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Abstract

Shallow water equations with nonflat bottom have steady state solutions in which the flux gradients are nonzero but

exactly balanced by the source term. It is a challenge to design genuinely high order accurate numerical schemes which

preserve exactly these steady state solutions. In this paper we design high order finite difference WENO schemes to this

system with such exact conservation property (C-property) and at the same time maintaining genuine high order accu-

racy. Extensive one and two dimensional simulations are performed to verify high order accuracy, the exact C-property,

and good resolution for smooth and discontinuous solutions.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The shallow water equations, also referred to as the Saint-Venant system, are widely used to model flows

in rivers and coastal areas. It has wide applications in ocean and hydraulic engineering: tidal flows in estu-

ary and coastal water region; bore wave propagation; and river, reservoir, and open channel flows, among
others. This system describes the flow as a conservation law with additional source terms. We consider the

system with a geometrical source term due to the bottom topology. In one space dimension, it takes the

form
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ht þ ðhuÞx ¼ 0;

ðhuÞt þ hu2 þ 1

2
gh2

� �
x

¼ �ghbx;
ð1:1Þ
where h denotes the water height, u is the velocity of the fluid, b(x) represents the bottom topography and g

is the gravitational constant. In the homogeneous case, the system is equivalent to that of the isentropic

Euler system. However, the properties of the system change a lot due to the presence of the source term.

The above system is quite simple in the sense that only the topography of the bottom is taken into account,
but other terms could also be added in order to include effects such as friction on the bottom and on the

surface as well as variations of the channel width.

Research on numerical methods for the solution of the shallow water system has attracted much atten-

tion in the past two decades. Many numerical schemes have been developed to solve this system. Similar to

other balance laws, this system admits stationary solutions in which nonzero flux gradients are exactly bal-

anced by the source terms in the steady state case. Such cases, along with their perturbations, are very dif-

ficult to capture numerically. A straightforward treatment of the source terms will fail to preserve this

balance.
A significant result in computing such solutions is given by Bermudez and Vazquez [2]. They have pro-

posed the idea of the ‘‘exact C-property’’, which means that the scheme is ‘‘exact’’ when applied to the sta-

tionary case h + b = constant and hu = 0. This property is necessary for maintaining the above balance. A

good scheme for shallow water system should satisfy this property. Also, they have introduced the Q-

scheme and the idea of source term upwinding. LeVeque [12] has introduced a quasi-steady wave propaga-

tion algorithm. A Riemann problem is introduced in the center of each grid cell such that the flux difference

exactly cancels the source term. Zhou et al. [24] use the surface gradient method for the treatment of the

source terms. They use h + b for the reconstruction instead of using h. Russo [16] and Kurganov and Levy
[11] apply finite volume central-upwind schemes to this system, keeping higher order accuracy for the flux

term and second order accuracy for the source term. Recently, Vukovic and Sopta [21] have used the essen-

tially nonoscillatory (ENO) and weighted ENO (WENO) schemes for this problem. They applied WENO

reconstruction not only to the flux but also to a combination of the flux and the source term. For related

work, see also [10,14,23,8,7,6].

Most of the works mentioned above are for numerical schemes of at most second order accuracy.

There is a fundamental difficulty in maintaining genuine high order accuracy for the general solutions

and at the same time achieving the exact C-property. The work mentioned above which addresses this
issue is [21], see also [22,3]. The schemes in [21,22] are high order accurate for solutions of certain spe-

cific forms, but seem to be still only second order accurate for the general solutions based on trunca-

tion error analysis. The main objective of this paper is to design a WENO finite difference scheme

which maintains the exact C-property and at the same time is genuinely high order accurate for the

general solutions of the shallow water equations, via a special splitting of the source term into two

parts which are discretized separately. For a related work using a different idea, see [4]. The specific

WENO scheme we use is the fifth order finite difference scheme introduced by Jiang and Shu [9]. It

uses a convex combination of three candidate stencils, each producing a third order accurate flux, to
obtain fifth order accuracy and an essentially nonoscillatory shock transition. Time discretization can

be implemented by the TVD Range–Kutta method [18]. For more details of WENO schemes, we refer

to [9,17].

This paper is organized as follows. In Section 2, we give a brief review of the finite difference WENO

schemes for the homogeneous conservation laws. The WENO scheme which maintains the exact C-prop-

erty and at the same time is genuinely high order accurate for the general solutions of the shallow water

equations is presented in Section 3. Sections 4 and 5 contain extensive numerical simulation results to dem-

onstrate the behavior of our WENO schemes for one and two dimensional shallow water equations,
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verifying high order accuracy, the exact C-property, and good resolution for smooth and discontinuous

solutions. Concluding remarks are given in Section 6.
2. A review of high order finite difference WENO schemes

In this section we give a short overview of the finite difference WENO schemes. For more details, we

refer to [13,9,1,17–19].

