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ABSTRACT
Free surface flows often appear in ocean, engineering and atmospheric modelling. In

many applications involving unsteady water flows where the horizontal length scale is

much greater than the vertical length scale, the shallow water equations are commonly

used to model these flows. Research on effective and accurate numerical methods for

their solutions has attracted great attention in the past two decades. In this chapter, we

review some work on designing positivity-preserving and well-balanced methods for

solving the shallow water equations with a nonflat bottom topography. Some shallow

water-related models, including the shallow water flows through channels with irregular

geometry, the shallow water equations on the sphere and the two-layer shallow water

equations, and their numerical approximation will also be presented.
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1 OVERVIEW

Free surface flows have wide applications in ocean, environmental, hydraulic

engineering and atmospheric modelling, with examples including dam break

and flooding problems, tidal flows in coastal water regions, nearshore wave

propagation with complex bathymetry structure, tsunami wave propagation

and ocean model. In many applications involving unsteady water flows where

the horizontal length scale is much greater than the vertical length scale, the

shallow water equations (SWEs), often known as Saint-Venant equations,

are commonly used to model these flows. The two-dimensional SWEs are a

nonhomogeneous system of nonlinear hyperbolic equations, which takes the

form of

ht + ðhuÞx + ðhvÞy ¼ 0,

ðhuÞt + hu2 +
1

2
gh2

� �

x

+ huvð Þy ¼�ghbx + fhv + cf ujuj,

ðhvÞt + huvð Þx + hv2 +
1

2
gh2

� �

y

¼�ghby� fhu+ cf vjuj,
(1)

where h denotes the water height, u ¼ (u, v)T is the velocity vector of the fluid

and g is the gravitational constant. The source terms on the right-hand side

represent the effect of nonflat bathymetry, Coriolis force and friction on the

bottom, with b being the bottom topography, f the Coriolis parameter and cf
the friction parameter (from the classical Manning or Darcy formulation).

SWEs play a critical role in the modelling and simulation of free surface

flows in rivers and coastal areas and can predict tides, storm surge levels

and coastline changes from hurricanes and ocean currents. SWEs also arise

in atmospheric flows, debris flows, internal flows and certain hydraulic struc-

tures like open channels and sedimentation tanks. Due to the large scientific

and engineering applications of the SWEs, research on effective and accurate

numerical methods for their solutions has attracted great attention in the past

two decades. The homogeneous SWEs are simply a system of hyperbolic con-

servation laws. Tremendous numerical methods designed for conservation

laws can be applied to simulate the SWEs directly. But the SWEs also admit

other numerical challenges. Two types of difficulties are often encountered at

the simulation of the SWEs, coming from the preservation of steady-state

solutions and the preservation of water height positivity. The first difficulty

is related to the treatment of the source terms due to nonflat bottom topogra-

phy. An essential part for the SWEs and other conservation laws with source

terms is that they often admit steady-state solutions in which the flux gradi-

ents are exactly balanced by the source terms. SWEs admit the general

moving-water equilibrium, as well as a simpler still water steady-state solu-

tion, which represents a still flat water surface, and referred as the “lake at

rest” solution. Traditional numerical schemes with a straightforward handling

of the bottom source term cannot balance the effect of the source term and the

flux in the discrete level, and usually fail to capture the steady-state well. This
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will introduce spurious oscillations near the steady state. The well-balanced

schemes are specially designed to preserve exactly these steady-state solutions

up to machine error with relatively coarse meshes, and therefore, it is desir-

able to design numerical methods which have the well-balanced property.

The other major difficulty often encountered in the simulations of the SWEs

is the appearance of dry regions in many engineering applications. Typical

applications include the dam break problem, flood waves and run-up phenom-

ena at a coast with tsunamis being the most impressive example. Special

attention needs to be paid near the dry/wet front to preserve the water height

positivity, otherwise they may produce nonphysical negative water height,

which becomes problematic when calculating the eigenvalues u� ffiffiffiffiffi
gh

p
to

determine the time step size Dt, and renders the system not hyperbolic and

not well posed.

The rest of this chapter is organized as follows: In Section 2, we describe

the mathematical model, as well as some properties of this model in the one-

dimensional setting. Review and discussion of some numerical methods for

the SWEs are presented in Sections 3. In Section 4, we discuss some models

which are similar to SWEs, and some references on their numerical approxi-

mation. Concluding remarks are given in Section 5.

2 MATHEMATICAL MODEL

Free surface flows appear in many engineering and atmospheric applications.

Three-dimensional Navier–Stokes equations can be used to simulate such

flows directly. However, in the case where the horizontal length scale is much

greater than the vertical length scale, one can average over the depth to elimi-

nate the vertical direction and reduce the model into the simpler two-

dimensional nonlinear SWEs.

In one space dimension, the SWEs are defined as follows

ht + ðhuÞx ¼ 0,

ðhuÞt + hu2 +
1

2
gh2

� �

x

¼�ghbx,
(2)

where we ignore the Coriolis force and friction source terms and keep the only

source term due to bottom topography. The two equations represent the conser-

vation of mass and momentum. This model also admits other conserved quan-

tities, including the energy (E ¼ gh + u2/2), vorticity (for two-dimensional

model, o ¼ vx � uy), potential vorticity and potential enstrophy, etc.

For the ease of presentation, we denote the SWEs (2) by

Ut + f ðUÞx ¼ sðU,bÞ
where U ¼ (h, hu)T with the superscript T denoting the transpose,

f ðUÞ¼ ðhu,hu2 + 1

2
gh2ÞT is the flux and s(U, b) is the source term. The Jacobi

matrix of the flux is given by:
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AðUÞ¼ 0 1

�u2 + gh 2u

� �
,

with the two eigenvalues l1,2ðUÞ¼ u� ffiffiffiffiffi
gh

p
.

When the solutions are smooth, the SWEs (2) can also be rewritten in the

equivalent form of

ht + ðhuÞx ¼ 0,

ut + u2=2 + gðh+ bÞð Þx ¼ 0:
(3)

We can easily observe that the SWEs admit the general moving-water equilib-

rium state, given by

m :¼ hu¼ const and E :¼ 1

2
u2 + gðh+ bÞ¼ const, (4)

where m and E are the moving-water equilibrium variables. A special case is

the still water at rest steady state

u¼ 0 and h + b¼ const, (5)

which represents a flat water surface.

