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UNIFORMLY HIGH-ORDER STRUCTURE-PRESERVING
DISCONTINUOUS GALERKIN METHODS FOR EULER
EQUATIONS WITH GRAVITATION: POSITIVITY AND

WELL-BALANCEDNESS\ast 

KAILIANG WU\dagger AND YULONG XING\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . This paper presents novel high-order accurate discontinuous Galerkin (DG) schemes
for the compressible Euler equations under gravitational fields. A notable feature of these schemes
is that they are well-balanced for a general known hydrostatic equilibrium state and, at the same
time, provably preserve the positivity of density and pressure. In order to achieve the well-balanced
and positivity-preserving properties simultaneously, a novel DG spatial discretization is carefully
designed with suitable source term reformulation and a properly modified Harten--Lax--van Leer-
contact (HLLC) flux. Based on some technical decompositions as well as several key properties of
the admissible states and HLLC flux, rigorous positivity-preserving analyses are carried out. It is
proven that the resulting well-balanced DG schemes, coupled with strong-stability-preserving time
discretizations, satisfy a weak positivity property, which implies that one can apply a simple existing
limiter to effectively enforce the positivity-preserving property, without losing high-order accuracy
and conservation. The proposed methods and analyses are illustrated with the ideal equation of
state (EOS) for notational convenience only, while the extensions to general EOS are straightforward
and are discussed in the supplementary material. Extensive one- and two-dimensional numerical
tests demonstrate the desired properties of these schemes, including the exact preservation of the
equilibrium state, the ability to capture small perturbation of such state, the robustness for solving
problems involving low density and/or low pressure, and good resolution for smooth and discontin-
uous solutions.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . discontinuous Galerkin method, hyperbolic balance laws, positivity-preserving,
well-balanced, compressible Euler equations, gravitational field
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1. Introduction. In this paper, we present highly accurate and robust numer-
ical methods for the compressible Euler equations with gravitation, which have wide
application in astrophysics and atmospheric science. In the d-dimensional case, this
model can be written as the following nonlinear system of balance laws:

(1) Ut +\bfnabla \cdot F(U) = S(U,x),

with

(2) U =

\left(  \rho 
m
E

\right)  , F(U) =

\left(  \rho u
\rho u\otimes u+ pId
(E + p)u

\right)  , S(U,x) =

\left(  0
 - \rho \bfnabla \phi 

 - m \cdot \bfnabla \phi 

\right)  .

Here m = \rho u denotes the momentum vector; \rho , u, and p denote the fluid den-
sity, velocity, and pressure, respectively; Id is the identity matrix of size d; and
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DG METHODS FOR EULER EQUATIONS WITH GRAVITATION A473

E = 1
2\rho \| u\| 

2 + \rho e is the total nongravitational energy with e denoting the specific in-
ternal energy. The source terms at the right-hand side of (1) represent the effect of the
gravitational field, and \phi (x) is the static gravitational potential. An additional ther-
modynamic equation relating state variables, the so-called equation of state (EOS),
is needed to close the system (2). A general EOS can be written as e = \scrE (\rho , p). For
ideal gases it is given by

(3) p = (\gamma  - 1)\rho e = (\gamma  - 1)

\biggl( 
E  - \| m\| 2

2\rho 

\biggr) 
,

where the constant \gamma > 1 denotes the adiabatic index. Although we will mainly focus
on the ideal EOS for better legibility, the methods and analyses presented in this
paper are readily extensible to general EOS as shown in the supplementary material.

Equations (1) with (3) form a hyperbolic system of balance laws and admit (non-
trivial) hydrostatic equilibrium solutions, in which the gravitational source term is
exactly balanced by the flux gradient, with two well-known examples being the iso-
thermal and polytropic equilibria. The astrophysical and atmospheric applications of-
ten involve nearly equilibrium flows, which are small perturbations of the hydrostatic
equilibrium states. Standard numerical methods may not balance the contribution of
the flux and gravitational source terms, and generate large numerical error, especially
for a long-time simulation, e.g., in modeling star and galaxy formation. To address
the issue, one may need to conduct the simulation on a very refined mesh, which can
be time-consuming especially for the multidimensional problems. To save the compu-
tational cost, well-balanced methods, which preserve exactly the discrete version of
these steady state solutions up to machine accuracy, are designed to effectively capture
these nearly equilibrium flows well on relatively coarse meshes. Study of well-balanced
methods has attracted much attention over the past few decades. Most of them were
proposed for the shallow water equations over a nonflat bottom topology, another pro-
totype example of hyperbolic balance laws; see, e.g., [4, 15, 23, 47, 1, 41, 46, 44] and
the references therein. In recent years, well-balanced numerical methods for the Euler
equations (1) with gravitation have been designed within several different frameworks,
including but not limited to the finite volume methods [24, 5, 19, 6, 25, 20, 21, 17],
gas-kinetic schemes [48, 29], finite difference methods [43, 12, 28], and finite element
discontinuous Galerkin (DG) methods [26, 7, 27, 35]. Most of these works assume
that the target equilibrium is explicitly known, which is also adopted in this paper.
Recently, there exist some efforts [11, 20, 8, 34, 3] on designing well-balanced methods
for the Euler equation with gravitation, requiring no a priori knowledge of the hy-
drostatic solution. A numerical comparison between the high-order DG method and
well-balanced DG methods was carried out in [35].

Besides maintaining the hydrostatic equilibrium states, another numerical chal-
lenge for the system (1) is to preserve the positivity of density and pressure. Such
positivity property is not only necessary for the physical nature of the solution, but
also crucial for the robustness of numerical computations. In fact, when negative
density and/or pressure are produced, numerical instability can develop and cause
the breakdown of numerical simulations. However, most high-order accurate schemes
for the Euler equations with gravity are generally not positivity-preserving, and thus
may suffer from a risk of failure when simulating problems with low density, low
pressure, and/or strong discontinuity. In recent years, high-order bound-preserving
numerical schemes have been actively studied for hyperbolic systems. Most of them
are built upon two types of limiting approaches: a simple scaling limiter [52] for the
reconstructed or evolved solution polynomials in finite volume/DG methods (see, e.g.,
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A474 KAILIANG WU AND YULONG XING

[51, 52, 46, 50, 38, 39]) or a flux-correction limiter [49, 18, 40]. For more developments
and applications, we refer to the recent review [31] and the references therein. Based
on the simple scaling limiter, high-order positivity-preserving DG schemes were con-
structed for the Euler equations without source term [52, 54] and with source terms
including the gravitational source term [53]. The bound-preserving framework was
also extended in [37] to the general relativistic Euler equations under strong gravita-
tional fields.

The main objective of this paper is to develop uniformly high-order DG methods,
which are well-balanced and at the same time provably positivity-preserving for the
Euler equations with gravitation. Most of the existing methods possess only one
of these two properties. A recent work to satisfy both properties was studied in
[32], based on a new approximate Riemann solver using a relaxation approach. The
accuracy of the schemes in [32] was limited to second-order, yet its extension to higher-
order is challenging. The framework established in this paper would be the first one, to
the best of our knowledge, that achieves this goal with arbitrarily high-order accurate
schemes. The efforts in this paper are summarized as follows.
\bullet One key novelty of this work is to devise novel high-order well-balanced DG schemes,
with suitable source term treatments and proper well-balanced numerical fluxes, so
that the desired positivity-preserving property is also accommodated in the dis-
cretization at the same time.

\bullet We use a properly modified Harten--Lax--van Leer-contact (HLLC) numerical flux,
instead of the modified Lax--Friedrichs (LF) fluxes employed in the previous well-
balanced DG study [26]. Motivated by the contact property of the HLLC flux
observed in [6], we will show in our framework that the HLLC flux can be properly
modified, in a unified way, to be well-balanced with our discrete source terms for an
arbitrary known hydrostatic equilibrium. The proposed modification to the HLLC
flux is novel and very different from the modifications to the LF flux in [26, 25],
which were not formulated in a unified way but were presented for two special
equilibria (isothermal and polytropic equilibria) in a separate case-by-case way.
More importantly, our new modification does not affect the high-order accuracy
and also retains the desired positivity-preserving property, which cannot be shown
for the existing modified LF fluxes when polytropic equilibrium is considered.

\bullet Our source term discretization is motivated by [43], where the gravitational source
is first reformulated into an equivalent special form using the corresponding hydro-
static equilibrium solution. For the well-balancedness, the reformulation was made
based on either the cell-centered solution values (in a DG framework [26]) or the
cell average of the solution (in a finite volume framework [25]). In this work, we
first make the theoretical observation that the latter reformulation is advantageous
for establishing the positivity-preserving property under a milder CFL condition;
see Remark 3.7 for details. Moreover, for the theoretical positivity-preserving con-
siderations, we also observe that the source term in the energy equation should
be discretized in the same fashion as in the momentum equations, which is not
used/required for only the well-balancedness consideration.

\bullet Based on some technical decompositions as well as several key properties of the
admissible states and HLLC flux, we will rigorously prove that the resulting well-
balanced DG schemes satisfy a weak positivity property, which implies that a simple
existing limiter [52, 36] can effectively enforce the positivity-preserving property
without losing high-order accuracy and conservation. The well-balanced modifi-
cation of the numerical flux and discretization of source terms lead to additional
difficulties in the positivity-preserving analyses, which are more complicated than
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DG METHODS FOR EULER EQUATIONS WITH GRAVITATION A475

the analyses for the standard DG methods in [52, 53].
It is also worth noting that, in the context of shallow water equations, several

positivity-preserving well-balanced schemes have been developed in the literature
[22, 46, 42]. In that context, the positivity refers to the nonnegativity of the water
height. In the Euler equations (1), the density is the analogue of the water height
and is evolved only in the continuity equation, which makes it relatively easy to en-
sure its positivity. However, it is much more difficult to guarantee the positivity
of pressure, since it depends nonlinearly on all the conservative variables \{ \rho ,m, E\} ,
as shown in (3). More specifically, the pressure (internal energy) is computed by
subtracting the kinetic energy \| m\| 2/(2\rho ) from the total energy E. For high Mach
flows or very cold flows, when the numerical errors in E and \| m\| 2/(2\rho ) are large
enough, negative pressure can be produced easily. Since the conservative quantities
\{ \rho ,m, E\} are evolved according to their own conservation laws which are seemingly
unrelated, the positivity of pressure is not easy to guarantee numerically. In theory, it
is indeed a challenge to make an a priori judgment on whether a numerical scheme is
always positivity-preserving under all circumstances or not. For these reasons, seeking
positivity-preserving well-balanced schemes for the Euler equations (1) with gravita-
tion is quite nontrivial and cannot directly follow any existing frameworks on shallow
water equations.

The rest of this paper is organized as follows. In section 2, we will introduce
the stationary hydrostatic solutions of (1) and present several useful properties of the
admissible state set and the HLLC flux. We first construct the positivity-preserving
well-balanced DG schemes for the one-dimensional (1D) system in section 3, and
then extend them to the multidimensional cases in section 4. We conduct numerical
tests to verify the properties and effectiveness of the proposed schemes in section 5,
before concluding the paper in section 6. The extensions of the proposed methods
and analyses to general EOSs are presented in the supplementary material, where we
also discuss the positivity of the well-balanced DG schemes with a modified LF flux
for the isothermal case.

2. Auxiliary results. This section introduces the stationary hydrostatic solu-
tions of (1) and presents several useful properties of the admissible state set and the
HLLC flux.

2.1. Stationary hydrostatic solutions. Under the time-independent gravita-
tion potential, the system (1) admits zero-velocity stationary hydrostatic solutions of
the form

(4) \rho = \rho (x), u = 0, \bfnabla p =  - \rho \bfnabla \phi .

The relation (4) alone is not complete, since the density and pressure stratifications
are not uniquely defined; see [19]. We usually need to specify the profile of another
thermodynamic variable, for example, temperature or entropy, to determine a stable
equilibrium. Two important special classes of equilibria arising in the applications
are the polytropic [19] and isothermal [43] hydrostatic states. For an isothermal
hydrostatic state, we have T (x) \equiv T0, where T denotes the temperature. For an ideal
gas, it is given by

\rho = \rho 0 exp

\biggl( 
 - \phi 

RT0

\biggr) 
, u = 0, p = p0 exp

\biggl( 
 - \phi 

RT0

\biggr) 
,

where R is the gas constant; p0, \rho 0, and T0 are positive constants satisfying p0 =
\rho 0RT0. A polytropic equilibrium is characterized by p = K0p

\gamma , which leads to the
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A476 KAILIANG WU AND YULONG XING

form of

\rho =

\biggl( 
\gamma  - 1

K0\gamma 
(C  - \phi )

\biggr) 1
\gamma  - 1

, u = 0, p =
1

K
1

\gamma  - 1

0

\biggl( 
\gamma  - 1

\gamma 
(C  - \phi )

\biggr) \gamma 
\gamma  - 1

,

where K0 and C are both constant.

2.2. Properties of admissible states. In physics, the density \rho and the pres-
sure p are both positive, which is equivalent to the description that the conservative
vector U should stay in the set of physically admissible states, defined by

(5) G :=

\biggl\{ 
U = (\rho ,m, E)\top : \rho > 0, \scrG (U) := E  - \| m\| 2

2\rho 
> 0

\biggr\} 
,

where \scrG (U) is a concave function of U if \rho \geq 0. It is easy to show that the admissible
state set G satisfies the following properties, which will be useful in our positivity-
preserving analysis.

Lemma 2.1 (convexity). The set G is a convex set. Moreover, \lambda U1 +(1 - \lambda )U0

\in G for any U1 \in G,U0 \in G, and \lambda \in (0, 1], where G is the closure of G.

This property can be verified by definition and Jensen's inequality; see [52].

Lemma 2.2 (scale invariance). If U \in G, for any \lambda > 0, it holds that \lambda U \in G.

The proof is straightforward. Combining Lemmas 2.1 and 2.2, we immediately
obtain the following stronger property.

Lemma 2.3. For any \lambda 1 > 0, \lambda 0 \geq 0, U1 \in G, and U0 \in G, we have \widehat U :=
\lambda 1U1 + \lambda 0U0 \in G.

Proof. Let \lambda := \lambda 1

\lambda 1+\lambda 0
\in (0, 1]. It follows from Lemma 2.1 that \lambda U1+(1 - \lambda )U0 \in 

G. Thus, we have \widehat U = (\lambda 1 + \lambda 0)(\lambda U1 + (1 - \lambda )U0) \in G, according to Lemma 2.2.

Lemma 2.4. For any \lambda \geq 0, \delta \in \BbbR , U = (\rho ,m, E)\top \in G, and a \in \BbbR d, if

| \delta | \| \bfa \| \surd 
2e

\leq \lambda , then \widehat U := \lambda U+ \delta 
\bigl( 
0, \rho a,m \cdot a

\bigr) \top \in G.

Proof. If \lambda = 0, it then follows from | \delta | \| a\| /
\surd 
2e \leq \lambda that \delta = 0 or a = 0,

which implies \widehat U = 0 \in G. If \lambda > 0, the first component of \widehat U equals \lambda \rho > 0, and\widehat U = (\lambda \rho , \lambda m+ \delta \rho a, \lambda E + \delta m \cdot a)\top satisfies

\scrG (\widehat U) = \lambda E + \delta m \cdot a - \| \lambda m+ \delta \rho a\| 2

2\lambda \rho 
= \rho e

\biggl( 
1 + | \delta | \| a\| 

\lambda 
\surd 
2e

\biggr) \biggl( 
\lambda  - | \delta | \| a\| \surd 

2e

\biggr) 
\geq 0,

where the last inequality follows from the condition | \delta | \| a\| /
\surd 
2e \leq \lambda . Therefore,\widehat U \in G.

