
On the advantage of well-balanced schemes for moving-water equilibria of the

shallow water equations

Yulong Xing1, Chi-Wang Shu2 and Sebastian Noelle3

Abstract

This note aims at demonstrating the advantage of moving-water well-balanced

schemes over still-water well-balanced schemes for the shallow water equations. We

concentrate on numerical examples with solutions near a moving-water equilibrium.

For such examples, still-water well-balanced methods are not capable of capturing the

small perturbations of the moving-water equilibrium and may generate significant spu-

rious oscillations, unless an extremely refined mesh is used. On the other hand, moving-

water well-balanced methods perform well in these tests. The numerical examples in

this note clearly demonstrate the importance of utilizing moving-water well-balanced

methods for solutions near a moving-water equilibrium.
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1 Introduction

The main objective of this note is to demonstrate the advantage of schemes which are well

balanced for moving water equilibrium, over those which are only well balanced for still water,

for small perturbations of the moving water equilibrium for the shallow water equations.

Well-balanced schemes refer to those schemes which have zero truncation error for certain

steady-state solutions of hyperbolic balance laws

Ut + f(U)x = g(U, x).

That is, for certain non-trivial functions V (x) satisfying

f(V )x = g(V, x),

the well balanced schemes do not have any truncation error. Note that in general V (x) is

unknown and is not a polynomial, thus to require a zero truncation error is a difficult task.

For shallow water equations, there are typically two classes of well-balanced schemes,

namely those which are well balanced for still-water equilibrium, where the velocity is zero,

and those which are well balanced for general moving-water equilibrium. A scheme which

belongs to the latter class is more difficult to construct. We refer to [1] for a recently

developed high-order accurate finite volume weighted essentially non-oscillatory (WENO)

scheme which is well balanced for general moving-water equilibrium. Discussions on the

history of the development of well balanced schemes for shallow water equations, with an

extensive reference list, can be found in [2].

Since it is much more difficult to construct well-balanced schemes for moving-water equi-

librium than for still water, a natural question is whether the former has any advantage over

the latter. However, to our best knowledge, examples to show this advantage seem to be

absent in the literature. In the Castro Urdiales meeting for which this special issue is dedi-

cated to, there was an intense discussion on this issue but no such examples were provided

in the discussion.

2



The purpose of this note is therefore to provide carefully selected numerical examples

to demonstrate the advantage of well-balanced schemes for moving-water equilibrium over

well-balanced schemes for still water. These examples have solutions which contain small

perturbations from a moving-water equilibrium. A well-balanced scheme for still water would

generate spurious oscillations at the level of the truncation error of the scheme, until the

mesh is extremely refined. On the other hand, a well-balanced scheme for the moving-water

equilibrium could resolve these small perturbations on much coarser meshes. These examples

clearly demonstrate the advantage of well-balanced schemes for moving-water equilibrium.

We shall use the high order finite volume WENO schemes in [4], which are well balanced

for still water, and those in [1], which are well balanced for moving water, in the numerical

tests.

2 Shallow water equations and well-balanced methods

In one space dimension, the shallow water equations take the form





ht + (hu)x = 0

(hu)t +

(
hu2 +

1

2
gh2

)

x

= −ghbx,
(2.1)

where h denotes the water height, u is the velocity of the fluid, b represents the bottom

topography and g is the gravitational constant. The still-water (also referred as lake at rest)

steady state is given by

u = 0 and h + b = const, (2.2)

which represents a still flat water surface. The general moving-water steady state is given

by

m = hu = const and E =
1

2
u2 + g(h + b) = const. (2.3)

We introduce the notation U = (h, hu)T for the conservative variables, with the superscript

T denoting the transpose, and V = (m, E)T for the equilibrium variables. We refer to [1]

for the variable transformation between U = U(V, x) and V = V (U, x).
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The computational domain is discretized into cells Ii = [x
i−

1

2

, x
i+

1

2

], i = 1, · · · , N . We

denote the size of the i-th cell by 4xi and the center of the cell by xi =
(
x

i−
1

2

+ x
i+

1

2

)
/2.