For the homogeneous SWEs without any source term, the Riemann problem

can be easily solved (LeVeque, 2002). When the source term due to the variable

bottom topography is added to the system, solving the Riemann problem

for the SWEs with discontinuous bathymetry becomes a less trivial issue.

One approach is to augment a separate equation bt ¼ 0 for the bottom, and

rewrite the SWEs in a nonconservative form with the variables (h, hu, b)T.
One can then investigate its Riemann solution based on this formulation. Some

results on this topic can be found in Bernetti et al. (2008) and LeFloch and

Thanh (2007).

3 NUMERICAL METHODS

Extensive research has been done to numerically simulate the SWEs in the

past two decades. The commonly used numerical methods range from finite

difference, finite volume to finite element methods. In this section, we start

by reviewing numerical methods for the homogeneous SWEs, and then

present the well-balanced and positivity-preserving numerical methods to

overcome some numerical challenges encountered at the simulation of the

SWEs.

3.1 Numerical Methods for the Homogeneous Equations

The homogeneous system of the SWEs is a hyperbolic conservation law.

A tremendous amount of numerical methods for conservation laws has been

designed, and most of them can be applied to the SWEs directly. In this
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section, we briefly mention a few numerical methods to solve SWEs. For the

ease of presentation, we use one-dimensional model (2) (without the source

term) as an example to demonstrate these methods. In this chapter, we mainly

focus on the spatial discretization. Total variation diminishing (TVD) Runge–
Kutta time discretization (Shu and Osher, 1988) is usually used in practice for

stability and to increase temporal accuracy. For example, the third-order TVD

Runge–Kutta method can be coupled with all the spatial discretization intro-

duced in this chapter:

Uð1Þ ¼Un +DtFðUnÞ,

Uð2Þ ¼ 3

4
Un +

1

4
Uð1Þ +DtFðUð1ÞÞ
� �

,

Un + 1 ¼ 1

3
Un +

2

3
Uð2Þ +DtFðUð2ÞÞ
� �

,

(6)

where FðUÞ is the spatial operator.

3.1.1 Finite Volume Methods

We discretize the computational domain into cells Ij ¼ [xj�1/2, xj+1/2] and

denote the size of the j-th cell by Dxj and the maximum mesh size

by Dx¼ max jDxj. In a finite volume scheme, our computational variables

are UjðtÞ, which approximate the cell averages Uðxj, tÞ¼ 1

Dxj

Z

Ij

Uðx, tÞ dx.
The conservative finite volume numerical scheme is given by

d

dt
UjðtÞ+ 1

Dxj
f̂j + 1

2
� f̂j� 1

2

� �
¼ 0, (7)

with f̂ j + 1=2 ¼FðU�
j+ 1=2,U

+
j+ 1=2Þ being the numerical flux. Here U�

j+ 1=2 and

U +
j+ 1=2 are the pointwise approximations to U(xj+1/2, t) from left and right,

respectively.

In a first-order method, one can approximate U by piecewise constant in

each cell, therefore, U�
j+ 1=2 ¼Uj and U +

j+ 1=2 ¼Uj+ 1. The solution can also

be approximated by a piecewise linear function in each cell, with the slope

of the function constructed by a slope limiter based on Uj and Uj�1, for

example, the minmod limiter (Shu, 1987). This will lead to a second-order

method. To construct a high order weighted essentially nonoscillatory

(WENO) method, we can use a WENO reconstruction procedure to evaluate

Uj+1/2
� and Uj+1/2

+ through the neighbouring cell average values Uj. Basically,

for a (2k � 1)-th order WENO scheme, we first compute k reconstructed

boundary values U
ðkÞ,�
j+ 1=2 corresponding to different candidate stencils. Then

by providing each value a weight which indicates the smoothness of the

corresponding stencil, we define the (2k � 1)-th order WENO reconstruction
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U�
j+ 1=2 as a convex combination of all these k reconstructed values. Eventu-

ally, the WENO reconstruction can be written out as:

U +
j+ 1

2
¼
Xk

r¼�k + 1

wrUj+ r, U�
j+ 1

2
¼
Xk�1

r¼�k

w
�
r Uj+ r: (8)

where k ¼ 3 for the fifth-order WENO approximation and the coefficients wr

and w
�
r depend nonlinearly on the smoothness indicators involving the cell

average U . We refer to Crnjaric-Zic et al. (2004) and Xing and Shu

(2006a,b) for more details in constructing finite volume WENO methods for

the SWEs.

In order to obtain a stable scheme, the numerical flux f̂ j+ 1=2 ¼
FðU�

j+ 1=2,U
+
j+ 1=2Þ needs to be a monotone flux, namely F is a nondecreasing

function of its first argument and a nonincreasing function of its second

argument. One simple and inexpensive choice is the well-known Lax–
Friedrichs flux

Fða,bÞ¼ 1

2
ðf ðaÞ + f ðbÞ�aðb�aÞÞ, (9)

where a¼ maxðu+ ffiffiffiffiffi
gh

p Þ and the maximum is taken over the whole domain.

Other choices include the Roe’s flux, Godunov flux, HLLC flux, etc. Second-

order central-upwind methods have been studied for the SWEs in a series of

papers (see Bryson et al., 2011; Kurganov and Levy, 2002; Kurganov and

Petrova, 2007 and the references therein), which are based on the choice of

numerical flux:

FðU�
j+ 1=2,U

+
j+ 1=2Þ¼

c+
j + 1=2f ðU�

j+ 1=2Þ� c�j + 1=2f ðU +
j+ 1=2Þ

c +
j + 1=2� c�j + 1=2

+
c +
j+ 1=2c

�
j+ 1=2

c+
j+ 1=2� c�j+ 1=2

U +
j+ 1=2�U�

j+ 1=2

h i
,

where the one-sided local speeds of propagation c�j+ 1=2 are determined by

c + ¼ maxðu+ +
ffiffiffiffiffiffiffiffi
gh +

p
, u� +

ffiffiffiffiffiffiffiffi
gh�

p
,0Þ, c� ¼ minðu+� ffiffiffiffiffiffiffiffi

gh +
p

, u�� ffiffiffiffiffiffiffiffi
gh�

p
,0Þ,

at each cell boundary xj+1/2.

