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In this paper, we propose a fully-discrete energy-conserving scheme for the nonlinear Dirac 
equation, by combining the scalar auxiliary variable (SAV) technique with discontinuous 
Galerkin (DG) discretization. We start by discussing the semi-discrete DG discretization, 
and show that, with suitable choices of numerical fluxes, the resulting method conserves 
the charge, energy exactly and preserves the multi-symplectic structure. The optimal error 
estimate of semi-discrete DG scheme is carried out. We combine it with the energy 
conserving SAV technique, and demonstrate that the fully-discrete scheme conserves the 
discrete global energy exactly. Both second order SAV method based on the midpoint rule 
and its high order extension have been studied. The proposed methods have been tested 
on some numerical experiments, which confirm the optimal rates of convergence and the 
energy conserving property. Numerical comparison with energy dissipative DG method is 
also provided to demonstrate that the numerical error of energy conserving method does 
not grow significantly in long time simulations.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The Dirac equation was derived by British physicist Paul Dirac [18] in 1928. It is a relativistic wave equation in particle 
physics, which describes massive spin-1/2 relativistic fermions in (3+1) space-time dimensions. The original form proposed 
by Dirac is

ih̄
∂ψ(x, t)

∂t
=
⎛⎝βmc2 − ih̄c

3∑
j=1

α j∂x j

⎞⎠ψ(x, t), (1.1)

where ψ = ψ(x, t) ∈C4 is the wave function for the electron of rest mass m with space-time coordinates (x, t), i = √−1 is 
the imaginary unit, c is the speed of light, and h̄ is the reduced Planck constant. In Planck units, the equation (1.1) can be 
written as

i∂tψ(x, t) =
⎛⎝βm − i

3∑
j=1

α j∂x j

⎞⎠ψ(x, t). (1.2)
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Here the 4 × 4 matrices α j ( j = 1, 2, 3) and β are all Hermitian and they satisfy

{α j,αk} = 2δ jk I4, {α j, β} = 0, β2 = I4, (1.3)

in which {A, B} := AB + B A is the anticommutator. According to the Dirac–Pauli theorem [50, Lemma 2.25], different choices 
of the matrices α j and β are equivalent as long as they satisfy (1.3). The most common choice, known as the Dirac–Pauli 
representation, is

α j =
(

0 σ j
σ j 0

)
, β =

(
I2 0
0 −I2

)
,

where σ j are the Pauli matrices given by

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

In 1938, Russian physicist Dmitri Ivanenko proposed a nonlinear model of self-interacting electrons by adding a nonlinear 
term to the Dirac equation. In 1970, Spanish physicist Mario Soler re-introduced and investigated this model in [47], which 
is now known as the Soler Model:

i∂tψ = −i
3∑

j=1

α j∂x j ψ + (m − f (ψ∗βψ))βψ, (1.4)

where ψ∗ is the complex conjugate of ψ and f is a real function in C(R) with f (0) = 0.
Dirac equation plays a key role in quantum field theory. The analyses of Dirac model (such as well-posedness, stability, 

existence of local solutions) become challenging due to the unboundedness of the corresponding Hamiltonian functional. 
There are a number of works [8,35,41,54] on the local and global well-posedness of Cauchy problem for the nonlinear Dirac 
(NLD) equations, including Thirring model, Federbusch model, Gross–Neveu model and other Dirac equation with quadratic 
nonlinearity. Particular attention is being paid to the solitary wave dynamics of nonlinear Dirac equations. The first stability 
result appears in [5] in the context of self-interacting spinor fields, but the stability of solitary wave solutions of the NLD 
equation has not been settled yet. Recently, Shao et al. studied the stability of solitary waves by numerical simulations 
in [42]. The behavior of the solitary wave in the presence of external forces was also described in [38,39]. For the (1+1)-
dimensional NLD equation (i.e., one time dimension plus one space dimension), some analytical solitary wave solutions are 
found in [9,27] for the quadric nonlinearity as well as in [36] for fractional nonlinearity while there are few exact solutions 
in (3+1) dimensions except for some special cases [51].

As the exact solution of nonlinear equations is generally unknown, numerical experiment becomes an important ap-
proach. We will henceforth focus on numerical methods of the (1+1)-dimensional NLD equation. Along this direction, Alvarez 
and Carreras [1,2] made important progress and used a second-order Crank–Nicholson (CN) scheme to simulate the inter-
action dynamics between two solitary waves of different initial charges for the Soler model. Shao and Tang reinvestigated 
this interaction dynamics problem in [44] by applying a fourth-order Runge-Kutta discontinuous Galerkin method. With 
the choice of upwind numerical fluxes, the charge non-increasing property was proved for the semi-discrete DG spatial 
discretization, and extensive numerical experiments were carried out to demonstrate the performance of the high order DG 
methods. The weak inelastic interaction in ternary collisions was also observed. In [24], Hong and Li applied the implicit 
multi-symplectic Runge–Kutta methods (MSRK) to the NLD equation which was rewritten in the form of multi-symplectic 
Hamiltonian partial differential equation (HPDE) systems. It was shown that the resulting methods preserve exactly the 
charge and momentum, and the error of the energy is at the level of numerical truncation error. A parallel numerical 
method for the time-dependent Dirac equation was presented in [19] and a time- and space-staggered leap-frog scheme 
was proposed in [23]. A comprehensive review of numerical methods for the NLD equation has been studied in [52]. Re-
cently the time-splitting method [3,29], which satisfied the charge conservation in the discrete level, was investigated.

Discontinuous Galerkin (DG) spatial discretization will be considered in this paper. DG methods were first proposed 
and analyzed in the early 1970s as a finite element method to numerically solve PDEs. They adopt piecewise continuous 
polynomial space for numerical solutions and test functions in the spatial variables and have been successfully applied to 
a wide range of problems. They were successfully applied to hyperbolic conservation laws following a series of papers by 
Cockburn et al. [13–17]. Recently, there have been extensive studies on structure-preserving DG methods which were de-
signed to preserve certain structure of the continuum equations, such as the total energy, Hamiltonian structure, the physical 
bounds, asymptotic limit, hydrostatic balance, and entropy inequality. For instance, energy or Hamiltonian conserving DG 
methods, with smaller phase and shape errors in long time simulations, have been designed and studied for the acoustic 
wave [11], the elastodynamics [22], the generalized Korteweg-de Vries equation [4,32], the Camassa-Holm equation [31], the 
Degasperis-Procesi equation [26], and the nonlinear Schrödinger equation [30]. The multi-symplecticity of semi-discrete DG 
discretization have been studied for general multi-symplectic HPDEs in a recent paper [48]. Recent development on efficient 
energy stable or energy conserving temporal discretizations includes the invariant energy quadratization (IEQ) approach 
[7,53] and the scalar auxiliary variable (SAV) method [46], which can be proven to be energy stable/conserving while avoid-
ing solving the implicit complicated nonlinear system. The IEQ approach was introduced in [55] and its high order version 
2
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was recently discussed in [20,34]. Shen and Xu performed the convergence and error analysis of SAV method in [45] and 
optimal error estimates for the SAV finite-elements schemes were derived in [10]. The SAV method can be extended to high 
order method in time while being unconditionally energy stable [21]. Recently a new variant of SAV approach for gradient 
flows was proposed in [25].

In this paper, we propose fully-discrete energy-conserving numerical methods for solving the (1+1)-dimensional NLD 
equation, by combining the efficient SAV time discretization and energy-conserving DG methods. We start by discussing the 
semi-discrete DG spatial discretization, and show that, with suitable choices of numerical fluxes, the resulting method is 
able to conserve the charge and energy exactly in the discrete level. In addition, one can rewrite the NLD equation into 
the HPDE form, and show that the semi-discrete DG method can preserve the multi-symplectic structure. The optimal error 
estimate of semi-discrete DG scheme is also studied, by introducing a novel global projection following the recent study in 
[49]. The semi-discrete method could be coupled with various energy conserving time discretization. To avoid solving the 
nonlinear system at each time step, we choose the energy conserving SAV method, and denote the resulting fully-discrete 
scheme by SAV-DG method. We start with the second order SAV method derived from the midpoint rule, and provide an 
efficient way to implement this method so that only one linear system needs to be solved at each time step. The fully-
discrete SAV-DG scheme is shown to conserve the discrete global energy exactly. The extension to fourth order energy 
conserving SAV method is also studied in the paper, and its implementation is simple, as we can just use the second order 
algorithm and iterate it three times to obtain higher order. The proposed methods have been tested on various numerical 
experiments, which demonstrate the optimal convergence rate as well as the energy conserving property. We also carry 
out the comparison of numerical errors of energy conserving DG method and energy dissipative DG method (with upwind 
fluxes), and it was observed that energy conserving method yields a much smaller numerical error in a long time simulation.