First, we consider a scalar hyperbolic conservation law equation in one dimension
ut þ f ðuÞx ¼ 0
with a positive wind direction f 0(u) P 0. For a finite difference scheme, we evolve the point values ui at mesh

points xi in time. We assume the mesh is uniform with mesh size Dx for simplicity. The spatial derivative

f(u)x is approximated by a conservative flux difference
f ðuÞxjx¼xi
� 1

Dx
f̂ iþ1

2
� f̂ i�1

2

� �
: ð2:1Þ
The numerical flux f̂ iþ1
2
is computed through the neighboring point values fj = f(uj). For a (2k � 1)th order

WENO scheme, we first compute k numerical fluxes
f̂
ðrÞ
iþ1

2
¼

Xk�1

j¼0

crjfi�rþj; r ¼ 0; . . . ; k � 1;
corresponding to k different candidate stencils Sr(i) = {xi�r, . . . , xi�r+k�1}, r = 0, . . . , k � 1. Each of these k

numerical fluxes is kth order accurate. For example, when k = 3 (fifth order WENO scheme), the three third

order accurate numerical fluxes are given by
f̂
ð0Þ
iþ1=2 ¼

1

3
fi þ

5

6
fiþ1 �

1

6
fiþ2;

f̂
ð1Þ
iþ1=2 ¼ � 1

6
fi�1 þ

5

6
fi þ

1

3
fiþ1;

f̂
ð2Þ
iþ1=2 ¼

1

3
fi�2 �

7

6
fi�1 þ

11

6
fi:
The (2k � 1)th order WENO flux is a convex combination of all these k numerical fluxes
f̂ iþ1
2
¼

Xk�1

r¼0

wrf̂
ðrÞ
iþ1

2
:

The nonlinear weights wr satisfy wr P 0,
Pk�1

r¼0wr ¼ 1, and are defined in the following way:
wr ¼
arPk�1

s¼0as
; ar ¼

dr

ðeþ brÞ
2
: ð2:2Þ
Here dr are the linear weights which yield (2k � 1)th order accuracy, br are the so-called ‘‘smoothness indi-

cators’’ of the stencil Sr(i) which measure the smoothness of the function f(u(x)) in the stencil. e is a small

constant used to avoid the denominator to become zero and is typically taken as 10�6. For example, when

k = 3 (fifth order WENO scheme), the linear weights are given by
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d0 ¼
3

10
; d1 ¼

3

5
; d2 ¼

1

10
;

and the smoothness indicators are given by
b0 ¼
13

12
fi � 2f iþ1 þ fiþ2

� �2 þ 1

4
3f i � 4f iþ1 þ fiþ2

� �2
;

b1 ¼
13

12
fi�1 � 2f i þ fiþ1ð Þ2 þ 1

4
fi�1 � fiþ1ð Þ2;

b2 ¼
13

12
fi�2 � 2f i�1 þ fið Þ2 þ 1

4
fi�2 � 4f i�1 þ 3f ið Þ2:
The procedure for the case with f 0(u) 6 0 is mirror symmetric with respect to iþ 1
2
. More details can be

found in [9,17].

An upwinding mechanism, essential for the stability of the scheme, can be realized by a global ‘‘flux split-
ting’’. The simplest one is the Lax–Friedrichs splitting:
f �ðuÞ ¼ 1

2
ðf ðuÞ � auÞ; ð2:3Þ
where a is taken as a = maxujf 0(u)j. The WENO procedure is applied to f ± individually with upwind biased

stencils. Depending on whether the max is taken globally (along the line of computation) or locally, such

schemes are referred to as the Lax–Friedrichs WENO scheme (WENO-LF) or the local Lax–Friedrichs
WENO scheme (WENO-LLF).

For hyperbolic systems such as the shallow water equations, we use the local characteristic decomposi-

tion, which is more robust than a component by component version. First, we compute an average state uiþ1
2

between ui and ui+1, using either the simple arithmetic mean or a Roe�s average [15]. The right eigenvectors
rm and the left eigenvectors lm of the Jacobian f 0ðuiþ1

2
Þ are needed for the local characteristic decomposition.

The WENO procedure is used on
v�j ¼ R�1f �
j ; j in a neighborhood of i; ð2:4Þ
where R = (r1, . . . , rn) is the matrix whose columns are the right eigenvectors of f 0ðuiþ1
2
Þ. The numerical

fluxes v̂�iþ1
2
thus computed are then projected back into the physical space by left multiplying with R, yielding

finally the numerical fluxes in the physical space.

With the numerical fluxes f̂ iþ1
2
, f(u)x is approximated by (2.1) to high order accuracy at x = xi. Together

with a TVD high order Runge–Kutta time discretization [18], this completes a high order WENO scheme.

Multidimensional problems are handled in the same fashion, with each derivative approximated along the

line of the relevant variable. Again, we refer to [9,17] for further details.
3. A balance of the flux and the source term

In this section we design a finite difference high order WENO-LF scheme for the shallow water equa-

tion, with the objective of keeping the exact C-property without reducing the high order accuracy of the

scheme. The scheme reduces to the original WENO-LF scheme described in the previous section when

the bottom is flat (bx = 0). We start with the description in the one dimensional case. First, we split the

source term into two separate terms in the discretization and prove, if written in this form, any linear

scheme can maintain the exact C-property. Next, we apply the nonlinear WENO procedure with a small
modification and prove that it can also maintain the exact C-property without losing high order

accuracy.
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We now describe the details. For the shallow water equation (1.1), we split the source term �ghbx into

two terms ð1
2
gb2Þx � gðhþ bÞbx. Hence the equations become
ht þ ðhuÞx ¼ 0;

ðhuÞt þ hu2 þ 1

2
gh2

� �
x

¼ 1

2
gb2

� �
x

� gðhþ bÞbx;
ð3:1Þ
which will be denoted by
Ut þ f ðUÞx ¼ G1 þ G2; ð3:2Þ

where U = (h, hu)T with the superscript �T� denoting the transpose, f(U) is the flux term and G1, G2 are the

two source terms.