3.1.2 Finite Difference Methods

For a finite difference scheme, we approximate the point values of the solu-

tion U(x) at mesh points xj by Uj. The spatial derivative f(u)x is then approxi-

mated by a conservative flux difference approximation

f ðUÞx
		
x¼xj

� 1

Dx
f̂ j+ 1

2
� f̂ j� 1

2

� �
, (10)
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and the finite difference numerical scheme takes the form of

d

dt
UjðtÞ+ 1

Dxj
f̂ j + 1

2
� f̂ j� 1

2

� �
¼ 0: (11)

The numerical flux f̂ j + 1
2
is computed through the neighbouring point values

fj ¼ f(Uj) by a flux limiter, or a finite difference WENO procedure.

For a (2k � 1)-th order WENO scheme, we first compute k numerical

fluxes

f̂
ðrÞ
i+ 1

2
¼
Xk�1

j¼0

crj fi�r + j, r¼ 0,…,k�1,

corresponding to k different candidate stencils Sr(i) ¼ {xi�r, …, xi�r+k�1},

r ¼ 0, …, k � 1, and each of these k numerical fluxes is k-th order accurate.

The (2k � 1)-th order WENO flux is a convex combination of all these k
numerical fluxes

f̂ i + 1
2
¼
Xk�1

r¼0

wrf̂
ðrÞ
i+ 1

2
,

where the nonlinear weights wr satisfy wr � 0,
Pk�1

r¼0wr ¼ 1, and depend on

the linear weights which yield (2k � 1)-th order accuracy, and the smoothness

indicators’ of the stencil Sr(i). An upwinding mechanism, essential for the sta-

bility of the scheme, can be realized by a global ‘flux splitting’. The simplest

one is the Lax–Friedrichs splitting, f �(u) ¼ ( f(u) � au)/2, where a is taken as

a¼ maxuj f 0ðuÞj. The WENO procedure is applied to f � individually with

upwind biased stencils. For hyperbolic systems such as the SWEs, we use

the local characteristic decomposition, which is more robust than a component

by component version. We first project the values fj into the local characteris-

tic direction, apply the WENO procedure on them to compute the flux, and

then project them back to obtain the numerical fluxes in the physical space.

We refer to Shu (1998) and Xing and Shu (2005) for further details.

3.1.3 Discontinuous Galerkin Methods

Finite element discontinuous Galerkin (DG) methods have been actively

applied to hyperbolic conservation laws, especially the SWEs recently

(Dawson and Proft, 2002; Eskilsson and Sherwin, 2004; Giraldo et al.,

2002; Nair et al., 2005; Schwanenberg and K€ongeter, 2000). We start by pre-

senting the standard notations. In a high order DG method, we seek an

approximation, still denoted by U for the ease of presentation with an abuse

of notation, which belongs to the finite dimensional space

VDx ¼Vk
Dx �fw :wjIj 2PkðIjÞ, j¼ 1,…,Jg, (12)
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where Pk(I) denotes the space of polynomials of degree at most k and J is the
total number of computational cells. Notice that the DG solution U can be dis-

continuous at the cell boundary xj+ 1
2
. The standard semidiscrete DG method is

given by
Z

Ij

@tUvdx�
Z

Ij

f ðUÞ@xvdx + bf j+ 1
2
vðx�

j+ 1
2
Þ� bf j� 1

2
vðx +

j� 1
2
Þ¼ 0, (13)

where v(x) is a test function from the test space VDx, bf j+ 1=2 ¼ FðUðx�j + 1=2, tÞ,
Uðx +

j+ 1=2, tÞÞ is a numerical flux.

Another important ingredient of the DG method is that a slope limiter pro-

cedure should be performed after each inner stage in the Runge–Kutta time

stepping. This is necessary for computing solutions with strong discontinu-

ities. There are many choices for the slope limiters (see, e.g. Qiu and Shu,

2005). The total variation bounded (TVB) limiter in Shu (1987), Cockburn

and Shu (1989) and Cockburn et al. (1989) is commonly used in many appli-

cations, and we refer to these references for the details of this limiter. Multi-

dimensional problems can be handled in the same fashion. The main

difference is that the fluxes are now integrals along the cell boundary, which

can be calculated by Gauss-quadrature rules.

3.1.4 Residual Distribution Methods

Residual distribution (RD) schemes, also referred as Fluctuation Splitting

schemes, are introduced in Roe (1981), and the idea behind the method is to

decompose the local numerical error (fluctuation) to nodes to evolve the

approximation of the solution. They are first designed for the steady problem

with an upwinding mechanics, and later generalized to approximate unsteady

problem. High order version has also been studied. We refer to the recent

review paper (Abgrall, 2010) for the history and development of RD methods.

Application of RD methods for the SWEs has been studied in recent years. An

earlier investigation can be found in Garcia-Navarro et al. (1995), where a

first-order scheme for the unsteady system is presented. We refer to

Ricchiuto et al. (2007) and Ricchiuto and Bollermann (2009) for some recent

advances in this topic.

3.2 Well-Balanced Methods

The nonhomogeneous SWEs with a source term due to the nonflat bottom

topography, admit a nontrivial steady-state solution (4)–(5), which describes

physical equilibrium such as a flowing river with a rugged bottom but flat sur-

face (on a windless day). It is crucial to accurately simulate these physical

equilibria in order to make dynamic, real-time predictions, as geophysical

flows are typically perturbations of these underlying equilibrium states. In this

section, we review some well-balanced methods which can preserve exactly
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these steady-state solutions in the discrete level. For the ease of presentation,

we will confine our attention in the framework of DG methods, but the well-

balanced techniques can all be extended to finite volume or difference

methods.