The rest of the paper is organized as follows. In Section 2, we write the (1+1)-dimensional NLD equation in the form 
of HPDE system, and present its exact solitary wave solutions. In Section 3, we apply DG method to the HPDE system and 
show that the semi-discrete scheme conserves the charge and energy exactly with suitable choices of numerical fluxes. The 
error estimate of semi-discrete DG discretization is given in Section 4. In section 5, we construct the SAV-DG method along 
with its higher order version and present the discrete global energy conservation law of the method. Numerical examples 
are illustrated in Section 6 to verify the accuracy of our scheme and demonstrate the long time behavior of SAV-DG methods 
for NLD equation. We finish with a concluding remark in Section 7.

2. Preliminaries

In this study, we restrict our attention to (1+1)-dimensional nonlinear Dirac equation of the form

i∂tψ = −iα∂xψ + (m − f (ψ∗βψ))βψ,

ψ(x,0) = (φ1(x), φ2(x))T,

where ψ = (ψ1, ψ2)
T is a spinorial wave function, with ψ1 and ψ2 being complex functions that describe the up and down 

states of the particle. We choose α = σ1, β = σ3 and f (s) = 2λs as in [44] with λ being a real constant. This leads to the 
PDE system

∂tψ1 + ∂xψ2 + imψ1 + 2iλ
(
|ψ2|2 − |ψ1|2

)
ψ1 = 0,

∂tψ2 + ∂xψ1 − imψ2 + 2iλ
(
|ψ1|2 − |ψ2|2

)
ψ2 = 0.

(2.1)

The NLD equations admit three conserved quantities: the energy E(t), the linear momentum P (t), and the charge Q (t), 
given by

E(t) = − 1

2

∫
R

dx
[

Im
(
ψ∗

1 ∂xψ2 + ψ∗
2 ∂xψ1

)+ m
(
|ψ1|2 − |ψ2|2

)

−λ
(
|ψ1|2 − |ψ2|2

)2
]

=:
∫
R

dxρE(x, t), (2.2)

P (t) =1

2

∫
R

dx
[
Im
(
ψ∗

1 ∂xψ1 + ψ∗
2 ∂xψ2

)]=:
∫
R

dxρP (x, t), (2.3)

Q (t) =
∫
R

dx
(
|ψ1|2 + |ψ2|2

)
=:
∫
R

dxρQ (x, t), (2.4)

where ρE , ρP , and ρQ represent the energy density, the linear momentum density, and the charge density respectively.
By considering the real and imaginary parts of the unknown variables as ψ1 = p1 + iq1, ψ2 = p2 + iq2, the NLD equations 

(2.1) can be rewritten in the following form
3
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∂ p1

∂t
+ ∂ p2

∂x
− mq1 − 2λ

(
p2

2 + q2
2 − p2

1 − q2
1

)
q1 = 0,

∂q1

∂t
+ ∂q2

∂x
+ mp1 + 2λ

(
p2

2 + q2
2 − p2

1 − q2
1

)
p1 = 0,

∂ p2

∂t
+ ∂ p1

∂x
+ mq2 + 2λ

(
p2

2 + q2
2 − p2

1 − q2
1

)
q2 = 0,

∂q2

∂t
+ ∂q1

∂x
− mp2 − 2λ

(
p2

2 + q2
2 − p2

1 − q2
1

)
p2 = 0.

The above system can be reorganized as a multi-symplectic HPDE system, which has a multi-symplectic structure of the 
form

Mzt + K zx = ∇z S(z), (2.5)

with the real-valued state variable z = (p1,q1, p2,q2)
T. The matrices M and K are skew-symmetric:

M =

⎛⎜⎜⎝
0 1 0 0

−1 0 0 0
0 0 0 1
0 0 −1 0

⎞⎟⎟⎠ , K =

⎛⎜⎜⎝
0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎞⎟⎟⎠ , (2.6)

and S : R4 → R is a smooth function

S(z) =1

2

(
λ
(

p2
1 + q2

1 − p2
2 − q2

2

)
− m

)(
p2

1 + q2
1 − p2

2 − q2
2

)
=1

2
λ
(

p2
1 + q2

1 − p2
2 − q2

2

)2 − 1

2
m
(

p2
1 + q2

1 − p2
2 − q2

2

)
. (2.7)

As an HPDE system, it admits the multi-symplectic conservation law [6]

ωt + κx = 0, with ω = Mz1 · z2, κ = K z1 · z2,

where z1 and z2 are any pair of solutions of the variational equation of (2.5) of the form

M(dz)t + K (dz)x = ∇zz S(z)dz.

Remark 2.1. The exact solutions of the NLD equations (2.1) can be found in some cases. The first one is a standing wave 
solution at x0:

ψ sw
1 (x − x0, t) =A(x − x0)e−it , (2.8a)

ψ sw
2 (x − x0, t) =iB(x − x0)e−it , (2.8b)

where

A(x) =
√

(m2 − 2)(m + )/λ cosh
√

m2 − 2x

m +  cosh 2
√

m2 − 2x
,

B(x) =
√

(m2 − 2)(m − )/λ sinh
√

m2 − 2x

m +  cosh 2
√

m2 − 2x
,

with 0 <  � m. They also admit single solitary traveling wave exact solutions, placed initially at x0 with a velocity v:

ψ ss
1 (x − x0, t) =

√
γ + 1

2
ψ sw

1 (x̃, t̃) + sgn(v)

√
γ − 1

2
ψ sw

2 (x̃, t̃), (2.9a)

ψ ss
2 (x − x0, t) = sgn(v)

√
γ − 1

2
ψ sw

1 (x̃, t̃) +
√

γ + 1

2
ψ sw

2 (x̃, t̃), (2.9b)

where γ = 1/
√

1 − v2, x̃ = γ (x − x0 − vt), t̃ = γ [t − v(x − x0)]. The shape of solitary wave solution (2.9) depends on the 
parameter . When 0 <  < m/2, it is a two-hump soliton; when m/2 �  < m, it is a one-hump soliton; when  = m, 
the wave vanishes. The single solitary wave solution reduces to the standing wave solution if v = 0.
4
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3. Semi-discrete discontinuous Galerkin method

Suppose that the spatial domain � can be discretized as � = ∪N
j=1 I j , where I j = [x j− 1

2
, x j+ 1

2
] for j = 1, 2, ..., N . We 

denote by �x j the length of I j and by h = �x = max j �x j the maximum mesh size. The computational meshes are denoted 
by Th . We use Pk(I j) to represent the vector space spanned by polynomials of degrees up to k on the element I j , and 
define

Vh =
{

v ∈ L2(�) : v|I j ∈ Pk(I j), j = 1,2, ...N
}

to be the discontinuous piecewise polynomial space. We denote by V h = �4
i=1 Vh the space of finite element numerical 

solutions. For any piecewise polynomial v ∈ Vh or V h , let v+
j+1/2 and v−

j+1/2 be the limit at the cell interface x j+1/2 from 
the right and left cells respectively, and define the average and jump of v at the cell interface x j+1/2 as

{v} j+ 1
2

= 1

2
(v+

j+ 1
2

+ v−
j+ 1

2
), [v] j+ 1

2
= v+

j+ 1
2

− v−
j+ 1

2
.

We denote by ‖·‖ j the L2 norm over the cell I j , and ‖·‖ the L2 norm over the entire domain �.
The semi-discrete DG method of the NLD equations in the HPDE form (2.5) is given as follows: Seek the numerical 

solutions zh ∈ V h such that∫
I j

M(zh)t · φdx −
∫
I j

K zh · φxdx + (K̂ zh · φ−)
j+ 1

2
− (K̂ zh · φ+)

j− 1
2

=
∫
I j

∇z S(zh) · φdx, (3.1)

holds for all test functions φ ∈ V h . The hatted terms K̂ zh are the numerical fluxes defined on the element interfaces, and 
are the key component in designing stable DG methods. We consider the family of the numerical flux

K̂ zh = K {zh} + A[zh], (3.2)

for any m × m real symmetric matrix A. A slightly different version of this numerical flux was also considered in [48] for 
DG methods applied to HPDE.