As we will see below, the special splitting of the source term in (3.1) is crucial for the design of our

high order schemes satisfying the exact C-property. It should be noted that the two derivative terms on

the right-hand side of (3.1) involve only known functions, not the solution h and u. It is important not

to include any derivatives of the unknown solution h and u on the right-hand side source term. Other-
wise, conservation and convergence towards weak solutions will be problematic for discontinuous

solutions.

As usual, we define a linear finite difference operator D to be one satisfying D(af1 +

bf2) = aD(f1) + bD(f2) for constants a, b and arbitrary grid functions f1 and f2. A scheme for (3.1) is said

to be a linear scheme if all the spatial derivatives are approximated by linear finite difference operators.

For the still water stationary solution of (3.1), we have
hþ b ¼ constant and hu ¼ 0: ð3:3Þ

For any consistent linear scheme, the first equation (hu)x = 0 is satisfied exactly since hu = 0. The second

equation has the truncation error
D1 hu2 þ 1

2
gh2

� �
� D2

1

2
gb2

� �
þ gðhþ bÞD3ðbÞ;
where D1, D2 and D3 are linear finite difference operators. Since hu = 0, this truncation error reduces to
D1

1

2
gh2

� �
� D2

1

2
gb2

� �
þ gðhþ bÞD3ðbÞ:
We further restrict our attention to linear schemes which satisfy
D1 ¼ D2 ¼ D3 ¼ D ð3:4Þ

for the still water stationary solutions. For such linear schemes we have

Proposition 3.1. Linear schemes for the shallow water equation (3.1) satisfying (3.4) for the still water

stationary solutions (3.3) can maintain the exact C-property.

Proof. For still water stationary solutions (3.3), linear schemes satisfying (3.4) is exact for the first equation

(hu)x = 0, and the truncation error for the second equation reduces to
D
1

2
gh2

� �
� D

1

2
gb2

� �
þ gðhþ bÞDðbÞ ¼ D

1

2
gh2 � 1

2
gb2 þ gðhþ bÞb

� �
¼ D

1

2
gðhþ bÞ2

� �
¼ 0;
where the first equality is due to the linearity of D and the fact that h + b = constant; the second
equality is just a simple regrouping of terms inside the parenthesis, and the last equality is due to

the fact that h + b = constant and the consistency of the finite difference operator D. This finishes

the proof. h



Y. Xing, C.-W. Shu / Journal of Computational Physics 208 (2005) 206–227 211
Of course, the high order finite difference WENO schemes described in the previous section are nonlin-

ear. The nonlinearity comes from the nonlinear weights, which in turn comes from the nonlinearity of the

smooth indicators br measuring the smoothness of the functions f+ and f�. We would like to make minor

modifications to these high order finite difference WENO schemes, so that the exact C-property is main-

tained and accuracy and nonlinear stability are not affected.
To present the basic ideas, we first consider the situation when the WENO scheme is used without the

flux splitting and the local characteristic decomposition. In this case the smoothness indicators br measure

the smoothness of each component of the flux function f(U). The first equation in (3.1) does not cause a

problem for the still water solution, as hu = 0 and the consistent WENO approximation to (hu)x is exact.

For the second equation in (3.1), there are three derivative terms, ðhu2 þ 1
2
gh2Þx, ð12 gb

2Þx and bx, that must be

approximated. The approximation to the flux derivative term ðhu2 þ 1
2
gh2Þx proceeds as before using the

WENO approximation. We notice that the WENO approximation to dx where d ¼ hu2 þ 1
2
gh2 can be even-

tually written out as
dxjx¼xi
�

Xr

k¼�r

akdiþk � DdðdÞi; ð3:5Þ
where r = 3 for the fifth order WENO approximation and the coefficients ak depend nonlinearly on the

smoothness indicators involving the grid function d. The key idea now is to use the difference operator

Dd with d ¼ hu2 þ 1
2
gh2 fixed, namely to use the same coefficients ak obtained through the smoothness indi-

cators of d ¼ hu2 þ 1
2
gh2, and apply this difference operator Dd to approximate ð1

2
gb2Þx and bx in the source

terms. Thus
1

2
gb2

� �
x

����
x¼xi

�
Xr

k¼�r

ak
1

2
gb2

� �
iþk

� Dd
1

2
gb2

� �
i

;

bxjx¼xi
�

Xr

k¼�r

akbiþk � DdðbÞi:
Clearly, the finite difference operator Dd, obtained from the fifth order WENO procedure, is a fifth order

accurate approximation to the first derivative on any grid function, thus our approximation to the source

terms is also fifth order accurate. The approximation of ð1
2
gb2Þx can even be absorbed together with the

approximation of the flux derivative term ðhu2 þ 1
2
gh2Þx in actual implementation to save cost (of course,

the smoothness indicators to determine the nonlinear weights in the approximation would still be based

on hu2 þ 1
2
gh2). A key observation is that the finite difference operator Dd, with the coefficients ak based

on the smoothness indicators of d ¼ hu2 þ 1
2
gh2 fixed, is a linear operator on any grid functions, i.e.,
Ddðaf 1 þ bf 2Þ ¼ aDdðf1Þ þ bDdðf2Þ
for constants a, b and arbitrary grid functions f1 and f2. Thus the proof of Proposition 3.1 will go through

and we can prove that the component-wise WENO scheme, without the flux splitting or local characteristic
decomposition, and with the special handling of the source terms described above, maintains exactly the

C-property.