Let Ū(xi, t) =
∫

Ii

U(x, t) dx/4xi denote the cell average of U(·, t) over the cell Ii. The

computational variables are Ūn

i
, which approximate the cell averages Ū(xi, t) at the time

t = tn. For the ease of presentation, we denote the shallow water equations (2.1) by

Ut + f(U)x = g(h, b).

2.1 Methods preserving still-water equilibrium

Many high-order well-balanced methods for the still-water steady state solution (2.2) have

been developed in the literature for the shallow water equations, see for example [2] for a list

of references. In this note, we will use the fifth-order finite volume WENO methods based

on the separation of the source terms developed in Xing and Shu [4]. In this subsection, we

briefly review this well-balanced scheme in one dimension. We refer to [4] for further details.

We first reconstruct the point values U±

i+
1

2

at the cell interface from the given cell averages

Ūi by the standard WENO reconstruction procedure, which can be eventually written out

as

U+

i+
1

2

=

r∑

k=−r+1

wkŪi+k ≡ S+

Ū
(Ū)i, U−

i+
1

2

=

r−1∑

k=−r

w̃kŪi+k ≡ S−

Ū
(Ū)i (2.4)

where r = 3 for the fifth order WENO approximation and the coefficients wk and w̃k depend

nonlinearly on Ū . Now we freeze the cell averages Ū and the corresponding coefficients

wk and w̃k. With these fixed coefficients, we apply the linear operators W 7→ S±

Ū
(W ) to

W = (b, 0)T to compute the reconstructed values b±
i+

1

2

. Assume U is the still-water steady

state solution satisfying (2.2), we clearly have

h±

i+
1

2

+ b±
i+

1

2

= constant. (2.5)

The main idea in constructing well-balanced methods is to decompose the integral of the

source term into a sum of several terms, then compute each of them in a way consistent

with the approximation for the corresponding flux terms. We first rewrite the shallow water
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equations (2.1) as





ht + (hu)x = 0

(hu)t +

(
hu2 +

1

2
gh2

)

x

=

(
1

2
gb2

)

x

− g(h + b)bx,
(2.6)

for which the semi-discrete numerical method takes the form

4xi

dŪ(xi, t)

dt
= −(F̂

i+
1

2

− F̂
i−

1

2

) + G(U, x), (2.7)

where F̂ is a numerical flux, such as the Lax-Friedrichs flux

F̂
i+

1

2

=
1

2

[
f(U−

i+
1

2

) + f(U+

i+
1

2

) − α

((
h + b
hu

)+

i+
1

2

−
(

h + b
hu

)−

i+
1

2

)]
, (2.8)

with α = maxU |u ±
√

gh|. The first component of the source term approximation G(U, x)

is zero, and the second component is given by

1

2
g
(
b̂2

i+
1

2

− b̂2

i−
1

2

)
− g(h + b)

i
(b̂

i+
1

2

− b̂
i−

1

2

) −
∫

Ii

g
(
h + b − (h + b)

i

)
bxdx, (2.9)

with b̂2

i+
1

2

= 1

2

(
(b+

i+
1

2

)2 + (b−
i+

1

2

)2

)
and b̂

i+
1

2

= 1

2
(b+

i+
1

2

+ b−
i+

1

2

).

2.2 Methods preserving moving-water equilibrium

We have developed high-order well-balanced finite volume WENO schemes for the moving-

water equilibrium (2.3) for the shallow water equations in [1]. In this subsection, we briefly

review these methods and refer to [1] for further details.

At each time step, we first apply the usual WENO reconstruction procedure to the cell

averages Ūi, and obtain U±

i+
1

2

, hence V ±

i+
1

2

.

Given the cell averages Ūi and a bottom function b(x), we choose local reference values

V̄i of the equilibrium variables. These are defined implicitly by the requirement that

1

∆xi

∫

Ii

U(V̄i, x)dx = Ūi. (2.10)

Relation (2.10) chooses V̄i as the unique (see the paragraphs preceding [1, Def.3.2]) local

equilibrium such that the corresponding conserved variables U(V̄i, b(x)) have the same cell
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average Ūi as the numerical data. It is proven in [1, Def.3.2] that, if the data U(x) and b(x)

are in local equilibrium (V (U(x), x) ≡ V̄ for all cells Ii), the reference equilibrium states

V̄i computed via (2.10) coincide with the true local steady state V̄ . The reconstruction is

completed by limiting the reconstruction V ±

i+
1

2

with respect to the reference values V̄i (see [1,

(3.18)]), to obtain the limited values Ṽ ±

i+
1

2

and Ṽi.