For certain choices of A in the numerical flux (3.2), we can achieve the exact conservation of the charge Q (t) defined in 
(2.4), as summarized below.

Proposition 3.1 (Charge conservation). Assume zh = (p1,q1, p2,q2)
T is the numerical solution of the semi-discrete DG method (3.1)

with the numerical flux (3.2), where the symmetric matrix A takes the form

A = (aij) =

⎛⎜⎜⎝
a1 0 a3 a4
0 a1 −a4 a3
a3 −a4 a2 0
a4 a3 0 a2

⎞⎟⎟⎠ . (3.3)

Define Q h(t) = ∫
�

(
p2

1,h + p2
2,h + q2

1,h + q2
2,h

)
dx and Q h, j(t) =

∫
I j

(
p2

1,h + p2
2,h + q2

1,h + q2
2,h

)
dx to be the global and local charge. 

There holds the local charge conservation of the form:

dQ h, j(t)

dt
+ G(zh) j+ 1

2
− G(zh) j− 1

2
= 0, (3.4)

where

G(zh) :=1

2
μ+(p1,h, p2,h) + 1

2
μ+(q1,h,q2,h) + a1μ

−(p1,h,q1,h) + a2μ
−(p2,h,q2,h)

+ a3(μ
−(p1,h,q2,h) + μ−(p2,h,q1,h)) + a4(μ

−(p2,h, p1,h) + μ−(q2,h,q1,h)),

(3.5)

and μ±(uh, vh) = u+
h v−

h ± u−
h v+

h . Furthermore, we have the global conservation of the charge:

dQ h(t)

dt
= d

dt

∫
�

(
p2

1,h + p2
2,h + q2

1,h + q2
2,h

)
dx = 0. (3.6)

Proof. Taking the test function φ = Mzh in (3.1), we have∫
I

M(zh)t · Mzhdx −
∫
I

K zh · Mzhxdx + (K̂ zh · Mz−
h

)
j+ 1

2
− (K̂ zh · Mz+

h

)
j− 1

2
=
∫
I

∇z S(zh) · Mzhdx.
j j j

5
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First of all, it can be shown that the right-hand side disappears, i.e., 
∫

I j
∇z S(zh) · Mzhdx = 0, which follows directly from the 

definition of S(zh) in (2.7) and M in (2.6). Next, the volume integral becomes

−
∫
I j

K zh · Mzhxdx = −
∫
I j

(
q2,h(q1,h)x + p2,h(p1,h)x + q1,h(q2,h)x + p1,h(p2,h)x

)
dx

= −
(

p1,h p2,h + q1,hq2,h

)∣∣∣∣x
−
j+ 1

2

x+
j− 1

2

,

with M , K defined in (2.6). Therefore, we have

dQ h, j(t)

dt
+
(

K {zh} · Mzh − p1,h p2,h − q1,hq2,h + A[zh] · Mzh

)∣∣∣∣x
−
j+ 1

2

x+
j− 1

2

= 0, (3.7)

by utilizing the fact that 
∫

I j
M(zh)t · Mzhdx = dQ h, j(t)/dt .

Straightforward computation leads to

K {zh} · (Mz−
h ) j+ 1

2
− (p1,h p2,h + q1,hq2,h)

−
j+ 1

2

= ({q2,h}q−
1,h + {p2,h}p−

1,h + {q1,h}q−
2,h + {p1,h}p−

2,h

)
j+ 1

2
− (p1,h p2,h + q1,hq2,h)

−
j+ 1

2

=
(

1

2
μ+(p1,h, p2,h) + 1

2
μ+(q1,h,q2,h)

)
j+ 1

2

,

and

A[zh] · (Mz−
h ) j+ 1

2
=
[

a1μ
−(p1,h,q1,h) + a2μ

−(p2,h,q2,h)

+ a3(μ
−(p1,h,q2,h) + μ−(p2,h,q1,h)) + a4(μ

−(p2,h, p1,h) + μ−(q2,h,q1,h))

]
j+ 1

2

.

Hence, we have

K {zh} · (Mz−
h ) j+ 1

2
− (p1,h p2,h + q1,hq2,h)

−
j+ 1

2
+ A[zh] · (Mz−

h ) j+ 1
2

= G(zh) j+ 1
2
,

and similarly

K {zh} · (Mz+
h ) j− 1

2
− (p1,h p2,h + q1,hq2,h)

+
j− 1

2
+ A[zh] · (Mz+

h ) j− 1
2

= G(zh) j− 1
2
.

Combining these with (3.7) leads to the local conservation of charge in (3.4). The global conservation of charge (3.6) can be 
obtained by summing (3.4) over all elements and using the periodic boundary condition. �

In [48], semi-discrete DG methods with suitable choices of numerical fluxes for the HPDEs are shown to be both multi-
symplectic and energy conserving. The result on energy conservation is summarized below for the NLD equations, and we 
refer to [48] for the result on the preservation of multi-symplectic structure by the proposed semi-discrete DG method (3.1).

Proposition 3.2 (Energy conserviation). Let zh be the numerical solution of the semi-discrete DG scheme (3.1). It satisfies the local 
energy conservation law in the form of

dEh, j

dt
+ 1

2
F(zh, (zh)t) j+ 1

2
− 1

2
F(zh, (zh)t) j− 1

2
= 0,

where Eh, j = ∫I j
ρE (zh)dx − 1

2 K̂ zh · z−
h + 1

2 K̂ zh · z+
h with

ρE(zh) = S(zh) − 1

2
K (zh)x · zh = λ

2

(
p2

1,h + q2
1,h − p2

2,h − q2
2,h

)2 − m

2

(
p2

1,h + q2
1,h − p2

2,h − q2
2,h

)
− 1

2
((q2,h)x p1,h − (p2,h)xq1,h + (q1,h)x p2,h − (p1,h)xq2,h).

This leads to the conservation of the total energy

Eh =
∫

ρE(zh)dx + 1

2

∑
j

(
(K {zh} + A[zh]) · [zh]

)
j+ 1

2
. (3.8)
�

6
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Remark 3.1. The conserved total energy (3.8) contains some boundary terms, and can be simplified for specific matrix A. 
Below, let us use the alternating fluxes as an example to illustrate it. We notice that a special choice of A given by

A =

⎛⎜⎜⎝
0 0 0 1

2
0 0 − 1

2 0
0 − 1

2 0 0
1
2 0 0 0

⎞⎟⎟⎠ ,

corresponds to the alternating flux, i.e., q̂2,h = q+
2,h , p̂2,h = p+

2,h , q̂1,h = q−
1,h , and p̂1,h = p−

1,h . We can define a bilinear form 
D±

h : H1(Th) × H1(Th) →R as

D±
h (v, w) = −

∫
�

v wxdx −
∑

j

(
{v}[w] ± 1

2
[v][w]

)
j+ 1

2

= −
∫
�

v wxdx −
∑

j

(
v±[w]) j+ 1

2
,

which approximates the term 
∫
�

vx wdx in the following sense: for all v ∈ C1(I), there holds

D±
h (v, w) =

∫
�

vx wdx, ∀w ∈ H1(Th).

Using the Riesz Representation Theorem, we can define the numerical derivative operator D±
h : H1(Th) → Vh via

(D±
h v, w) = D±

h (v, w), ∀w ∈ Vh.

With the new notations, one can show that the discrete total energy (3.8) can be rewritten as

Eh =
∫
�

λ

2

(
p2

1,h + q2
1,h − p2

2,h − q2
2,h

)2 − m

2

(
p2

1,h + q2
1,h − p2

2,h − q2
2,h

)
dx

− 1

2

(
(D+

h q2,h, p1,h) − (D+
h p2,h, q1,h) + (D−

h q1,h, p2,h) − (D−
h p1,h, q2,h)

)
,

which is a numerical approximation to the continuous total energy

E = 1

2

∫
�

λ
(

p2
1 + q2

1 − p2
2 − q2

2

)2 − m
(

p2
1 + q2

1 − p2
2 − q2

2

)
− ((q2)x p1 − (p2)xq1 + (q1)x p2 − (p1)xq2

)
dx.

In addition, this matrix A satisfies the form (3.3) with a1 = a2 = a3 = 0 and a4 = ±1/2. Therefore, the semi-discrete DG 
method (3.1) with the alternating fluxes conserves the charge and the energy simultaneously.