3.2.1 Well-Balanced Methods for the Still Water

In the past two decades, many well-balanced numerical methods have been

developed for the SWEs. The well-balanced property is often referred as

“exact C-property”, which means that the scheme is “exact” when applied

to the stationary case (5). The well-balanced concept was first proposed by

Bermudez and Vazquez (1994), where they extended upwind methods to the

SWEs with source terms. Following this pioneering work, many other

schemes for the SWEs with such well-balanced property have been developed

in the finite volume community. A quasi-steady wave propagation algorithm

based upon modified Riemann problems is presented in LeVeque (1998),

LeVeque and Bale (1998) and Bale et al. (2002). Another popular approach

is to rewrite the equation in terms of the water surface instead of water height

(also referred as the prebalanced formulation), and well-balanced methods

(Kurganov and Levy, 2002; Rogers et al., 2003; Zhou et al., 2001) can be

designed based on such formulation. Well-balanced methods can also be

derived utilizing the idea of hydrostatic reconstruction initially proposed in

Audusse et al. (2004). A kinetic approach to achieve well-balanced property

has been shown in Perthame and Simeoni (2001). In the framework of RD,

simulation for the SWEs with well-balanced properties is shown in

Ricchiuto et al. (2007) and Ricchiuto and Bollermann (2009). For more

related work, see also Gallouët et al. (2003), Delis and Katsaounis (2003),

Gosse (2000), Greenberg and LeRoux (1996), Jin (2001), Liang and Marche

(2009), Lukácová-Medviová et al. (2007), Russo (2005), Fjordholm et al.

(2011), Xu (2002) and Xing and Shu (2014).

Most of the works mentioned above are for numerical schemes of first or

second-order accuracy. In recent years, high order accurate numerical

schemes (with higher than second-order accuracy) have attracted increasing

attention in many computational fields. Some finite difference/volume

WENO schemes with well-balanced property have been designed for the

SWEs recently. In Xing and Shu (2005) and Xing and Shu (2006a), a special

decomposition of the source term was introduced which leads to high order

finite difference and finite volume well-balanced WENO methods. The

hydrostatic reconstruction idea is extended to high order methods in Xing

and Shu (2006b) and Noelle et al. (2006) with a careful high order approxi-

mation of the source term. Path-conservative methods for the nonconserva-

tive product are introduced in Castro et al. (2006) and Par�es (2006) and

extended to the SWEs. Other high order finite volume methods include

Caleffi et al. (2006), Caleffi and Valiani (2009) and Canestrelli et al.
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(2009). High order DG methods for the SWEs have also attracted increasing

attention recently. Several well-balanced DG methods have been proposed

in the last few years, by the idea of special decomposition of the source term

(Xing and Shu, 2006a), hydrostatic reconstruction (Ern et al., 2008;

Kesserwani and Liang, 2010; Xing and Shu, 2006b) and path-conservative

(Rhebergen et al., 2008).

Here, we briefly review the well-balanced idea presented in Xing and Shu

(2006a,b). In order to achieve the well-balanced property, we are interested in

numerical methods which balance the numerical approximation of the flux

and source term at the still water stationary solution (5). The key idea is to intro-

duce high order accurate numerical discretization of the source term, which

mimics the approximation of the flux term, so that the exact balance between

the source term and the flux can be achieved at the steady state numerically.

Here we present two different approaches to achieve such goal. The first

approach focuses on a nonstandard discretization of the source term, by follow-

ing the idea of decomposing the source terms (Xing and Shu, 2005, 2006a). The

second approach employs the idea of hydrostatic reconstruction (Audusse et al.,

2004) to modify the approximation of the numerical flux and keep a simple

source term approximation. We notice that the traditional DG methods

are capable of maintaining certain steady states exactly, if a small modification

on the numerical flux is provided. The computational cost to obtain such a well-

balanced DG method is basically the same as the traditional DG method.

The first well-balanced approach is to decompose the integral of the source

term on the DG method as:

Z

Ij

�ghbxvdx¼
Z

Ij

1

2
gb2

� �

x

vdx�gðh + bÞj
Z

Ij

bxvdx�
Z

Ij

g h+ b�ðh + bÞj
� �

bxvdx

¼ 1

2
gb2

� �
v x�

j+ 1
2

� �
� 1

2
gb2

� �
v x +

j� 1
2

� �
�
Z

Ij

1

2
gb2vxdx

�gðh + bÞj bv x�
j+ 1

2

� �
�bv x+

j� 1
2

� �
�
Z

Ij

bvxdx

 !

�
Z

Ij

gðh + b�ðh+ bÞjÞbxvdx:

We then replace this source term with a high order approximation of it

given by

sj ¼ 1

2
gb2

j+ 1
2


 �
v x�

j + 1
2

� �
� 1

2
gb2

j� 1
2


 �
v x +

j� 1
2

� �
�
Z

Ij

1

2
gb2vxdx

�gðh+ bÞj bj+ 1
2

n o
v x�

j+ 1
2

� �
� bj� 1

2

n o
v x +

j� 1
2

� �
�
Z

Ij

bvxdx

 !

�
Z

Ij

gðh+ b�ðh+ bÞjÞbxvdx,

(14)

370 Handbook of Numerical Analysis



where the notation {f} is defined as the average of f�. Combined with the

semidiscrete form (13), this gives our well-balanced high order DG

schemes. Usually, we perform the limiter on the function U after each

Runge–Kutta stage. Note that the slope limiter procedure could destroy

the preservation of still water steady state, since if the limiter is enacted,

the resulting modified solution h may no longer satisfy h + b ¼ constant.

We therefore propose to first check whether any limiting is needed based

on the function h + b in each Runge–Kutta stage. If a certain cell is flag-

ged by this procedure needing limiting, then the actual limiter is imple-

mented on h, not on h + b, so that the slope limiter will not conflict with

the well-balanced property. The well-balanced property for the still water

(5) can be easily proved, and we refer to Xing and Shu (2006a) for the

details.

A different approach to achieve well-balanced property is to utilize

the hydrostatic reconstruction idea in the numerical flux. As mentioned

in Xing and Shu (2006b), our well-balanced numerical scheme has the form:

Z

Ij

@tUvdx�
Z

Ij

f ðUÞ@xvdx + bf l

j+ 1
2
v x�

j+ 1
2

� �
� bf r

j� 1
2
v x+

j� 1
2

� �
¼
Z

Ij

sðh,bÞvdx: (15)

The left and right fluxes bf l

j+ 1=2 and bf r

j�1=2 are given by:

bf l

j+ 1
2
¼F U�,�

j+ 1
2

,U�, +
j + 1

2

� �
+

0

g

2
h�
j+ 1

2

� �2
�g

2
h�,�
j+ 1

2

� �2

0
B@

1
CA,

bf r

j� 1
2
¼F U�,�

j� 1
2

,U�, +
j� 1

2

� �
+

0

g

2
h+
j� 1

2

� �2
�g

2
h�, +
j� 1

2

� �2

0
B@

1
CA,

(16)

with the left and right values of U* defined as:

U�,�

j+
1

2

¼
h�,�
j+ 1

2

h�,�
j + 1

2

u�
j+ 1

2

0
@

1
A, h�,�

j+ 1
2

¼ max 0, h�
j+ 1

2
+ b�

j+ 1
2
�max b +

j+ 1
2
, b�

j+ 1
2

� �� �
:

(17)

We also require that all the integrals in formula (15) should be calculated

exactly at the still water state. This can be easily achieved by using suitable

Gauss-quadrature rules since the numerical solutions h, b and v are polynomials

at the still water state in each cell Ij, hence f(U) and s(h, b) are both polynomials.

