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Shallow water equations with a non-flat bottom topography have been widely used to model flows in
rivers and coastal areas. An important difficulty arising in these simulations is the appearance of dry areas
where no water is present, as standard numerical methods may fail in the presence of these areas. These
equations also have still water steady state solutions in which the flux gradients are nonzero but exactly
balanced by the source term. In this paper we propose a high order discontinuous Galerkin method which
can maintain the still water steady state exactly, and at the same time can preserve the non-negativity of
the water height without loss of mass conservation. A simple positivity-preserving limiter, valid under
suitable CFL condition, will be introduced in one dimension and then extended to two dimensions with
rectangular meshes. Numerical tests are performed to verify the positivity-preserving property, well-bal-
anced property, high order accuracy, and good resolution for smooth and discontinuous solutions.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The shallow water equations with a non-flat bottom topogra-
phy have been widely used to model flows in rivers and coastal
areas. They have wide applications in ocean and hydraulic engi-
neering: tidal flows in estuary and coastal water region; bore wave
propagation; and river, reservoir, and open channel flows, among
others. Many geophysical flows are modeled by the variants of
the shallow water equations. This system describes the flow as a
conservation law with additional source terms. In one space
dimension, the shallow water equations take the form:

ht þ ðhuÞx ¼ 0;

ðhuÞt þ hu2 þ 1
2 gh2

� �
x
¼ �ghbx;

8<: ð1:1Þ
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where h denotes the water height, u is the velocity of the fluid, b
represents the bottom topography and g is the gravitational con-
stant. Only the source term due to the bottom topography is taken
into account in this system, but other terms could also be added in
order to include effects such as friction on the bottom and on the
surface as well as variations of the channel width.

Research on numerical methods for the solution of the shallow
water system has attracted tremendous attention in the past two
decades. A significant result in computing such solutions was given
by Bermudez and Vazquez [2] in 1994. They proposed the idea of
the ‘‘exact C-property”, which refers to the ability of the scheme
to exactly preserve the still water at rest steady state solution:

u ¼ 0 and hþ b ¼ const; ð1:2Þ

which represents a still flat water surface. Such numerical methods
are often regarded as well-balanced methods. Developing well-bal-
anced methods for the shallow water equations is not a trivial task,
especially for high order accurate methods. One key difficulty in
developing high order well-balanced methods comes from the fact
that we should not include any derivative of the unknown solution
h and u in the approximation to the source term. Otherwise, conser-
vation and convergence towards weak solutions will be problematic
for discontinuous solutions. Recently, several high order well-bal-
anced methods for the shallow water equations were successfully
developed in [7–9,23,25,26,28,29,36–41].
ell-balanced discontinuous Galerkin methods for the shallow water equa-
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Another important difficulty often encountered in the simula-
tions of the shallow water equations is the appearance of dry areas
where no water is present. Many shallow water applications in-
volve rapidly moving interfaces between wet and dry areas, such
as dam breaks, flood waves and run-up phenomena over shores
and sea defence structures. If no special attention is paid, standard
numerical methods may fail near dry/wet front and may produce
unacceptable negative water height.

There are many existing wetting and drying treatments for the
continuous Galerkin based methods [24]. The first type is the mesh
adaption technique which tracks the dry front by changing the
meshes. It has the advantage in accuracy but is computationally
expensive. The second type uses the mesh reduction technique,
which removes the dry elements and restores them when they be-
come wet later. It may cause oscillation and loss of mass and
momentum (failure in conservation). Thin layer technique main-
tains a very thin layer in dry elements and includes these dry ele-
ments in the computation.

In recent years, high order accurate numerical schemes, includ-
ing finite difference/volume WENO schemes, spectral methods and
discontinuous Galerkin (DG) methods, have been developed to re-
duce the number of computational cells and minimize the compu-
tational time to achieve the desired resolution. Among these
methods, DG method is a class of finite element methods using dis-
continuous piecewise polynomial space as the solution and test
function spaces (see [12] for a historic review). It combines advan-
tages of both finite element and finite volume methods, and has
been successfully applied to a wide range of applications. Several
advantages of the DG method, including its accuracy, high parallel
efficiency, flexibility for hp-adaptivity and arbitrary geometry and
meshes, make it particularly suited for the shallow water equa-
tions [15,17,20]. In the discontinuous Galerkin (DG) framework,
mesh adaption technique was introduced in [4]. Ern et al. [16] em-
ployed a slope modification technique to keep the positivity of the
water height. However, their method cannot preserve the mass
conservation. A second order mass-conserving thin layer approach
was presented in [6]. However, in this approach, a special treat-
ment is needed in the flux computation to prevent instability
due to excessive drying. Other methods involving wetting and dry-
ing treatments for the shallow water equations include
[3,5,10,18,21,22].

The main objective of this paper is to develop positivity-preserv-
ing high order accurate well-balanced DG methods for the shallow
water equations. Most existing wetting and drying treatments are
focused on post-processing reconstruction of the data obtained from
the numerical solution at each time level. Even though the post-pro-
cessing can bring the reconstruction to satisfy non-negative water
height, this alone usually does not guarantee that the solution (e.g.,
cell average from a finite volume or DG scheme) at the next time step
still maintains the non-negative water height property. If negative
cell averages for the water height are obtained at the next time level,
the positivity reconstruction post-processing will destroy conserva-
tion. Thanks to the fact that the equation for the positivity variable h
does not have a source term, following the approaches proposed in
[30,42,43], we introduce a simple positivity-preserving limiter oper-
ator, which preserves the high order accuracy without losing local
mass and momentum conservation. A rigorous proof of the non-neg-
ativity of the water height for the next time step, under a suitable CFL
condition, provided the water height at the current time step is non-
negative, will be given. The algorithm is first introduced in one
dimension and then extended to two dimensions with rectangular
meshes.

This paper is organized as follows. In Section 2, we give a brief
review of the well-balanced DG methods for the shallow water
equations proposed in [40]. The positivity-preserving limiter,
which keeps the water height non-negative, preserves the mass
Please cite this article in press as: Xing Y et al. Positivity-preserving high order w
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conservation and at the same time does not affect the high
order accuracy for the general solutions is presented in Section 3.
In Section 4, we combine the well-balanced technique and
positivity-preserving limiter together, which involves a necessary
change in the slope limiter procedure. Extension to two dimen-
sions with rectangular meshes is introduced in Section 5. Section 6
contains extensive numerical simulation results to demonstrate
the behavior of our DG methods for one- and two-dimensional
shallow water equations, verifying high order accuracy, the well-
balanced property, positivity-preserving property, and good
resolution for smooth and discontinuous solutions. Concluding
remarks are given in Section 7.
2. Well-balanced DG methods

Several well-balanced DG methods for the shallow water
equations have been developed, see for example [27] for a list
of references. In this paper, we consider the approach developed
by two of the authors in [40], where we observed that the tra-
ditional DG methods are capable of maintaining the still water
solution (1.2) exactly, if a small modification on the flux is pro-
vided. This is one of the simplest approaches to obtain a high or-
der well-balanced scheme, and the computational cost to obtain
such a well-balanced DG method is basically the same as the
traditional DG method. In this section, we briefly review this
well-balanced approach in one dimension, and refer to [40] for
further details.