Next, we look at the situation when the local characteristic decomposition is invoked in the WENO pro-

cedure. When computing the numerical flux at xiþ1
2
, the local characteristic matrix R, consisting of the right

eigenvectors of the Jacobian at uiþ1
2
, is fixed, and neighboring point values of the grid functions needed for

computing the numerical flux is projected to the local characteristic fields determined by R�1. Therefore,

(3.5) still holds, with d ¼ ðhu; hu2 þ 1
2
gh2ÞT now being a vector grid function and ak are 2 · 2 matrices

depending nonlinearly on the smoothness indicators involving the grid function d. The key idea is still
to use the difference operator Dd with d ¼ ðhu; hu2 þ 1

2
gh2ÞT fixed, and apply it to approximate ð0; 1

2
gb2ÞTx
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and ð0; bÞTx in the source terms. In actual implementation, we can still absorb the approximation of

ð0; 1
2
gb2ÞTx into that of the flux derivative term ðhu; hu2 þ 1

2
gh2ÞTx to save computational cost. The remaining

arguments stay the same as above, and we can prove that the WENO scheme with a local characteristic

decomposition, but without the flux splitting, and with the special handling of the source terms described

above, maintains exactly the C-property.
Finally, we consider WENO schemes with a Lax–Friedrichs flux splitting, such as the WENO-LF and

WENO-LLF schemes. Now the flux f(U) is written as a sum of f+(U) and f�(U), defined by
f �ðUÞ ¼ 1

2

hu

hu2 þ 1
2
gh2

� �
� ai

h

hu

� �� 	
ð3:6Þ
for the ith characteristic field, where ai = maxujki(u)j with ki(u) being the ith eigenvalue of the Jacobian

f 0(U), see [9,17] for more details. We now make a modification to this flux splitting, by replacing

�ai
h
hu

� �
in (3.6) with �ai

hþ b
hu

� �
. The flux splitting (3.6) now becomes� � � �� 	
f �ðUÞ ¼ 1

2

hu

hu2 þ 1
2
gh2

� ai
hþ b

hu
: ð3:7Þ
This modification is justified since b does not depend on the time t, hence the first equation in (1.1) can

also be considered as an evolution equation for h + b instead of for h. Similar techniques are used in the

surface gradient method by Zhou et al. [24]. Our motivation for using �ai
hþ b
hu

� �
instead of the original

�ai
h
hu

� �
in the flux splitting, is that the former becomes a constant vector for the still water stationary

solution (3.3). Thus for this still water stationary solution, by the consistency of the WENO approximation,

the effect of this viscosity term �ai
hþ b
hu

� �
towards the approximation of f(U)x is zero. Clearly, (3.5) can

represent the flux splitting WENO approximation, with a simple splitting f �ðUÞ ¼ 1
2
f ðUÞ, with

d ¼ ðhu; hu2 þ 1
2
gh2ÞT being a vector grid function and ak being 2 · 2 matrices depending nonlinearly on

the smoothness indicators involving the grid function f±(U) in (3.7). What we have shown above is that,

for the still water stationary solution, this is also the flux splitting WENO approximation with the modified

Lax-Friedrich flux splitting (3.7). As before, the key idea now is to use the difference operator Dd in (3.5)

with smoothness indicators, hence the nonlinear weights obtained from f±(U) in (3.7) fixed, and apply it to
approximate ð0; 1

2
gb2ÞTx and ð0; bÞTx in the source terms. This amounts to split also the two derivatives in the

source terms as
0
1
2
gb2

� �
x

¼ 1

2

0
1
2
gb2

� �
x

þ 1

2

0
1
2
gb2

� �
x

;
0

b

� �
x

¼ 1

2

0

b

� �
x

þ 1

2

0

b

� �
x

; ð3:8Þ
and apply the same flux split WENO procedure to approximate them, namely, one half of each source

term is approximated by the difference operator with coefficients ak obtained from the computation of f+,

and the remaining part by the difference operator with coefficients ak obtained from the computation of

f�. In actual implementation, we can still absorb the approximation of ð0; 1
2
gb2ÞTx into that of the flux

derivative term ðhu; hu2 þ 1
2
gh2ÞTx to save computational cost. The remaining arguments stay the same

as above, and we can prove that the WENO scheme with a local characteristic decomposition and a flux
splitting (3.7), and with the special handling of the source terms described above, maintains exactly the

C-property.