4. Error estimate

We will provide optimal error estimate analysis of the semi-discrete DG scheme (3.1) in this section. Throughout the 
paper, the numerical flux K̂ zh = K {zh} + A[zh] with A given in (3.3) will be used, such that the resulting semi-discrete DG 
method enjoys the charge conservation, multi-symplecticity and energy conservation properties simultaneously.

4.1. Projection properties

We start by reviewing some existing results on the projection and their error analysis. For a given smooth function u, 
we can define its Gauss-Radau projection P u into the space Vh as∫

I j

(P u − u)w = 0, ∀w ∈ Pk−1(I j); P u(x−
j+ 1

2
) = u(x j+ 1

2
),

on each cell I j . It is known that the projection P u is well defined and has the projection error [12]

‖P u − u‖ � Chk+1, ‖P u − u‖∞ � Chk, (4.1)

with C = C(‖u‖Hk+1) independent of h. The same error estimate holds if the condition P u(x−
j+ 1

2
) = u(x j+ 1

2
) is replaced by 

P u(x+
1 ) = u(x j− 1 ). In addition, the generalized Gauss-Radau projection Pλ was discussed in [37], which was defined as
j− 2 2

7
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∫
I j

(Pλu − u)w = 0, ∀w ∈ Pk−1(I j),

{Pλu} + λ[Pλu] = u, at x = x j+ 1
2
,

with λ �= 0 for all the elements I j . It was shown to yield optimal approximation error. Based on these, we present the 
following lemma on the projection to be used in the proof of main result.

Lemma 4.1. Suppose z :R →R4 is a smooth vector-valued function. For the numerical fluxes defined in (3.2) with the entries of the 
matrix A in (3.3) satisfying a1a2 − a2

3 − a2
4 �= 0, there exists a projection P such that∫

I j

(P z − z) · φh = 0, ∀φh ∈ (Pk−1(I j))
4,

̂K (P z) = K̂ z, at x = x j+ 1
2

for each j. Furthermore, the following approximation property holds

‖z − P z‖ � Chk+1, (4.2)

where C may depend on z and the entries of A but is independent of h.

Under the assumption a1a2 − a2
3 − a2

4 �= 0, the matrix A is nonsingular and diagonalizable. This Lemma can be proven 
following the similar way as that of [49, Lemma 2.1], and is skipped here to save space.

Moreover, we list some inverse properties of the one-dimensional finite element space Vh that will be used. For any 
piecewise polynomial vh ∈ Vh , there is a positive constant C independent of vh and h such that [12]

‖(vh)x‖ � Ch−1 ‖vh‖ , ‖vh‖∞ � Ch− 1
2 ‖vh‖ . (4.3)

4.2. Error analysis

To deal with the nonlinear source term, we follow the setup in [28] and make an a priori error estimate assumption 
between numerical solution zh and exact solution z:

‖z − zh‖ � h. (4.4)

This estimate, combined with (4.1) and (4.3), implies that

‖z − zh‖∞ � ‖z − P z‖∞ + ‖P z − zh‖∞ � C(hk + h
1
2 ) < C, (4.5)

when h is small enough. We will verify the assumption (4.4) at the end of the proof of Theorem 4.2. Now we are ready to 
prove the main result on optimal L2 error estimate of the semi-discrete DG scheme to the NLD equation.

Theorem 4.2. let z be an exact solution to the NLD equation (2.1), or equivalently, the HPDE form (2.5) with M, K and S defined in 
(2.6)-(2.7), which is sufficiently smooth and bounded. Let zh ∈ V h be the solution of the semi-discrete DG scheme (3.1)-(3.2), with the 
numerical fluxes defined in (3.2)-(3.3) and the entries of the matrix A satisfying a1a2 − a2

3 − a2
4 �= 0. Suppose that the initial condition 

is well chosen such that ‖z(x,0) − zh(x,0)‖ = O (hk+1). Then for k � 1, there holds the following error estimates

‖z − zh‖ � Chk+1,

where C depends on z, and their derivatives but is independent of the mesh size h.

Proof. Let us first introduce some notations by defining a bilinear form

B j(zh,φ) =
∫
I j

M(zh)t · φdx −
∫
I j

K zh · φxdx + (K̂ zh · φ−)
j+ 1

2
− (K̂ zh · φ+)

j− 1
2
,

and decomposing the error into two parts as

e = z − zh = η + ξ, ξ = P z − zh, η = z − P z,

where P denotes the projection introduced in Lemma 4.1.
8
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The DG scheme (3.1) can then be written as

B j(zh,φ) =
∫
I j

(∇z S)(zh) · φdx

for all φ ∈ V h . The exact solution z also satisfies the same equation, therefore, the difference of them yields

B j(z − zh,φ) =
∫
I j

[(∇z S)(z) − (∇z S)(zh)] · φdx,

for all φ ∈ V h . Taking the test function φ = Mξ ∈ V h leads to

B j(ξ, Mξ) = −B j(η, Mξ) +
∫
I j

[(∇z S)(z) − (∇z S)(zh)] · Mξdx. (4.6)

For the left-hand side of (4.6), we have

B j(ξ, Mξ) =
∫
I j

Mξt · Mξdx −
∫
I j

Kξ · Mξxdx + (K̂ξ · Mξ−)
j+ 1

2
− (K̂ξ · Mξ+)

j− 1
2

= 1

2

d

dt
‖Mξ‖2

j + F̂ j+ 1
2

− F̂ j− 1
2

+ � j− 1
2
,

where

F̂ j+ 1
2

= −
x−

j+ 1
2∫

Kξ · Mξxdx + (K̂ξ
)

j+ 1
2

· Mξ(x−
j+ 1

2
)

� j− 1
2

=
x+

j− 1
2∫

x−
j− 1

2

Kξ · Mξxdx − (K̂ξ
)

j− 1
2

·
(

Mξ(x+
j− 1

2
) − Mξ(x−

j− 1
2
)

)
.

We claim that � j− 1
2

= 0. From the definitions of M , K and A in (2.6), (3.3), one can show that the product MT K is 
symmetric and MT A is skew-symmetric. It follows that K u · M v = Mu · K v = K v · Mu and Av · M v = 0 for all u, v ∈ R4. 
Therefore,

x+
j− 1

2∫
x−

j− 1
2

Kξ · Mξxdx =1

2

x+
j− 1

2∫
x−

j− 1
2

(Kξ · Mξx + Mξ · Kξx)dx = 1

2

x+
j− 1

2∫
x−

j− 1
2

(Kξ · Mξ)xdx

=1

2

(
Kξ+

j− 1
2

· Mξ+
j− 1

2
− Kξ−

j− 1
2

· Mξ−
j− 1

2

)
=1

2

(
Kξ+

j− 1
2

· Mξ+
j− 1

2
+ Kξ−

j− 1
2

· Mξ+
j− 1

2
− Kξ+

j− 1
2

· Mξ−
j− 1

2
− Kξ−

j− 1
2

· Mξ−
j− 1

2

)
=1

2
K (ξ+

j− 1
2

+ ξ−
j− 1

2
) · M(ξ+

j− 1
2

− ξ−
j− 1

2
) = (K̂ξ

)
j− 1

2
· M(ξ+

j− 1
2

− ξ−
j− 1

2
),

which leads to the conclusion that � j− 1
2

= 0.

For the right-hand side of (4.6), we have

−B j(η, Mξ) = −
∫
I j

Mηt · Mξdx +
∫
I j

Kη · M(ξ)xdx − (K̂η · Mξ−)
j+ 1

2
+ (K̂η · Mξ+)

j− 1
2
,

in which the second term on the right-hand side vanishes and K̂η = 0 according to the definition of the projection P . It 
follows that
9
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−B j(η, Mξ) = −
∫
I j

Mηt · Mξdx � 1

2

(
‖Mηt‖2

j + ‖Mξ‖2
j

)
. (4.7)

Since z is assumed to be bounded, zh is also bounded following (4.5). With the definition of S in (2.7), there exists some 
L > 0 such that

‖(∇z S)(z) − (∇z S)(zh)‖ j � L ‖z − zh‖ j ,

and therefore∫
I j

[(∇z S)(z) − (∇z S)(zh)] · Mξdx �L
(
‖η + ξ‖2

j + ‖Mξ‖2
j

)
�2L

(
‖η‖2

j + ‖ξ‖2
j + ‖Mξ‖2

j

)
.