We discretize the computational domain into cells

Ij ¼ xj�1
2
; xjþ1

2

h i
, and denote the size of the j-th cell by Dxj and the

maximum mesh size by Dx = maxjDxj. For the ease of presentation,
we denote the shallow water Eq. (1.1) by

Ut þ f ðUÞx ¼ sðh; bÞ;

where U = (h,hu)T with the superscript T denoting the transpose,
f(U) is the flux and s(h,b) is the source term. In a high order
DG method, we seek an approximation, still denoted by U with
an abuse of notation, which belongs to the finite dimensional
space:

VDx ¼ Vk
Dx � w : wjIj

2 PkðIjÞ; j ¼ 1; . . . ; J
n o

; ð2:1Þ

where Pk(I) denotes the space of polynomials in I of degree at most
kand J is the total number of computational cells. We project the
bottom function b into the same space VDx, to obtain an approxima-
tion which is still denoted by b, again with an abuse of notation. The
numerical scheme is given byZ

Ij

otUvdx�
Z

Ij

f ðUÞoxvdxþ f̂ jþ1
2
v x�jþ1

2

� �
� f̂ j�1

2
v xþ

j�1
2

� �
¼
Z

Ij

sðh;bÞvdx;

ð2:2Þ

where v(x) is a test function from the test space VDx:

f̂ jþ1
2
¼ F U x�jþ1

2
; t

� �
; U xþ

jþ1
2
; t

� �� �
; ð2:3Þ

and F(a1,a2) is a numerical flux. We could, for example, use the sim-
ple Lax–Friedrichs flux:

F a1; a2ð Þ ¼ 1
2

f ða1Þ þ f ða2Þ � aða2 � a1Þð Þ; ð2:4Þ

where a ¼max juj þ
ffiffiffiffiffiffi
gh

p� �
and the maximum is taken over the

whole region. A simple Euler forward time discretization of (2.2)
gives the fully discretized scheme:
ell-balanced discontinuous Galerkin methods for the shallow water equa-

http://dx.doi.org/10.1016/j.advwatres.2010.08.005


Y. Xing et al. / Advances in Water Resources xxx (2010) xxx–xxx 3
Z
Ij

Unþ1 � Un

Dt
vdx�

Z
Ij

f ðUnÞoxvdxþ f̂ n
jþ1

2
v x�jþ1

2

� �
� f̂ n

j�1
2
v xþ

j�1
2

� �
¼
Z

Ij

sðhn
; bÞvdx: ð2:5Þ

Total variation diminishing (TVD) high order Runge–Kutta time dis-
cretization [35] is used in practice for stability and to increase tem-
poral accuracy. For example, the third order TVD Runge–Kutta
method is used in the simulation in this paper:

Uð1Þ ¼ Un þ DtFðUnÞ;

Uð2Þ ¼ 3
4

Un þ 1
4

Uð1Þ þ DtF ðUð1ÞÞ
� �

;

Unþ1 ¼ 1
3

Un þ 2
3

Uð2Þ þ DtF ðUð2ÞÞ
� �

;

ð2:6Þ

where FðUÞ is the spatial operator.
In order to achieve the well-balanced property, we are inter-

ested in preserving the still water stationary solution (1.2) exactly.
As mentioned in [40], our well-balanced numerical scheme, with a
simple Euler forward time discretization, has the form:Z

Ij

Unþ1 � Un

Dt
vdx�

Z
Ij

f ðUnÞoxvdxþ f̂ l
jþ1

2
v x�jþ1

2

� �
� f̂ r

j�1
2
v xþ

j�1
2

� �
¼
Z

Ij

sðhn
; bÞvdx; ð2:7Þ

or equivalently:Z
Ij

Unþ1 � Un

Dt
vdx�

Z
Ij

f ðUnÞoxvdxþ f̂ jþ1
2
v x�jþ1

2

� �
� f̂ j�1

2
v xþ

j�1
2

� �
¼
Z

Ij

sðhn
; bÞvdxþ f̂ jþ1

2
� f̂ l

jþ1
2

� �
v x�jþ1

2

� �
� f̂ j�1

2
� f̂ r

j�1
2

� �
v xþ

j�1
2

� �
:

ð2:8Þ
The left side of (2.8) is the traditional RKDG scheme, and the right
side is our approximation to the source term. The design of the left

flux f̂ l
jþ1

2
and the right flux f̂ r

j�1
2

will be explained later, however we

point out here that f̂ jþ1
2
� f̂ l

jþ1
2

and f̂ j�1
2
� f̂ r

j�1
2

are high order correction

terms at the level of O(Dxk+1) regardless of the smoothness of the
solution U. Therefore, the scheme (2.7) is a spatially (k + 1)-th order
conservative scheme and will converge to the weak solution.

After computing boundary values U�jþ1
2
, we set:

h�;�jþ1
2
¼max 0;h�jþ1

2
þ b�jþ1

2
�max bþjþ1

2
; b�jþ1

2

� �� �
; ð2:9Þ

and redefine the left and right values of U as

U�;�
jþ1

2
¼

h�;�jþ1
2

h�;�jþ1
2
u�

jþ1
2

0@ 1A: ð2:10Þ

Then the left and right fluxes f̂ l
jþ1

2
and f̂ r

j�1
2

are given by

f̂ l
jþ1

2
¼ F U�;�

jþ1
2
;U�;þ

jþ1
2

� �
þ

0
g
2 h�jþ1

2

� �2
� g

2 h�;�jþ1
2

� �2

 !
;

f̂ r
j�1

2
¼ F U�;�

j�1
2
;U�;þ

j�1
2

� �
þ

0
g
2 hþj�1

2

� �2
� g

2 h�;þj�1
2

� �2

 !
:

ð2:11Þ

We also require that all the integrals in formula (2.7) should be
calculated exactly at the still water state. This can be easily
achieved by using suitable Gauss quadrature rules since the
numerical solutions h, b and v are polynomials at the still water
state in each cell Ij, hence f(U) and s(h,b) are both polynomials.
We have proven in [40] that the above methods (2.7), combined
with the choice of fluxes (2.11), are actually well-balanced for
the still water steady state of the shallow water equations.
Please cite this article in press as: Xing Y et al. Positivity-preserving high order w
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Another important ingredient for the DG methods is that a slope
limiter procedure might be needed after each inner stage in the
Runge–Kutta time stepping, when the solution contains disconti-
nuities. We use the characteristic-wise total variation bounded
(TVB) limiter in [14,33], with a corrected minmod function defined
by

�mða1; . . . ; anÞ ¼
a1; if ja1j 6 MDx2;

mða1; . . . ; anÞ; otherwise;

(
ð2:12Þ

where M is the TVB parameter to be chosen adequately [13] and the
minmod function m is given by

mða1; . . . ; anÞ ¼
s minijaij; if s ¼ signða1Þ ¼ � � � ¼ signðanÞ;
0; otherwise:

�
For the shallow water system, we perform the limiting in the local
characteristic variables. However, this limiter procedure might de-
stroy the preservation of the still water steady state h + b = const.
Therefore, following the idea presented in [1,45], we apply the lim-
iter procedure on the function (h + b, (hu))T instead. The modified
RKDG solution is then defined by hmod � (h + b)mod � b. Since the
average of h in cell Ij, denoted by �hj, satisfies that
�hmod

j ¼ ðhþ bÞmod
j � �bj ¼ ðhþ bÞj � �bj ¼ �hj, we observe that this pro-

cedure will not destroy the conservativity of h, which should be
maintained during the limiter process.