Lemma 2.5. For any U \in G and any unit vector n \in \BbbR d, we have U - \lambda F(U)\cdot n \in 
G, for any \lambda \in \BbbR satisfying | \lambda | \alpha \bfn (U) \leq 1, where \alpha \bfn (U) := | u \cdot n| +

\sqrt{} 
\gamma p/\rho .

The proof of Lemma 2.5 can be found in [52, 50].

2.3. Properties of HLLC flux in one dimension. In this subsection, we
introduce several important properties of the HLLC numerical flux, whose properly
modified version will be a key ingredient of our numerical schemes presented later.
For notational convenience, we focus here on the properties of the HLLC flux in the
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1D case (d = 1), while the multidimensional extensions will be discussed in section
4.1.1.

In the 1D case, the HLLC flux (see, for example, [2, 33]) is defined by

(6) Fhllc(UL,UR) =

\left\{         
F(UL) if 0 \leq SL,

F\ast L if SL \leq 0 \leq S\ast ,

F\ast R if S\ast \leq 0 \leq SR,

F(UR) if 0 \geq SR,

where SL and SR are the estimated (left and right) fastest signal velocities arising
from the solution of the Riemann problem, and the middle wave speed S\ast and fluxes
are given by

S\ast =
pR  - pL + \rho LuL(SL  - uL) - \rho RuR(SR  - uR)

\rho L(SL  - uL) - \rho R(SR  - uR)
,

F\ast i = Fi + Si(U\ast i  - Ui), i = L, R,

with the intermediate states given by

(7) U\ast i = \rho i

\biggl( 
Si  - ui

Si  - S\ast 

\biggr) \left(   1
S\ast 

Ei

\rho i
+ (S\ast  - ui)

\Bigl( 
S\ast +

pi

\rho i(Si - ui)

\Bigr) 
\right)   .

With \alpha \pm = u\pm 
\sqrt{} 
\gamma p/\rho , the following estimates of SL and SR are used in our compu-

tation:

(8) SL = min\{ \alpha  - (UL), \alpha  - (UR)\} , SR = max\{ \alpha +(UL), \alpha +(UR)\} .

The HLLC flux possesses two important properties, namely the contact property
(see, e.g., [6]) and the positivity [2], as outlined below.

Lemma 2.6. For any two states UL = (\rho L, 0, p/(\gamma  - 1))\top and UR = (\rho R, 0, p/(\gamma  - 
1))\top , the HLLC flux (6) satisfies

Fhllc(UL,UR) = (0, p, 0)\top .

The proof is straightforward. The importance of this property for the well-
balancedness was observed and used in [6].

Lemma 2.7. For any two admissible states UL \in G and UR \in G, the intermedi-
ate states defined in (7) satisfy

U\ast L \in G, U\ast R \in G.

The proof of this property for the Euler equations can be found in [2, section 5.3].
As a direct consequence of Lemma 2.7, we have the following conclusions, which are
relevant to the positivity of the HLLC scheme for the 1D Euler equations without
gravitation.

Lemma 2.8. For any two admissible states U0,U1 \in G, one has

U
(1)
\lambda := U1  - \lambda 

\bigl( 
F(U1) - Fhllc(U0,U1)

\bigr) 
\in G,(9)

U
(0)
\lambda := U0  - \lambda 

\bigl( 
Fhllc(U0,U1) - F(U0)

\bigr) 
\in G(10)

D
ow

nl
oa

de
d 

02
/1

2/
21

 to
 1

40
.2

54
.8

7.
14

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A478 KAILIANG WU AND YULONG XING

if \lambda > 0 and satisfies

(11) \lambda max
\bfU \in \{ \bfU 0,\bfU 1\} 

\alpha max(U) \leq 1,

where
\alpha max(U) := | u| +

\sqrt{} 
\gamma p/\rho = max\{ | \alpha  - (U)| , | \alpha +(U)| \} .

Proof. Let S1 := SL(U0,U1), which satisfies \lambda | S1| \leq 1. According to the defini-
tion of the HLLC flux, we derive that

U
(1)
\lambda =

\int \lambda max\{ S1,0\} 

0

\scrR (x/\lambda ,U0,U1)dx+ (1 - \lambda max\{ S1, 0\} )U1,

where \scrR (x/t,UL,UR) denotes the approximate HLLC solution to the Riemann prob-
lem between the states UL and UR, i.e.,

\scrR (x/t,UL,UR) =

\left\{         
UL if x

t \leq SL,

U\ast L if SL \leq x
t \leq S\ast ,

U\ast R if S\ast \leq x
t \leq SR,

UR if x
t \geq SR.

Thanks to Lemma 2.7, we have \scrR (x/t,U0,U1) \in G for all x \in \BbbR and t > 0. The

convexity of G leads to U
(1)
\lambda \in G under the condition (11). A similar argument yields

U
(0)
\lambda \in G.

Lemma 2.9. For any three admissible states UL,UM ,UR \in G, one has

U\lambda := UM  - \lambda 
\bigl( 
Fhllc(UM ,UR) - Fhllc(UL,UM )

\bigr) 
\in G

if \lambda > 0 satisfies

(12) \lambda max
\bfU \in \{ \bfU L,\bfU M ,\bfU R\} 

\alpha max(U) \leq 1

2
.

Proof. Under the condition (12), applying Lemma 2.8 leads to

UM - 2\lambda 
\bigl( 
F(UM ) - Fhllc(UL,UM )

\bigr) 
\in G, UM - 2\lambda 

\bigl( 
Fhllc(UM ,UR) - F(UM )

\bigr) 
\in G.

Taking the average of the above two terms and using the convexity of G then yields
U\lambda \in G.

As a generalization of Lemmas 2.8 and 2.9, the following results discuss the pos-
itivity of a properly modified HLLC flux, used in the construction of well-balanced
methods in section 3.

Lemma 2.10. For any parameters \zeta 1, \zeta 2, \zeta 3, \zeta 4 \in \BbbR + and any two admissible
states U0,U1 \in G, if \lambda > 0 and satisfies (11), we have

\zeta 2U1  - \lambda 
\bigl( 
F(\zeta 2U1) - Fhllc(\zeta 1U0, \zeta 2U1)

\bigr) 
\in G,(13)

\zeta 3U0  - \lambda 
\bigl( 
Fhllc(\zeta 3U0, \zeta 4U1) - F(\zeta 3U0)

\bigr) 
\in G.(14)

This follows from Lemmas 2.8 and 2.2, and noting max\bfU \in \{ \zeta 1\bfU 0,\zeta 2\bfU 1\} \alpha max(U) =
max\bfU \in \{ \bfU 0,\bfU 1\} \alpha max(U).
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Lemma 2.11. For any parameters \zeta 1, \zeta 2, \zeta 3 \in \BbbR + and any admissible states
UL,UM ,UR \in G, if \lambda > 0 satisfies (12), we have

\zeta 2UM  - \lambda 
\bigl( 
Fhllc(\zeta 2UM , \zeta 3UR) - Fhllc(\zeta 1UL, \zeta 2UM )

\bigr) 
\in G.

The proof directly follows from Lemma 2.9 by noting that \zeta 1UL, \zeta 2UM , \zeta 3UR \in G
(due to Lemma 2.2) and that max\bfU \in \{ \zeta 1\bfU L,\zeta 2\bfU M ,\zeta 3\bfU R\} \alpha max(U) = max\bfU \in \{ \bfU L,\bfU M ,\bfU R\} 
\alpha max(U).

3. Positivity-preserving well-balanced DG methods in one dimension.
In one spatial dimension, the Euler equations (1) take the form of

(15) Ut + (F(U))x = S(U, x),

with

(16) U =

\left(  \rho 
m
E

\right)  , F(U) =

\left(  \rho u
\rho u2 + p
(E + p)u

\right)  , S(U, x) =

\left(  0
 - \rho \phi x

 - m\phi x

\right)  .

3.1. Well-balanced DG discretization. Assume that the spatial domain \Omega 
is divided into cells \{ Ij = (xj - 1/2, xj+1/2)\} , and the mesh size is denoted by hj =
xj+1/2  - xj - 1/2, with h = maxj\{ hj\} . The center of each cell is xj = (xj - 1/2 +
xj+1/2)/2. Denote the DG numerical solutions as Uh(x, t), and for each t \in (0, Tf ],
each component of Uh belongs to the finite-dimensional space of discontinuous piece-
wise polynomial functions, \BbbV k

h, defined by

\BbbV k
h =

\Bigl\{ 
u(x) \in L2(\Omega ) : u(x)

\bigm| \bigm| 
Ij

\in \BbbP k(Ij) \forall j
\Bigr\} 
,

where \BbbP k(Ij) denotes the space of polynomials of degree up to k in cell Ij . Then the
semidiscrete DG methods for (15) are given as follows: for any test function v \in \BbbV k

h,
Uh is computed by

(17)

\int 
Ij

(Uh)tvdx - 
\int 
Ij

F(Uh)vxdx+ \widehat Fj+ 1
2
v(x - 

j+ 1
2

) - \widehat Fj - 1
2
v(x+

j - 1
2

) =

\int 
Ij

Svdx,

where \widehat Fj+1/2 denotes the numerical flux at xj+1/2. The notations x - 
j+1/2 and x+

j+1/2

indicate the associated limits at xj+1/2 taken from the left and right sides, respec-

tively, with U\pm 
j+1/2 := Uh(x

\pm 
j+1/2). For notional convenience, the t dependence of all

quantities is suppressed hereafter.
Now, we construct the well-balanced DG methods which preserve a general equi-

librium state (4). Assume that the target stationary hydrostatic solutions to be
preserved are explicitly known and are denoted by \{ \rho e(x), pe(x), ue(x) = 0\} . This
yields

(18) (pe(x))x =  - \rho e(x)\phi x, ue(x) = 0.

Let \rho eh(x) and peh(x) denote the projections of \rho e(x) and pe(x) onto the space \BbbV k
h,

respectively.
To render the DG methods (17) well-balanced, we consider the modified HLLC

numerical flux

(19) \widehat Fj+ 1
2
= Fhllc

\Biggl( 
pe, \star 
j+ 1

2

peh(x
 - 
j+ 1

2

)
U - 

j+ 1
2

,
pe, \star 
j+ 1

2

peh(x
+
j+ 1

2

)
U+

j+ 1
2

\Biggr) 
,
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where pe, \star 
j+ 1

2

is a suitable approximation to the equilibrium pressure at xj+ 1
2
. Here we

define it as

(20) pe, \star 
j+ 1

2

=
1

2

\Bigl( 
peh(x

 - 
j+ 1

2

) + peh(x
+
j+ 1

2

)
\Bigr) 
,

and other choices of pe, \star 
j+ 1

2

, including min
\bigl\{ 
peh(x

 - 
j+ 1

2

), peh(x
+
j+ 1

2

)
\bigr\} 
and max

\bigl\{ 
peh(x

 - 
j+ 1

2

),

peh(x
+
j+ 1

2

)
\bigr\} 
, also work. This modification does not affect the accuracy, provided that

\rho e(x) and pe(x) are smooth. The element integral
\int 
Ij
F(Uh)vxdx in (17) is approxi-

mated by the standard quadrature rule

(21)

\int 
Ij

F(Uh)vxdx \approx hj

N\sum 
\mu =1

\omega \mu F
\bigl( 
Uh(x

(\mu )
j )
\bigr) 
vx(x

(\mu )
j ),

where \{ x(\mu )
j , \omega \mu \} 1\leq \mu \leq N denote the N -point Gauss quadrature nodes and weights in

Ij .
Next, we consider the discretization of the integrals of the source terms in (17) to

achieve the well-balanced property. Let S =: (0, S[2], S[3])\top . Following the techniques
in [43, 26, 25], we reformulate and decompose the integral of the source term in the
momentum equation as\int 

Ij

S[2]vdx =

\int 
Ij

 - \rho \phi xvdx =

\int 
Ij

\rho 

\rho e
pexvdx =

\int 
Ij

\biggl( 
\rho 

\rho e
 - 

\rho j
\rho ej

+
\rho j
\rho ej

\biggr) 
pexvdx

=

\int 
Ij

\biggl( 
\rho 

\rho e
 - 

\rho j
\rho ej

\biggr) 
pexvdx+

\rho j
\rho ej

\Biggl( 
pe(x - 

j+ 1
2

)v(x - 
j+ 1

2

) - pe(x+
j - 1

2

)v(x+
j - 1

2

) - 
\int 
Ij

pevxdx

\Biggr) 
,

(22)

where (18) has been used in the second identity, and the notation (\cdot )j denotes the cell
average of the associated quantity over Ij . We then approximate it by

\int 
Ij

S[2]vdx \approx hj

N\sum 
\mu =1

\omega \mu 

\Biggl( 
\rho h(x

(\mu )
j )

\rho eh(x
(\mu )
j )

 - 
(\rho h)j

(\rho eh)j

\Biggr) 
(peh)x(x

(\mu )
j )v(x

(\mu )
j )

(23)

+
(\rho h)j

(\rho eh)j

\Biggl( 
pe, \star 
j+ 1

2

v(x - 
j+ 1

2

) - pe, \star 
j - 1

2

v(x+
j - 1

2

) - hj

N\sum 
\mu =1

\omega \mu p
e
h(x

(\mu )
j )vx(x

(\mu )
j )

\Biggr) 
=:
\bigl\langle 
S[2], v

\bigr\rangle 
j
.

Similarly, we approximate the integral of the source term in the energy equation by

\int 
Ij

S[3]vdx \approx hj

N\sum 
\mu =1

\omega \mu 

\Biggl( 
mh(x

(\mu )
j )

\rho eh(x
(\mu )
j )

 - 
(mh)j

(\rho eh)j

\Biggr) 
(peh)x(x

(\mu )
j )v(x

(\mu )
j )

(24)

+
(mh)j

(\rho eh)j

\Biggl( 
pe, \star 
j+ 1

2

v(x - 
j+ 1

2

) - pe, \star 
j - 1

2

v(x+
j - 1

2

) - hj

N\sum 
\mu =1

\omega \mu p
e
h(x

(\mu )
j )vx(x

(\mu )
j )

\Biggr) 
=:
\bigl\langle 
S[3], v

\bigr\rangle 
j
.
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By combining them, we have the well-balanced DG methods of the form
(25)\int 

Ij

(Uh)tvdx = hj

N\sum 
\mu =1

\omega \mu F
\bigl( 
Uh(x

(\mu )
j )
\bigr) 
vx(x

(\mu )
j ) - 

\Bigl( \widehat Fj+ 1
2
v(x - 

j+ 1
2

) - \widehat Fj - 1
2
v(x+

j - 1
2

)
\Bigr) 

+
\Bigl( 
0,
\bigl\langle 
S[2], v

\bigr\rangle 
j
,
\bigl\langle 
S[3], v

\bigr\rangle 
j

\Bigr) \top 
\forall v \in \BbbV k

h.

Remark 3.1. We choose here the modified HLLC flux (19), instead of the modi-
fied LF fluxes as in [26], due to the following two considerations. First, the HLLC flux
satisfies the contact property (Lemma 2.6), which provides a unified modification ap-
proach to make the HLLC flux well-balanced for an arbitrary hydrostatic equilibrium;
whereas the modifications of the LF flux [26] have to be done separately for different
types of equilibria. Second, we will show that our modified HLLC flux (19) also meets
the positivity-preserving requirements, whereas the modification to the LF fluxes in
the polytropic equilibrium case may lose the positivity-preserving property. We can
prove the positivity of the well-balanced DG methods with the modified LF fluxes,
only when isothermal equilibria are considered (see the supplementary material).

Remark 3.2. Here, we approximate the integral
\int 
Ij
S[3]vdx in (24) in a way con-

sistent with the term
\int 
Ij
S[2]vdx, while in [26]

\int 
Ij
S[3]vdx was approximated by the

standard quadrature rule. For the well-balancedness only, either approach is fine, and
the standard one is even simpler. However, our analysis will indicate that it is impor-
tant to use a ``consistent"" approach for the purpose of accommodating the theoretical
positivity-preserving property at the same time.