We have proven in Xing and Shu (2006b) that the above methods (15),

combined with the choice of fluxes (16), are actually well-balanced for the still

water steady state of the SWEs.
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3.2.2 Well-Balanced Methods for the Moving Water

The well-balanced methods mentioned above target to preserve the still water

steady state (5). They cannot preserve the moving water steady state (4), and

it is significantly more difficult to obtain well-balanced schemes for such

equilibrium. In a recent paper (Xing et al., 2011), several numerical examples

are shown to demonstrate the advantage of moving-water well-balanced

schemes over still-water well-balanced schemes for the SWEs. Those numer-

ical examples clearly demonstrate the importance of utilizing moving-water

well-balanced methods for solutions near a moving-water equilibrium. There

have been a few attempts in developing well-balanced methods for the

moving water equilibrium. A class of first-order accurate flux-vector-splitting

schemes based on the theory of nonconservative products was proposed in

Gosse (2000). Well-balanced second-order central schemes on staggered grids

can be found in Russo (2005). Numerical methods based on local subsonic

steady-state reconstruction, which are exactly well-balanced for subsonic

moving equilibria, were shown in Bouchut and Morales (2010). A few high

order accurate well-balanced methods for the moving water equilibrium have

been introduced recently. In Noelle et al. (2007), well-balanced finite volume

WENO methods are designed for arbitrary equilibria of the SWEs. The key

component there is a special way to recover the moving water equilibrium

and a well-balanced quadrature rule of the source term. Other high order well-

balanced methods for the moving water equilibrium include the central

WENO methods (Russo and Khe, 2009), path-conservative WENO methods

(Castro et al., 2013) and DG methods (Xing, 2014).

In this section, we present high order finite element DG methods for the

SWEs (1), with the objective to maintain the general moving steady state (4).

The main structure of well-balanced methods for moving water equilibrium

(4) follows the one (15) for still water. As explained in Xing (2014), we could

define the transformation between the conservative variables U :¼ (h, m)T and
the equilibrium variables V :¼ (m, E)T, as well as the recovery of well-balanced
states Vj ¼ð �mj, �EjÞ. The reference equilibrium values Vj lead to the reference

equilibrium functions UðVj,bðxÞÞ. Since they may not be polynomials, we con-

sider their projection into the finite element space VDx and denote it by

Ue
j ðxÞ¼ ðhej ðxÞ,me

j ðxÞÞ¼PUðVj,bðxÞÞ, (18)

in each cell Ij, where P denotes the L2 projection operator. Therefore, the

numerical solutions U, which are piecewise polynomials, can be decomposed as

U¼Ue +Ur, (19)

where Ur ¼ U � Ue 2 VDx. The source term approximation now becomes
Z

Ij

sðh,bÞvdx¼
Z

Ij

sðhe,bÞvdx +
Z

Ij

sðhr,bÞvdx, (20)
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since s(h, b) ¼ �ghbx is linear with respect to h. Given the fact that

UðVj,bÞ¼ ðhðVj,bÞ, �mjÞT is the equilibrium state, we have the relationship
Z

Ij

sðhðVj,bÞ,bÞvdx¼�
Z

Ij

f ðUðVj,bÞÞvxdx

+ f U Vj, b�j+ 1
2

� �� �
v�
j+ 1

2
� f U Vj, b+

j� 1
2

� �� �
v+
j� 1

2
:

Since Ue is the L2 projection of UðVj,bÞ, we conclude that
Z

Ij

sðhe,bÞvdx +OðDxk + 1Þ¼�
Z

Ij

f ðUeÞvxdx

+ f Ue,�
j+ 1

2

� �
v�
j + 1

2
� f Ue, +

j� 1
2

� �
v+
j� 1

2
,

(21)

and can approximate the source term integral (20) by
Z

Ij

sðh,bÞvdx��
Z

Ij

f ðUeÞvxdx+ f Ue,�
j + 1

2

� �
v�
j+ 1

2

�f Ue, +
j� 1

2

� �
v+
j� 1

2
+

Z
sðhr,bÞvdx:

(22)

Since Ue is always smooth inside a cell, the relation (21) is always true

regardless of the smoothness of the solution U. Therefore, numerical methods

with this source term approximation (22) will satisfy the Lax–Wendroff theo-

rem and converge to the weak solution.

The well-balanced numerical fluxes are computed by a generalized hydro-

static reconstruction. At each time step tn, one can compute the cell boundary

values U�
j+ 1=2 from the solution U(x). But in the case of moving water equilib-

rium, suppose U(x) are computed from the exact solution, these cell boundary

values U�
j+ 1=2 are not equal to the exact solution value at the same point, as

U(x) is the projection of the exact solution into the polynomial space and this

projection does not preserve the equilibrium state. To overcome this problem,

we redefine an updated boundary value as:

~U
�
j+ 1

2
¼U Vj, b�j+ 1

2

� �
+Ur,�

j+ 1
2

, (23)

where Ur is defined in (19). One can easily verify that ~U
�
j+ 1=2 ¼UðVj, b�j+ 1=2Þ

in the case of moving water equilibrium. We follow the idea of hydrostatic

reconstruction to compute the numerical fluxes and define

V
� �

j+ 1
2

¼V ~U
�
j+ 1

2
, b�

j+ 1
2

� �
: (24)

The cell boundary values (used to evaluate the numerical fluxes) are then

defined by:
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U�,�
j+ 1

2

¼ max 0,h V
��
j+ 1

2
, b�

j+ 1
2

� �� �
;m
��
j+ 1

2

� �T

¼ max 0,h V
��
j+ 1

2
, b�

j+ 1
2

� �� �
;m�

j+ 1
2

� �T

,

(25)

as one can easily observe that m
��
j+ 1=2 ¼m�

j+ 1=2. At the end, the left and right

fluxes bf l

j + 1=2,
bf r

j�1=2 are given by:

bf l

j+ 1
2
¼F U�,�

j+ 1
2

,U�, +
j+ 1

2

� �
+ f U�

j+ 1
2

� �
� f U�,�

j+ 1
2

� �
,

bf r

j� 1
2
¼F U�,�

j� 1
2

,U�, +
j� 1

2

� �
+ f U +

j� 1
2

� �
� f U�, +

j� 1
2

� �
:

(26)

This completes the well-balanced DG methods for the moving water (4), and

we have proven their well-balanced property in Xing (2014).