3. Positivity-preserving limiter

We consider the Euler forward in time (2.7) first, and higher or-
der time discretization will be discussed later in this section. By
taking the test function v = 1 in (2.7), we obtain the scheme satis-
fied by the cell averages in the well-balanced DG methods:

Unþ1
j ¼ Un

j � k f̂ r
jþ1

2
� f̂ l

j�1
2

� �
þ Dt

Z
Ij

sðhn
; bÞdx: ð3:1Þ

By plugging (2.10) and (2.11) into (3.1), the scheme satisfied by the
cell averages of the height in the well-balanced DG methods (2.7)
can be written as

�hnþ1
j ¼ �hn

j

� k bF h�;�jþ1
2
;u�jþ1

2
; h�;þjþ1

2
;uþ

jþ1
2

� �
� bF h�;�j�1

2
;u�j�1

2
; h�;þj�1

2
;uþ

j�1
2

� �h i
; ð3:2Þ

where

bF h�;�jþ1
2
;u�jþ1

2
; h�;þjþ1

2
;uþ

jþ1
2

� �
¼ 1

2
h�;�jþ1

2
u�jþ1

2
þ h�;þjþ1

2
uþ

jþ1
2
� a h�;þjþ1

2
� h�;�jþ1

2

� �� �
ð3:3Þ

and h�;�jþ1
2

are defined in (2.9).
We start by showing the positivity of a first order scheme with

the well-balanced flux.

Lemma 3.1. Under the CFL condition ka 6 1, with a ¼max jujð
þ

ffiffiffiffiffiffi
gh

p
Þ, consider the following scheme:
hnþ1
j ¼ hn

j � k bF h�;þj ;un
j ; h�;�jþ1;u

n
jþ1

� �
� bF h�;þj�1;u

n
j�1; h�;�j ;un

j

� �h i
;

ð3:4Þ

with bF the same as in (3.3) and

h�;þj ¼max 0;hn
j þ bj �maxðbj; bjþ1Þ

� �
h�;�j ¼max 0;hn

j þ bj �maxðbj�1; bjÞ
� �

:

If hn
j ;h

n
j�1 are non-negative, then hnþ1

j is also non-negative.
ell-balanced discontinuous Galerkin methods for the shallow water equa-
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Proof. The scheme (3.4) can be written as

hnþ1
j ¼ 1� 1

2
k aþ un

j

� �h�;þj

hn
j

� 1
2

k a� un
j

� �h�;�j

hn
j

" #
hn

j

þ 1
2

k aþ un
j�1

� �h�;þj�1

hn
j�1

" #
hn

j�1 þ
1
2

k a� un
jþ1

� �h�;�jþ1

hn
jþ1

" #
hn

jþ1:

Therefore, hnþ1
j is a linear combination of hn

j�1, hn
j and hn

jþ1 and all the
coefficients are non-negative since 0 6 h�;�j 6 hn

j . Thus,
hnþ1

j P 0. h

Next, we consider high order schemes. Let us first introduce the
N-point Legendre Gauss–Lobatto quadrature rule on the interval

Ij ¼ xj�1
2
; xjþ1

2

h i
, which is exact for the integral of polynomials of

degree up to 2N � 3, where we choose N such that 2N � 3 P k.
We denote these quadrature points on Ij as

Sj ¼ xj�1
2
¼ x̂1

j ; x̂
2
j ; . . . ; x̂N�1

j ; x̂N
j ¼ xjþ1

2

n o
:

Let ŵr be the quadrature weights for the interval [�1/2,1/2] such
that

PN
r¼1ŵr ¼ 1. Recall hn

j ðxÞ denotes the DG polynomial approxi-
mating the water height in the cell Ij. We have:

�hn
j ¼

1
Dx

Z
Ij

hn
j ðxÞdx ¼

XN

r¼1

ŵrh
n
j x̂r

j

� �
¼
XN�1

r¼2

ŵrh
n
j x̂r

j

� �
þ ŵ1hþj�1

2
þ ŵNh�jþ1

2
; ð3:5Þ

since the quadrature is exact for polynomials of degree k. Following
the approaches in [30,42,43], we have the result:

Proposition 3.2. Consider the scheme (3.2) satisfied by the cell
averages of the water height in our DG method. Let hn

j ðxÞ be the DG
polynomial for the water height in the cell Ij. If h�j�1

2
;hþjþ1

2
and

hn
j x̂r

j

� �
ðr ¼ 1; . . . ;NÞ are all non-negative, then �hnþ1

j is also non-
negative under the CFL condition:
ka 6 ŵ1: ð3:6Þ
Table 3.1
The CFL condition (3.6) using the flux (2.11) and (2.4) for 2 6 k 6 5 and the Gauss–
Lobatto quadrature points on � 1

2 ;
1
2

� �
.

k CFL Quadrature points on � 1
2 ;

1
2

� �
2 ka 6 1

6 � 1
2 ;0;

1
2

� 	
3 ka 6 1

6 � 1
2 ;0;

1
2

� 	
4 ka 6 1

12 � 1
2 ;� 1ffiffiffiffi

20
p ; 1ffiffiffiffi

20
p ; 1

2

n o
5 ka 6 1

12 � 1
2 ;� 1ffiffiffiffi

20
p ; 1ffiffiffiffi

20
p ; 1

2

n o
Proof. Plug (3.5) into (3.2). We can rewrite (3.2) by adding and
subtracting the term bF h�;þj�1

2
;uþ

j�1
2
; h�;�jþ1

2
;u�

jþ1
2

� �
:

�hnþ1
j ¼

XN�1

r¼2

ŵrh
n
j x̂r

j

� �
þ ŵ1hþj�1

2
þ ŵNh�jþ1

2
� k bF h�;�jþ1

2
;u�jþ1

2
; h�;þjþ1

2
;uþ

jþ1
2

� �h
� bF h�;þj�1

2
;uþ

j�1
2
; h�;�jþ1

2
;u�jþ1

2

� �
þ bF h�;þj�1

2
;uþ

j�1
2
; h�;�jþ1

2
; u�jþ1

2

� �
� bF h�;�j�1

2
;u�j�1

2
; h�;þj�1

2
;uþ

j�1
2

� �i
¼
XN�1

r¼2

ŵrh
n
j x̂r

j

� �
þ ŵNHN þ ŵ1H1

where

H1 ¼ hþj�1
2

� k
ŵ1

bF h�;þj�1
2
;uþ

j�1
2
; h�;�jþ1

2
;u�jþ1

2

� �
� bF h�;�j�1

2
;u�j�1

2
; h�;þj�1

2
;uþ

j�1
2

� �h i
ð3:7Þ

HN ¼ h�jþ1
2
� k

ŵN

bF h�;�jþ1
2
;u�jþ1

2
; h�;þjþ1

2
; uþ

jþ1
2

� �
� bF h�;þj�1

2
;uþ

j�1
2
; h�;�jþ1

2
; u�jþ1

2

� �h i
:

