusP
:{xfg,“):geaK,lgugN}u{i(I?:1§q§@}u{x§§):1gq§Q},
where Sg) = {X(Ig)}lquQ are the 2D quadrature points involved in the approxima-

tions (58)—(60).
For convenience we will frequently use the following shortened notations:

int(K int(K ext (K ext (K K ex
Uéa,‘;( )= U, ( )(XE;))7 Ug#( )= U, o )(ng)), p}; = pj, (xggg”))7
e,int(K e,int(K e,ext(K e,ext(K
éa,/Lt( ) = ph “ )(Xg:‘)% éa,/Lt( ) = ph B )(xg‘))7
e 2, ext (K ,int (K
[Ph(x(;))ﬂ — ;,Mt( ) _ E)Mt( ).

THEOREM 4.5. Assume that the projected stationary hydrostatic solution satisfies
(68) ph(x) >0, pj(x)>0 Vx€Sk, VKT,
and the numerical solution Uy, satisfies
(69) Up(x) e G Vx €Sk, VK €Ty

then we have

(70) ﬁ}( + AtLK(Uh) cG VK e 77”
under the CFL-type condition
(71)
2 &> ~ (1) ~ (1)
At(&ﬁ%—i—&f{% <%e  1<u<NVEECOIK, VK €T,
K |p&i® (K) w wy,
(Klpg, " /
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where

~F { int(K) ext(K) }
Qe = max max « U max « U
K ECOK 1<u<N nec(Us ), ECOK 1<u<N nex(Usgu )y

04?(—041( _’_aiz’
HVPZ(X%))H
JRESEE @ @ [
Bl W ACSONVERNES D)
or |[Zscon (161500 wulh (8] me e
e 2|K|pk v 2ek .

Proof. For the modified HLLC flux, applying Lemmas 4.2 and 2.3 yields

At,v pé" int(K
(72) W, = Ak Z |éa|zw:“'< elntMK)U e

~S,1 .
ap

E€OK p=1 Ep
1 = pg, int(K
- F an,K(xé"M)) - F < e,int?K) Ué",;( )> . ng,K] ) €qG.
K Ep

Using the formulas of W and Ly (Uy) in (72) and (62), respectively, we deduce that

Uk + AtLg(Up) — — AtSk
— At _ pé?’, int(K)
= Uk =5 ‘K| F éa|zw#< elntu Uéﬂ,u
€K E,1

1 péa,/l, int(K)
+ oF = F ( e,int(K)Ué”,u ‘e K
K DPe.u

U At - pz‘)* int(K

= U = 29 aic |£|Zw“<ethK)U o
EE€OK

(73)

o g Pé (k) _ L Péu int(K)
+|K| |g|zwu TK)U _We,iT(K)F(Uéa,# )'néa,K ,

EE€OK (0574 Dg
M

where the homogeneous property F(aU) = aF(U) for any a € R is used. Applying
Lemmas 2.5 and 2.3 implies that

(74)
At a pg in 1 in
W= mak 3 (Io“lz Wi emuK) (Ué"l(m - —F (U) ~n£,K>> ca.
E,u Ok

E€OK
Based on (73) and the definition of Wy, we rewrite Ug + AtLk (U},) as
(75) Uk + AtLg(Uy) = Wi + Wy + W3,

with

_ At _ _
W3 :=Ug —2 ‘K| F Z + AtSk.

EcoK

pé" int(K
(g)|zw“< 61ntMK)U£:L( )>

Pe
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Recall that S = (0,S [2] SK) with S[e] = 2 (Sl, 1), £ =2,3. We can reformu-

|K]|
late S[K] as
Q (@) —
ol2] Ph(xK ) P (q)
SK:qu< _>VP( )
qg=1 ( (q)) p%
P
+ == ‘ | Z <é()| Zwuph (#) né" K>‘|
P EcOK
Q (9)
ph(x ) e
= qu . f;) v h(xgg))
q=1 Ph(xK )
PK x%)n
+ —e ‘@@| Zw/lp 97 ) / Vph ‘|
Pic| K| L’eaK <

o)
=> = ”( {;))fo;(x%’)

=1 PR(Xg
+ = Z <|c5”| Zwup s / pids) e K
PK|K| ECOK &
Q (@)
n(x .
- qupe( fg))Vph(