3.3 Positivity-Preserving Methods

The other difficulty in simulating the SWEs is associated with the robustness

of the numerical methods near the wet/dry front. This problem relates to the

fact that there is no water in these areas, while the SWEs (1) are only defined

in wet regions. Therefore, we may need to deal with moving boundary pro-

blems. One could use the mesh adaption technique (Bokhove, 2005) which

tracks the dry front by changing the meshes. It has the advantage in accuracy

but is computationally expensive. A more popular approach is the thin-layer

technique, which maintains a very thin layer in dry elements and includes

these dry elements in the computation. The difficulty then reduces to the

issue of preserving the nonnegativity of water height for the SWEs during

the computation. Another related problem is the computation of velocity

given height and discharge in the nearly dry region. One usually introduces

a threshold on the velocity (or on the water height) to avoid extremely large

velocity when h ≪ 1. There have been a number of positivity-preserving

schemes (Audusse et al., 2004; Berthon and Marche, 2008; Bryson et al.,

2011; Castro et al., 2007; Gallardo et al., 2007; Kurganov and Petrova,

2007; Liang and Marche, 2009) in the finite volume framework. They usu-

ally rely on the positivity-preserving Riemann solver, for example the

HLL solver (Harten et al., 1983). Some positivity-preserving DG methods

with P1 polynomial spaces (Bunya et al., 2009; Ern et al., 2008;

Kesserwani and Liang, 2012) have been developed in the past few years,

mainly relying on modifying the slope to avoid negative values of water

height. For both finite volume and DG methods, the issue of positivity-

preserving property for high order methods is nontrivial. Most existing

high order wetting and drying treatments are focused on postprocessing
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reconstruction of the data obtained from the numerical solution at each time

level. One example is to project the solution to a nonnegative linear element

in the cell near the wet/dry front. Even though the postprocessing can bring

the reconstruction to satisfy nonnegative water height, this alone usually

does not guarantee that the solution (e.g. cell average from a finite volume

or DG scheme) at the next time step still maintains the nonnegative water

height property. If negative cell averages for the water height are obtained

at the next time level, the positivity reconstruction postprocessing will

destroy the conservation. Recently, following the general approach intro-

duced in Zhang and Shu (2010), a sufficient condition on the time step size

to ensure the positivity of cell averages of water height, plus a simple high

order positivity-preserving limiter, has been studied in Xing and Shu

(2011) for the finite volume methods, and in Xing et al. (2010), Xing and

Zhang (2013) and Wen et al. (2016) for the DG methods in one dimension

and two dimensions on unstructured meshes.

In this section, we review the positivity-preserving limiter studied in Xing

et al. (2010), Xing and Shu (2011) and Xing and Zhang (2013) for the SWEs

(1) with dry areas. In the previous section, we discussed several different

approaches to design well-balanced methods, which focus on the approxima-

tion of the momentum equation that has nonzero source term. The positivity-

preserving property mainly relies on the numerical approximation to the mass

equation, therefore, the positivity-preserving limiter discussed in this section

can be applied to all these well-balanced methods.

We only consider the Euler forward in time in this subsection. The same

results can be generalized to TVD high order Runge–Kutta and multistep time

discretizations, since TVD time discretizations are convex combinations of

the Euler forward operators. By plugging (17) and (16) into (13), the scheme

satisfied by the cell averages of the water height in the well-balanced finite

volume WENO or DG methods can be written as

h
n + 1

j ¼ h
n
j �l bF h�,�

j+ 1
2

, u�
j+ 1

2
; h�, +

j+ 1
2

, u +
j+ 1

2

� �
� bF h�,�

j� 1
2

, u�
j� 1

2
; h�, +

j� 1
2

, u +
j� 1

2

� �� �
, (27)

where l ¼ Dx/Dt, h�,�j+ 1=2 are defined in (17) and

bF h�,�
j+ 1

2

, u�
j+ 1

2
; h�, +

j+ 1
2

, u+
j+ 1

2

� �
¼ 1

2
h�,�
j+ 1

2

u�
j+ 1

2
+ h�, +

j+ 1
2

u+
j+ 1

2
�a h�, +

j+ 1
2

�h�,�
j+ 1

2

� �� �
: (28)

We now consider the (2k � 1)-th order WENO scheme (27). For the ease

of presentation, we consider a reconstructed polynomial pj(x) of degree 2k � 2,

which satisfies

pjðxj� 1
2
Þ¼ h+

j� 1
2
, pjðxj + 1

2
Þ¼ h�

j+ 1
2
,

1

Dx

Z

Ij

pjðxÞdx¼ h
n
j : (29)
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Moreover, pj(x) should be a (2k � 1)-th order accurate approximation to the

exact solution on Ij. For the WENO method, this polynomial only serves the

theoretical purpose to understand the derivation of the limiter and will not

need to be explicitly constructed in the implementation. For the DG method,

this polynomial pj(x) is simply the DG solution hj(x).
Let us introduce the N-point Legendre Gauss–Lobatto quadrature rule on

the interval Ij ¼ [xj�1/2, xj+1/2], which is exact for the integral of polynomials

of degree up to 2N � 3. We choose N such that 2N � 3 � 2k � 2, therefore this

N-point Gauss–Lobatto quadrature is exact for polynomial of degree 2k � 2.