ð3:8Þ

Notice that (3.7) and (3.8) are both of the type (3.4), hence H1 P 0
and HN P 0 under the suitable CFL conditions, which are k

ŵ1
a 6 1

and k
ŵN

a 6 1, respectively. Since ŵ1 ¼ ŵN , these two CFL conditions
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are the same and become (3.6). Therefore �hnþ1
j P 0, since it is a con-

vex combination of H1, HN and hn
j x̂r

j

� �
ðr ¼ 2; . . . ;N � 1Þ. h

Remark 3.3. Here we only discuss the Euler forward time discret-
ization. TVD high order Runge–Kutta [35] and multistep [34] time
discretizations will keep the validity of the proposition since TVD
time discretizations are convex combinations of the Euler forward
operators.
Remark 3.4. For k = 2, 3, the ŵ1 of the Gauss–Lobatto quadrature
is 1/6, and the corresponding CFL condition in (3.6) is ka 6 1/6.
Recall that the CFL condition for linear stability for the DG methods
is ka 6 1/5 for k = 2, which are comparable to our CFL restriction.
The CFL condition (3.6) using the flux (2.11) and (2.4), and the
Gauss–Lobatto quadrature points for k = 2, 3, 4, 5 are listed in
Table 3.1.
Remark 3.5. The Gauss–Lobatto quadrature only serves the pur-
pose towards the proof of the Proposition 3.2. We only need these
Gauss–Lobatto points when evaluating (3.10) later in the imple-
mentation of the positivity-preserving limiter. It has nothing to
do with the computation of the cell integrals in (2.2), for which
we can use any quadrature as long as the accuracy requirement
is satisfied.
Remark 3.6. Note that although the well-balanced flux (2.11) is
used throughout the proof, the result also holds for the traditional
DG methods using the flux (2.3) without the correction (2.11). Any
other positivity-preserving exact or approximate Riemann solver,
including Godunov, Boltzmann type and Harten–Lax–Van Leer,
will also work under the corresponding CFL condition. Also,
although the equation for the positivity variable h does not have
a source term, we would like to comment that combining the
well-balanced scheme with the positivity-preserving limiter is still
non-trivial. For example, the well-balanced discontinuous Galerkin
method developed in [39] cannot be extended in the same fashion.

To enforce the conditions of this proposition, we need to modify
hn

j ðxÞ such that it is non-negative for all x 2 Sj. At time level n, given
�hn

j P 0, we introduce the following limiter on the DG polynomial
Un

j ðxÞ ¼ hn
j ðxÞ; ðhuÞnj ðxÞ

� �T
, which is a linear scaling around its cell

average:

eUn
j ðxÞ ¼ h Un

j ðxÞ � Un
j

� �
þ Un

j ; h ¼min 1;
�hn

j

�hn
j �mj

( )
; ð3:9Þ

with

mj ¼min
x2Sj

hn
j ðxÞ ¼ min

r¼1;...N
hn

j x̂r
j

� �
: ð3:10Þ

It is easy to observe that ~hn
j x̂r

j

� �
P 0 ðr ¼ 1; . . . ;N). We compute the

modified polynomial eUn
j ðxÞ and use eUn

j ðxÞ instead of Un
j ðxÞ in the

scheme (2.7). Hence by this proposition, �hnþ1
j at time level n + 1 is
ell-balanced discontinuous Galerkin methods for the shallow water equa-
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also non-negative, therefore (3.9) is indeed a positivity-preserving
limiter for the well-balanced DG methods.

Note that this positivity-preserving limiter preserves the local
conservation of water height h and also the momentum hu (i.e.eUn

j ðxÞ ¼ Un
j ). It can also be shown that this limiter does not destroy

the high order accuracy, we refer to [42] for the detailed proof. We
would like to mention that in wet region, where mj is O(1) above
zero, the limiter does not take any effect, i.e. eUn

j ðxÞ ¼ Un
j ðxÞ. There-

fore this positivity-preserving limiter is active only in the dry or
nearly dry region.

In this section, we proved a sufficient condition for the cell aver-
age Unþ1

j in the well-balanced DG methods (2.7) and (2.11) to have
non-negative water height. A very simple limiter can enforce this
sufficient condition without destroying the high order accuracy
and conservativity of the water height. Moreover, the positivity-
preserving limiter will not take any effect if the DG polynomials
Un

j ðxÞ satisfy (1.2), since hn
j ðxÞ ¼ const � bjðxÞP 0 for any x. Thus

the limiter will not destroy the well-balanced property. Implemen-
tation details of the limiter will be shown in the next section.
4. Positivity-preserving high order well-balanced DG methods

In practical implementation, numerical tests show that there
may be a conflict between the well-balanced TVB limiter (on
(h + b, (hu))T) and the positivity-preserving limiter if care is not ta-
ken in implementing these two limiters simultaneously. We may
observe that the numerical time step becomes smaller and smaller
as time evolves, and eventually the code stops. The same phenom-
enon has been reported in [6,16]. However, we observe that the
traditional TVB limiter (on (h, (hu))T), which is not well-balanced,
works well with the positivity-preserving limiter.

We have tested various possible combinations of different
limiters, and have come up with one which works well in the
numerical tests, which we describe in detail below. Note that the
TVB limiter procedure actually involves two steps: the first one is
to check whether any limiting is needed in a specific cell; and, if
the answer is yes, the second step is to apply the TVB limiter on
the variables in this cell. In order to achieve both well-balanced
and positivity-preserving property, we propose the following way
to perform the TVB limiter. We first check if the limiting is needed,
based on (h + b, (hu))T if in the wet region (i.e. h in (3.9) equals to 1),
or based on (h, (hu))T if in the dry or nearly dry region (i.e. h < 1).
This is reasonable since h + b is no longer constant in such dry or
nearly dry region. If a certain cell is flagged by this procedure need-
ing limiting, then the actual TVB limiter is implemented on
(h, (hu))T. Note that if in a steady state region where h + b = const
and u = 0 which is wet, we first check if the limiting is needed
based on (h + b, (hu))T = (const,0)T, which demonstrates that limit-
ing is not needed in this cell. Therefore the flat surface h + b = const
will not be affected by the limiter procedure and the well-balanced
property is maintained. When the limiting procedure is imple-
mented this way, numerical results show that this choice of the
TVB limiter does not destroy the well-balanced property, and also
works well with the positivity-preserving limiter.

Again, we would like to mention that the change on the TVB
limiter is purely for the purpose of the well-balanced property. If
we solve for problems which are far from steady state, there is
no need for using this new limiter procedure and we can switch
back to the traditional limiter on (h, (hu))T.

Another problem may occur in practical implementation when
the water height is close to zero. In these nearly dry regions, the
velocity u = (hu)/h is not computed accurately and can achieve very
large values even with a small numerical error in hu. This in turn
leads to very small time steps with the CFL condition. Since the
velocity in these nearly dry regions should be at the same
Please cite this article in press as: Xing Y et al. Positivity-preserving high order w
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magnitude as the maximum of the velocity in wet regions, in
numerical tests, we set u = 0 if h 6 10�6. The same treatment has
been used in [31].