(4.8)

Plugging these into the equation (4.6) and summing up over j, we get

d

dt
‖Mξ‖2 �‖Mηt‖2 + ‖Mξ‖2 + 4L

(
‖η‖2 + ‖ξ‖2 + ‖Mξ‖2

)
=(1 + 4L)‖Mξ‖2 + ‖Mηt‖2 + 4L ‖η‖2 + 4L ‖ξ‖2

�(1 + 4L)‖Mξ‖2 + 4L ‖ξ‖2 + Ch2k+2,

in which the last inequality comes from the projection error (4.2). Note that for the NLD equation, ‖Mzh‖ = ‖zh‖ with the 
choice of M in (2.6). Therefore, we have

d

dt
‖ξ‖2 � (1 + 8L)‖ξ‖2 + Ch2k+2.

Applying the Grönwall’s inequality, the optimal initial error, and the projection error (4.2) give us the optimal error estimate

‖z − zh‖ � Chk+1,

as desired.
To complete the proof, let us verify the a priori assumption (4.4). Easy to observe that it holds at time t = 0, because 

‖z(x,0) − zh(x,0)‖ = O (hk+1). Let us define

t∗ = inf{t : ‖z − zh‖ > h}.
If t∗ < T , then at t = t∗ , we have ‖z − zh‖ = h by continuity. On the other hand, we have ‖z − zh‖ � Chk+1 at t = t∗ , 
therefore, we have h � Chk+1, which is a contradiction if k � 1 and h is sufficiently small. Therefore, we have t∗ ≥ T and 
this justifies our a priori assumption (4.4), which finishes the proof. �
Remark 4.1. One fact about the NLD equation is that ‖Mzh‖ = ‖zh‖, which is utilized in the proof. This condition can be 
relaxed to the invertibility of the matrix M . Note that this proof of optimal error estimate may not work for the general 
HPDE studied in [48], especially in the case when the matrix M in the HPDE system is singular, including the Korteweg-de 
Vries equation, and Camassa-Holm equation, etc.

5. High order energy conserving SAV temporal discretization

In this section, we apply high order energy conserving SAV method to the semi-discrete DG discretization (3.1) of the 
NLD equation. The second order method will be discussed first, followed by extension to higher order methods.

Following the SAV approach [46], we extract the quadratic terms

S1(z) = −1

2
m(p2

1 + q2
1 − p2

2 − q2
2),

from the function S and introduce the auxiliary function

r(t) =
√√√√∫

�

S2(z(x, t))dx,

where S2(z) = 1 λ(p2 + q2 − p2 − q2)2 is always nonnegative. Now we can rewrite the NLD equation (2.5) as
2 1 1 2 2

10
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mzt + K zx = ∇z S1(z) + r(t)b(z(x, t)),

d

dt
r(t) = 1

2

∫
�

b(z(x, t)) · ztdx,

r(0) =
√√√√∫

�

S2(z(x,0))dx,

(5.1)

where b(z(x, t)) = ∇z S2(z)√∫
S2(z(x,t))dx

. Note that this reformulation replaces part of the function S with a new term involving 

the new variable r(t). The first order spatial derivatives are not affected, and after applying the semi-discrete DG spatial 
discretization, it can be shown that the optimal semi-discrete error estimate, charge conservation, energy conservation 
properties in the previous section still hold for the new system.

5.1. Second order SAV method

For simplicity we introduce the following notations:

Dt un = un+1 − un

�t
, un+ 1

2 = 1

2
(un + un+1), un∗ = 3

2
un − 1

2
un−1,

(u, v) j =
∫
I j

v T udx, (u, v) =
∫
�

v T udx, K̂ zn · φ
∣∣∣∣ j+ 1

2

j− 1
2

= (K̂ zn · φ−)
j+ 1

2
− (K̂ zn · φ+)

j− 1
2
.

Following the approach in [33,46], we can obtain the second order fully discrete SAV-DG scheme

(M Dt zn
h,φ) j =(K z

n+ 1
2

h ,φx) j − ̂

K z
n+ 1

2
h · φ

∣∣∣∣ j+ 1
2

j− 1
2

+ (∇z S1(z
n+ 1

2
h ),φ) j + rn+ 1

2 (b(zn∗
h ),φ) j, (5.2a)

Dtr
n =1

2
(b(zn∗

h ), Dt zn
h), (5.2b)

with the numerical fluxes K̂ zh defined in (3.2). At first glance, this scheme appears to be an implicit coupled method. 
However, as illustrated below, we are able to eliminate rn+ 1

2 and deduce a simple formula to evaluate rn+1 and zn+1
h , which 

involves only one matrix inversion that could be pre-calculated and re-used at each time step.
Easy to observe that ∇z S1(z) = Dz, where D = diag(−m, −m, m, m). We can rewrite the scheme (5.2) as

1

�t
(M(zn+1

h − zn
h),φ) j = 1

2
(K (zn

h + zn+1
h ),φx) j − 1

2
K̂ zn

h · φ
∣∣∣∣ j+ 1

2

j− 1
2

− 1

2
̂K zn+1

h · φ
∣∣∣∣ j+ 1

2

j− 1
2

+ 1

2
(D(zn

h + zn+1
h ),φ) j + 1

2
(rn + rn+1)(b(zn∗

h ),φ) j,

rn+1 − rn = 1

2
(b(zn∗

h ), zn+1
h − zn

h),

which can be rearranged as(
1

�t
Mzn+1

h − 1

2
Dzn+1

h ,φ

)
j
− 1

2
(K zn+1

h ,φx) j + 1

2
̂K zn+1

h · φ
∣∣∣∣ j+ 1

2

j− 1
2

=
(

1

�t
Mzn

h + 1

2
Dzn

h + rn + rn+1

2
b(zn∗

h ),φ

)
j
+ 1

2
(K zn

h,φx) j − 1

2
K̂ zn

h · φ
∣∣∣∣ j+ 1

2

j− 1
2

, (5.3a)

rn+1 = rn − 1

2
(b(zn∗

h ), zn
h) + 1

2
(b(zn∗

h ), zn+1
h ). (5.3b)

Let us define the linear operator L : V h → V h as

(Lzn
h,φ) = (K zn

h,φx) −
∑

̂K (zn
h) j · φ

∣∣∣∣ j+ 1
2

j− 1
, ∀φ ∈ V h,
j 2

11
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and represent it by the matrix L. We can then define the block diagonal matrix P± = diag( 1
�t M ± 1

2 D, · · · , 1
�t M ± 1

2 D) with 
the dimension 4(k + 1)N × 4(k + 1)N , where k is the polynomial degree of DG method and N is the number of cells. We 
take the sum of (5.3a) over j and get

((P− − L/2)zn+1
h ,φ) = ((P+ + L/2)zn

h,φ) + rn + rn+1

2
(b(zn∗

h ),φ).

As this holds for all φ ∈ V h , it follows that

(P− − L/2)zn+1
h = (P+ + L/2)zn

h + rn + rn+1

2
�b(zn∗

h ),

where �b(zn∗
h ) stands for the piecewise L2 projection of b(zn∗

h ) onto V h . Replacing rn+1 by the formula in (5.3b) yields

(P− − L/2)zn+1
h = (P+ + L/2)zn

h +
(

rn − 1

4
(b(zn∗

h ), zn
h) + 1

4
(b(zn∗

h ), zn+1
h )

)
�b(zn∗

h ).

Let Q ± = P± ± L/2 and

ξn = Q +zn
h +

(
rn − 1

4
(b(zn∗

h ), zn
h)

)
�b(zn∗

h ), (5.4)

which leads to

zn+1
h = Q −1− ξn + 1

4
(b(zn∗

h ), zn+1
h )Q −1− �b(zn∗

h ). (5.5)

Taking the inner product of (5.5) with b(zn∗
h ) gives us

(b(zn∗
h ), zn+1

h ) = (b(zn∗
h ), Q −1− ξn) + 1

4
(b(zn∗

h ), zn+1
h )(b(zn∗

h ), Q −1− �b(zn∗
h )),

and therefore

(b(zn∗
h ), zn+1

h ) = (b(zn∗
h ), Q −1− ξn)

1 − 1
4 (b(zn∗

h ), Q −1− �b(zn∗
h ))

.