We now summarize the complete procedure of the high order finite difference WENO-LF or WENO-

LLF scheme with a local characteristic decomposition and a flux splitting, for solving the shallow water

equation (1.1):
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1. Split the source term and write the equation in the form (3.1).

2. Perform the usual WENO-LF or WENO-LLF approximation on the flux derivative
hu

hu2 þ 1
2
gh2

� �
x

,

with a modified flux splitting (3.7) and using the local characteristic decomposition.

3. Split the two derivative terms in the source terms on the right-hand side of (3.1) as in (3.8), and perform

the same WENO approximation which is used in step 2 above, using the local characteristic decompo-
sition and the same nonlinear weights, to approximate these two derivative terms. In actual implemen-

tation, the approximation of the first derivative term
0

1
2
gb2

� �
x

can be absorbed into the approximation

of the flux derivative
hu

hu2 þ 1
2
gh2

� �
x

, to save computational cost.

4. Add up the residues and forward in time.

With this computational procedure, we have already shown above the exact C-property and high order

accuracy.

Proposition 3.2. The WENO-LF or WENO-LLF schemes as stated above can maintain the exact C-property

and their original high order accuracy.

Even though we have described the algorithm using the WENO-LF and WENO-LLF flux splitting form,

the algorithm can clearly also be defined with the same properties for other finite difference WENO schemes

in [9,17], such as WENO-Roe and WENO-Roe with an entropy fix.
4. One dimensional numerical results

In this section we present numerical results of our fifth order finite difference WENO-LF scheme satis-

fying the exact C-property for the one dimensional shallow water equation (1.1). In all the examples, time

discretization is by the classical fourth order Runge–Kutta method, and the CFL number is taken as 0.6,

except for the accuracy tests where smaller time step is taken to ensure that spatial errors dominate. The

gravitation constant g is taken as 9.812 m/s2.

4.1. Test for the exact C-property

The purpose of the first test problem is to verify that the scheme indeed maintains the exact C-property

over a nonflat bottom. We choose two different functions for the bottom topography given by (0 6 x 6 10):
bðxÞ ¼ 5e�
2
5
ðx�5Þ2 ; ð4:1Þ
which is smooth, and
bðxÞ ¼
4 if 4 6 x 6 8;

0 otherwise;



ð4:2Þ
which is discontinuous. The initial data is the stationary solution:
hþ b ¼ 10; hu ¼ 0:
This steady state should be exactly preserved. We compute the solution until t = 0.5 using N = 200 uniform

mesh points. The computed surface level h + b and the bottom b for (4.1) are plotted in Fig. 1. In order to

demonstrate that the exact C-property is indeed maintained up to round-off error, we use single precision,

double precision and quadruple precision to perform the computation, and show the L1 and L1 errors for
the water height h (note: h in this case is not a constant function!) and the discharge hu in Tables 1 and 2 for
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Fig. 1. The surface level h + b and the bottom b for the stationary flow over a smooth bump.

Table 1

L1 and L1 errors for different precisions for the stationary solution with a smooth bottom (4.1)

Precision L1 error L1 error

h hu h hu

Single 3.13E�07 1.05E�05 9.54E�07 4.85E�05

Double 1.24E�15 2.34E�14 7.11E�15 8.65E�14

Quadruple 1.62E�33 2.11E�32 6.16E�33 8.74E�32

Table 2

L1 and L1 errors for different precisions for the stationary solution with a nonsmooth bottom (4.2)

Precision L1 error L1 error

h hu h hu

Single 2.28E�07 3.61E�06 1.91E�06 2.37E�05

Double 1.14E�15 9.05E�15 3.55E�15 4.46E�14

Quadruple 1.30E�33 1.40E�32 4.62E�33 5.64E�32
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the two bottom functions (4.1) and (4.2) and different precisions. We can clearly see that the L1 and L1

errors are at the level of round-off errors for different precisions, verifying the exact C-property.

We have also computed stationary solutions using initial conditions which are not the steady state solu-

tions and letting time evolve into a steady state, obtaining similar results with the exact C-property.
4.2. Testing the orders of accuracy

In this example we will test the fifth order accuracy of our scheme for a smooth solution. There are some
known exact solutions (in closed form) to the shallow water equation with nonflat bottom in the literature,

e.g. [21], but these solutions have special properties, making the leading terms in the truncation errors of



Table 3

L1 errors and numerical orders of accuracy for the example in Section 4.3

No. of points CFL Balanced WENO Original WENO

h hu h hu

L1 error Order L1 error Order L1 error Order L1 error Order

25 0.6 1.70E�02 1.06E�01 1.96E�02 1.02E�01

50 0.6 2.17E�03 2.97 1.95E�02 2.45 2.46E�03 2.99 1.82E�02 2.49

100 0.6 3.33E�04 2.71 2.83E�03 2.78 3.19E�04 2.95 2.79E�03 2.70

200 0.6 2.36E�05 3.82 2.04E�04 3.80 2.50E�05 3.67 2.18E�04 3.68

400 0.6 9.67E�07 4.61 8.38E�06 4.61 1.03E�06 4.59 9.07E�06 4.59

800 0.6 3.38E�08 4.84 2.94E�07 4.83 3.61E�08 4.84 3.15E�07 4.85

1600 0.4 1.08E�09 4.97 9.34E�09 4.97 1.15E�09 4.97 1.00E�08 4.98

‘‘Balanced WENO’’ refers to the WENO scheme with exact C-property and ‘‘original WENO’’ refers to the WENO scheme with the