Theorem 3.3. For the 1D Euler equations (15) with gravitation, the semidiscrete
DG schemes (25) are well-balanced for a general known stationary hydrostatic solution
(18).

Proof. At the equilibrium state (18), we have \rho h = \rho eh, uh = ue
h = 0, Eh =

pe
h

\gamma  - 1 ,
which leads to

pe, \star 
j+ 1

2

peh(x
\pm 
j+ 1

2

)
U\pm 

j+ 1
2

=

\Biggl( 
\rho eh(x

\pm 
j+ 1

2

)
pe, \star 
j+ 1

2

peh(x
\pm 
j+ 1

2

)
, 0,

pe, \star 
j+ 1

2

\gamma  - 1

\Biggr) \top 

.

Thanks to the contact property (Lemma 2.6), the modified HLLC numerical flux (19)
reduces to

(26) \widehat Fj+ 1
2
=
\bigl( 
0, pe, \star 

j+ 1
2

, 0
\bigr) \top 

.

It is easy to observe that the well-balanced property holds for the mass and en-
ergy equations of (25), as the first and third components of both the flux and
source term approximations become zero. For the momentum equation, thanks to

\rho h(x
(\mu )
j )/\rho eh(x

(\mu )
j ) = (\rho h)j/(\rho 

e
h)j = 1, we have

\bigl\langle 
S[2], v

\bigr\rangle 
j
= pe, \star 

j+ 1
2

v(x - 
j+ 1

2

) - pe, \star 
j - 1

2

v(x+
j - 1

2

) - hj

N\sum 
\mu =1

\omega \mu p
e
h(x

(\mu )
j )vx(x

(\mu )
j ).

Let F [2] denote the second component of F. Since uh = 0, the flux term F [2](Uh(x
(\mu )
j ))
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reduces to peh(x
(\mu )
j ). This, together with (26), implies

hj

N\sum 
\mu =1

\omega \mu F
[2]
\bigl( 
Uh(x

(\mu )
j )
\bigr) 
vx(x

(\mu )
j ) - 

\Bigl( \widehat F2,j+ 1
2
v(x - 

j+ 1
2

) - \widehat F2,j - 1
2
v(x+

j - 1
2

)
\Bigr) 

= hj

N\sum 
\mu =1

\omega \mu p
e
h(x

(\mu )
j )vx(x

(\mu )
j ) - 

\Bigl( 
pe, \star 
j+ 1

2

v(x - 
j+ 1

2

) - pe, \star 
j - 1

2

v(x+
j - 1

2

)
\Bigr) 
,

which is exactly equal to  - \langle S[2], v\rangle j . Therefore, the flux and source term approxima-
tions balance each other, which leads to the well-balanced property of our methods
(25).

The weak form (25) can be rewritten in the ODE form as

(27)
dUh(t)

dt
= L(Uh),

after choosing a suitable basis of \BbbV k
h and representingUh as a linear combination of the

basis functions; see [9] for details. The semidiscrete DG schemes (27) can be further
discretized in time by some explicit strong-stability-preserving (SSP) Runge--Kutta
(RK) methods [14]. For example, with \Delta t being the time step size, the third-order
accurate SSP RK method is given by

(28)

U
(1)
h = Un

h +\Delta tL(Un
h),

U
(2)
h =

3

4
Un

h +
1

4

\Bigl( 
U

(1)
h +\Delta tL(U

(1)
h )
\Bigr) 
,

Un+1
h =

1

3
Un

h +
2

3

\Bigl( 
U

(2)
h +\Delta tL(U

(2)
h )
\Bigr) 
.

3.2. Positivity of first-order well-balanced DG scheme. In this and the
next subsections, we shall analyze the positivity of the well-balanced DG schemes (25).
The well-balanced modification of the numerical flux and discretization of source terms
leads to additional difficulties in the positivity-preserving analyses, which are more
complicated than the analyses for the standard DG methods.

Denote the cell average of Uh over Ij by

Uj(t) =
1

hj

\int 
Ij

Uh(x, t)dx.

Taking the test function v = 1 in (25), one can obtain the semidiscrete evolution
equations satisfied by the cell average as

(29)
dUj(t)

dt
= Lj(Uh) :=  - 1

hj

\Bigl( \widehat Fj+ 1
2
 - \widehat Fj - 1

2

\Bigr) 
+ Sj ,

where Sj =
\bigl( 
0, S

[2]

j , S
[3]

j

\bigr) \top 
with S

[\ell ]

j := 1
hj

\bigl\langle 
S[\ell ], 1

\bigr\rangle 
j
, \ell = 2, 3.

When the polynomial degree k = 0, we have Uh(x, t) \equiv Uj(t) for all x \in Ij , and
the above DG methods (29) reduce to the corresponding first-order scheme with

(30) \widehat Fj+ 1
2
= Fhllc

\Biggl( 
pe, \star 
j+ 1

2

pej
Uj ,

pe, \star 
j+ 1

2

pej+1

Uj+1

\Biggr) 
.

We start by showing the positivity property of the homogeneous case.
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Lemma 3.4. If the DG polynomial degree k = 0 and Uj \in G for all j, we have

(31) Uj  - 
\Delta t

hj

\Bigl( \widehat Fj+ 1
2
 - \widehat Fj - 1

2

\Bigr) 
\in G \forall j,

under the CFL-type condition

(32)
\Delta t

hj

\Biggl( 
pe, \star 
j+ 1

2

+ pe, \star 
j - 1

2

pej
max

\bfU \in \{ \bfU j - 1,\bfU j ,\bfU j+1\} 
\alpha max(U)

\Biggr) 
\leq 1

2
.

Proof. Using (30), we have

Uj  - 
\Delta t

hj

\Bigl( \widehat Fj+ 1
2
 - \widehat Fj - 1

2

\Bigr) 
= Uj  - 

\Delta t

hj

\Biggl[ 
Fhllc

\Biggl( 
pe, \star 
j+ 1

2

pej
Uj ,

pe, \star 
j+ 1

2

pej+1

Uj+1

\Biggr) 
 - Fhllc

\Biggl( 
pe, \star 
j - 1

2

pej - 1

Uj - 1,
pe, \star 
j - 1

2

pej
Uj

\Biggr) \Biggr] 
.

Note that the well-balanced modification leads to

pe, \star 
j+ 1

2

pej
Uj \not =

pe, \star 
j - 1

2

pej
Uj ,

so that the positivity of the standard HLLC scheme cannot be used directly. To
address this issue, we make the following decomposition:

Uj  - 
\Delta t

hj

\Bigl( \widehat Fj+ 1
2
 - \widehat Fj - 1

2

\Bigr) 
= \beta j (W1 +W2) ,

with

\beta j :=
pej

pe, \star 
j+ 1

2

+ pe, \star 
j - 1

2

> 0,

and

W1 =
pe, \star 
j+ 1

2

pej
Uj  - 

\Delta t

\beta jhj

\Biggl[ 
Fhllc

\Biggl( 
pe, \star 
j+ 1

2

pej
Uj ,

pe, \star 
j+ 1

2

pej+1

Uj+1

\Biggr) 
 - Fhllc

\Biggl( 
pe, \star 
j - 1

2

pej
Uj ,

pe, \star 
j+ 1

2

pej
Uj

\Biggr) \Biggr] 
,

W2 =
pe, \star 
j - 1

2

pej
Uj  - 

\Delta t

\beta jhj

\Biggl[ 
Fhllc

\Biggl( 
pe, \star 
j - 1

2

pej
Uj ,

pe, \star 
j+ 1

2

pej
Uj

\Biggr) 
 - Fhllc

\Biggl( 
pe, \star 
j - 1

2

pej - 1

Uj - 1,
pe, \star 
j - 1

2

pej
Uj

\Biggr) \Biggr] 
.

Applying Lemma 2.11 leads to W1,W2 \in G under the condition (32). We can
conclude (31) by using Lemma 2.3, which completes the proof.

For all j, we define ej :=
1
\rho j

\bigl( 
Ej  - 

m2
j

2\rho j

\bigr) 
and \widehat \alpha j := \widehat \alpha F

j + \widehat \alpha S
j with

\widehat \alpha F
j := 2

pe, \star 
j+ 1

2

+ pe, \star 
j - 1

2

pej
max

\bfU \in \{ \bfU j - 1,\bfU j ,\bfU j+1\} 
\alpha max(U), \widehat \alpha S

j :=

\bigm| \bigm| \bigm| pe, \star 
j+ 1

2

 - pe, \star 
j - 1

2

\bigm| \bigm| \bigm| 
\rho ej
\sqrt{} 
2ej

.

Theorem 3.5. If the DG polynomial degree k = 0 and Uj \in G for all j, we have

(33) Uj +\Delta tLj(Uh) \in G \forall j,

under the CFL-type condition

(34) \widehat \alpha j\Delta t \leq hj .

D
ow

nl
oa

de
d 

02
/1

2/
21

 to
 1

40
.2

54
.8

7.
14

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A484 KAILIANG WU AND YULONG XING

Proof. When k = 0, one has \rho ej = 1
hj

\int 
Ij
\rho eh(x)dx > 0, pej = 1

hj

\int 
Ij
peh(x)dx > 0,

and

(35) Sj =

\bigm| \bigm| \bigm| pe, \star 
j+ 1

2

 - pe, \star 
j - 1

2

\bigm| \bigm| \bigm| 
hj\rho 

e
j

\Bigl( 
0, \rho j ,mj

\Bigr) \top 
.

If
\bigm| \bigm| pe, \star 

j+ 1
2

 - pe, \star 
j - 1

2

\bigm| \bigm| = 0, we have Sj = 0, and Uj+\Delta tLj(Uh) = Uj - \Delta t
hj

\bigl( \widehat Fj+ 1
2
 - \widehat Fj - 1

2

\bigr) 
\in 

G, according to Lemma 3.4. Otherwise, decompose the scheme as

(36) Uj +\Delta tLj(Uh) = Uj  - 
\Delta t

hj

\Bigl( \widehat Fj+ 1
2
 - \widehat Fj - 1

2

\Bigr) 
+\Delta tSj =

\widehat \alpha F
j\widehat \alpha j
WF +

1\widehat \alpha j
WS ,

where

WF := Uj  - 
\Delta t\widehat \alpha j

hj\widehat \alpha F
j

\Bigl( \widehat Fj+ 1
2
 - \widehat Fj - 1

2

\Bigr) 
,

WS := \widehat \alpha S
j Uj + \widehat \alpha j\Delta tSj = \widehat \alpha S

j Uj +\Delta t\widehat \alpha j\widehat \alpha S
j

\sqrt{} 
2ej

hj

\Bigl( 
0, \rho j ,mj

\Bigr) \top 
.

The condition (34) implies
\bigm| \bigm| \Delta t\widehat \alpha j\widehat \alpha S

j

\surd 
2ej

hj

\bigm| \bigm| 1\surd 
2ej

\leq \widehat \alpha S
j , which leads to, based on Lemma

2.4, WS \in G. With the aid of Lemma 3.4, we obtain WF \in G under the condition
(34). Finally, the combination of (36) and Lemma 2.3 yields (33).

Theorem 3.5 indicates that the first-order (k = 0) well-balanced DG method (25),
coupled with a forward Euler time discretization, is positivity-preserving under the
CFL-type condition (34).

3.3. Positivity-preserving high-order well-balanced DG schemes. When
the polynomial degree k \geq 1, the high-order well-balanced DG schemes (25) are
not positivity-preserving in general. Fortunately, a weak positivity property can be
proven for the schemes (25); see Theorem 3.6. As we will see, such weak positivity is
crucial and implies that a simple limiter can enforce the positivity-preserving property
without losing conservation and high-order accuracy.

3.3.1. Theoretical positivity-preserving analysis. Let \{ \widehat x(\nu )
j \} 1\leq \nu \leq L be the

Gauss--Lobatto nodes transformed into the interval Ij , and let \{ \widehat \omega \nu \} 1\leq \nu \leq L be the

associated quadrature weights satisfying
\sum L

\nu =1 \widehat \omega \nu = 1 and \widehat \omega 1 = \widehat \omega L = 1
L(L - 1) , with

L \geq (k + 3)/2 to ensure that the algebraic precision of the corresponding quadrature
rule is at least k. For each cell Ij , we define the point set

(37) \BbbS j := \{ \widehat x(\nu )
j \} L\nu =1 \cup \{ x(\mu )

j \} N\mu =1,

and define \widetilde \alpha j as

\widetilde \alpha j := \widetilde \alpha F
j + \widetilde \alpha S

j + \alpha S
j , \widetilde \alpha F

j := 2 max

\Biggl\{ 
pe, \star 
j+ 1

2

peh(x
 - 
j+ 1

2

)
,

pe, \star 
j - 1

2

peh(x
+
j - 1

2

)

\Biggr\} 
max

\bfU \in \{ \bfU \pm 
j - 1

2

,\bfU \pm 
j+1

2

\} 
\alpha max(U),

\widetilde \alpha S
j := \widehat \omega 1hj max

1\leq \mu \leq N

\left\{   
\bigm| \bigm| \bigm| \bigl( peh\bigr) x(x(\mu )

j )
\bigm| \bigm| \bigm| 

\rho eh(x
(\mu )
j )
\sqrt{} 
2eh(x

(\mu )
j )

\right\}   , \alpha S
j := \widehat \omega 1

\bigm| \bigm| \bigm| JpehKj+ 1
2
+ JpehKj - 1

2

\bigm| \bigm| \bigm| 
2\rho ej
\sqrt{} 
2ej

,

(38)
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DG METHODS FOR EULER EQUATIONS WITH GRAVITATION A485

with JpehKj+ 1
2
:= peh(x

+
j+ 1

2

) - peh(x
 - 
j+ 1

2

), where \widetilde \alpha S
j + \alpha S

j = \scrO (hj) and

max

\biggl\{ pe, \star 
j+ 1

2

peh(x
 - 
j+ 1

2

)
,

pe, \star 
j - 1

2

peh(x
+
j - 1

2

)

\biggr\} 
= 1 +\scrO (hk+1)

for smooth pe(x). Then we have the following sufficient condition for the high-order
scheme (27) to be positivity-preserving.

Theorem 3.6. Assume that the projected stationary hydrostatic solutions satisfy

(39) \rho eh(x) > 0, peh(x) > 0 \forall x \in \BbbS j , \forall j,

and the numerical solution Uh satisfies

(40) Uh(x) \in G \forall x \in \BbbS j , \forall j;

then we have the weak positivity property

(41) Uj +\Delta tLj(Uh) \in G \forall j,

under the CFL-type condition

(42) \widetilde \alpha j\Delta t \leq \widehat \omega 1hj .