Inserting this into (5.3b) and (5.5), we finally obtain the efficient way to implement the SAV-DG method (5.2) as:

rn+1 = rn − 1

2
(b(zn∗

h ), zn
h) + 2(b(zn∗

h ), Q −1− ξn)

4 − (b(zn∗
h ), Q −1− �b(zn∗

h ))
, (5.6a)

zn+1
h = Q −1− ξn + (b(zn∗

h ), Q −1− ξn)

4 − (b(zn∗
h ), Q −1− �b(zn∗

h ))
Q −1− �b(zn∗

h ). (5.6b)

Next, we will explore the energy-conserving property of the scheme (5.2). Recall that the energy density is defined by 
ρE(z) = S1(z) + S2(z) − 1

2 K zx · z, and the semi-discrete DG method conserves the energy of the form (3.8) in Proposition 3.2. 
We have the following theorem on the conservation of a slightly modified energy of the fully discrete method.

Theorem 5.1. The numerical solution zh of the SAV-DG scheme (5.2) with periodic boundary condition conserves the discrete total 
energy

En =
∫ (

Sn
1 − 1

2
K (zn

h)x · zn
h

)
dx + (rn)2 + 1

2

∑
j

(
(K {zn

h} + A[zn
h]) · [zn

h]
)

j+ 1
2
. (5.7)

Proof. By taking the test function φ = Dt zn
h in (5.2a), we observe that the first term disappears due to the skew-symmetric 

matrix M , and this leads to

(∇z S1(z
n+ 1

2
h ), Dt zn

h) j + rn+ 1
2 (b(zn∗

h ), Dt zn
h) j = (K Dt(zn

h)x, z
n+ 1

2
h ) j + ̂

K z
n+ 1

2
h · Dt zn

h

∣∣∣∣ j+ 1
2

j− 1
2

.

Since S1 is the quadratic component of the function S , we have Dt
∫

Sndx = (∇z S1(z
n+ 1

2 ), Dt zn) j , therefore, we have
I j 1 h h

12
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Dt

⎛⎜⎝∫
I j

Sn
1dx + (rn)2

⎞⎟⎠= (∇z S1(z
n+ 1

2
h ), Dt zn

h) j + rn+ 1
2 (b(zn∗

h ), Dt zn
h) j

= (K Dt(zn
h)x, z

n+ 1
2

h ) j + ̂

K z
n+ 1

2
h · Dt zn

h

∣∣∣∣ j+ 1
2

j− 1
2

.

By repeatedly using the fact that Dt(an · bn) = Dt(an) · bn+ 1
2 + an+ 1

2 · Dt(bn), we have

Dt

⎛⎜⎝∫
I j

(
Sn

1 − 1

2
K (zn

h)x · zn
h

)
dx + (rn)2 − 1

2
K̂ zn

h · zn
h

∣∣∣∣ j+ 1
2

j− 1
2

⎞⎟⎠
=(K Dt(zn

h)x, z
n+ 1

2
h ) j + ̂

K z
n+ 1

2
h · Dt zn

h

∣∣∣∣ j+ 1
2

j− 1
2

− 1

2
(K Dt(zn

h)x, z
n+ 1

2
h ) j − 1

2
(K (z

n+ 1
2

h )x, Dt zn
h) j

− 1

2

(
̂

K z
n+ 1

2
h · Dt zn

h + ̂K Dt zn
h · z

n+ 1
2

h

)∣∣∣∣ j+ 1
2

j− 1
2

=1

2
(K Dt(zn

h)x, z
n+ 1

2
h ) j − 1

2
(K (z

n+ 1
2

h )x, Dt zn
h) j + 1

2

(
̂

K z
n+ 1

2
h · Dt zn

h − ̂K Dt zn
h · z

n+ 1
2

h

)∣∣∣∣ j+ 1
2

j− 1
2

= − 1

2

∫
I j

(K z
n+ 1

2
h · Dt zn

h)xdx + 1

2

(
̂

K z
n+ 1

2
h · Dt zn

h − ̂K Dt zn
h · z

n+ 1
2

h

)∣∣∣∣ j+ 1
2

j− 1
2

= − 1

2

(
K z

n+ 1
2

h · Dt zn
h − ̂

K z
n+ 1

2
h · Dt zn

h + ̂K Dt zn
h · z

n+ 1
2

h

)∣∣∣∣ j+ 1
2

j− 1
2

= : −F (z
n+ 1

2
h , Dt zn

h)

∣∣∣∣ j+ 1
2

j− 1
2

,

where F (z1, z2) := 1
2

(
K z1 · z2 − K̂ z1 · z2 + K̂ z2 · z1

)
. Using the fact that A is symmetric and K is skew-symmetric, we have

2F (z1, z2)(x+
j+ 1

2
) − 2F (z1, z2)(x−

j+ 1
2
)

=K z+
1 · z+

2 − K z−
1 · z−

2 − (K {z1} + A[z1]) · [z2] + (K {z2} + A[z2]) · [z1]
=K z+

1 · z+
2 − K z−

1 · z−
2 − 1

2
K (z+

1 + z−
1 ) · (z+

2 − z−
2 ) + 1

2
K (z+

2 + z−
2 ) · (z+

1 − z−
1 ) = 0,

at any cell interface x j+ 1
2

. Finally, we can sum over all the cells I j and obtain

Dt(En) = Dt

⎛⎝∫
�

(
Sn

1 − 1

2
K (zn

h)x · zn
h

)
dx + (rn)2 + 1

2

∑
j

(
(K {zn

h} + A[zn
h]) · [zn

h]
)

j+ 1
2

⎞⎠= 0,

which finishes the proof of the conservation of the discrete total energy En defined in (5.7). �
As explained in Remark 3.1, the boundary terms in the definition of the discrete total energy En in (5.7) can be absorbed 

into the numerical derivative operator for specific matrix A. One difference between the discrete total energy En in (5.7)
and the original energy lies in the term (rn)2, which approximates 

∫
�

S2(z(x, t))dx, therefore, the energy En in (5.7) can be 
viewed as an approximation of the original energy of the system.

Remark 5.1. It can be shown that the fully implicit midpoint temporal discretization combined with the semi-discrete DG 
scheme (3.1) achieves the charge conservation at the discrete level. However, the computational cost of such a fully implicit 
method is higher than that of the proposed SAV method and we do not pursue it here.
13
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5.2. Higher order SAV method

As the DG spatial discretization can yield high order spatial accuracy, we explore the high order SAV time discretization in 
this section. One approach is to utilize the fourth order Gauss-Legendre Runge-Kutta method [4] to formulate the high order 
version of the SAV-DG scheme in (5.2). We can prove the conservation of the same energy as in Theorem 5.1. However, the 
implementation of this method is more complicated than that of the second order case. Below, we use a different approach 
to achieve fourth order temporal accuracy by reusing the second order method (5.2) and iterating it three times.

In the second order SAV-DG method (5.2), we can rewrite the equation (5.2a) as

zn+1
h = zn

h + �t

[
f

(
1

2
(zn

h + zn+1
h )

)
+ 1

2
(rn + rn+1)g(zn∗

h )

]
,

with some linear function f and some (nonlinear) function g . As shown in [40], one can obtain a fourth order accurate 
method by iterating this solver in the following way

z1 = zn
h + b1�t

[
f

(
1

2
(zn

h + z1)

)
+ 1

2
(rn + r1)g(z∗

1)

]
,

z2 = z1 + b2�t

[
f

(
1

2
(z1 + z2)

)
+ 1

2
(r1 + r2)g(z∗

2)

]
,

zn+1
h = z2 + b3�t

[
f

(
1

2
(z2 + zn+1

h )

)
+ 1

2
(r2 + rn+1)g(z∗

3)

]
,

(5.8)

with properly chosen coefficients

b1 = b3 = 1

2 − 21/3
, b2 = 1 − 2b3,

and

z∗
1 ≈ z

(
tn + 1

2
b1�t

)
, z∗

2 ≈ z

(
tn + (b1 + 1

2
b2)�t

)
, z∗

3 ≈ z

(
tn + (b1 + b2 + 1

2
b3)�t

)
.

If we approximate them by z∗
1 = 1

2 (zn + z1), z∗
2 = 1

2 (z1 + z2), z∗
3 = 1

2 (z2 + zn+1), the method (5.8) is exactly the fourth order 
Runge-Kutta method with the Butcher tableau given by

b1/2 b1/2
b1 + b2/2 b1 b2/2

b1 + b2 + b3/2 b1 b2 b3/2
b1 b2 b3

However, this may be difficult to solve directly as g is a nonlinear function. Instead, we follow the similar idea as in the 
second order case, and seek to approximate these z∗

i by the values of z at previous time steps with sufficient accuracy.
In order to maintain the 4th order of accuracy, we consider the values zn− j with j = 0, 1, 2, 3 at the current and previous 

time steps. One can use interpolation to obtain an approximation of z∗
i :

⎛⎝ z∗
1

z∗
2

z∗
3

⎞⎠=

⎛⎜⎜⎝
2.746442253737104 2.1875 1.705649303565513

−3.322097661811303 −2.1875 −1.253340387175503
2.080472158391121 1.3125 0.714129267674637

−0.504816750316923 −1.3125 −0.166438184064648

⎞⎟⎟⎠
T ⎛⎜⎜⎝

zn

zn−1

zn−2

zn−3

⎞⎟⎟⎠ .