The fourth-order well-balanced scheme is given by

4xi

dŪ(xi, t)

dt
= −(F̂ (Û−

i+
1

2

, Û+

i+
1

2

) − F̂ (Û−

i−
1

2

, Û+

i−
1

2

)) + si, (2.11)

where the function F̂ (·, ·) is a conservative, Lipschitz continuous numerical flux, and

Û±

i+
1

2

= U(Ṽ ±

i+
1

2

, b̂
i+

1

2

), b̂
i+

1

2

= min(b−
i+

1

2

, b+

i+
1

2

). (2.12)

The total source term si is given by

si :=
4S2 − S1

3
+ f(Û+

i−
1

2

) − f(Ũ+

i−
1

2

) + f(Ũ−

i+
1

2

) − f(Û−

i+
1

2

), (2.13)

where Ũ±

i−
1

2

= U(Ṽ ±

i+
1

2

, b±
i+

1

2

). The extrapolated interior source term (4S2 − S1)/3 is defined

by

S1 = sint

i
(Ũ+

i−
1

2

, Ũ−

i+
1

2

, b+

i−
1

2

, b−
i+

1

2

) (2.14)

S2 =
(
sint

i
(Ũ+

i−
1

2

, Ũi, b
+

i−
1

2

, bi) + sint

i
(Ũi, Ũ

−

i+
1

2

, bi, b
−

i+
1

2

)
)

(2.15)

and the well-balanced quadrature of the source term sint

i
is given by

sint

i
(UL, UR, bL, bR) = −1

2
g(hL + hR)(bR − bL) + ŝint

i
(2.16)

where ŝint

i
is given by [1, (3.63)-(3.65)].

3 Numerical examples

In this section we present numerical results of both moving-water well-balanced methods and

still-water well-balanced methods presented in Section 2, for a carefully selected set of test

examples in one dimension. Comparison of these results is provided as a demonstration of the
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advantage of moving-water well-balanced methods. In all the examples, time discretization

is by the classical third-order total variation diminishing (TVD) Runge-Kutta method [3],

and the CFL number is taken as 0.6. The gravitation constant g is taken as 9.812m/s2.

3.1 Perturbation of a moving water equilibrium

The following test cases are chosen to demonstrate the capability of these schemes for com-

putations on the perturbation of steady state solutions.

The bottom topography is given by:

b(x) =

{
0.2 − 0.05(x − 10)2 if 8 ≤ x ≤ 12,
0 otherwise,

(3.1)

in the computational domain [0, 25]. Three steady states, subcritical or transcritical flow

with or without a steady shock will be investigated.

Our initial conditions are given by imposing a small perturbation of size 0.05 on the height

of these steady states in the interval [5.75, 6.25]. Theoretically, this disturbance should split

into two waves, propagating to the left and right respectively. Note that in [1], we have shown

the numerical results of the moving-water well-balanced methods with a perturbation size

0.01, which demonstrate that these small perturbations are well captured. Here we provide

the numerical results of both the moving-water well-balanced methods and still-water well-

balanced methods, and demonstrate the different behavior of these two methods.

a): Subcritical flow:

The initial condition is given by:

E = 22.06605, m = 4.42, (3.2)

together with the boundary condition that the discharge m=4.42 is imposed at upstream

and the water height h=2 is imposed at downstream when the flow is subcritical.

We run the tests with 100 uniform cells until t = 1.5, when the downstream-traveling

water pulse has already passed the bump. The differences between the water height h at

that time and the background moving water state, are shown in Figure 3.1. The result of
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Figure 3.1: The difference between the height h at time t = 1.5 and the background moving
steady state water height (3.2), when 100 uniform cells are employed. An initial perturbation
of size 0.05 is imposed between [5.75, 6.25]. Left: result based on still-water well-balanced
scheme. Right: result based on moving-water well-balanced scheme.

the still-water well-balanced method is plotted on the left and that of the moving-water well-

balanced method is shown on the right. The difference can be easily observed, as there are

significantly more spurious oscillations generated by the still-water well-balanced method.