Proof. The exactness of the L-point Gauss--Lobatto quadrature rule for polyno-
mials of degree up to k implies

Uj =
1

hj

\int 
Ij

Uh(x)dx =

L\sum 
\nu =1

\widehat \omega \nu Uh(\widehat x(\nu )
j ),

with \widehat x(1)
j = xj - 1

2
, \widehat x(L)

j = xj+ 1
2
, and \widehat \omega 1 = \widehat \omega L. We consider, for an arbitrary parameter

\eta \in (0, 1], the following decomposition:

Uj +\Delta tLj(Uh) = \eta Uj  - 
\Delta t

hj

\Bigl( \widehat Fj+ 1
2
 - \widehat Fj - 1

2

\Bigr) 
+ (1 - \eta )Uj +\Delta tSj

= \eta 

L\sum 
\nu =1

\widehat \omega \nu Uh(\widehat x(\nu )
j ) - \Delta t

hj

\Bigl( \widehat Fj+ 1
2
 - \widehat Fj - 1

2

\Bigr) 
+ (1 - \eta )Uj +\Delta tSj

=

\Biggl[ 
\eta 

L - 1\sum 
\nu =2

\widehat \omega \nu Uh(\widehat x(\nu )
j )

\Biggr] 
+

\biggl[ 
\eta \widehat \omega 1

\bigl( 
U+

j - 1
2

+U - 
j+ 1

2

\bigr) 
 - \Delta t

hj

\Bigl( \widehat Fj+ 1
2
 - \widehat Fj - 1

2

\Bigr) \biggr] 
+
\bigl[ 
(1 - \eta )Uj +\Delta tSj

\bigr] 
=: W1 +W2 +W3,(43)

where W1 \in G\cup \{ 0\} \subset G according to Lemma 2.3. The parameter \eta could be simply
taken as 1/2, but this will lead to a restrictive condition for \Delta t. In the following
we would like to determine a suitable parameter \eta in (0, 1] such that W2 \in G and
W3 \in G.
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A486 KAILIANG WU AND YULONG XING

Let us first consider W2 and reformulate it as follows:

W2 = \eta \widehat \omega 1U
+
j - 1

2

+ \eta \widehat \omega 1U
 - 
j+ 1

2

 - \Delta t

hj

\Biggl[ 
Fhllc

\biggl( pe, \star 
j+ 1

2

peh(x
 - 
j+ 1

2

)
U - 

j+ 1
2

,
pe, \star 
j+ 1

2

peh(x
+
j+ 1

2

)
U+

j+ 1
2

\biggr) 

 - Fhllc

\Biggl( 
pe, \star 
j - 1

2

peh(x
 - 
j - 1

2

)
U - 

j - 1
2

,
pe, \star 
j - 1

2

peh(x
+
j - 1

2

)
U+

j - 1
2

\Biggr) \Biggr] 

= \eta \widehat \omega 1U
 - 
j+ 1

2

 - \Delta t

hj

\Biggl[ 
Fhllc

\Biggl( 
pe, \star 
j+ 1

2

peh(x
 - 
j+ 1

2

)
U - 

j+ 1
2

,
pe, \star 
j+ 1

2

peh(x
+
j+ 1

2

)
U+

j+ 1
2

\Biggr) 

 - Fhllc

\Biggl( 
pe, \star 
j - 1

2

peh(x
+
j - 1

2

)
U+

j - 1
2

,
pe, \star 
j+ 1

2

peh(x
 - 
j+ 1

2

)
U - 

j+ 1
2

\Biggr) \Biggr] 

+ \eta \widehat \omega 1U
+
j - 1

2

 - \Delta t

hj

\Biggl[ 
Fhllc

\Biggl( 
pe, \star 
j - 1

2

peh(x
+
j - 1

2

)
U+

j - 1
2

,
pe, \star 
j+ 1

2

peh(x
 - 
j+ 1

2

)
U - 

j+ 1
2

\Biggr) 

 - Fhllc

\Biggl( 
pe, \star 
j - 1

2

peh(x
 - 
j - 1

2

)
U - 

j - 1
2

,
pe, \star 
j - 1

2

peh(x
+
j - 1

2

)
U+

j - 1
2

\Biggr) \Biggr] 

=: \eta \widehat \omega 1

peh(x
 - 
j+ 1

2

)

pe, \star 
j+ 1

2

W+
2 + \eta \widehat \omega 1

peh(x
+
j - 1

2

)

pe, \star 
j - 1

2

W - 
2 ,(44)

where

W+
2 =

pe, \star 
j+ 1

2

peh(x
 - 
j+ 1

2

)
U - 

j+ 1
2

 - 
\Delta tpe, \star 

j+ 1
2

\eta \widehat \omega 1hjpeh(x
 - 
j+ 1

2

)

\times 

\Biggl[ 
Fhllc

\Biggl( 
pe, \star 
j+ 1

2

peh(x
 - 
j+ 1

2

)
U - 

j+ 1
2

,
pe, \star 
j+ 1

2

peh(x
+
j+ 1

2

)
U+

j+ 1
2

\Biggr) 

 - Fhllc

\Biggl( 
pe, \star 
j - 1

2

peh(x
+
j - 1

2

)
U+

j - 1
2

,
pe, \star 
j+ 1

2

peh(x
 - 
j+ 1

2

)
U - 

j+ 1
2

\Biggr) \Biggr] 
,

W - 
2 =

pe, \star 
j - 1

2

peh(x
+
j - 1

2

)
U+

j - 1
2

 - 
\Delta tpe, \star 

j - 1
2

\eta \widehat \omega 1hjpeh(x
+
j - 1

2

)

\times 

\Biggl[ 
Fhllc

\Biggl( 
pe, \star 
j - 1

2

peh(x
+
j - 1

2

)
U+

j - 1
2

,
pe, \star 
j+ 1

2

peh(x
 - 
j+ 1

2

)
U - 

j+ 1
2

\Biggr) 

 - Fhllc

\Biggl( 
pe, \star 
j - 1

2

peh(x
 - 
j - 1

2

)
U - 

j - 1
2

,
pe, \star 
j - 1

2

peh(x
+
j - 1

2

)
U+

j - 1
2

\Biggr) \Biggr] 
.

Thanks to Lemma 2.11, we have W\pm 
2 \in G if

\Delta tpe, \star 
j\pm 1

2

\eta \widehat w1hjpeh(x
\mp 
j\pm 1

2

)
max

\bfU \in \{ \bfU  - 
j - 1

2

,\bfU +

j - 1
2

,\bfU  - 
j+1

2

,\bfU +

j+1
2

\} 
\alpha max(U) \leq 1

2
,
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or, equivalently,

(45) \Delta t\widetilde \alpha F
j \leq \eta \widehat w1hj .

By applying Lemma 2.3 on (44), we obtain W2 \in G under the condition (45).
Next, the term W3 is analyzed. Note that, for an arbitrary parameter \lambda \in [0, 1],

we have

(1 - \eta )mj +\Delta tS
[2]

j

= (1 - \eta )mj +\Delta t

N\sum 
\mu =1

\omega \mu 

\Biggl( 
\rho h(x

(\mu )
j )

\rho eh(x
(\mu )
j )

 - 
\rho j
\rho ej

\Biggr) 
(peh)x(x

(\mu )
j ) +

\Delta t

hj

\rho j
\rho ej

\Bigl( 
pe, \star 
j+ 1

2

 - pe, \star 
j - 1

2

\Bigr) 

= (1 - \eta )

\Biggl[ 
(1 - \lambda )mj + \lambda 

N\sum 
\mu =1

\omega \mu mh(x
(\mu )
j )

\Biggr] 
+\Delta t

N\sum 
\mu =1

\omega \mu 

\rho h(x
(\mu )
j )

\rho eh(x
(\mu )
j )

(peh)x(x
(\mu )
j )

+
\Delta t

hj

\rho j
\rho ej

\Biggl( 
pe, \star 
j+ 1

2

 - pe, \star 
j - 1

2

 - 
\int 
Ij

(peh)xdx

\Biggr) 

= (1 - \eta )\lambda 

N\sum 
\mu =1

\omega \mu mh(x
(\mu )
j ) + \Delta t

N\sum 
\mu =1

\omega \mu 

\rho h(x
(\mu )
j )

\rho eh(x
(\mu )
j )

(peh)x(x
(\mu )
j )

+ (1 - \eta )(1 - \lambda )mj +
\Delta t

hj

\rho j
\rho ej

1

2

\Bigl( 
JpehKj+ 1

2
+ JpehKj - 1

2

\Bigr) 
,

and similarly,

(1 - \eta )Ej +\Delta tS
[3]

j = (1 - \eta )\lambda 

N\sum 
\mu =1

\omega \mu Eh(x
(\mu )
j ) + \Delta t

N\sum 
\mu =1

\omega \mu 

mh(x
(\mu )
j )

\rho eh(x
(\mu )
j )

(peh)x(x
(\mu )
j )

+ (1 - \eta )(1 - \lambda )Ej +
\Delta t

hj

mj

\rho ej

1

2

\Bigl( 
JpehKj+ 1

2
+ JpehKj - 1

2

\Bigr) 
.

Therefore, we have

W3 =

N\sum 
\mu =1

\omega \mu W
(\mu )
3 +W3,(46)

W
(\mu )
3 := (1 - \eta )\lambda Uh(x

(\mu )
j ) + \Delta t

(peh)x(x
(\mu )
j )

\rho eh(x
(\mu )
j )

\Bigl( 
0, \rho h(x

(\mu )
j ), mh(x

(\mu )
j )
\Bigr) \top 

,(47)

W3 := (1 - \eta )(1 - \lambda )Uj +\Delta t
JpehKj+ 1

2
+ JpehKj - 1

2

2hj\rho 
e
j

\Bigl( 
0, \rho j , mj

\Bigr) \top 
.(48)

Thanks to Lemma 2.4, we have W3 \in G and W
(\mu )
3 \in G for all \mu if

\Delta t max
1\leq \mu \leq N

\left\{   
\bigm| \bigm| \bigm| \bigl( peh\bigr) x(x(\mu )

j )
\bigm| \bigm| \bigm| 

\rho eh(x
(\mu )
j )
\sqrt{} 
2eh(x

(\mu )
j )

\right\}   \leq (1 - \eta )\lambda , \Delta t

\bigm| \bigm| \bigm| JpehKj+ 1
2
+ JpehKj - 1

2

\bigm| \bigm| \bigm| 
2hj\rho 

e
j

\sqrt{} 
2ej

\leq (1 - \eta )(1 - \lambda ),

or, equivalently,

(49) \Delta t\widetilde \alpha S
j \leq \widehat \omega 1hj(1 - \eta )\lambda , \Delta t\alpha S

j \leq \widehat \omega 1hj(1 - \eta )(1 - \lambda ).
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A488 KAILIANG WU AND YULONG XING

By applying Lemma 2.3 on (46), we obtain W3 \in G under the condition (49).
Combining these results, we conclude that if \Delta t satisfies

(50)

\Delta t \in \Omega 
(j)
\eta ,\lambda :=

\Bigl\{ 
\tau \in \BbbR + : \tau \widetilde \alpha F

j \leq \eta \widehat w1hj , \tau \widetilde \alpha S
j \leq \widehat \omega 1hj(1 - \eta )\lambda , \tau \alpha S

j \leq \widehat \omega 1hj(1 - \eta )(1 - \lambda )
\Bigr\} 
,

then

W1 \in G, W2 \in G, W3 \in G,

which implies (41), i.e., Uj + \Delta tLj(Uh) =
\sum 3

i=1 Wi \in G, following Lemma 2.3.
Since the two parameters \eta and \lambda can be chosen arbitrarily in this proof, we would

like to specify the ``best"" \eta and \lambda that maximize sup\Omega 
(j)
\eta ,\lambda =: g(\eta , \lambda ). Solving such an

optimization problem gives

max
\eta \in (0,1],\lambda \in [0,1]

g(\eta , \lambda ) = g(\eta \ast , \lambda \ast ) =
\widehat \omega 1hj\widetilde \alpha F

j + \widetilde \alpha S
j + \alpha S

j

=
\widehat \omega 1hj\widetilde \alpha j

,

which is reached at \eta \ast = \widetilde \alpha F
j /\widetilde \alpha j , \lambda \ast = \widetilde \alpha S\widetilde \alpha S+\alpha S . Therefore, the condition (50) reduces

to

\Delta t \leq g(\eta \ast , \lambda \ast ),

which is equivalent to (42). This finishes the proof.

Theorem 3.6 gives a sufficient condition for the proposed high-order well-balanced
DG schemes (27) to ensure that the cell averages Uj are in G, when combined with
the forward Euler time discretization. Since any high-order SSP-RK time discretiza-
tion can be written as a convex combination of the forward Euler method, the same
conclusion also holds when SSP-RK time discretization is used.

Remark 3.7. The well-balanced source term reformulation (22) involves the cell
average \{ \rho j , \rho ej\} , instead of the midpoint values \{ \rho (xj), \rho 

e(xj)\} used in [26], which
also works for the purpose of the well-balanced property. However, in the latter case,
the vector W3 in (48) would become

W3 := (1 - \eta )(1 - \lambda )Uj +\Delta t
JpehKj+ 1

2
+ JpehKj - 1

2

2hj\rho eh(xj)
(0, \rho h(xj),mh(xj))

\top 
,

and a more restrictive condition on \Delta t is required to ensure W3 \in G, because, in
general, \rho h(xj) and mh(xj) are not necessarily components of Uj .

3.3.2. Positivity-preserving limiter. A simple positivity-preserving limiter
(cf. [52, 36]) can be applied to enforce the condition (40). Denote

\BbbG k

h :=

\Biggl\{ 
u \in [\BbbV k

h]
3 :

1

hj

\int 
Ij

u(x)dx \in G \forall j

\Biggr\} 
,

\BbbG k
h :=

\Bigl\{ 
u \in [\BbbV k

h]
3 : u

\bigm| \bigm| 
Ij
(x) \in G \forall x \in \BbbS j ,\forall j

\Bigr\} 
,

where \BbbS j is defined in (37). For any Uh \in \BbbG k

h with Uh

\bigm| \bigm| 
Ij

=: Uj(x), we define the

positivity-preserving limiting operator \Pi h : \BbbG k

h \rightarrow \BbbG k
h as

(51) \Pi hUh

\bigm| \bigm| 
Ij

= \theta 
(2)
j (\widehat Uj(x) - Uj) +Uj \forall j,
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DG METHODS FOR EULER EQUATIONS WITH GRAVITATION A489

with \theta 
(2)
j = min

\bigl\{ 
1,

\scrG (\bfU j) - \epsilon 2

\scrG (\bfU j) - minx\in \BbbS j \scrG 
\bigl( \widehat \bfU j(x)

\bigr) \bigr\} , \scrG (U) defined in (5), \widehat Uj(x) := (\widehat \rho j(x),
mj(x), Ej(x))

\top , and

(52) \widehat \rho j(x) = \theta 
(1)
j (\rho j(x) - \rho j) + \rho j , \theta 

(1)
j = min

\biggl\{ 
1,

\rho j  - \epsilon 1

\=\rho j  - minx\in \BbbS j \rho j(x)

\biggr\} 
.

Here \epsilon 1 and \epsilon 2 are two sufficiently small positive numbers, introduced to avoid the
effect of the round-off error. In the computation, one can take \epsilon 1 = min\{ 10 - 13, \rho j\} 
and \epsilon 2 = min\{ 10 - 13,\scrG (Uj)\} . Note that the positivity-preserving limiter keeps the

mass conservation
\int 
Ij
\Pi h(u)dx =

\int 
Ij
udx \forall u \in \BbbG k

h and does not destroy the high-

order accuracy; see [51, 52, 50] for details.
Define the initial numerical solutions as U0

h(x) := \Pi hPhU(x, 0). For the well-
balanced DG schemes (27) coupled with an SSP-RKmethod, if the positivity-preserving
limiter (51) is used at each RK stage, the resulting fully discrete DG methods are
positivity-preserving, namely the numerical solutions Un

h always satisfy (40), i.e.,
Un

h \in \BbbG k
h. For example, when the third-order method (28) is adopted, the proposed

high-order positivity-preserving well-balanced DG schemes of the form

(53)

U
(1)
h = \Pi h [U

n
h +\Delta tL(Un

h)] ,

U
(2)
h = \Pi h

\biggl[ 
3

4
Un

h +
1

4

\Bigl( 
U

(1)
h +\Delta tL(U

(1)
h )
\Bigr) \biggr] 

,

Un+1
h = \Pi h

\biggl[ 
1

3
Un

h +
2

3

\Bigl( 
U

(2)
h +\Delta tL(U

(2)
h )
\Bigr) \biggr] 

are positivity-preserving under the CFL-type condition (42).