Correspondingly, the other equation (5.2b) can be modified into three stages in the same way:

r1 − rn = 1

2
(b(z∗

1), z1 − zn
h),

r2 − r1 = 1

2
(b(z∗

2), z2 − z1),

rn+1 − r2 = 1

2
(b(z∗

3), zn+1
h − z2).

(5.9)

When evaluating the solutions zn+1
h , rn+1 (n � 3), at the next time step, we first use zn− j

h ( j = 0, 1, 2, 3) to compute the 
variables z∗

i . Then following the similar derivation to derive the efficient formulae (5.6), one can evaluate the intermediate 
values r1, z1, r2, z2, and eventually the numerical solutions rn+1 and zn+1

h . Since more than one initial condition z0
h is 

needed, in practical implementation, we can use a fourth-order numerical method to solve for z1
h and z2

h , and the above 
scheme can be applied from the third time step.
14
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Table 1
Spatial accuracy test of the SAV-DG method when k = 1 in Section 6.1.

N v = 0 v = −0.2

L2 error Order L2 error Order

100 9.162e-03 1.070e-02
200 2.420e-03 1.920 2.909e-03 1.879
400 5.850e-04 2.049 6.947e-04 2.066
800 1.472e-04 1.991 1.766e-04 1.976

Table 2
Spatial accuracy test of the SAV-DG method when k = 2 in Section 6.1.

N v = 0 v = −0.2

L2 error Order L2 error Order

100 3.913e-04 5.245e-04
200 4.988e-05 2.972 6.362e-05 3.043
400 6.517e-06 2.936 8.559e-06 2.894
800 8.378e-07 2.960 1.079e-06 2.987

Remark 5.2. Since each stage in the higher order scheme is of the same pattern as (5.2), we can claim that the discrete 
energy (5.7) is conserved in every intermediate stage. The proof is identical to that of Theorem 5.1 and will be ignored here. 
Hence the DG discretization combined with the higher order SAV time integration still conserves the discrete energy (5.7).

6. Numerical examples

In this section, some numerical results are provided to demonstrate the behavior of the proposed energy conserving SAV-
DG methods for the NLD equation. In our simulations, we set m = 1 and λ = 1

2 in (2.7), and adopt the periodic boundary 
condition or non-reflecting boundary condition. We consider the DG method with various polynomial degree k as the 
spatial discretization, and the second or fourth order SAV method for temporal discretization. The projection P defined in 
Lemma 4.1 is utilized to set z0

h = P z(x, 0) as the initial condition. The alternating numerical flux is chosen in the numerical 
examples.

6.1. Accuracy test

Some exact solutions are discussed in Remark 2.1, which will be used to test the order of accuracy of our schemes. We 
consider two cases: v = 0 (standing wave) and v = −0.2 (a solitary wave traveling from right to left). The other parameters 
are set as x0 = 5 and  = 0.8, and the computational domain is taken to be [−35, 35].

We first test the convergence rate of the DG spatial discretization, by employing a very small time step size �t = 0.001
so that the error will be dominated by the spatial discretization. The stopping time is set as T = 1. When the linear 
polynomials (k = 1) or quadratic polynomials (k = 2) are used in the DG discretization, the convergence rate is expected to 
be 2 or 3, as indicated by Theorem 4.2 for the semi-discrete methods. The L2 errors and numerical orders of our SAV-DG 
methods (5.2) with various grids N and different finite element bases are shown in Table 1 and Table 2, respectively. The 
numerical order is computed by logNi/Ni+1

(ei+1/ei) where Ni and ei represent the number of elements and the L2 error 
respectively. From the tables, we can observe the second order and the third order convergence as desired, which indicates 
the optimal order of the DG spatial discretization.

Next, we validate the temporal accuracy of the second order SAV-DG method (5.2) and the high order SAV-DG method 
(5.8)-(5.9). We fix N to be 800 and choose the quadratic polynomials (k = 2) as the finite element basis. This time we 
choose relatively large �t so that the temporal discretization dominates the error of the scheme and the convergence rate 
of the temporal discretization can be observed. In this test, since the exact solution is available, we set z−i

h = P z(x, −i�t)
(i = 1, 2, 3) for the high order SAV-DG method, so that the approximation at the first few time steps is consistent with the 
others and of the same order. For the second order SAV-DG method (5.2), the stopping time is chosen to be T = 2, and 
the L2 errors and numerical orders of the numerical solutions with various time step sizes are shown in Table 3. From the 
table, we can easily observe the desired second order convergence rate as expected. For the fourth order SAV-DG method 
(5.8)-(5.9), the stopping time is chosen to be T = 8, and the L2 errors and numerical orders of the numerical solutions with 
various time step sizes are shown in Table 4. Again, we can easily observe the high order convergence rate of this method, 
which is higher than 4. During the interpolation procedure to approximate z∗

i , we have tried to use only three values of 
zn− j with j = 0, 1, 2 at the current and previous time steps, and the third order accuracy is observed numerically under 
that setup.
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Table 3
Temporal accuracy test of the second order SAV-DG method in Section 6.1.

�t v = 0 v = −0.2

L2 error Order L2 error Order

0.2 1.052e-02 1.117e-02
0.1 2.801e-03 1.909 2.977e-03 1.907
0.05 7.220e-04 1.956 7.677e-04 1.955
0.025 1.832e-04 1.978 1.949e-04 1.978
0.0125 4.615e-05 1.989 4.910e-05 1.989

Table 4
Temporal accuracy test of the high order SAV-DG method in Section 6.1.

v = 0 v = −0.2

�t L2 error Order L2 error Order

0.8 8.363e-01 1.021
0.4 4.230e-02 4.305 5.356e-02 4.253
0.2 1.430e-03 4.887 1.891e-03 4.824
0.1 4.440e-05 5.009 6.436e-05 4.877
0.05 1.673e-06 4.730 2.785e-06 4.530

Table 5
The changes of discrete total energy at T = 50 in Section 6.2.

Scheme v = 0 v = −0.2

k = 1, 2nd order time integration 2.043e-14 2.909e-14
k = 2, 2nd order time integration 6.684e-14 4.763e-14
k = 2, 4th order time integration 3.997e-14 4.752e-14

6.2. Energy conservation

In Theorem 5.1, the conservation of the discrete energy defined in (5.7) was presented for the fully discrete SAV-DG 
methods. For the two examples studied in the previous section, we study their energy conservation property as well as their 
long time behavior. We set the number of the elements N = 140 and �t = 0.1. The simulation is run for a long time until 
the final stopping time T = 50. We implement both the second order SAV-DG method with the polynomial degree k = 1 and 
k = 2, and the fourth order SAV-DG method with k = 2. We record the changes of discrete energy �E = E(T ) − E(0), and 
report the results of these methods at T = 50 in Table 5. Fig. 1 shows how the discrete energy changes over time for the 
scheme using P 1 polynomials and 2nd order time integration. From them, we can observe that the changes are all around 
10−14, which indicates that they are at the level of the round-up error. This verifies the energy-conserving property of our 
method.