As we refine the mesh to 1000 cells, the results are shown in Figure 3.2. Because ∆x is now

very small, the perturbation is relatively big in comparison with truncation errors of the

schemes and can be well captured by both methods.

b): Transcritical flow without a shock:

The initial condition is given by:

E =
1.532

2 × 0.662
+ 9.812 × 0.66, m = 1.53, (3.3)

together with the boundary condition that the discharge m=1.53 is imposed at upstream

and the water height h=0.66 is imposed at downstream when the flow is subcritical.

We run the tests with 100 uniform cells until t = 1.5, when the downstream-traveling

water pulse has already passed the bump. The differences between the water height h at that

time and the background moving water state, are shown in Figure 3.3. Again, the difference

can be easily observed, as there are significantly more spurious oscillations generated by the
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Figure 3.2: Same as in Figure 3.1, but 1000 uniform cells are employed.

still-water well-balanced method. As we refine the mesh to 1000 cells, the results in Figure

3.4 show resolved solutions for both methods.

c): Transcritical flow with a shock:

The initial condition is given by:

E =

{
3

2
(9.812 × 0.18)

2

3 ) + 9.812 × 0.2 if x ≤ 11.665504281554291
0.182

2 × 0.332 + 9.812 × 0.33 otherwise
m = 0.18, (3.4)

together with the boundary condition that the discharge m=0.18 is imposed at upstream

and the water height h=0.33 is imposed at downstream.

We run the tests with 200 uniform cells until t = 3. The differences between the water

height h at that time and the background moving water state, are shown in Figure 3.5.

Once again, the difference can be easily observed, as there are significantly more spurious

structures generated by the still-water well-balanced method. As we refine the mesh to 1000

cells, the results are shown in Figure 3.6. Even at this resolution there is still an advantage

using the moving-water well-balanced method. Note that near the point x = 11.7 there is a

big displacement for both methods, as we recall that 11.7 is the position where the shock is

located.
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Figure 3.3: The difference between the height h at time t = 1.5 and the background moving
steady state water height (3.3), when 100 uniform cells are employed. An initial perturbation
of size 0.05 is imposed between [5.75, 6.25]. Left: result based on still-water well-balanced
scheme. Right: result based on moving-water well-balanced scheme.
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Figure 3.4: Same as in Figure 3.3, but 1000 uniform cells are employed.
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Figure 3.5: The difference between the height h at time t = 3 and the background moving
steady state water height (3.4), when 200 uniform cells are employed. An initial perturbation
of size 0.05 is imposed between [5.75, 6.25]. Left: result based on still-water well-balanced
scheme. Right: result based on moving-water well-balanced scheme.
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Figure 3.6: Same as in Figure 3.5, but 1000 uniform cells are employed.
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3.2 Perturbation with smaller magnitude

In this subsection, we utilize a smaller perturbation to these tests and show that moving-

water well-balanced methods demonstrate more clearly their advantage in capturing such

perturbations.

We keep the main setup the same as in Section 3.1, and impose a smaller perturbation of

size 0.001 to these steady states. To save space, only the results of the subcritical flow (3.2)

are shown. The differences between the water height h at that time and the background

moving water state, when 100 uniform cells are used, are plotted in Figure 3.7. We also show

the differences of the momentum hu in Figure 3.8. These figures clearly demonstrate that the

still-water well-balanced method is not capable of capturing such a small perturbation on the

coarse mesh, as large spurious oscillations are observed. As we refine the meshes to 200 cells,

the results are shown in Figures 3.9 and 3.10, where spurious oscillations for the still-water

well-balanced method have a reduced magnitude, but its performance is still significantly

inferior to that of the moving-water well-balanced method. The results with 1000 cells are

shown in Figures 3.11 and 3.12. Even though the difference between the two methods is now

significantly reduced, the advantage of the moving-water well-balanced method can still be

observed on such a refined mesh.
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Figure 3.11: Same as in Figure 3.7, but 1000 uniform cells are employed.
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