Remark 3.8. If the projected stationary hydrostatic solutions \rho eh and peh do not
satisfy the condition (39) in Theorem 3.6, we can redefine \rho eh, p

e
h \in \BbbV k

h as

(54)

\biggl( 
\rho eh(x), 0,

peh(x)

\gamma  - 1

\biggr) \top 

:= \Pi hPh

\biggl( 
\rho e(x), 0,

pe(x)

\gamma  - 1

\biggr) \top 

,

where Ph denotes the L2-projection onto the space [\BbbV k
h]

3. One can verify that \rho eh and
peh defined by (54) always satisfy (39). In practice, if the exact stationary hydrostatic
solutions \rho e and pe do not involve low density or low pressure, the operator \Pi h in
(54) would not be turned on. We remark that the positivity-preserving DG schemes
also retain the well-balanced property, if (54) is used.

Remark 3.9. Note that the CFL constraint (42) is sufficient rather than necessary
for preserving positivity. Also, for an RK time discretization, to enforce the CFL
condition rigorously, we need to obtain an accurate estimation of \widetilde \alpha j for all the stages
of RK based only on the numerical solution at time level n, which is very difficult
in most of the test examples. An efficient implementation (cf. [45]) may be, if a
preliminary calculation to the next time step produces negative density or pressure,
we restart the computation from the time step n with half of the time step size. Our
numerical tests demonstrate that the proposed methods always work robustly with a
CFL number slightly smaller than \widehat \omega 1 and the restart is yet never encountered.

4. Positivity-preserving well-balanced DG methods in multiple dimen-
sions. In this section, we extend the proposed 1D positivity-preserving well-balanced
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A490 KAILIANG WU AND YULONG XING

DG methods to the multidimensional cases. For the sake of clarity, we shall focus on
the two-dimensional (2D) case with d = 2 in the remainder of this section, and the
extension of our numerical methods and analyses to the three-dimensional (3D) case
(d = 3) follows similar lines.

4.1. Well-balanced DG discretization. Assume that the 2D spatial domain
\Omega is partitioned into a mesh \scrT h, which may be unstructured and consist of polygonal
cells. Throughout this section, the lowercase k is used to denote the DG polynomial
degree, while the capital K always represents a cell in \scrT h. Denote the DG numerical
solutions as Uh(x, t), and for any t \in (0, Tf ], each component of Uh belongs to the
finite-dimensional space of discontinuous piecewise polynomial functions, \BbbV k

h, defined
by

\BbbV k
h =

\bigl\{ 
u(x) \in L2(\Omega ) : u(x)

\bigm| \bigm| 
K

\in \BbbP k(K) \forall K \in \scrT h
\bigr\} 
,

where \BbbP k(K) is the space of polynomials of total degree up to k in cell K. The semi-
discrete DG methods for (1) are given as follows: for any test function v \in \BbbV k

h, Uh is
computed by
(55)\int 

K

(Uh)tvdx - 
\int 
K

F(Uh) \cdot \bfnabla vdx+
\sum 

E\in \partial K

\int 
E

\widehat F\bfn E ,K
v\tti \ttn \ttt (K)ds =

\int 
K

Svdx \forall v \in \BbbV k
h,

where \partial K denotes the boundary of the cell K, \widehat F\bfn E ,K
denotes the numerical flux on

edge E , nE ,K is the outward unit normal to the edge E of K, and the superscripts
``\tti \ttn \ttt (K)"" or ``\tte \ttx \ttt (K)"" indicate that the associated limit of v(x) at the cell interfaces
is taken from the interior or the exterior of K.

Assume that the target stationary hydrostatic solutions to be preserved are ex-
plicitly known and are denoted by \{ \rho e(x), pe(x), ue(x) = 0\} . Let \rho eh(x) and peh(x) be
the projections of \rho e(x) and pe(x) onto the space \BbbV k

h, respectively. The design of our
multidimensional well-balanced DG methods is similar to the 1D case. More specifi-
cally, it is based on the well-balanced numerical flux and source term approximation
given as follows.

4.1.1. The modified HLLC numerical fluxes. For any unit vector n \in \BbbR d,
let Fhllc (UL,UR;n) denote the standard HLLC numerical flux in the direction n for
the 2D Euler equations. Details of the standard HLLC flux in the multidimensional
cases can be found in [2], and note that this HLLC numerical flux does not refer to
any genuinely multidimensional Riemann solver. Analogous to the 1D HLLC flux,
the 2D HLLC flux satisfies the following properties, whose proofs are similar to the
1D case and are omitted.

Lemma 4.1. For any two states UL = (\rho L, 0, 0, p/(\gamma  - 1))\top and UR = (\rho R, 0, 0, p/
(\gamma  - 1))\top , the 2D HLLC flux satisfies

Fhllc (UL,UR;n) = (0, pn\top , 0)\top .

Lemma 4.2. For any parameters \zeta 1, \zeta 2 \in \BbbR + and any two admissible states
U0,U1 \in G, one has

\zeta 1U0  - \lambda 
\bigl[ 
Fhllc(\zeta 1U0, \zeta 2U1;n) - F(\zeta 1U0) \cdot n

\bigr] 
\in G

if \lambda > 0 and satisfies

\lambda max
\bfU \in \{ \bfU 0,\bfU 1\} 

\alpha \bfn (U) \leq 1, with \alpha \bfn (U) := | u \cdot n| +
\sqrt{} 
\gamma p/\rho .
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Based on the above properties, our well-balanced numerical fluxes are chosen as
the modified HLLC flux

(56) \widehat F\bfn E ,K
= Fhllc

\Biggl( 
pe, \star h

p
e,\tti \ttn \ttt (K)
h

U
\tti \ttn \ttt (K)
h ,

pe, \star h

p
e,\tte \ttx \ttt (K)
h

U
\tte \ttx \ttt (K)
h ; nE ,K

\Biggr) 
,

with pe, \star h := 1
2

\bigl( 
p
e,\tti \ttn \ttt (K)
h + p

e,\tte \ttx \ttt (K)
h

\bigr) 
. Using the N -point Gauss quadrature with N =

k+1, we obtain the following approximation to the edge integral of numerical flux in
(55):

(57)

\int 
E

\widehat F\bfn E ,K
v\tti \ttn \ttt (K)ds \approx | E | 

N\sum 
\mu =1

\omega \mu 
\widehat F\bfn E ,K

(x
(\mu )
E )v\tti \ttn \ttt (K)(x

(\mu )
E ),

where | E | is the length of the edge E , and \{ x(\mu )
E , \omega \mu \} 1\leq \mu \leq N denote the set of 1D

N -point Gauss quadrature nodes and weights on the edge E .

4.1.2. Source term approximations. Let S =: (0,S[2], S[3])\top with S[2] :=
 - \rho \bfnabla \phi . We decompose the integral of the source terms in the momentum equations
as\int 

K

S[2]vdx =

\int 
Ij

 - \rho \bfnabla \phi vdx =

\int 
K

\rho 

\rho e
\bfnabla pevdx =

\int 
K

\biggl( 
\rho 

\rho e
 - \rho K

\rho eK
+

\rho K
\rho eK

\biggr) 
\bfnabla pevdx

=

\int 
K

\biggl( 
\rho 

\rho e
 - \rho K

\rho eK

\biggr) 
\bfnabla pevdx+

\rho K
\rho eK

\Biggl( \sum 
E\in \partial K

\int 
E

pev\tti \ttn \ttt (K)nE ,Kds - 
\int 
K

pe\bfnabla vdx

\Biggr) 
,

where \bfnabla pe =  - \rho e\bfnabla \phi has been used in the second identity, and the notation (\cdot )K
denotes the cell average of the associated quantity over the cell K. This source term
is then approximated by\int 

K

S[2]vdx \approx | K| 
Q\sum 

q=1

\varpi q

\Biggl( 
\rho h(x

(q)
K )

\rho eh(x
(q)
K )

 - 
(\rho h)K
(\rho eh)K

\Biggr) 
\bfnabla peh(x

(q)
K )v(x

(q)
K )(58)

+
(\rho h)K
(\rho eh)K

\Biggl[ \sum 
E\in \partial K

\Biggl( 
| E | 

N\sum 
\mu =1

\omega \mu p
e, \star 
h (x

(\mu )
E )v\tti \ttn \ttt (K)(x

(\mu )
E )nE ,K

\Biggr) 

 - | K| 
Q\sum 

q=1

\varpi qp
e
h(x

(q)
K )\bfnabla v(x

(q)
K )

\Biggr] 
=:
\bigl\langle 
S[2], v

\bigr\rangle 
K
,

where | K| is the area of the cell K, and \{ x(q)
K , \varpi 

(q)
K \} 1\leq q\leq Q denote a set of 2D quad-

rature nodes and weights in K. Similarly, we approximate the integral of the source
term in the energy equation by\int 

K

S[3]vdx \approx | K| 
Q\sum 

q=1

\varpi q

\Biggl( 
mh(x

(q)
K )

\rho eh(x
(q)
K )

 - 
(mh)K
(\rho eh)K

\Biggr) 
\cdot \bfnabla peh(x

(q)
K )v(x

(q)
K )(59)

+
(mh)K
(\rho eh)K

\Biggl[ \sum 
E\in \partial K

\Biggl( 
| E | 

N\sum 
\mu =1

\omega \mu p
e, \star 
h (x

(\mu )
E )v\tti \ttn \ttt (K)(x

(\mu )
E )nE ,K

\Biggr) 

 - | K| 
Q\sum 

q=1

\varpi qp
e
h(x

(q)
K )\bfnabla v(x

(q)
K )

\Biggr] 
=:
\bigl\langle 
S[3], v

\bigr\rangle 
K
.
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A492 KAILIANG WU AND YULONG XING

4.1.3. Well-balanced DG methods. The element integral
\int 
K
F(Uh) \cdot \bfnabla vdx

should be approximated by the same 2D quadrature set

(60)

\int 
K

F(Uh) \cdot \bfnabla vdx \approx | K| 
Q\sum 

q=1

\varpi qF
\bigl( 
Uh(x

(q)
K )
\bigr) 
\cdot \bfnabla v(x

(q)
K ).

Substituting the approximations (56)--(60) into (55) gives the following DG formula-
tion:

(61)

\int 
K

(Uh)tvdx = | K| 
Q\sum 

q=1

\varpi qF
\bigl( 
Uh(x

(q)
K )
\bigr) 
\cdot \bfnabla v(x

(q)
K ) +

\Bigl( 
0,
\bigl\langle 
S[2], v

\bigr\rangle 
j
,
\bigl\langle 
S[3], v

\bigr\rangle 
j

\Bigr) \top 
 - 
\sum 

E\in \partial K

\Biggl( 
| E | 

N\sum 
\mu =1

\omega \mu 
\widehat F\bfn E ,K

(x
(\mu )
E )v\tti \ttn \ttt (K)(x

(\mu )
E )

\Biggr) 
\forall v \in \BbbV k

h.

Theorem 4.3. For the 2D Euler equations (1) with gravitation, the semidiscrete
DG schemes (61) are well-balanced for a general known stationary hydrostatic solution
(4).

The proof is similar to that of Theorem 3.3 and is thus omitted.

4.2. Positivity of first-order well-balanced DG scheme. Denote the cell
average of Uh(x, t) over K by UK(t), and take the test function v = 1 in (61). We
obtain the semidiscrete evolution equations satisfied by the cell average as

(62)
dUK(t)

dt
= LK(Uh) :=  - 1

| K| 
\sum 

E\in \partial K

\Biggl( 
| E | 

N\sum 
\mu =1

\omega \mu 
\widehat F\bfn E ,K

(x
(\mu )
E )

\Biggr) 
+ SK ,

where SK =
\bigl( 
0,S

[2]

K , S
[3]

K

\bigr) \top 
with S

[\ell ]

K := 1
| K| 
\bigl\langle 
S[\ell ], 1

\bigr\rangle 
K

for \ell = 2, 3.

We start with showing the positivity of the first-order (k = 0) well-balanced DG
scheme (61). For each K \in \scrT h, let KE denote the adjacent cell that shares the edge
E with K, and define

\widehat \alpha F
K := max

\biggl\{ 
max
E\in \partial K

\alpha \bfn E ,K
(UK), max

E\in \partial K
\alpha \bfn E ,K

(UKE )

\biggr\} 
, \widehat \alpha S

K :=

\bigm\| \bigm\| \bigm\| \sum E\in \partial K | E | pe, \star E ,KnE ,K

\bigm\| \bigm\| \bigm\| 
| K| \rho eK

\surd 
2eK

,

where pe, \star E ,K := (peK + peKE
)/2.

Theorem 4.4. If the DG polynomial degree k = 0 and UK \in G for all K \in \scrT h,
we have

(63) UK +\Delta tLK(Uh) \in G \forall K \in \scrT h,

under the CFL-type condition

(64) \Delta t

\Biggl( 
2
\widehat \alpha F
K

| K| 
\sum 

E\in \partial K

| E | 
pe, \star E ,K

peK
+ \widehat \alpha S

K

\Biggr) 
\leq 1.D
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Proof. Note that, for k = 0, Uh(x, t) \equiv UK(t) for all x \in K. We have

UK +\Delta tLK(Uh) = UK  - \Delta t

| K| 
\sum 

E\in \partial K

| E | Fhllc

\Biggl( 
pe, \star E ,K

peK
UK ,

pe, \star E ,K

peKE

UKE ;nE ,K

\Biggr) 
+\Delta tSK

= UK  - \Delta t

| K| 
\sum 

E\in \partial K

\Biggl( 
| E | 

pe, \star E ,K

peK
F(UK) \cdot nE ,K

\Biggr) 
+\Delta tSK

+
\Delta t

| K| 
\sum 

E\in \partial K

| E | 

\Biggl[ 
F

\Biggl( 
pe, \star E ,K

peK
UK

\Biggr) 
\cdot nE ,K

 - Fhllc

\Biggl( 
pe, \star E ,K

peK
UK ,

pe, \star E ,K

peKE

UKE ;nE ,K

\Biggr) \Biggr] 
,

where the homogeneous property F(aU) = aF(U) for any a \in \BbbR + has been used. We
further split UK +\Delta tLK(Uh) into four parts as

(65) UK +\Delta tLK(Uh) = W1 +W2 +W3 +W4,

with

W1 :=

\Biggl[ 
1 - \Delta t

\Biggl( 
2
\widehat \alpha F
K

| K| 
\sum 

E\in \partial K

| E | 
pe, \star E ,K

peK
+ \widehat \alpha S

K

\Biggr) \Biggr] 
UK ,

W2 :=
\Delta t

| K| 
\sum 

E\in \partial K

| E | \widehat \alpha F
K

pe, \star E ,K

peK

\biggl( 
UK  - 1\widehat \alpha F

K

F(UK) \cdot nE ,K

\biggr) 
, W3 := \Delta t

\bigl( \widehat \alpha S
KUK + SK

\bigr) 
,

W4 :=
\Delta t

| K| 
\sum 

E\in \partial K

| E | \widehat \alpha F
K

\Biggl\{ 
pe, \star E ,K

peK
UK  - 1

\alpha F
K

\Biggl[ 
Fhllc

\Biggl( 
pe, \star E ,K

peK
UK ,

pe, \star E ,K

peKE

UKE ;nE ,K

\Biggr) 

 - F

\Biggl( 
pe, \star E ,K

peK
UK

\Biggr) 
\cdot nE ,K

\Biggr] \Biggr\} 
.

By using Lemma 2.2, it is easy to observe that W1 \in G under the condition (64).
Lemma 2.5 leads to UK  - 1\widehat \alpha F

K

F(UK) \cdot nE ,K \in G, which implies W2 \in G with the aid

of Lemma 2.3. Note that

\widehat \alpha S
KUK + SK = \widehat \alpha S

KUK +
1

| K| \rho eK

\bigl( 
0, \rho Ka, mK \cdot a

\bigr) \top 
, a :=

\sum 
E\in \partial K

| E | pe, \star E ,KnE ,K ,

and 1
| K| \rho e

K

\| \bfa \| \surd 
2eK

= \widehat \alpha S
K . This yields \widehat \alpha S

KUK + SK \in G by Lemma 2.4. Thus W3 \in G.