Given the DG polynomial Un
j ðxÞ in interval Ij at time level n with

a non-negative height cell average �hn
j P 0, the algorithm flowchart

of our high order well-balanced positivity-preserving DG method
with Euler forward in time for the shallow water equations is

� Evaluate mj by (3.10).
� In each cell Ij, check if the TVB limiter is needed based on

(h + b, (hu))T if mj P 0, or based on (h, (hu))T otherwise. If the
answer is yes, perform the TVB limiter on (h, (hu))T. The DG
polynomial after the TVB limiting is still denoted as Un

j ðxÞ.
� Evaluate mj by (3.10) again and use the positivity-preserving

limiter (3.9) to compute eUn
j ðxÞ.

� Use eUn
j ðxÞ instead of Un

j ðxÞ in the DG scheme (2.7) with the CFL
condition (3.6).

For TVD high order time discretizations, we need to perform the
algorithm above in each stage for a Runge–Kutta method or in each
step for a multistep method.

5. Two-dimensional extension

In this section, we construct the positivity-preserving well-bal-
anced DG scheme on rectangular meshes to solve the two-dimen-
sional shallow water equations, which take the form:

ht þ ðhuÞx þ ðhvÞy ¼ 0;

ðhuÞt þ hu2 þ 1
2 gh2

� �
x
þ ðhuvÞy ¼ �ghbx;

ðhvÞt þ ðhuvÞx þ hv2 þ 1
2 gh2

� �
y
¼ �ghby;

8>>>><>>>>: ð5:1Þ

where (u,v) is the velocity of the fluid, and h, b and g follow the def-
initions below (1.1). For the ease of presentation, we denote this Eq.
(5.1) by

Ut þ f ðUÞx þ gðUÞy ¼ sðh; bÞ;

where U = (h,hu,hv)T, and f(U),g(U) are the fluxes. The still water
stationary solution we are interested to preserve is

hþ b ¼ const; hu ¼ 0; hv ¼ 0: ð5:2Þ

We discretize the computational domain into cells

Ii;j ¼ xi�1
2
; xiþ1

2

h i
� yj�1

2
; yjþ1

2

h i
. For simplicity, we assume a uniform

mesh is used, and k1 = Dt/Dx, k2 = Dt/Dy. The solution and test
spaces are chosen as the space of two-variable polynomials of de-
gree at most k in each cell Ii, j. The numerical approximation is a
piecewise polynomial, still denoted as U, and similarly we have
the projection of b into the finite element space, still denoted as b.

We only discuss Euler forward in time for the same reason as in
Section 3. The two-dimensional DG method is given byZ

Ii;j

Unþ1 � Un

Dt
vdxdy�

Z
Ii;j

f ðUnÞoxvdxdyþ
Z y

jþ1
2

y
j�1

2

f̂ iþ1
2
v x�iþ1

2
; y

� �
dy

�
Z y

jþ1
2

y
j�1

2

f̂ i�1
2
v xþ

i�1
2
; y

� �
dy�

Z
Ii;j

gðUnÞoyvdxdy

þ
Z x

iþ1
2

x
i�1

2

ĝjþ1
2
v x; y�jþ1

2

� �
dx�

Z x
iþ1

2

x
i�1

2

ĝj�1
2
v x; yþ

j�1
2

� �
dx

¼
Z

Ii;j

sðhn
; bÞvdxdy;

where f̂ iþ1
2
ðyÞ ¼ F U x�

iþ1
2
; y; t

� �
;U xþ

iþ1
2
; y; t

� �� �
, with the Lax–Friedrichs

flux
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Fig. 6.1. The surface level h + b and the bottom b for the stationary flow in
Section 6.1.
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F a1; a2ð Þ ¼ 1
2

f a1ð Þ þ f a2ð Þ � a1 a2 � a1ð Þð Þ;

a1 ¼ max juj þ
ffiffiffiffiffiffi
gh

p� �
;

and ĝjþ1
2
ðxÞ ¼ G U x; y�

jþ1
2
;

� �
;U x; yþ

jþ1
2
; t

� �� �
, with

G a1; a2ð Þ ¼ 1
2

g a1ð Þ þ g a2ð Þ � a2 a2 � a1ð Þð Þ;

a2 ¼ max jv j þ
ffiffiffiffiffiffi
gh

p� �
:

It is straightforward to extend our well-balanced RKDG
schemes in Section 2 to two dimensions, and we refer to [40] for

the details. Let f̂ l
iþ1

2
; f̂ r

i�1
2
; ĝl

jþ1
2

and ĝr
j�1

2
be the well-balanced fluxes de-

fined similarly as in (2.11). Then the well-balanced DG method isZ
Ii;j

Unþ1 � Un

Dt
vdxdy�

Z
Ii;j

f ðUnÞoxvdxdyþ
Z y

jþ1
2

y
j�1

2

f̂ l
iþ1

2
v x�iþ1

2
; y

� �
dy

�
Z y

jþ1
2

y
j�1

2

f̂ r
i�1

2
v xþ

i�1
2
; y

� �
dy�

Z
Ii;j

gðUnÞoyvdxdy

þ
Z x

iþ1
2

x
i�1

2

ĝl
jþ1

2
v x; y�jþ1

2

� �
dx�

Z x
iþ1

2

x
i�1

2

ĝr
j�1

2
v x; yþ

j�1
2

� �
dx

¼
Z

Ii;j

sðhn
; bÞvdxdy; ð5:3Þ

The integrals in (5.3) can be approximated by quadratures with suf-
ficient accuracy. Let us assume that we use a Gauss quadrature with
L points, which is exact for single variable polynomials of degree
2k + 1 (see [11] for an analysis of the requirement of the numerical
quadrature for the accuracy of the DG solution). We assume:

Sx
i ¼ xb

i : b ¼ 1; . . . ; L
� 	

; Sy
j ¼ yb

j : b ¼ 1; . . . ; L
n o

; ð5:4Þ

denote the Gauss quadrature points on xi�1
2
; xiþ1

2

h i
and yj�1

2
; yjþ1

2

h i
,

respectively. For instance, xi�1
2
; yb

j

� �
ðb ¼ 1; . . . ; LÞ are the Gauss

quadrature points on the left edge of the (i, j) cell. We will still need
to use the Gauss–Lobatto quadrature rule, and we distinguish the
two quadrature rules by adding hats to the Gauss–Lobatto points,
i.e.

bSx
i ¼ x̂r

i : r ¼ 1; . . . ;N
� 	

; bSy
j ¼ ŷr

j : r ¼ 1; . . . ;N
n o

; ð5:5Þ

will denote the Gauss–Lobatto quadrature points on xi�1
2
; xiþ1

2

h i
and

yj�1
2
; yjþ1

2

h i
, respectively. Recall from Remark 3.5 that the Gauss–Lob-

atto quadrature (5.5) is introduced to prove the positivity, and
Gauss quadrature (5.4) is used to compute the integrals in the DG
scheme (5.3). Let ŵr be the Gauss–Lobatto quadrature weights for
the interval [�1/2,1/2] such that

PN
r¼1ŵr ¼ 1, and we have:

Proposition 5.1. Consider the well-balanced DG scheme (5.3) solving

(5.1). Let Un
i;jðx; yÞ ¼ hn

i;jðx; yÞ; ðhuÞni;jðx; yÞ; ðhvÞni;jðx; yÞ
� �T

be the DG

polynomial in the cell Ii,j, and �hn
i;j denotes the cell average of hn

i;jðx; yÞ in

Ii,j. If hn
i;j xb

i ; ŷ
r
j

� �
P 0 and hn

i;j x̂r
i ; y

b
j

� �
P 0 for all the r,b, i, j, then

�hnþ1
i;j P 0 under the CFL condition:

Dt
Dx

juj þ
ffiffiffiffiffiffi
gh

p� �


 



1
þ Dt

Dy
jvj þ

ffiffiffiffiffiffi
gh

p� �


 



1
6 ŵ1: ð5:6Þ

The proof is straightforward by using Lemma 3.1 and following the
same lines as in [42,43].