source terms directly added as point values at the grids.
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many schemes vanish, hence they are not generic test cases for accuracy. We have therefore chosen to use

the following bottom function and initial conditions:
bðxÞ ¼ sin2ðpxÞ; hðx; 0Þ ¼ 5þ ecosð2pxÞ; ðhuÞðx; 0Þ ¼ sinðcosð2pxÞÞ; x 2 ½0; 1�

with periodic boundary conditions. Since the exact solution is not known explicitly for this case, we use the

same fifth order WENO scheme with N = 25,600 points to compute a reference solution, and treat this ref-

erence solution as the exact solution in computing the numerical errors. We compute up to t = 0.1 when the

solution is still smooth (shocks develop later in time for this problem). Table 3 contains the L1 errors and

numerical orders of accuracy. We can clearly see that fifth order accuracy is achieved for this example. For

comparison, we also list the L1 errors and numerical orders of accuracy when the original fifth order

WENO scheme [9] with the source term directly added to the residue as a point value at the grid xi (hence
not a C-property satisfying scheme) is used on the same problem. We can clearly see that the errors of the

two schemes are comparable. For this problem, the solution is far from a still water stationary solution,

hence our exact C-property satisfying WENO scheme is not expected to have an advantage in accuracy.

Table 3 shows that it does not have a disadvantage either comparing with the traditional WENO scheme

using point value treatment of source terms.
4.3. A small perturbation of a steady-state water

The following quasi-stationary test case was proposed by LeVeque [12]. It was chosen to demonstrate the

capability of the proposed scheme for computations on a rapidly varying flow over a smooth bed, and the

perturbation of a stationary state.

The bottom topography consists of one hump:
bðxÞ ¼
0:25ðcosð10pðx� 1:5ÞÞ þ 1Þ if 1:4 6 x 6 1:6;

0 otherwise:



ð4:3Þ
The initial conditions are given with
ðhuÞðx; 0Þ ¼ 0 and hðx; 0Þ ¼
1� bðxÞ þ � if 1:1 6 x 6 1:2;

1� bðxÞ otherwise;



ð4:4Þ
where � is a nonzero perturbation constant. Two cases have been run: � = 0.2 (big pulse) and � = 0.001

(small pulse). Theoretically, for small �, this disturbance should split into two waves, propagating left
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and right at the characteristic speeds �
ffiffiffiffiffi
gh

p
. Many numerical methods have difficulty with the calculations

involving such small perturbations of the water surface [12]. Both sets of initial conditions are shown in Fig.
2. The solution at time t = 0.2 s for the big pulse � = 0.2, obtained on a 200 cell uniform grid with simple

transmissive boundary conditions, and compared with a 3000 cell solution, is shown in Fig. 3. The one for

the small pulse � = 0.001 is shown in Fig. 4. For this small pulse problem, we take e = 10�9 in the WENO

weight formula (2.2), such that it is smaller than the square of the perturbation. At this time, the down-

stream-traveling water pulse has already passed the bump. In the figures, we can clearly see that there

are no spurious numerical oscillations, verifying the essentially nonoscillatory property of the modified

WENO-LF scheme.

4.4. The dam breaking problem over a rectangular bump

In this example we simulate the dam breaking problem over a rectangular bump, which involves a rap-

idly varying flow over a discontinuous bottom topography. This example was used in [21].
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The bottom topography takes the form:
Fig. 5.

with th
bðxÞ ¼
8 if jx� 750j 6 1500=8;

0 otherwise



ð4:5Þ
for x 2 [0, 1500]. The initial conditions are
ðhuÞðx; 0Þ ¼ 0 and hðx; 0Þ ¼
20� bðxÞ if x 6 750;

15� bðxÞ otherwise:



ð4:6Þ
The numerical results with 500 uniform points (and a comparison with the results using 5000 uniform

points) are shown in Figs. 5 and 6, with two different ending time t = 15 s and t = 60 s. In this example,

the water height h(x) is discontinuous at the points x = 562.5 and x = 937.5, while the surface level

h(x) + b(x) is smooth there. Our scheme works well for this example, giving well resolved, nonoscillatory

solutions using 500 points which agree with the converged results using 5000 points.
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4.5. Steady flow over a hump

The purpose of this test case is to study the convergence in time towards steady flow over a bump. These

are classical test problems for transcritical and subcritical flows, and they are widely used to test numerical

schemes for shallow water equations. For example, they have been considered by the working group on dam

break modeling [5], and have been used as a test case in, e.g., [20].

The bottom function is given by
bðxÞ ¼ 0:2� 0:05ðx� 10Þ2 if 8 6 x 6 12;

0 otherwise

(
ð4:7Þ
for a channel of length 25 m. The initial conditions are taken as
hðx; 0Þ ¼ 0:5� bðxÞ and uðx; 0Þ ¼ 0:
Depending on different boundary conditions, the flow can be subcritical or transcritical with or without a

steady shock. The computational parameters common for all three cases are: uniform mesh size

Dx = 0.125 m, ending time t = 200 s. Analytical solutions for the various cases are given in [5].