Sequentially, using Lemmas 4.2 and 2.3 yields W4 \in G. Because W1,W3 \in G and
W2,W4 \in G, we conclude from (65) that UK + \Delta tLK(Uh) \in G, which completes
the proof.

Theorem 4.4 indicates that the first-order (k = 0) well-balanced DG method (61),
coupled with the forward Euler time discretization, is positivity-preserving under the
CFL-type condition (64).

4.3. Positivity-preserving high-order well-balanced DG schemes. When
the DG polynomial degree k \geq 1, the high-order well-balanced DG schemes (61) are
not positivity-preserving in general. Similar to the 1D case, we can prove that our
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A494 KAILIANG WU AND YULONG XING

schemes satisfy a weak positivity property, which is crucial and implies that a simple
limiter can enforce the positivity-preserving property without losing conservation and
high-order accuracy.

4.3.1. Theoretical positivity-preserving analysis. Assume that there exists
a special 2D quadrature on each cell K \in \scrT h satisfying the following:

(i) The quadrature rule has positive weights and is exact for integrals of polyno-
mials of degree up to k on the cell K;

(ii) The set of the quadrature points, denoted by \BbbS (1)K , must include all the Gauss

quadrature points x
(\mu )
E , \mu = 1, . . . , N , on all the edges E \in \partial K.

In other words, we would like to have a special quadrature such that

(66)
1

| K| 

\int 
K

u(x)dx =
\sum 

E\in \partial K

N\sum 
\mu =1

\widehat \varpi (\mu )
E u(x

(\mu )
E ) +

\widetilde Q\sum 
q=1

\widetilde \varpi qu(\widetilde x(q)
K ) \forall u \in \BbbP k(K),

where \{ \widetilde x(q)
K \} are the other (possible) quadrature points in K, and the quadrature

weights \widehat \varpi (\mu )
E and \widetilde \varpi q are positive. For rectangular cells, this quadrature was construc-

ted in [51, 52] by tensor products of Gauss quadrature and Gauss--Lobatto quadrature.
For triangular cells and more general polygons, see [54, 10] for how to construct such
quadrature. We remark that this special quadrature is only used in the proof and
the positivity-preserving limiter presented later, and will not be used to evaluate any
integral in the numerical implementation. With this, we can define the point set

\BbbS K := \BbbS (1)K \cup \BbbS (2)K(67)

=
\bigl\{ 
x
(\mu )
E : E \in \partial K, 1 \leq \mu \leq N

\bigr\} 
\cup 
\bigl\{ \widetilde x(q)

K : 1 \leq q \leq \widetilde Q\bigr\} \cup \bigl\{ x(q)
K : 1 \leq q \leq Q

\bigr\} 
,

where \BbbS (2)K := \{ x(q)
K \} 1\leq q\leq Q are the 2D quadrature points involved in the approxima-

tions (58)--(60).
For convenience we will frequently use the following shortened notations:

U
\tti \ttn \ttt (K)
E ,\mu := U

\tti \ttn \ttt (K)
h (x

(\mu )
E ), U

ext(K)
E ,\mu := U

\tte \ttx \ttt (K)
h (x

(\mu )
E ), pe, \star E ,\mu := pe, \star h (x

(\mu )
E ),

p
e,\tti \ttn \ttt (K)
E ,\mu := p

e,\tti \ttn \ttt (K)
h (x

(\mu )
E ), p

e,ext(K)
E ,\mu := p

e,\tte \ttx \ttt (K)
h (x

(\mu )
E ),

Jpeh(x
(\mu )
E )K := p

e,\tte \ttx \ttt (K)
E ,\mu  - p

e,\tti \ttn \ttt (K)
E ,\mu .

Theorem 4.5. Assume that the projected stationary hydrostatic solution satisfies

(68) \rho eh(x) > 0, peh(x) > 0 \forall x \in \BbbS K , \forall K \in \scrT h,

and the numerical solution Uh satisfies

(69) Uh(x) \in G \forall x \in \BbbS K , \forall K \in \scrT h;

then we have

(70) UK +\Delta tLK(Uh) \in G \forall K \in \scrT h,

under the CFL-type condition
(71)

\Delta t

\Biggl( \widetilde \alpha F
K

2| E | pe, \star E ,\mu 

| K| pe,\tti \ttn \ttt (K)
E ,\mu 

+ \widetilde \alpha S
K

\widehat \varpi (\mu )
E

\omega \mu 

\Biggr) 
\leq 
\widehat \varpi (\mu )

E

\omega \mu 
, 1 \leq \mu \leq N \forall E \in \partial K, \forall K \in \scrT h,
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where

\widetilde \alpha F
K := max

\Bigl\{ 
max

E\in \partial K,1\leq \mu \leq N
\alpha \bfn E ,K

(U
\tti \ttn \ttt (K)
E ,\mu ), max

E\in \partial K,1\leq \mu \leq N
\alpha \bfn E ,K

(U
\tte \ttx \ttt (K)
E ,\mu )

\Bigr\} 
,

\widetilde \alpha S
K = \widetilde \alpha S,1

K + \widetilde \alpha S,2
K ,

\widetilde \alpha S,1
K := max

1\leq q\leq Q

\left\{   
\bigm\| \bigm\| \bigm\| \bfnabla peh(x

(q)
K )
\bigm\| \bigm\| \bigm\| 

\rho eh(x
(q)
K )

\sqrt{} 
2eh(x

(q)
K )

\right\}   ,

\widetilde \alpha S,2
K :=

\bigm\| \bigm\| \bigm\| \sum E\in \partial K

\Bigl( 
| E | 
\sum N

\mu =1 \omega \mu Jpeh(x
(\mu )
E )K

\Bigr) 
nE ,K

\bigm\| \bigm\| \bigm\| 
2| K| \rho eK

\surd 
2eK

.

Proof. For the modified HLLC flux, applying Lemmas 4.2 and 2.3 yields

W1 :=
\Delta t

| K| 
\widetilde \alpha F
K

\sum 
E\in \partial K

| E | 
N\sum 

\mu =1

\omega \mu 

\Biggl( 
pe, \star E ,\mu 

p
e,\tti \ttn \ttt (K)
E ,\mu 

U
\tti \ttn \ttt (K)
E ,\mu (72)

 - 1\widetilde \alpha F
K

\Biggl[ \widehat F\bfn E ,K
(x

(\mu )
E ) - F

\Biggl( 
pe, \star E ,\mu 

p
e,\tti \ttn \ttt (K)
E ,\mu 

U
\tti \ttn \ttt (K)
E ,\mu 

\Biggr) 
\cdot nE ,K

\Biggr] \Biggr) 
\in G.

Using the formulas of W1 and LK(Uh) in (72) and (62), respectively, we deduce that

UK +\Delta tLK(Uh) - W1  - \Delta tSK

= UK  - \Delta t

| K| 
\widetilde \alpha F
K

\sum 
E\in \partial K

\Biggl[ 
| E | 

N\sum 
\mu =1

\omega \mu 

\Biggl( 
pe, \star E ,\mu 

p
e,\tti \ttn \ttt (K)
E ,\mu 

U
\tti \ttn \ttt (K)
E ,\mu 

+
1\widetilde \alpha F
K

F

\Biggl( 
pe, \star E ,\mu 

p
e,\tti \ttn \ttt (K)
E ,\mu 

U
\tti \ttn \ttt (K)
E ,\mu 

\Biggr) 
\cdot nE ,K

\Biggr) \Biggr] 

= UK  - 2
\Delta t

| K| 
\widetilde \alpha F
K

\sum 
E\in \partial K

\Biggl[ 
| E | 

N\sum 
\mu =1

\omega \mu 

\Biggl( 
pe, \star E ,\mu 

p
e,\tti \ttn \ttt (K)
E ,\mu 

U
\tti \ttn \ttt (K)
E ,\mu 

\Biggr) \Biggr] 

+
\Delta t

| K| 
\widetilde \alpha F
K

\sum 
E\in \partial K

\Biggl[ 
| E | 

N\sum 
\mu =1

\omega \mu 

\Biggl( 
pe, \star E ,\mu 

p
e,\tti \ttn \ttt (K)
E ,\mu 

U
\tti \ttn \ttt (K)
E ,\mu  - 1\widetilde \alpha F

K

pe, \star E ,\mu 

p
e,\tti \ttn \ttt (K)
E ,\mu 

F
\Bigl( 
U

\tti \ttn \ttt (K)
E ,\mu 

\Bigr) 
\cdot nE ,K

\Biggr) \Biggr] 
,

(73)

where the homogeneous property F(aU) = aF(U) for any a \in \BbbR + is used. Applying
Lemmas 2.5 and 2.3 implies that
(74)

W2 :=
\Delta t

| K| 
\widetilde \alpha F
K

\sum 
E\in \partial K

\Biggl( 
| E | 

N\sum 
\mu =1

\omega \mu 

pe, \star E ,\mu 

p
e,\tti \ttn \ttt (K)
E ,\mu 

\biggl( 
U

\tti \ttn \ttt (K)
E ,\mu  - 1\widetilde \alpha F

K

F
\Bigl( 
U

\tti \ttn \ttt (K)
E ,\mu 

\Bigr) 
\cdot nE ,K

\biggr) \Biggr) 
\in G.

Based on (73) and the definition of W2, we rewrite UK +\Delta tLK(Uh) as

(75) UK +\Delta tLK(Uh) = W1 +W2 +W3,

with

W3 := UK  - 2
\Delta t

| K| 
\widetilde \alpha F
K

\sum 
E\in \partial K

\Biggl[ 
| E | 

N\sum 
\mu =1

\omega \mu 

\Biggl( 
pe, \star E ,\mu 

p
e,\tti \ttn \ttt (K)
E ,\mu 

U
\tti \ttn \ttt (K)
E ,\mu 

\Biggr) \Biggr] 
+\Delta tSK .
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Recall that SK =
\bigl( 
0,S

[2]

K , S
[3]

K

\bigr) \top 
with S

[\ell ]

K = 1
| K| 
\bigl\langle 
S[\ell ], 1

\bigr\rangle 
K
, \ell = 2, 3. We can reformu-

late S
[2]

K as

S
[2]

K =

Q\sum 
q=1

\varpi q

\Biggl( 
\rho h(x

(q)
K )

\rho eh(x
(q)
K )

 - \rho K
\rho eK

\Biggr) 
\bfnabla peh(x

(q)
K )

+
\rho K
\rho eK

\Biggl[ 
1

| K| 
\sum 

E\in \partial K

\Biggl( 
| E | 

N\sum 
\mu =1

\omega \mu p
e, \star 
h (x

(\mu )
E )nE ,K

\Biggr) \Biggr] 

=

Q\sum 
q=1

\varpi q
\rho h(x

(q)
K )

\rho eh(x
(q)
K )

\bfnabla peh(x
(q)
K )

+
\rho K

\rho eK | K| 

\Biggl[ \sum 
E\in \partial K

\Biggl( 
| E | 

N\sum 
\mu =1

\omega \mu p
e, \star 
h (x

(\mu )
E )nE ,K

\Biggr) 
 - 
\int 
K

\bfnabla peh(x)dx

\Biggr] 

=

Q\sum 
q=1

\varpi q
\rho h(x

(q)
K )

\rho eh(x
(q)
K )

\bfnabla peh(x
(q)
K )

+
\rho K

\rho eK | K| 
\sum 

E\in \partial K

\Biggl( 
| E | 

N\sum 
\mu =1

\omega \mu p
e, \star 
h (x

(\mu )
E ) - 

\int 
E

pehds

\Biggr) 
nE ,K

=

Q\sum 
q=1

\varpi q
\rho h(x

(q)
K )

\rho eh(x
(q)
K )

\bfnabla peh(x
(q)
K ) +

\rho K
2\rho eK | K| 

a,

with a :=
\sum 

E\in \partial K

\Bigl( 
| E | 
\sum N

\mu =1 \omega \mu Jpeh(x
(\mu )
E )K

\Bigr) 
nE ,K , where we used the divergence the-

orem and the exactness of the quadrature rules for polynomials of degree up to k.

Similarly, S
[3]

K can be written as

S
[3]

K =

Q\sum 
q=1

\varpi q

\Biggl( 
mh(x

(q)
K )

\rho eh(x
(q)
K )

\Biggr) 
\cdot \bfnabla peh(x

(q)
K ) +

mK

2\rho eK | K| 
\cdot a.

Therefore, \widetilde \alpha S
KUK + SK = (\widetilde \alpha S,1

K + \widetilde \alpha S,2
K )UK + SK can be reformulated as

Q\sum 
q=1

\varpi q

\left[   \widetilde \alpha S,1
K Uh(x

(q)
K ) +

1

\rho eh(x
(q)
K )

\left(   0

\rho h(x
(q)
K )\bfnabla peh(x

(q)
K )

mh(x
(q)
K ) \cdot \bfnabla peh(x

(q)
K )

\right)   
\right]   

+

\left[  \widetilde \alpha S,2
K UK +

1

2\rho eK | K| 

\left(  0
\rho Ka
mh \cdot a

\right)  \right]  .

Since

1

\rho eh(x
(q)
K )

\bigm\| \bigm\| \bigm\| \bfnabla peh(x
(q)
K )
\bigm\| \bigm\| \bigm\| \sqrt{} 

2eh(x
(q)
K )

\leq \widetilde \alpha S,1
K ,

1

2\rho eK | K| 
\| a\| \surd 
2eK

= \widetilde \alpha S,2
K ,

we conclude that \widetilde \alpha S
KUK +SK \in G, according to Lemmas 2.4 and 2.3. It follows that

(76) W4 := \Delta t
\bigl( \widetilde \alpha S

KUK + SK

\bigr) 
\in G.
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Subtracting W4 from W3 gives

(77) W3 - W4 = (1 - \Delta t\widetilde \alpha S
K)UK - 2

\Delta t

| K| 
\widetilde \alpha F
K

\sum 
E\in \partial K

\Biggl[ 
| E | 

N\sum 
\mu =1

\omega \mu 

\Biggl( 
pe, \star E ,\mu 

p
e,\tti \ttn \ttt (K)
E ,\mu 

U
\tti \ttn \ttt (K)
E ,\mu 

\Biggr) \Biggr] 
.

Note that the exactness of the quadrature rule (66) for polynomials of degree up to k
leads to
(78)

UK =
\sum 

E\in \partial K

N\sum 
\mu =1

\widehat \varpi (\mu )
E U

\tti \ttn \ttt (K)
E ,\mu +

\widetilde Q\sum 
q=1

\widetilde \varpi qU
\tti \ttn \ttt (K)
h (\widetilde x(q)

K ) =:
\sum 

E\in \partial K

N\sum 
\mu =1

\widehat \varpi (\mu )
E U

\tti \ttn \ttt (K)
E ,\mu +W5,

and obviously we have W5 \in G. Substituting (78) into (77) yields

W3  - W4 = (1 - \Delta t\widetilde \alpha S
K)W5

+
\sum 

E\in \partial K

N\sum 
\mu =1

\omega \mu 

\Biggl[ \widehat \varpi (\mu )
E

\omega \mu 
 - \Delta t

\Biggl( 
2\widetilde \alpha F

K | E | pe, \star E ,\mu 

| K| pe,\tti \ttn \ttt (K)
E ,\mu 

+ \widetilde \alpha S
K

\widehat \varpi (\mu )
E

\omega \mu 

\Biggr) \Biggr] 
U

\tti \ttn \ttt (K)
E ,\mu ,

which belongs to G, by Lemma 2.3, under the CFL condition (71). Recall that we
have shown in (76) that W4 \in G. It then follows that W3 = (W3  - W4) +W4 \in G.
Recalling W1 \in G and W2 \in G in (72) and (74), and from (75) and Lemma 2.3, we
finally conclude (70). This completes the proof.