The linear scaling limiter can enforce the sufficient conditions in
the proposition above:
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eUn
ijðx; yÞ ¼ h Un

ijðx; yÞ � Un
ij

� �
þ Un

ij; h ¼min 1;
�hn

ij

�hn
ij �mi;j

( )
; ð5:7Þ

where

mi;j ¼ min
ðx;yÞ2Sij

hn
ijðx; yÞ;

Sij ¼ ðx; yÞ : x 2 Sx
i ; y 2 bSy

j ; or x 2 bSx
i ; y 2 Sy

j

n o
: ð5:8Þ

Again, we can show this limiter does not destroy accuracy
[42,43], and it keeps the conservativity of the water height. By
the same argument as in Section 3, the positivity-preserving lim-
iter does not destroy the well-balanced property.

Given the DG polynomial Un
i;jðx; yÞ in interval Ii, j at time level n

with a non-negative height cell average �hn
i;j P 0, the algorithm

flowchart of our high order well-balanced positivity-preserving
DG method with Euler forward in time for the shallow water equa-
tions is

� Evaluate mi, j by (5.8).
� In each cell Ii,j, check if the TVB limiter is needed based on

(h + b, (hu), (hv))T if mi,j P 0, or based on (h, (hu), (hv))T other-
wise. If the answer is yes, perform the TVB limiter on
(h, (hu), (hv))T. The DG polynomial after the TVB limiting is still
denoted as Un

i;jðx; yÞ.
� Evaluate mi,j in (5.8) again, and use the positivity-preserving

limiter (5.7) to compute eUn
i;jðx; yÞ.

� Use eUn
i;jðx; yÞ instead of Un

i;jðx; yÞ in the DG scheme (5.3) with the
CFL condition (5.6).

For TVD high order time discretizations, we need to perform the
algorithm above in each stage for a Runge–Kutta method or in each
step for a multistep method.

6. Numerical examples

In this section we present numerical results of our well-bal-
anced positivity-preserving DG methods when applied to the
one- and two-dimensional shallow water equations. The third
order finite element DG method (i.e. k = 2), coupled with the third
order TVD Runge–Kutta time discretization (2.6), is implemented
in the examples. The CFL number is taken as 0.16, and the TVB con-
stant M in the TVB limiter (2.12) is taken as 0 in most numerical
examples, unless otherwise stated. The gravitation constant gis
fixed as 9.812 m/s2.
ell-balanced discontinuous Galerkin methods for the shallow water equa-
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Table 6.1
L1 and L1 errors for different precisions for the stationary solution in Section 6.1.

Precision L1 error L1 error

h hu h hu

Single 2.89E�07 1.14E�07 5.81E�07 4.20E�07
Double 7.16E�16 1.94E�16 1.11E�15 1.42E�15

Table 6.2
L1 errors and numerical orders of accuracy for the example in Section 6.2.

Number of cells h hu

L1 error Order L1 error Order

25 2.12E�03 1.83E�02
50 1.10E�04 4.27 9.73E�04 4.23

100 1.15E�05 3.26 1.02E�04 3.25
200 8.79E�07 3.72 7.72E�06 3.72
400 9.38E�08 3.23 8.26E�07 3.22
800 1.07E�08 3.13 9.41E�08 3.13
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6.1. Test for the well-balanced property

The first test problem is chosen to verify that the DG methods
indeed preserve the still water steady state with a non-flat bottom
containing a wet/dry interface. The bottom topography is given by
the depth function [22]:

bðxÞ ¼ maxð0;0:25� 5ðx� 0:5Þ2Þ; 0 6 x 6 1: ð6:1Þ

The initial data is the stationary solution:

hþ b ¼maxð0:2; bÞ; hu ¼ 0;

and a periodic boundary condition is used. This steady state should
be exactly preserved. We compute the solution until t = 0.5 using
200 uniform cells. The computed surface level h + b and the bottom
b are plotted in Fig. 6.1. In order to demonstrate that the still water
solution is indeed maintained up to round-off error, we use single-
and double-precision to perform the computation, and show the L1

and L1errors for the water height h (Note: h in this case is not a con-
stant function!) and the discharge hu in Table 6.1 with different
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Fig. 6.5. Same as in Fig. 6.4, zoom-in of the wet/dry front.
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Fig. 6.6. Same as in Fig. 6.4, zoom-in of the wet/dry front, with 300 uniform cells employed.
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precisions. The errors are computed based on the numerical solu-
tions at cell centers. We can clearly see that the L1 and L1 errors
Please cite this article in press as: Xing Y et al. Positivity-preserving high order w
tions. Adv Water Resour (2010), doi:10.1016/j.advwatres.2010.08.005
are at the level of round-off errors for different precisions, verifying
the well-balanced property.
ell-balanced discontinuous Galerkin methods for the shallow water equa-
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Fig. 6.9. The water surface level in the parabolic bowl problem at different time: top left: t = 1000; top right: t = 2000; middle left: t = 3000; middle right: t = 4000; bottom
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6.2. Accuracy test

In this example we will test the high order accuracy of our
schemes for a smooth solution. We have chosen the following bot-
tom function and initial conditions:
Please cite this article in press as: Xing Y et al. Positivity-preserving high order w
tions. Adv Water Resour (2010), doi:10.1016/j.advwatres.2010.08.005
bðxÞ ¼ sin2ðpxÞ; hðx;0Þ ¼ 5þ ecosð2pxÞ; ðhuÞðx;0Þ
¼ sinðcosð2pxÞÞ; x 2 ½0;1	;

with periodic boundary conditions, the same setup as in [40]. Since
the exact solution is not known explicitly for this case, we use the
ell-balanced discontinuous Galerkin methods for the shallow water equa-
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fifth order finite volume WENO scheme from [39] with 12,800 cells
to compute a reference solution, and treat this reference solution as
the exact solution in computing the numerical errors. The TVB con-
stant M in (2.12) is taken as 32 here, to avoid the accuracy order
reduction near the extrema. In general, M should be chosen propor-
tional to the size of the second derivative of the solution near
smooth extrema, see [13]. We compute up to t = 0.1when the solu-
tion is still smooth (shocks develop later in time for this problem).
Table 6.2 contains the L1 errors for the cell averages and numerical
orders of accuracy for the DG scheme. We can clearly see that third
order accuracy is achieved.