(a) Transcritical flow without a shock.

� upstream: The discharge hu = 1.53 m3/s is imposed.

� downstream: The water height h = 0.66 m is imposed when the flow is subcritical.

The surface level h + b and the discharge hu, as the numerical flux for the water height h in Eq. (1.1),

are plotted in Fig. 7, which show very good agreement with the analytical solution. The correct cap-
turing of the discharge hu is usually more difficult than the surface level h + b, as noticed by many

authors. In Fig. 8, we compare the pointwise errors of the numerical solutions obtained with 200

and 400 uniform grid points. The convergence history, measured by the L1 norm of the residue, is given

in Fig. 9, left.
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(b) Transcritical flow with a shock.

� upstream: The discharge hu = 0.18 m3/s is imposed.

� downstream: The water height h = 0.33 m is imposed.

In this case, the Froude number Fr ¼ u=
ffiffiffiffiffi
gh

p
increases to a value larger than one above the bump, and then

decreases to less than one. A stationary shock can appear on the surface. The surface level h + b and the

discharge hu, as the numerical flux for the water height h in Eq. (1.1), are plotted in Fig. 10, which show

nonoscillatory results in good agreement with the analytical solution. In Fig. 11, we compare the pointwise

errors of the numerical solutions obtained with 200 and 400 uniform grid points. The convergence history,

measured by the L1 norm of the residue, is given in Fig. 9, right.
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(c) Subcritical flow.

� upstream: The discharge hu = 4.42 m3/s is imposed.

� downstream: The water height h = 2 m is imposed.

This is a subcritical flow. The surface level h + b and the discharge hu, as the numerical flux for the water

height h in Eq. (1.1), are plotted in Fig. 12, which are in good agreement with the analytical solution. In Fig.
13, we compare the pointwise errors of the numerical solutions obtained with 200 and 400 uniform grid

points.
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4.6. The tidal wave flow

This example was used in [2], in which an almost exact solution (a very good asymptotically derived

approximation) was given. We use this example to further test our scheme.

The bottom is defined by
bðxÞ ¼ 10þ 40x
L

þ 10 sin p
4x
L
� 1

2

� �� �
;

where L = 14,000 m is the channel length. If we take the initial and boundary conditions as
hðx; 0Þ ¼ 60:5� bðxÞ; ðhuÞðx; 0Þ ¼ 0;
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hð0; tÞ ¼ 64:5� 4 sin p
4t

86; 400
þ 1

2

� �� �
; ðhuÞðL; tÞ ¼ 0;
a very accurate approximate solution, based on the asymptotic analysis, can be given by [2]
hðx; tÞ ¼ 64:5� bðxÞ � 4 sin p
4t

86; 400
þ 1

2

� �� �
and
ðhuÞðx; tÞ ¼ ðx� LÞp
5400

cos p
4t

86; 400
þ 1

2

� �� �
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We use a uniform mesh size Dx = 70 m. A comparison of the numerical and analytical results at

t = 7552.13 s is shown in Fig. 14. Their agreements are very good.
5. Two dimensional shallow water systems

A major advantage of the high order finite difference WENO schemes is that it is straightforward to ex-

tend them to multiple space dimensions, by simply approximating each spatial derivative along the relevant

coordinate. It turns out that it is also straightforward to extend the high order finite difference WENO

schemes with the exact C-property developed in Section 3 to two dimensions. The shallow water system

in two space dimensions takes the form:
ht þ ðhuÞx þ ðhvÞy ¼ 0;

ðhuÞt þ hu2 þ 1

2
gh2

� �
x

þ ðhuvÞy ¼ �ghbx;

ðhvÞt þ ðhuvÞx þ hv2 þ 1

2
gh2

� �
y

¼ �ghby ;

ð5:1Þ
where again h is the water height, (u, v) is the velocity of the fluid, b(x, y) represents the bottom topography
and g is the gravitational constant.

Finite difference WENO schemes are very easy to be extended to multidimensional cases. The conserva-

tive approximation to the derivative from point values is as simple in multi dimensions as in one dimension.

In fact, for fixed j, if we take w(x) = f(u(x, yj)), then we only need to perform the one dimensional WENO

approximation to w(x) to obtain an approximation to w 0(xi) = fx(u(xi, yj)). See again [9,17] for more details.

The source term is again split as in the one dimensional case
�ghbx ¼
1

2
gb2

� �
x

� gðhþ bÞbx; �ghby ¼
1

2
gb2

� �
y

� gðhþ bÞby ;
and the one dimension procedure described in Section 3 is followed in each of the x and y directions. The

residues are then summed up and advancement in time is again by a Runge–Kutta method.

All results proved in the one dimensional case, such as high order accuracy and the exact C-property, are

still valid in the two dimensional case.

We now give numerical experiment results for the exact C-property satisfying fifth order WENO-LF
scheme in two dimensions. Similar to the one dimensional case, we use the classical fourth order

Runge–Kutta time discretization and a CFL number 0.6, except for the accuracy test problem where smal-

ler time step is taken to guarantee that spatial errors dominate.