Theorem 4.5 provides a sufficient condition (69) for the proposed high-order well-
balanced DG schemes (61) to be positivity-preserving, when an SSP-RK time dis-
cretization is used. The condition (69) can again be enforced by a simple positivity-
preserving limiter similar to the 1D case; see (51)--(52) with the 1D point set \BbbS j
replaced by the 2D point set (67) accordingly. With the limiter applied at each stage
of the SSP-RK time steps, the fully discrete DG schemes are positivity-preserving.

4.3.2. Illustration of some details on Cartesian meshes. Assume that the
mesh is rectangular with cells \{ [xi - 1/2, xi+1/2]\times [y\ell  - 1/2, y\ell +1/2]\} and spatial step-sizes
\Delta xi = xi+1/2  - xi - 1/2 and \Delta y\ell = y\ell +1/2  - y\ell  - 1/2 in the x- and y-directions, respec-

tively, where (x, y) denotes the 2D spatial coordinate variables. Let \BbbS xi = \{ x(\mu )
i \} N\mu =1

and \BbbS y\ell = \{ y(\mu )\ell \} N\mu =1 denote the N -point Gauss quadrature nodes in the intervals
[xi - 1/2, xi+1/2] and [y\ell  - 1/2, y\ell +1/2], respectively. For the cell K = [xi - 1/2, xi+1/2] \times 
[y\ell  - 1/2, y\ell +1/2], the point sets \BbbS (1)K and \BbbS (2)K in (67) are given by (cf. [51])

(79) \BbbS (1)K =
\bigl( \widehat \BbbS xi \otimes \BbbS y\ell 

\bigr) 
\cup 
\bigl( 
\BbbS xi \otimes \widehat \BbbS y\ell \bigr) , \BbbS (2)K = \BbbS xi \otimes \BbbS y\ell ,

where \widehat \BbbS xi = \{ \widehat x(\nu )
i \} L\nu =1 and \widehat \BbbS y\ell = \{ \widehat y(\nu )\ell \} L\nu =1 denote the L-point (L \geq k+3

2 ) Gauss--
Lobatto quadrature nodes in the intervals [xi - 1/2, xi+1/2] and [y\ell  - 1/2, y\ell +1/2], re-

spectively. With \BbbS (1)K in (79), a special 2D quadrature [51] satisfying (66) can be

D
ow

nl
oa

de
d 

02
/1

2/
21

 to
 1

40
.2

54
.8

7.
14

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A498 KAILIANG WU AND YULONG XING

constructed:

1

| K| 

\int 
K

u(x)dx

=

N\sum 
\mu =1

\Delta xi\widehat \omega 1\omega \mu 

\Delta xi +\Delta y\ell 

\Bigl( 
u
\bigl( 
x
(\mu )
i , y\ell  - 1

2

\bigr) 
+ u
\bigl( 
x
(\mu )
i , y\ell + 1

2

\bigr) \Bigr) 

+

N\sum 
\mu =1

\Delta y\ell \widehat \omega 1\omega \mu 

\Delta xi +\Delta y\ell 

\Bigl( 
u
\bigl( 
xi - 1

2
, y

(\mu )
\ell 

\bigr) 
+ u
\bigl( 
xi+ 1

2
, y

(\mu )
\ell 

\bigr) \Bigr) 

+

L - 1\sum 
\nu =2

N\sum 
\mu =1

\widehat \omega \nu \omega \mu 

\Delta xi +\Delta y\ell 

\Bigl( 
\Delta xiu

\bigl( 
x
(\mu )
i , \widehat y(\nu )\ell 

\bigr) 
+\Delta y\ell u

\bigl( \widehat x(\nu )
i , y

(\mu )
\ell 

\bigr) \Bigr) 
\forall u \in \BbbP k(K),

(80)

where \{ \widehat w\mu \} L\mu =1 are the weights of the L-point Gauss--Lobatto quadrature. If labeling
the bottom, right, top, and left edges ofK as E1, E2, E3, and E4, respectively, then (80)

implies, for 1 \leq \mu \leq N , that \varpi 
(\mu )
Ej

=
\Delta xi\widehat \omega 1\omega \mu 

\Delta xi+\Delta y\ell 
, j = 1, 3; \varpi 

(\mu )
Ej

=
\Delta y\ell \widehat \omega 1\omega \mu 

\Delta xi+\Delta y\ell 
, j = 2, 4.

According to Theorem 4.5, the CFL condition (71) for our positivity-preserving DG
schemes on Cartesian meshes is

(81) \Delta t

\left[  2\widetilde \alpha F
K

pe, \star Ej ,\mu 

p
e,\tti \ttn \ttt (K)
Ej ,\mu 

\biggl( 
1

\Delta xi
+

1

\Delta y\ell 

\biggr) 
+ \widetilde \alpha S

K\widehat \omega 1

\right]  \leq \widehat \omega 1 \forall K \in \scrT h, 1 \leq j \leq 4,

where \widehat \omega 1 = 1
L(L - 1) . Assume the mesh is regular and define h = maxi,\ell \{ \Delta xi,\Delta y\ell \} ;

then for smooth pe(x), it holds that

pe, \star Ej ,\mu 

p
e,\tti \ttn \ttt (K)
Ej ,\mu 

=
1

2
+

p
e,\tte \ttx \ttt (K)
h (x

(\mu )
Ej

)

2p
e,\tti \ttn \ttt (K)
h (x

(\mu )
Ej

)
= 1 +\scrO (hk+1),

whose effect in the CFL condition (81) can be ignored.

5. Numerical tests. This section presents several 1D and 2D examples to
demonstrate the well-balanced and positivity-preserving properties of the proposed
DG methods on uniform Cartesian meshes. For the sake of comparison, we will also
show the numerical results of the traditional non-well-balanced (denoted as ``non-
WB"") DG schemes with the straightforward source term discretization and the origi-
nal HLLC flux. Unless otherwise stated, we use the explicit third-order SSP-RK time
discretization (28) and the ideal equation of state (3) with \gamma = 1.4, and the CFL
numbers Ccfl for the third-order, fourth-order, and fifth-order DG methods are taken
as 0.2, 0.12, and 0.1, respectively. In all the tests, the method is implemented by
using C++ language with double precision.

5.1. Example 1: One-dimensional polytropic equilibrium. This test is
used to investigate the performance of the proposed schemes near the polytropic equi-
librium states [19]. Under the gravitational field \phi (x) = gx, the stationary hydrostatic
solutions are

(82) \rho e(x) =

\biggl( 
\rho \gamma  - 1
0  - 1

K0

\gamma  - 1

\gamma 
gx

\biggr) 1
\gamma  - 1

, ue(x) = 0, pe(x) = K0 (\rho 
e(x))

\gamma 
,

with g = 1, \gamma = 5/3, \rho 0 = p0 = 1, and K0 = p0/\rho 
\gamma 
0 on a computational domain [0, 2].
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We first use this example to check the well-balancedness of our DG methods.
The initial data are taken as the stationary hydrostatic solutions (82). We simulate
this problem up to t = 4 by using our third-order well-balanced DG scheme with
different mesh points, and list the l1-errors of numerical solutions in Table 1. These
errors are evaluated between the numerical solutions and the projected stationary
hydrostatic solutions. It is clearly observed that the numerical errors are all at the
level of round-off error, which verify the desired well-balanced property.

Table 1
Example 1: l1-errors on different meshes of M uniform cells.

M Errors in \rho Errors in m Errors in E
50 1.0682e-14 1.0332e-14 4.4756e-16
100 3.6074e-14 4.5115e-14 6.5160e-15
200 5.2993e-14 4.9258e-14 7.8335e-15

Next, a small perturbation is imposed to the stationary hydrostatic state (82), so
as to compare the performance of well-balanced and non-WB DG schemes in simu-
lating the evolution of such small perturbation. More specifically, we add a periodic
velocity perturbation

u(x, t) = A sin(4\pi t),

with A = 10 - 6, to the system on the left boundary x = 0. The solutions are com-
puted until t = 1.5, before the waves propagate to the right boundary x = 2. Figure 1
displays the pressure perturbation and the velocity at t = 1.5, computed by the pro-
posed third-order well-balanced DG scheme on a mesh of 100 uniform cells, against
the reference solutions computed on a much-refined mesh of 1000 cells. For compari-
son, we also perform the third-order non-WB DG method and show its results in the
same figure. As we can see, the results by the well-balanced DG method agree well
with the reference ones, while the results by the non-WB DG method do not match
the reference ones especially in the region where x > 1.5. This demonstrates that
the well-balanced methods are advantageous and more accurate for resolving small
amplitude perturbations to equilibrium states.

0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5
10

-6

0 0.5 1 1.5 2

-3

-2

-1

0

1

2

3
10

-6

Fig. 1. Example 1: Small amplitude waves with A = 10 - 6 traveling up the polytropic hydrostatic
atmosphere. The numerical solutions of the well-balanced method (denoted by ``WB"") and the non-
WB method are obtained on the mesh of 100 uniform cells. The reference solutions are computed
by the well-balanced method using 1000 mesh points. Left: Pressure perturbation. Right: Velocity.

In the last test case of this example, we conduct the same simulation but with a
large perturbation A = 0.1. We again evolve the simulation until t = 1.5. Because the
discontinuities are formed in the final solution, the WENO limiter [30] is implemented
right before the positivity-preserving limiting procedure with the aid of the local
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characteristic decomposition within a few ``trouble"" cells detected adaptively. The
numerical solutions by both the well-balanced and non-WB DG methods are shown
in Figure 2, against the reference solutions. One can see that both DG methods
produce satisfactory results. This agrees with the normal expectation that the well-
balanced methods perform similarly as non-WB methods in capturing solutions far
away from steady states.

0 0.5 1 1.5 2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 0.5 1 1.5 2

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Fig. 2. Same as Figure 1 except for large amplitude waves with A = 0.1 traveling up the
polytropic hydrostatic atmosphere. Left: Pressure perturbation. Right: Velocity.

5.2. Example 2: Rarefaction test with low density and low pressure.
To demonstrate the positivity-preserving property, we consider an extreme rarefaction
test under a quadratic gravitational potential \phi (x) = x2/2 centered around x = 0.
The computational domain is taken as [ - 1, 1], and the initial state is the same as a
Riemann problem in [52], given by

\rho (x, 0) = 7, p(x, 0) = 0.2, u(x, 0) =

\Biggl\{ 
 - 1, x < 0,

1, x > 0,

with outflow boundary conditions at x =  - 1 and x = 1. This problem involves ex-
tremely low density and pressure, so that the positivity-preserving limiter should be
employed. The CFL number is set as 0.15, which is slightly smaller than \widehat \omega 1 = 1

6 .
Figure 3 gives the numerical results at t = 0.6, obtained by our positivity-preserving
third-order well-balanced DG scheme, on a mesh with 800 cells, compared with refer-
ence solutions obtained with much refined 128000 cells. It is seen that the low density
and low pressure wave structures are well captured by the proposed method. During
the whole simulation, our scheme exhibits good robustness. We observe that it is
necessary to enforce the condition (40); otherwise the DG code will break down due
to nonphysical solution.

5.3. Example 3: Leblanc problem in linear gravitational field. In this
test, we consider an extension of the standard 1D Leblanc shock tube problem to the
gravitational case with \phi (x) = gx and g = 1. The initial condition of this problem is
given by

(\rho , u, p)(x, 0) =

\Biggl\{ 
(2, 0, 109), x < 5,

(10 - 3, 0, 1), x > 5.

This problem is highly challenging due to the presence of the strong jumps in the initial
density and pressure. The computational domain is taken as [0, 10] with reflection
boundary conditions at x = 0 and x = 10. To fully resolve the wave structure, a fine
mesh is required for such a test. In the computations, the CFL number is taken as
0.15. As the exact solution contains strong discontinuities, the WENO limiter [30] is
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Fig. 3. Example 2: Density, momentum, and energy for the rarefaction test at t = 0.6 obtained
by the positivity-preserving well-balanced DG scheme with 800 cells (dotted lines) and 128000 cells
(solid lines).

implemented right before the positivity-preserving limiting procedure with the aid of
the local characteristic decomposition within the adaptively detected ``trouble"" cells.
Figure 4 displays our numerical results at t = 0.00004, obtained by the third-order
positivity-preserving well-balanced DG scheme, on a mesh with 1600 cells, compared
with reference solutions obtained with much refined 6400 cells. We see that the strong
discontinuities are captured by the proposed method with high resolution.
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Fig. 4. Example 3: The log plot of density (left), the velocity (middle), and the log plot of
pressure (right) for the extended Leblanc problem at t = 0.00004 obtained by the positivity-preserving
well-balanced DG scheme with 1600 cells (dotted lines) and 6400 cells (solid lines), respectively.

5.4. Example 4: Two-dimensional accuracy test. In this example, we ex-
amine the accuracy of the proposed schemes on a 2D smooth problem [43] with a
linear gravitational field \phi x = \phi y = 1 in the domain \Omega = [0, 2]2. The exact solution
takes the following form:

\rho (x, y, t) = 1 + 0.2 sin(\pi (x+ y  - t(u0 + v0))), u(x, y, t) = (u0, v0),

p(x, y, t) = p0 + t(u0 + v0) - x - y + 0.2 cos(\pi (x+ y  - t(u0 + v0)))/\pi ,

where the parameters are taken as u0 = v0 = 1 and p0 = 4.5. The adiabatic index \gamma is
taken as 5/3. The domain \Omega is divided into M \times M uniform cells, and the boundary
condition is specified by the exact solution on \partial \Omega . To match the accuracy of DG
spatial discretization, we use (only in this accuracy test) the classical fourth-order
explicit RK time discretization (cf. [16, p. 131]) in the fourth-order and fifth-order

DG schemes, and \Delta t = 0.1h
5
4 /(2\widetilde \alpha F

K) for the fifth-order DG scheme in order to match
the temporal and spatial accuracy. Tables 2, 3, and 4, respectively, list the l1-errors
at t = 0.1 and the corresponding orders obtained by the proposed third-order, fourth-
order, and fifth-order well-balanced DG schemes at different grid resolutions. The
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results show that the expected convergence orders are achieved. Our modification of
the numerical flux and the nontrivial source term approximation do not affect the
accuracy of the DG methods.

Table 2
Example 4: l1-errors at t = 0.1 in \rho ,\bfm = (m1,m2), E, and corresponding convergence rates

for the third-order (\BbbP 2-based) well-balanced DG method at different grid resolutions.

Mesh
\rho m1 m2 E

Error Order Error Order Error Order Error Order
8\times 8 4.20e-3 -- 4.29e-3 -- 4.29e-3 -- 4.67e-3 --

16\times 16 5.25e-4 3.00 5.42e-4 2.98 5.42e-4 2.98 5.76e-4 3.02
32\times 32 6.62e-5 2.99 6.86e-5 2.98 6.86e-5 2.98 7.28e-5 2.98
64\times 64 8.31e-6 2.99 8.61e-6 2.99 8.61e-6 2.99 9.17e-6 2.99

128\times 128 1.04e-6 3.00 1.08e-6 3.00 1.08e-6 3.00 1.15e-6 3.00
256\times 256 1.30e-7 3.00 1.35e-7 3.00 1.35e-7 3.00 1.44e-7 3.00
512\times 512 1.63e-8 3.00 1.69e-8 3.00 1.69e-8 3.00 1.80e-8 3.00

Table 3
Same as Table 2 except for our fourth-order accurate (\BbbP 3-based) DG method.