We denote these quadrature points on Ij as

Sj ¼ xj� 1
2
¼ bx 1

j , bx 2
j ,…, bx N�1

j , bx N
j ¼ xj + 1

2

n o
:

Let bwr be the quadrature weights for the interval [�1/2, 1/2] such thatPN
r¼1 bwr ¼ 1. Since pj(x) is polynomial of degree 2k � 2 and this quadrature

is exact, we have

h
n
j ¼

1

Dx

Z

Ij

pjðxÞdx¼
XN
r¼1

bwrpjðbx r
j Þ¼

XN�1

r¼2

bwrpjðbx r
j Þ+ bw1h

+
j� 1

2
+ bwNh

�
j+ 1

2
: (30)

If we introduce the variable

xj ¼
1XN�1

r¼2
ŵr

XN�1

t¼2

ŵrpjðx̂ r
j Þ¼

h
n
j � ŵ1h

+
j� 1

2
� ŵNh

�
j+ 1

2

1� ŵ1� ŵN
, (31)

we have

h
n
j ¼ð1� ŵ1� ŵNÞxj + bw1h

+
j� 1

2
+ bwNh

�
j+ 1

2
: (32)

Following the approaches in Perthame and Shu (1996), Zhang and Shu

(2010), Xing et al. (2010) and Xing and Shu (2011), we can conclude that:

If h�j�1=2, h
�
j+ 1=2 and xj are all nonnegative, then h

n+ 1
j is also nonnegative

under the CFL condition

la	 bw1: (33)

This result tells us that for the scheme (27), we need to modify pj(x) (satis-
fying (29)) such that pj(xj�1/2) and xj are all nonnegative. At time level n,

given h
n
j � 0, we consider the following limiter on the piecewise polynomial

pj(x) introduced in Zhang and Shu (2010). It is a linear scaling around the cell

average:

p
�
jðxÞ¼ y pjðxÞ�h

n

j

� �
+ h

n

j , y¼ min 1,
h
n

j

h
n

j �mj

( )
, (34)
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with

mj ¼ min h+
j� 1

2
, h�

j+ 1
2
, xj

� �
: (35)

It is easy to observe that these conditions are satisfied with this limiter. More-

over, it can also be shown that this limiter does not destroy the high order

accuracy, and we refer to Zhang and Shu (2010) and Xing and Shu (2011)

for the detailed proof. Let h
�
+
j�1=2 ¼ p

�
jðxj�1=2Þ, h

��
j+ 1=2 ¼ p

�
jðxj+ 1=2Þ, and define

h
��,+
j�1=2, h

��,�
j+ 1=2 following (17). Then, the revised positivity-preserving version

of the scheme (27) takes the form

h
n + 1

j ¼ h
n
j �l bF h

��,�
j+ 1

2

, u�
j+ 1

2
; h
��,+
j+ 1

2

, u +
j + 1

2

� �
� bF h

��,�
j� 1

2

, u�
j� 1

2
; h
��,+
j� 1

2

, u+
j� 1

2

� �� �
:

(36)

The limiter (34) and (35) is a high order accurate positivity-preserving limiter,

and preserves the conservation of pj(x).
We would like to mention that in wet regions, where mj is O 1ð Þ above

zero, the limiter does not take effect, i.e. p
�
jðxÞ¼ pjðxÞ. Therefore, this

positivity-preserving limiter is active only in the dry or nearly dry region.

For high order time discretizations, we need to apply the limiter in each stage

for a Runge–Kutta method or in each step for a multistep method. To be effi-

cient, we could implement the time step restriction (33) only when a prelimi-

nary calculation to the next time step produces negative water height.

This limiter has also been extended to two-dimensional SWEs on unstructured

triangular meshes (Xing and Zhang, 2013).

4 SHALLOW WATER-RELATED MODELS

In the engineering and environmental applications, there are many physical

models that are related to the SWEs, but obtained in slightly different context

or assumptions. In this section, we will briefly discuss some numerical meth-

ods to solve these shallow water-related models.

4.1 Shallow Water Flows Through Channels With Irregular
Geometry

As simplified models of some free surface flows, the shallow water equations

for flows in an open channel with variable cross-section take the form of

Ht +Qx ¼ 0

Qt +
Q2

H
+ I1

� �

x

¼ I2�gsbhbx,
(37)
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where s0(x, z) is the breadth of the channel, sb(x) ¼ s0(x, b(x)) is the bottom

channel width, H¼ R h+ bb s0ðx,zÞdz is the cross-sectional wet area, and Q ¼ Hu

is the mass flow rate. I1 is given by I1 ¼ g
R h+ b
h ðh + b� zÞs0ðx,zÞdz which

equals to the cross-sectional average of the hydrostatic pressure multiplied

by H, and I2 ¼ g
R h+ b
h ðh + b� zÞs0xðx,zÞdz.

In the simplified case when the channel has rectangular cross-section, i.e.

s0(x, z) � s(x), the hydrostatic pressure can be written as a function of vari-

ables and the model becomes a system of standard conservation laws. We

have sb(x) ¼ s(x), H ¼ sh, I1 ¼ gsh2/2, I2 ¼ gsxh
2/2, and the model (37)

can be reduced to

Ht +Qx ¼ 0

Qt +
Q2

H
+
1

2
gsh2

� �

x

¼ 1

2
gh2sx�gshbx:

(38)

The system is hyperbolic and has two eigenvalues given by u� ffiffiffiffiffi
gh

p
. Note

that when the channel width s is a constant and independent of x, the model

(38) becomes the SWEs with a nonflat bottom topography. Like the SWEs,

the shallow water model (38) in rectangular channel admits the general

moving water and the still water steady-state solutions.

Well-balanced methods for the shallow water model in rectangular chan-

nel have been designed in Vazquez-Cendon (1999), Garcia-Navarro and

Vazquez-Cendon (2000), Balbas and Karni (2009), Hernández-Duenas and

Karni (2011), Murillo and Garcı́a-Navarro (2014) and Xing (2016), and an

extension of the positivity-preserving limiter in Section 3.3 to this model

has been studied in Xing (2016).

4.2 Shallow Water Equations on the Sphere

The SWEs on a rotating sphere have been known as a common test bed for

numerical methods used in modelling global atmospheric flows. They

describe the behaviour of a shallow homogeneous incompressible and inviscid

fluid layer, and present the major difficulties found in the horizontal aspects

of three-dimensional global atmospheric modelling. The SWEs on the sphere

can be written in the flux form of

ht +r 
 ðhuÞ¼ 0,

ðhuÞt +r 
 ðhu� uÞ+ ghrh¼�f k̂�hu�ghrb,
(39)

in the latitude–longitude coordinate, where the horizontal (on the sphere) vec-

tor velocity u has the longitudinal (l) component u and the latitudinal (y)
component v. The operators r and r
 are the spherical horizontal gradient

and divergence operators given by
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rð Þ¼ î

acosy
@

@l
ð Þ+ ĵ

a

@

@y
ð Þ, r 
 u¼ 1

acosy
@u

@l
+
@ðvcosyÞ

@y

� �
:

The longitudinal, latitudinal and outwards radial unit vectors are î, ĵ and k̂,

respectively, and a is the radius of the earth.