In [52], Xu et al. carried out a thorough review and numerical comparison of various numerical methods including the 
Crank-Nicolson (CN) schemes, the linearized CN schemes, Runge-Kutta DG (RKDG) methods, and the exponential operator 
splitting methods. The long time behavior of numerical error history of various methods can be found in [52, Fig. 1], from 
which one can observe that high order (energy dissipative) RKDG methods yield small numerical errors. Next we provide a 
comparison of performance between energy-preserving SAV-DG schemes and energy-dissipative SAV-DG or RKDG schemes. 
It is known that the DG method is energy-dissipative when upwind flux is used in the spatial discretization, as studied in 
[44]. For upwind flux, the matrix A in K̂ zh = K {zh} + A[zh] takes the form⎛⎜⎜⎝

0 − 1
2 0 0

1
2 0 0 0
0 0 0 − 1

2
0 0 1

2 0

⎞⎟⎟⎠ ,

which is not symmetric. We fix N to be 140 for P 1 polynomials. A small time step �t = 0.005 is used so that the numerical 
error is dominated by the spatial discretization. The simulation is run for the standing wave case (v = 0). We also tried high 
order SAV method and P 2 polynomial basis with the choices of N = 70 and �t = 0.02. In Fig. 2 the time history of L2 errors 
is depicted for the SAV-DG schemes with different fluxes. The third order RKDG method is also included for comparison. 
We can observe that the L2 errors of the schemes using upwind flux are much larger than those of the proposed schemes 
using alternating flux. This demonstrates that, with the same computational cost, the energy-preserving SAV-DG schemes 
are more accurate than the energy-dissipative DG methods in the long time simulation.
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Fig. 1. The change of discrete total energy for the scheme using P 1 polynomials and 2nd order time integration in Section 6.2.

Fig. 2. The time history of L2 errors for different methods in Section 6.2. Left: k = 1, N = 140, �t = 0.005, 2nd order time integration; Right: k = 2, N = 70, 
�t = 0.02, 4th order time integration.

6.3. Stability of standing waves

In [42], the stability of solitary waves in the NLD equation was investigated by Shao et al. via both theoretical and 
numerical approaches. A fourth-order operator splitting method was used to carry out the simulation. It was numerically 
observed that all stable nonlinear solitary waves have a one-hump profile (although not all one-hump waves are stable), and 
all two-hump waves are unstable. In this subsection, we will use the proposed SAV-DG scheme to validate the stability of 
standing waves with one hump and two humps. Analytically the standing wave does not change as time elapses. However, 
these steady states of charge may be stable or unstable for different frequencies  (which leads to either one- or two-hump 
profile).

The parameters in the standing wave solution (2.8) are chosen to be x0 = 0 and  = 0.5 (one-hump) or 0.2 (two-hump). 
We take the number of grids N to be 800 and compute until T = 70 on the domain [−50, 50]. Fourth order SAV method 
with quadratic polynomials (k = 2) is used in the SAV-DG methods. We depict the change of discrete total energy and the 
time history of L2 error in Fig. 3. For one-hump standing wave with  = 0.5, the numerical error accumulates very slowly. 
For two-hump standing wave with  = 0.2, the L2 error starts to increase exponentially after some time. For instance, at 
T = 40, the L2 error is less than 0.0003 and it increases to around 0.3 at T = 70. This is similar to the observation of the 
instability indicated in [42]. In spite of that, it can be seen that the changes of discrete total energy are conserved at the 
round-off error level in both cases, which is consistent with the energy conservation property outlined in Theorem 5.1.

6.4. Interaction of one-hump solitary waves

In this subsection we consider the interaction of two solitary waves solutions, with the initial conditions given by

ψ1(x,0) =ψ ss
1l (x − xl,0) + ψ ss

1r(x − xr,0), (6.1a)

ψ2(x,0) =ψ ss
2l (x − xl,0) + ψ ss

2r(x − xr,0), (6.1b)

where the solitary traveling wave solutions ψ ss
1 , ψ ss

2 are defined in (2.9a)-(2.9b). The parameters related to these two solitary 
waves are xl = −xr = −8; l = 0.6, r = 0.8; vl = tanh(θl) and vr = tanh(θr) with θl , θr given in Table 6. Here we consider 
three different cases as investigated in [1,44], with minor changes in the height and velocity of the initial waves.

The computational domain is taken as [−50, 50]. We choose N = 500 and run the simulation until T = 150 using 
quadratic polynomials (k = 2) as finite element basis with the fourth order time integration. In Fig. 4, we present the 
evolution of the charge density ρQ defined in (2.4) at various times. It can be observed that the initial shapes of three cases 
17



Fig. 3. The change of discrete total energy and the time history of L2 error in Section 6.3.

Table 6
Three cases of the interaction dynamics for two solitary waves in Section 6.4.

Case T = 0

θl −θr Left wave crest Right wave crest

(a) 0.150 0.237 0.807 0.410
(b) 0.183 0.288 0.811 0.415
(c) 0.200 0.314 0.814 0.418

Table 7
The propagation of two solitary waves in Section 6.4.

Case Average velocity between T = 90 and 150 T = 150

θl −θr Left wave crest Right wave crest

(a) 0.179 0.321 0.868 at x = 19.7 0.356 at x = −39.7
(b) 0.182 0.284 0.813 at x = 21.3 0.408 at x = −37.3
(c) 0.192 0.280 0.785 at x = 22.9 0.448 at x = −37.5

at T = 0 look similar, and the difference in the heights of these solitary waves can be found in Table 6. Before the collision, 
the solitary waves propagate at the expected speed. After the collision, it seems that the shapes of these waves do not 
change much, but these three cases correspond to three different scenarios. The heights and positions of wave crests at the 
final time T = 150 are given in Table 7. In addition, we can estimate the velocities of the left and right waves by picking the 
positions of the wave crests. We recorded the positions of wave crests at T = 90 and T = 150, and calculated the average 
velocities of the waves; see also Table 6. From these data, it can be observed that, after the collision, the solitary waves in 
case (a) move faster, and the left wave becomes taller while the magnitude of the right wave decays. In case (b), the wave 
speeds and magnitudes do not change much. In case (c), the solitary waves move slower after the collision, and the left 
wave becomes shorter while the right wave becomes taller. This observation is consistent with the results reported in [44]. 
Besides, we expect our method to conserve the discrete total energy, and report the change of the discrete total energy in 
Fig. 5. It can be observed that the discrete total energy is conserved up to the level of 10−12 until the final time T = 150.

6.5. Interaction of two-hump solitary waves with periodic or non-reflecting boundary conditions

In this subsection, we continue our investigation of the interaction of two solitary waves and test the performance of 
the proposed methods for interaction of solitary waves with two humps. This test has also been investigated in [43]. The 
initial condition is given by equations (6.1), which consist of solitary wave with parameters: xl = −xr = −10, l = r = 0.2, 
vl = −vr = 0.2. These are two solitary waves with the same two-hump shape but opposite velocities. The computational 
domain is taken as [−50, 50].
R. Yang and Y. Xing Journal of Computational Physics 463 (2022) 111278
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Fig. 4. The evolution of the charge density in Section 6.4 at time T = 0, 30, 60, 90, 120 and 150.

Fig. 5. The change of discrete total energy in Section 6.4.
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Fig. 6. The evolution of the charge density with periodic boundary condition in Section 6.5.
20



R. Yang and Y. Xing Journal of Computational Physics 463 (2022) 111278
Fig. 7. The change of discrete total energy with N = 400 in Section 6.5.

In this example, both the periodic and the commonly used non-reflecting boundary conditions are adopted numerically. 
The SAV-DG methods with quadratic polynomials (k = 2) as finite element basis and the fourth order time integration 
are used. The charges of numerical solutions with N = 400 and N = 800 are graphed in Fig. 6. Better resolution can be 
observed with a refined N = 800 mesh. After two initial waves merge, the collapse happens and several oscillating waves 
are generated. This is different from the interaction of two one-hump waves (as studied in Section 6.4) for which there are 
still two one-hump waves after merging. As we do not see too much visible difference between numerical solutions with 
these two types of boundary conditions, only the solutions with periodic boundary conditions are shown in Fig. 6. However, 
the discrete total energy can only be conserved up to the round-off error level, when the periodic boundary condition is 
used; please see Fig. 7 for the time history of the change of discrete total energy for both boundary conditions. It can be 
observed that, with periodic boundary condition, the discrete total energy starts to decay when the collision happens but 
still maintains at the level of 10−12, while with the non-reflecting boundary condition, the discrete total energy yields an 
error at the level of 10−8.

7. Conclusion

A family of energy-conserving numerical scheme is proposed for the nonlinear Dirac equation, based on DG spatial meth-
ods with the scalar auxiliary variable temporal discretization. We demonstrated that the semi-discrete DG methods enjoy 
the charge-conserving, energy-conserving and multi-symplectic properties simultaneously. An optimal error estimate is also 
carried out for the semi-discrete method. This method is coupled with second order or high order SAV time discretization, 
and rigorous analysis is provided to show that the fully-discrete scheme conserves the discrete global energy exactly. Nu-
merical results are provided to illustrate the order of accuracy of the SAV-DG scheme, its ability to conserve global energy, 
and the improved approximation in long time simulations.
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