5.1. Test for the exact C-property in two dimensions

This example is used to check that our scheme indeed maintains the exact C-property over a nonflat bot-

tom. The two dimensional hump
bðx; yÞ ¼ 0:8e�50ððx�0:5Þ2þðy�0:5Þ2Þ; x; y 2 ½0; 1�; ð5:2Þ

is chosen to be the bottom. h(x, y, 0) = 1 � b(x, y) is the initial depth of the water. Initial velocity is set to be

zero. This surface should remain flat. The computation is performed to t = 0.1 using single, double and qua-

druple precisions with a 100 · 100 uniform mesh. Table 4 contains the L1 errors for the water height h

(which is not a constant function) and the discharges hu and hv. We can clearly see that the L1 errors
are at the level of round-off errors for different precisions, verifying the exact C-property.



Table 4

L1 errors for different precisions for the stationary solution in Section 5.1

Precision L1 error

h hu hv

Single 2.18E�08 2.32E�07 2.32E�07

Double 7.71E�17 9.36E�16 9.36E�16

Quadruple 7.64E�34 9.33E�34 9.33E�34
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5.2. Testing the orders of accuracy

In this example we check the numerical orders of accuracy when the WENO schemes are applied to the

following two dimensional problem. The bottom topography and the initial data are given by
Table

L1 err

Numb

25

50

100

200

400

800
bðx; yÞ ¼ sinð2pxÞ þ cosð2pyÞ; hðx; y; 0Þ ¼ 10þ esinð2pxÞ cosð2pyÞ;

ðhuÞðx; y; 0Þ ¼ sinðcosð2pxÞÞ sinð2pyÞ; ðhvÞðx; y; 0Þ ¼ cosð2pxÞ cosðsinð2pyÞÞ

defined over a unit square, with periodic boundary conditions. The terminal time is taken as t = 0.05 to

avoid the appearance of shocks in the solution. Since the exact solution is not known explicitly for this case,
we use the same fifth order WENO scheme with an extremely refined mesh consisting of 1600 · 1600 grid

points to compute a reference solution, and treat this reference solution as the exact solution in computing

the numerical errors. Table 5 contains the L1 errors and orders of accuracy. We can clearly see that fifth

order accuracy is achieved in this two dimensional test case.

5.3. A small perturbation of a two dimensional steady-state water

This is a classical example to show the capability of the proposed scheme for the perturbation of the sta-
tionary state, given by LeVeque [12]. It is analogous to the test done previously in Section 4.3 in one

dimension.

We solve the system in the rectangular domain [0, 2] · [0, 1]. The bottom topography is an isolated ellip-

tical shaped hump:
bðx; yÞ ¼ 0:8e�5ðx�0:9Þ2�50ðy�0:5Þ2 : ð5:3Þ

The surface is initially given by
hðx; y; 0Þ ¼
1� bðx; yÞ þ 0:01 if 0:05 6 x 6 0:15;

1� bðx; yÞ otherwise;



huðx; y; 0Þ ¼ hvðx; y; 0Þ ¼ 0:

ð5:4Þ
5

ors and numerical orders of accuracy for the example in Section 5.2

er of cells CFL h hu hv

L1 error Order L1 error Order L1 error Order

0.6 1.08E�02 3.23E�02 8.92E�02

0.6 1.30E�03 3.06 2.47E�03 3.70 1.19E�02 2.90

0.6 1.06E�04 3.61 1.47E�04 4.07 9.06E�04 3.72

0.4 4.82E�06 4.46 6.25E�06 4.56 3.98E�05 4.51

0.3 1.79E�07 4.75 2.31E�07 4.76 1.41E�06 4.82

0.2 6.30E�09 4.83 8.19E�09 4.82 4.70E�08 4.91
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Fig. 15. The contours of the surface level h + b for the problem in Section 5.3. 30 uniformly spaced contour lines. From top to bottom:

at time t = 0.12 from 0.999703 to 1.00629; at time t = 0.24 from 0.994836 to 1.01604; at time t = 0.36 from 0.988582 to 1.0117; at time

t = 0.48 from 0.990344 to 1.00497; and at time t = 0.6 from 0.995065 to 1.0056. Left: results with a 200 · 100 uniform mesh. Right:

results with a 600 · 300 uniform mesh.
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So the surface is almost flat except for 0.05 6 x 6 0.15, where h is perturbed upward by 0.01. Fig. 15 dis-

plays the right-going disturbance as it propagates past the hump, on two different uniform meshes with

200 · 100 points and 600 · 300 points for comparison. The surface level h + b is presented at different time.

The results indicate that our scheme can resolve the complex small features of the flow very well.
6. Concluding remarks

In this paper we extend the high order finite difference WENO schemes to solve the shallow water system

in one and two space dimensions. A special split of the source terms allows us to design specific approxi-

mations such that the resulting WENO schemes satisfy the exact C-property for still water stationary solu-

tions, and at the same time maintain their original high order accuracy and essentially nonoscillatory

property for general solutions. Extensive numerical examples are given to demonstrate the exact C-prop-
erty, accuracy, and nonoscillatory shock resolution of the proposed numerical method. The approach is

quite general and can be adapted to high order finite volume and discontinuous Galerkin finite element

methods on arbitrary triangulations, which constitutes an ongoing work.
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