6.3. Riemann problem over a flat bottom

In this subsection, we consider two Riemann problems contain-
ing dry area over a flat bottom (i.e. b(x) � 0). These examples were
used in [6], and are chosen here to demonstrate the positivity-pre-
serving ability of our methods.

The computational domain for the first test case is set as
[�300,300], and the initial conditions are given by

huðx;0Þ ¼ 0 and hðx;0Þ ¼
10 if x 6 0;
0 otherwise:

�
ð6:2Þ

On the left side of 0, still water of height 10 is given, and the right
side is dry region. The analytic solution for this problem can be
found in [4]. We compute this problem using our well-balanced
positivity-preserving methods with simple transmissive boundary
conditions and 200 uniform cells. The solutions at time t = 4, 8
and 12 are shown in Fig. 6.2. We also plot the exact solutions in
these figures to provide a comparison. The zoomed-in version near
the wet/dry front at these times is presented in Fig. 6.3. From these
figures, we observe that the exact solutions are well captured by the
numerical results.

The second test case is on the computational domain
[�200,400]. The initial conditions have nonzero velocity, and are
given by

hðx;0Þ ¼
5 if x 6 0;
10 otherwise;

�
and uðx; 0Þ ¼

0 if x 6 0;
40 otherwise;

�
ð6:3Þ

which do not contain dry area. But as the constant initial conditions
meet the drying criterion

ffiffiffiffiffiffiffi
ghl

p
þ

ffiffiffiffiffiffiffi
ghr

p
þ ul � ur < 0, a dry region

emerges and this makes the problem numerically difficult. Two
Please cite this article in press as: Xing Y et al. Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equa-
tions. Adv Water Resour (2010), doi:10.1016/j.advwatres.2010.08.005
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expansion waves then propagate away from each other. The ana-
lytic solution for this problem can be found in [4]. We compute this
problem using our well-balanced positivity-preserving methods
with simple transmissive boundary conditions and 200 uniform
cells. The numerical solutions, as well as the exact solutions, at time
t = 2, 4 and 6 are shown in Fig. 6.4. We can observe that the numer-
ical solutions agree well with the exact solutions. The comparison
near the wet/dry front are shown in Fig. 6.5. There exists observable
error near the dry region. We repeat the test with 300 uniform cells
and the corresponding solutions are plotted in Fig. 6.6, where such
error are significantly reduced and a nice agreement between the
numerical and exact solutions is observed.

We have also run this test case using the well-balanced DG
methods without the positivity-preserving limiter. Negative water
height was generated during the computation, which caused blow-
up immediately. This confirms the positivity-preserving property
of our method.

6.4. Dam break over a plane

In this subsection, we consider some examples which contain a
non-flat bottom, and test the performance of the positivity-pre-
serving methods under this condition. These test cases have been
previously considered in [9].
Please cite this article in press as: Xing Y et al. Positivity-preserving high order w
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The bottom topography is chosen as

bðxÞ ¼ 1� x tanðaÞ; ð6:4Þ

with some angle a which will be defined later. The computational
domain is set as [�15,15] and the initial conditions are given by

huðx;0Þ ¼ 0 and hðx;0Þ ¼
1� bðxÞ if x 6 0;
0 otherwise;

�
ð6:5Þ

i.e., an initial still water on the left side of 0, and a dry region on the
right. The discharge q = 0 is imposed at the left boundary x = �15
and a free boundary condition is considered at the right boundary
x = 15.

For this particular problem, the position of the wet/dry front
and its velocity can be exactly computed, as shown in [9]. They
are given by

xf ðtÞ ¼ 2t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh0 cosðaÞ

q
� 1

2
gt2 tanðaÞ; ð6:6Þ

uf ðtÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh0 cosðaÞ

q
� gt tanðaÞ;

where a is the angle defined in (6.4) and h0 = 1 in this experiment.
Different values of the coefficient a produce different forms of

bottom, and then different kinds of wet/dry fronts will appear.
We consider three typical cases: an emerging topography a = p/
ell-balanced discontinuous Galerkin methods for the shallow water equa-
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Fig. 6.14. The water surface level and bottom in the small perturbation test with different mesh size: top left: 250 cells; top right: 1250 cells; bottom left: 6250 cells; bottom
right: 38400 cells.
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60, the flat bottom a = 0 and bottom with decreasing depth a = �p/
60.

We run the simulation until the stopping time t = 2, with 300
uniform cells. Numerical results of the case a = p/60 are shown
in Fig. 6.7. The initial condition is plotted on the top left, and the
time evolution of the wet/dry front location is on the top right.
The wet/dry front is defined as the first place where the water
height exceeds 10�6 if counted from the right to the left. We also
show the exact location (6.6) in the figure to provide a comparison,
and observe that the numerical front moves faster at first and
slower as time increases. To test the sensitivity of the front position
from the threshold 10�6, we repeat the test with a new threshold
10�10, and the new front location is also shown in the figure. The
surface level at time t = 2 is presented on the bottom left, and its
zoom-in version near the front is on the bottom right. The time
evolutions of the wet/dry front location for the cases a = 0 and
a = �p/60 are shown in Fig. 6.8, together with the exact front
location.

6.5. Parabolic bowl

For one-dimensional shallow water equations with a parabolic
bottom topography, analytic solutions have been derived by Samp-
Please cite this article in press as: Xing Y et al. Positivity-preserving high order w
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son et al. [32]. This provides a good test case for our numerical
methods. This example has been used in [22] for the shallow water
equations with the friction source term.

We take the parabolic bottom:

bðxÞ ¼ h0ðx=aÞ2; ð6:7Þ

with constants h0 and a to be specified later. The computational do-
main is set as [�5000,5000]. The analytical water surface, for the
shallow water equations without the friction source term, is given
by

hðx; tÞ þ bðxÞ ¼ h0 �
B2

4g
cosð2xtÞ � B2

4g
� Bx

2a

ffiffiffiffiffiffiffiffi
8h0

g

s
cosðxtÞ; ð6:8Þ

where x ¼
ffiffiffiffiffiffiffiffiffiffiffi
2gh0

p
=a and B is a given constant. The exact location of

the wet/dry front takes the form:

x0 ¼ �
Bxa2

2gh0
cosðxtÞ � a: ð6:9Þ

We fix these coefficients to be a = 3000, B = 5 and h0 = 10 for our
test case. The initial condition is then defined by (6.8) (for the water
height) and the zero discharge. Because the flow cannot reach the
boundaries, we can pick any boundary conditions and they have
ell-balanced discontinuous Galerkin methods for the shallow water equa-
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Fig. 6.15. The water surface level and bottom in the small perturbation test with different mesh size and stopping time: left: time t = 0.8; right: time t = 1.6; top: 250 cells;
middle: 1250 cells; bottom: 6250 cells.
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no impact on the numerical solutions. We run the simulation until
T = 6000 with 200 uniform cells, and plot the numerical water sur-
face at different times in Fig. 6.9. We also include the analytical solu-
Please cite this article in press as: Xing Y et al. Positivity-preserving high order w
tions. Adv Water Resour (2010), doi:10.1016/j.advwatres.2010.08.005
tion to provide a comparison, and a nice agreement can be observed.
This confirms the positivity-preserving property of our methods. The
discharges hu at time 1000 and 6000 are also plotted in Fig. 6.10.
ell-balanced discontinuous Galerkin methods for the shallow water equa-
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Fig. 6.16. The water surface level in the two-dimensional oscillating lake problem at different time: top left: t = T/6; top right: t = T/3; bottom left: t = T/2; bottom right: t = 2T.
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6.6. Drain on a non-flat bottom

In this example, taken from [19], we solve the shallow water
equations on the bottom:

bðxÞ ¼ 0:2� 0:05ðx� 10Þ2 if 8 6 x 6 12;
0 otherwise;

(
ð6:10Þ

in the computational domain [0,25]. The initial data is a still flat
water:

hðx;0Þ ¼ 0:5� bðxÞ; huðx;0Þ ¼ 0: ð6:11Þ

The left boundary condition is a free condition on h and zero on hu.
The right boundary condition is an outlet condition on a dry bed (re-
fer to [19] for the details).