Mesh
\rho m1 m2 E

Error Order Error Order Error Order Error Order
8\times 8 4.28e-4 -- 4.39e-4 -- 4.39e-4 -- 4.81e-4 --

16\times 16 2.46e-5 4.12 2.59e-5 4.09 2.59e-5 4.09 2.78e-5 4.11
32\times 32 1.56e-6 3.98 1.65e-6 3.97 1.65e-6 3.97 1.74e-6 4.00
64\times 64 9.86e-8 3.98 1.05e-7 3.98 1.05e-7 3.98 1.09e-7 4.00

128\times 128 6.09e-9 4.02 6.48e-9 4.01 6.48e-9 4.01 6.76e-9 4.01
256\times 256 3.81e-10 4.00 4.06e-10 4.00 4.06e-10 4.00 4.23e-10 4.00
512\times 512 2.38e-11 4.00 2.54e-11 4.00 2.54e-11 4.00 2.65e-11 4.00

Table 4
Same as Table 2 except for our fifth-order accurate (\BbbP 4-based) DG method.

Mesh
\rho m1 m2 E

Error Order Error Order Error Order Error Order
4\times 4 1.11e-3 -- 1.13e-3 -- 1.13e-3 -- 1.14e-3 --
8\times 8 3.26e-5 5.09 3.34e-5 5.08 3.34e-5 5.08 3.57e-5 4.99

16\times 16 1.09e-6 4.91 1.12e-6 4.90 1.12e-6 4.90 1.16e-6 4.95
32\times 32 3.60e-8 4.91 3.72e-8 4.91 3.72e-8 4.91 3.77e-8 4.94
64\times 64 1.15e-9 4.96 1.20e-9 4.96 1.20e-9 4.96 1.21e-9 4.96

128\times 128 3.63e-11 4.99 3.79e-11 4.98 3.79e-11 4.98 3.84e-11 4.98
256\times 256 1.13e-12 5.00 1.19e-12 5.00 1.19e-12 5.00 1.21e-12 4.99

5.5. Example 5: Two-dimensional isothermal equilibrium. This example
is used to demonstrate the well-balanced property and the capability of the proposed
methods in capturing the small perturbation of a 2D isothermal equilibrium solution
[43]. We consider a linear gravitational field with \phi x = \phi y = g and take g = 1. The
computational domain is taken as the unit square [0, 1]2. The isothermal equilibrium
state under consideration takes the following form:
(83)

\rho (x, y) = \rho 0 exp

\biggl( 
 - \rho 0g

p0
(x+ y)

\biggr) 
, u(x, y) = 0, p(x, y) = p0 exp

\biggl( 
 - \rho 0g

p0
(x+ y)

\biggr) 
,

with the parameters \rho 0 = 1.21 and p0 = 1.
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We first validate the well-balanced property of the proposed DG method. To
this end, we take the initial data as the equilibrium solution (83) and conduct the
simulation up to t = 1 on the three different uniform meshes. The l1-errors in \rho ,
m = (m1,m2), and E are shown in Table 5. One can clearly see that the steady
state solution is indeed maintained up to the round-off error, which confirms the
well-balancedness of the proposed DG method.

We then investigate the capability of the proposed well-balanced method in cap-
turing small perturbations of the hydrostatic equilibrium. Initially, a small Gaussian
hump perturbation centered at (0.3, 0.3) is imposed in the pressure to the equilibrium
solution (83) as follows:

p(x, y, 0) = p0 exp

\biggl( 
 - \rho 0g

p0
(x+ y)

\biggr) 
+ \eta exp

\biggl( 
 - 100\rho 0g

p0

\bigl( 
(x - 0.3)2 + (y  - 0.3)2

\bigr) \biggr) 
,

where \eta is set as 0.001. We evolve the solution up to t = 0.15 on a mesh of 100\times 100
uniform cells with transmissive boundary conditions. The contour plots of the pressure
perturbation and density perturbation are displayed in Figure 5, obtained via the well-
balanced and the non-WB DG schemes, respectively. It is observed that the non-WB
DGmethod cannot capture such small perturbation well on the relatively coarse mesh,
while the well-balanced one can resolve it accurately.

Table 5
Example 5: l1-errors for the steady state solution in section 5.5 at different grid resolutions.

Mesh Errors in \rho Errors in m1 Errors in m2 Errors in E
50\times 50 2.0615e-15 1.8301e-15 1.8527e-15 7.3921e-15

100\times 100 4.5131e-15 3.7141e-15 3.7649e-15 1.5167e-14
200\times 200 9.6832e-15 7.3142e-15 7.3067e-15 3.0940e-14
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(a) WB method:
Pressure perturbation

0 0.2 0.4 0.6 0.8 1
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0.4

0.6

0.8

1

(b) WBmethod: Den-
sity perturbation

0 0.2 0.4 0.6 0.8 1
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0.4

0.6

0.8
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(c) Non-WB method:
Pressure perturbation

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(d) Non-WB method:
Density perturbation

Fig. 5. Example 5: The contour plots of the pressure perturbation and the density perturbation
of the hydrostatic solution at time t = 0.15 obtained by the third-order WB and non-WB DG schemes
with 100\times 100 cells. Twenty equally spaced contour lines are displayed: from  - 0.0003 to 0.0003 for
pressure perturbation; from  - 0.001 to 0.0002 for density perturbation.

5.6. Example 6: Two-dimensional polytropic equilibrium. In this exam-
ple, we verify the performance of the proposed methods on a 2D polytropic test case
[19] arising from astrophysics. We consider a static adiabatic gaseous sphere, which
is held together by self-gravitation and can be constructed from the hydrostatic equi-
librium dp

dr =  - \rho d\phi 
dr , with \gamma = 2. One equilibrium solution of this model is given

by

(84) \rho (r) = \rho c
sin(\alpha r)

\alpha r
, u(r) = 0, v(r) = 0, p(r) = K0\rho (r)

2,

D
ow

nl
oa

de
d 

02
/1

2/
21

 to
 1

40
.2

54
.8

7.
14

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A504 KAILIANG WU AND YULONG XING

under the gravitational field

(85) \phi (r) =  - 2K0\rho c
sin(\alpha r)

\alpha r
,

where \alpha =
\sqrt{} 
2\pi g/K0 with K0 = g = \rho c = 1, and r :=

\sqrt{} 
x2 + y2 denotes the radial

variable. The computational domain is taken as [ - 0.5, 0.5]2.
We first demonstrate the well-balanced property of our DG scheme. The initial

condition is taken as the equilibrium solution (84), which should be exactly preserved.
The computation is performed until t = 14.8 on three different uniform meshes. The
l1-errors in the numerical solutions are presented in Table 6. It shows that the steady
state is preserved up to the round-off error, as expected from the well-balancedness
of the proposed method.

Table 6
Example 6: l1-errors for the steady state solution in section 5.6 at different grid resolutions.

Mesh Errors in \rho Errors in m1 Errors in m2 Errors in E
50\times 50 3.9099e-14 1.0132e-13 1.0312e-13 8.5883e-15

100\times 100 7.4068e-14 1.8519e-13 1.8328e-13 1.7675e-14
200\times 200 1.4237e-13 3.3540e-13 3.3567e-13 3.5853e-14

We now impose a small perturbation to the initial pressure state

p(x, y, 0) = K0\rho (r)
2 + \eta exp( - 100r2),

and then compute the solution up to t = 0.2 on a mesh of 200\times 200 uniform cells with
transmissive boundary conditions. Figure 6 shows the contour plots of the pressure
perturbation and the velocity magnitude \| u\| , obtained by using our well-balanced
DG method and the non-WB DG method, respectively. We observe that the well-
balanced DG scheme captures the small perturbation very well and preserves the
axial symmetry, while the non-WB DG method cannot accurately resolve the small
perturbation and maintain the axial symmetry on the relatively coarse mesh.

(a) WB method:
Pressure perturbation

(b) WB method: Ve-
locity magnitude

(c) Non-WB method:
Pressure perturbation

(d) Non-WB method:
Velocity magnitude

Fig. 6. Example 6: The contour plots of the pressure perturbation and the velocity magnitude
at time t = 0.2 obtained by using our well-balanced and non-WB DG schemes on 200\times 200 cells.

5.7. Example 7: Two-dimensional blast problem. To further verify the
positivity-preserving property and the capability of the proposed DG method in re-
solving strong discontinuities, we consider a 2D blast problem under the gravitational
field (85). The initial data is obtained by adding a huge jump to the pressure term
of the equilibrium (84), and the initial pressure is

p(x, y, 0) = K0\rho (r)
2 +

\Biggl\{ 
100, r < 0.1,

0, r \geq 0.1.
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We set the parameters K0 = g = 1 and \gamma = 2 as those in Example 6, and \rho c = 0.01
so that low pressure and low density appear in the solution. This, along with the
presence of the strong discontinuities, makes this test challenging.

Figure 7 displays the contour plots of \rho and log(p) at t = 0.005 computed by the
positivity-preserving third-order well-balanced DG method with 400 \times 400 uniform
cells. We also show the plot of p along the line y = x, from which we can clearly
observe a strong shock at

\sqrt{} 
x2 + y2/

\surd 
2 \approx 0.28. In this test, the CFL number of 0.15

is used, and the WENO limiter is implemented. We observe that the discontinuities
are well captured with high resolution, and the proposed DG method preserves the
positivity of density and pressure as well as the axisymmetric structure of the solution.
In this extreme test, it is necessary to use the positivity-preserving limiting technique;
otherwise we observe that the DG code would start to produce negative numerical
pressure at t \approx 0.00267.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

0

2

4

6

8

10

Fig. 7. Example 7: The contour plots of the density \rho (left) and the pressure logarithm log(p)
(middle) at t = 0.005, and the plot of p (right) along the line y = x within the scaled interval
[ - 0.5, 0.5], obtained by the positivity-preserving well-balanced DG scheme with 400\times 400 cells.

5.8. Example 8: Inertia-gravity wave. This is a benchmark test problem
arising from atmospheric flows. The setup is adopted from [13, 12]. The computa-
tional domain is a [0, 300000] \times [0, 10000] m2 channel, with inviscid wall boundary
conditions on the bottom and top boundaries, and periodic boundary conditions on
the left and right boundaries. The gravitational field of this problem is linear with
\phi x = 0 and \phi y = g = 9.8 m/s2. Consider a uniformly stratified atmosphere with a
constant velocity u = (20 m/s, 0 m/s). The potential temperature and Exner pressure
are, respectively, given by

\Theta = T0 exp

\biggl( 
\scrN 2

g
y

\biggr) 
, \Pi = 1 +

(\gamma  - 1)g2

\gamma RT0\scrN 2

\biggl[ 
exp

\biggl( 
 - \scrN 2

g
y

\biggr) 
 - 1

\biggr] 
,

where the Brunt--V\"ais\"al\"a frequency\scrN = 0.01/s, the reference temperature T0 = 300 K
at y = 0 m, and the gas constant R = 287.058 J/kg K. Initially, a small perturbation
is added to the potential temperature:

\Delta \Theta (x, y, 0) = \theta c sin

\biggl( 
\pi y

hc

\biggr) \bigl[ 
1 + (x - xc)

2/a2c
\bigr]  - 1

,

where \theta c = 0.01 K, hc = 10000 m, xc = 100000 m, and ac = 5000 m. The pressure
and density are computed by \Theta and \Pi via

(86) p = p0\Pi 
\gamma 

\gamma  - 1 , \rho =
p0
R\Theta 

\Pi 
1

\gamma  - 1 ,
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with the reference pressure p0 = 105 N/m2 at y = 0 m.
We simulate this problem up to t = 3000 s on a mesh of 1200 \times 40 uniform

cells, by using the proposed fourth-order accurate (\BbbP 3-based) and fifth-order accurate
(\BbbP 4-based) DG methods, respectively. The left of Figure 8 shows the contours of the
potential temperature perturbation \Delta \Theta (x, y, t = 3000 s) for the solutions obtained by
our methods. (The specified contour values are the same as in [13].) The right side
of Figure 8 displays the profiles of \Delta \Theta (x, y = 5000 m, t = 3000 s). We observe that
the evolution of potential temperature perturbation is correctly resolved and that the
solution structures agree well with those presented in [13, 12].

     0 100000 200000 300000

0

2500

5000

7500

10000

     0 100000 200000 300000

0

2500

5000

7500

10000

     0 100000 200000 300000

-1.5

0

1.5

3
×10

-3

P
4

P
3

Fig. 8. Example 8: Potential temperature perturbation \Delta \Theta at t = 3000 s. Left: The contours of
\Delta \Theta obtained with our fourth-order (top-left) and fifth-order (bottom-left) well-balanced DG schemes
on 200 \times 200 cells ( 10 equally spaced contour lines from  - 0.0015 to 0.003). Right: Profiles of \Delta \Theta 
along the line y = 5000 m.

5.9. Example 9: Rising thermal bubble. The last example, also a bench-
mark test problem for atmospheric flows, simulates the dynamics of a warm bub-
ble. The setup is the same as in [13, 12]. The computational domain is [0, 1000] \times 
[0, 1000] m2, with inviscid wall boundary conditions. As in Example 8, the gravita-
tional field is linear with \phi x = 0 and \phi y = g = 9.8 m/s2. Consider a stratified atmos-
phere, with zero velocity u = 0, a constant potential temperature \Theta = T0 = 300 K,

and Exner pressure \Pi = 1 - (\gamma  - 1)gy
\gamma RT0

, where R = 287.058 J/kg K is the gas constant.
Initially, the warm bubble is added as a potential temperature perturbation to the
hydrostatic balance,

\Delta \Theta (x, y, t = 0) =

\Biggl\{ 
0, r > rc,
\theta c
2 (1 + cos(\pi r/rc)) , r \leq rc,

r =
\sqrt{} 

(x - xc)2 + (y  - yc)2,

where \theta c = 0.5 K, (xc, yc) = (500, 350) m, and rc = 250 m. The pressure and density
are computed by \Theta and \Pi via the formulas in (86), with the reference pressure p0 =
105 N/m2. Figure 9 shows the evolution of potential temperature perturbation \Delta \Theta 
obtained by the proposed fifth-order accurate DG method on two different meshes of
100 \times 100 cells (10 m resolution) and 200 \times 200 cells (5 m resolution), respectively.
It is seen that the initial circular bubble is deformed to a mushroom-like cloud. The
flow structures are well resolved, and the solutions are in good agreement with those
presented in [13, 12]. It can be observed that our solutions are comparable with the
one reported in [12] using a fifth-order WENO scheme with a fine resolution of 2.5 m.
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Fig. 9. Example 9: The contour plots of potential temperature perturbation \Delta \Theta at t = 400 s
(top), t = 600 s (middle), and t = 700 s (bottom), respectively, computed by our fifth-order DG
method. Ten equally spaced contour lines are displayed. Left: Mesh of 100\times 100 cells. Right: Mesh
of 200\times 200 cells.

6. Conclusion. In this paper, we constructed high-order accurate positivity-
preserving well-balanced DG methods for the compressible Euler equations with grav-
itation. A novel well-balanced spatial discretization was specially designed with suit-
able source term treatments and a properly modified HLLC flux, while the desired
positivity property was also achieved in the discretization at the same time. Based on
some technical decompositions as well as several key properties of the admissible states
and HLLC flux, rigorous positivity-preserving analyses were carried out in theory. It
was proven that the resulting well-balanced DG schemes with SSP time discretization
satisfy a weak positivity property, which implies that a simple existing limiter can
effectively enforce the positivity-preserving property without losing conservation and
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high-order accuracy. Extensive 1D and 2D numerical tests were provided to demon-
strate the accuracy, well-balancedness, positivity preservation, and high resolution of
the proposed schemes. It is worth noting that the proposed numerical framework
is also readily applicable for designing positivity-preserving well-balanced high-order
accurate finite volume methods.
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