The intrinsic curvature properties of the spherical computational domain

lead to new numerical difficulties for the choice of the computational mesh.

Many successes have been observed using the traditional latitude–longitude
mesh (Williamson et al., 1992). To remove its disadvantage of pole-singularity,

other choices of meshes have been proposed and studied, including the

Yin–Yang mesh, cubed-sphere mesh, among others. Well-balanced and

positivity-preserving methods under these meshes, including spectral element,

finite volume, continuous low order finite elements and DG methods, have also

been investigated, and we refer to Taylor et al. (1997), Giraldo et al. (2002),

Nair et al. (2005), Verkley (2009), Ullrich et al. (2010) and Duben et al. (2012)

for recent development on numerical methods for the SWEs on the sphere.

4.3 Two-Layer Shallow Water Equations

One primary source of error in storm surge modelling is due to the fact that

the vertical structure is not taken into account by the single-layer depth aver-

aged SWEs. The multilayer SWEs have obtained increasing attention as a

model for primarily long wave phenomena where vertical structure plays an

important role in the flow. The two-layer SWEs are used to describe incom-

pressible flows in the shallow water regime, in the situation where two layers

with different densities can be identified. They appear in oceanographic mod-

els when a warm, light upper layer flows over a lower layer of cooler, heavier

water with larger salinity. In one dimension, they take the form of

ðh1Þt + ðh1u1Þx ¼ 0,

ðh1u1Þt + h1u
2
1 +

1

2
gh21

� �

x

¼�gh1bx�gh1ðh2Þx,

ðh2Þt + ðh2u2Þx ¼ 0,

ðh2u2Þt + h2u
2
2 +

1

2
gh22

� �

x

¼�gh2bx� rgh2ðh1Þx,

(40)

where h1, u1 denote the water height and velocity in upper layer, and h2, u2
denote the water height and velocity in lower layer. r ¼ r1/r2 is the ratio of

the layer densities.

Solving the two-layer SWEs is a challenging problem due to several rea-

sons: they are only conditionally hyperbolic; they contain nonconservative

product terms; they admit steady state to be exactly preserved; their water

heights should stay nonnegative, and their eigenstructure cannot be obtained
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in explicit form. Despite these difficulties, some numerical methods were

developed recently from different approaches to overcome some of these dif-

ficulties. We refer to Kurganov and Petrova (2009), Abgrall and Karni (2009),

Bouchut and de Luna (2008), Bouchut and Zeitlin (2010), Mandli (2013) and

references therein for the details.

5 CONCLUSION REMARKS

In this chapter, we provide an overview of some numerical schemes, includ-

ing finite difference, finite volume schemes and finite element DG methods

for the SWEs. We have discussed two commonly encountered difficulties in

simulating SWEs numerically and presented well-balanced methods and

positivity-preserving methods to overcome these challenges. A list of shallow

water-related models, as well as some numerical methods for them, has also

been shown at the end. The numerical methods reviewed in this chapter can

be very useful to model, simulate and help us understand the scientific and

engineering applications related to the shallow water flows.
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Castro, M.J., López-Garcı́a, J.A., Paŕes, C., 2013. High order exactly well-balanced numerical

methods for shallow water systems. J. Comput. Phys. 246, 242–264.

Cockburn, B., Shu, C.-W., 1989. TVB Runge-Kutta local projection discontinuous Galerkin finite

element method for conservation laws II: general framework. Math. Comput. 52, 411–435.

Cockburn, B., Lin, S.-Y., Shu, C.-W., 1989. TVB Runge-Kutta local projection discontinuous

Galerkin finite element method for conservation laws III: one dimensional systems.

J. Comput. Phys. 84, 90–113.

Crnjaric-Zic, N., Vukovic, S., Sopta, L., 2004. Balanced finite volume WENO and central WENO

schemes for the shallow water and the open-channel flow equations. J. Comput. Phys.

200, 512–548.

Dawson, C., Proft, J., 2002. Discontinuous and coupled continuous/discontinuous Galerkin meth-

ods for the shallow water equations. Comput. Methods Appl. Mech. Eng. 191, 4721–4746.

Delis, A., Katsaounis, N., 2003. Relaxation schemes for the shallow water equations. Int. J.

Numer. Methods Fluids 41, 695–719.

Duben, P., Korn, P., Aizinger, V., 2012. A discontinuous/continuous low order finite element

shallow water model on the sphere. J. Comput. Phys. 231, 2396–2413.

Ern, A., Piperno, S., Djadel, K., 2008. A well-balanced Runge-Kutta discontinuous Galerkin

method for the shallow-water equations with flooding and drying. Int. J. Numer. Methods

Fluids 58, 1–25.

Eskilsson, C., Sherwin, S.J., 2004. A triangular spectral/hp discontinuous Galerkin method for

modelling 2D shallow water equations. Int. J. Numer. Methods Fluids 45, 605–623.

Fjordholm, U., Mishra, S., Tadmor, E., 2011. Well-balanced and energy stable schemes for the

shallow water equations with discontinuous topography. J. Comput. Phys. 230, 5587–5609.

Numerical Methods for the Nonlinear Shallow Water Equations Chapter 13 381

http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0055
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0055
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0060
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0060
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0065
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0065
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0070
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0070
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0070
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0075
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0075
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0075
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0080
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0080
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0085
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0085
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0090
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0090
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0090
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0095
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0095
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0095
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0095
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0100
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0100
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0100
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0100
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0105
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0105
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0110
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0110
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0115
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0115
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0115
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0120
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0120
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0120
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0125
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0125
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0130
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0130
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0135
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0135
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0140
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0140
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0140
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0145
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0145
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0150
http://refhub.elsevier.com/S1570-8659(16)30012-6/rf0150


Gallardo, J.M., Par�es, C., Castro, M., 2007. On a well-balanced high-order finite volume

scheme for shallow water equations with topography and dry areas. J. Comput. Phys.

227, 574–601.
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