Two-hundred and fifty uniform cells are used in the computa-
tion. The solutions at different times T = 10, 20, 100 and 1000 are
shown in Figs. 6.11 and 6.12. The outlet boundary condition on
the right allows the water to freely flow out of the domain on
the right, and a dry region is developed near the right side of the
bump first. After a long time, the solution reaches a steady state,
which is a still water on the left of the bump, and a dry state on
the right. The numerical solutions reflect this pattern well and con-
verge to the expected steady state.
Please cite this article in press as: Xing Y et al. Positivity-preserving high order w
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6.7. Small perturbation test

In this test case, we study a very small perturbation of a steady
state problem with a non-flat exponential bottom. In a channel
[�5,5], we consider the bottom function:

bðxÞ ¼ 0:5 expð�10x2Þ;

with the initial condition given by

ðhuÞðx;0Þ¼0 and hðx;0Þ¼
0:5�bðxÞþ0:0001 if �36 x6�2;
0:5�bðxÞ otherwise:

�
Theoretically, this disturbance should split into two waves, propa-
gating left and right at the characteristic speeds �

ffiffiffiffiffiffi
gh

p
. The results

at time t = 2.4, when the right travelling wave passes the bottom,
are shown in Fig. 6.13. Top left is the plot for the water surface
and bottom with 250 cells. A zoomed-in version on the horizontal
interval is shown in top right, where we can observe that the bot-
tom tip is very singular at this scale. The numerical scheme cannot
resolve such singular tip with a coarse mesh of 250 points, which
corresponds to less than one point in the tip, resulting in the artifact
(oscillations) at this scale. As we increase the resolution to
6250 cells, such that the mesh size Dx is comparable to the width
of bottom tip at the zoomed-in scale, the solution is well resolved
and the spurious oscillation disappears, as shown in bottom left.
ell-balanced discontinuous Galerkin methods for the shallow water equa-
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Fig. 6.17. The discharge in the two-dimensional oscillating lake problem at time t = T/3: left: hu; right: hv.
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Fig. 6.18. The 2D plot of the water surface level in the two-dimensional oscillating lake problem along the line y = 0 at different time: top left: t = T/6; top right: t = T/3;
bottom left: t = T/2; bottom right: t = 2T.
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For this particular example, the numerical solution has better reso-
lution if the TVB limiter is implemented on (h + b,hu)T, as shown in
Please cite this article in press as: Xing Y et al. Positivity-preserving high order w
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bottom right of Fig. 6.13 for the numerical result with 6250 points.
Because of the strong singularity of the bottom tip at the zoomed-in
ell-balanced discontinuous Galerkin methods for the shallow water equa-
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scale for this particular example, h + b is a much smoother function
than h, explaining the better performance when the limiter is
implemented on h + b rather than h.

Next, we will show more numerical results with different mesh
sizes of 250, 1250, 6250 and 38400, respectively, for the case of
applying the limiter on (h + b,hu)T, in Fig. 6.14. We can clearly ob-
serve numerical convergence with grid refinement, starting at
1250 cells. To demonstrate that the ‘‘overshoot” right on top of
the bottom tip is physical, we run the solution with a very refined
mesh of 38400 cells, which agrees with the solution of 1250 cells
well. In Fig. 6.15, we plot the numerical results at two different
times, namely at t = 0.8 (before the right travelling wave reaches
the bottom tip) and at t = 1.6 (when the right travelling wave just
hits the bottom tip).

6.8. Two-dimensional oscillating lake

In this last test, we study a two-dimensional example proposed
in [18]. The main purpose is to check the performance of the pos-
itivity-preserving limiter in two dimensions.

We consider a rectangular computational domain
[�2,2] � [�2,2]. The parabolic bottom topography takes the form:

bðx; yÞ ¼ h0
x2 þ y2

a2 ; ð6:12Þ

with constants h0 and a to be specified later. The analytical solu-
tions, for the two-dimensional shallow water equations without
the friction source term, are given by [18]:

hðx;y;tÞ¼max 0;
rh0

a2 ð2xcosðxtÞþ2ysinðxtÞ�rþ0:1�bðx;yÞÞ
� �

;

uðx;y;tÞ¼�rxsinðxtÞ; vðx;y;tÞ¼rxcosðxtÞ;
ð6:13Þ

which are periodic with the period T = 2p/x and x ¼
ffiffiffiffiffiffiffiffiffiffiffi
2gh0

p
=a.

We fix these coefficients to be a = 1, r = 0.5 and h0 = 0.1 for our
test case. The initial conditions are then defined by (6.13) with
t = 0. Because the flow cannot reach the boundaries, we can pick
any boundary conditions and they have no impact on the numeri-
cal solutions. We run the simulation until time 2T with 100 � 100
uniform cells, and plot the numerical water surface at different
times in Fig. 6.16. The discharge at time t = T/3 are shown in
Fig. 6.17. We also plot the water surface along the line y = 0, and
compare the results with the analytical solution to provide a com-
parison in Fig. 6.18, where a nice agreement can be observed.

7. Concluding remarks

In this paper we have presented a simple positivity-preserving
limiter based on DG methods for the shallow water equations,
which can keep the water height non-negative under suitable
CFL condition, can preserve the mass conservation and at the same
time does not affect the high order accuracy for the general solu-
tions. We then incorporate this limiter into a well-balanced DG
method presented in [40], with a corresponding change in the
slope limiter procedure. This method has been extended to the
two-dimensional problem with rectangular meshes. Compared
with other positive preserving methods in the literature, our ap-
proach has the advantage of simplicity, high order accuracy for
smooth solutions and well-balanced property. Extensive numerical
examples are provided to demonstrate the well-balanced property,
accuracy, positivity-preserving property, and non-oscillatory shock
resolution of the proposed numerical method.

In this paper we have only shown a straightforward extension
of the one dimensional algorithm to two-dimensional DG scheme
on a rectangular mesh. For triangular meshes, the idea of rewriting
Please cite this article in press as: Xing Y et al. Positivity-preserving high order w
tions. Adv Water Resour (2010), doi:10.1016/j.advwatres.2010.08.005
the scheme as a convex combination of monotone schemes is still
plausible with the introduction of a special quadrature rule, see
[44] for such an extension for Euler equations. This, together with
generalization to high order accurate finite difference positivity-
preserving methods, constitute the ongoing work.
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