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ABSTRACT

This paper presents high-order Runge—Kutta (RK) discontinuous Galerkin methods for the Euler—Poisson equations in spherical
symmetry. The scheme can preserve a general polytropic equilibrium state and achieve total energy conservation up to
machine precision with carefully designed spatial and temporal discretizations. To achieve the well-balanced property, the
numerical solutions are decomposed into equilibrium and fluctuation components that are treated differently in the source
term approximation. One non-trivial challenge encountered in the procedure is the complexity of the equilibrium state, which is
governed by the Lane—Emden equation. For total energy conservation, we present second- and third-order RK time discretization,
where different source term approximations are introduced in each stage of the RK method to ensure the conservation of total
energy. A carefully designed slope limiter for spherical symmetry is also introduced to eliminate oscillations near discontinuities
while maintaining the well-balanced and total-energy-conserving properties. Extensive numerical examples — including a toy
model of stellar core collapse with a phenomenological equation of state that results in core bounce and shock formation —
are provided to demonstrate the desired properties of the proposed methods, including the well-balanced property, high-order

accuracy, shock-capturing capability, and total energy conservation.
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1 INTRODUCTION

In this paper, we present high-order discontinuous Galerkin (DG)
methods for the Euler—Poisson equations in spherical symmetry,
which have the well-balanced property to preserve hydrostatic
equilibrium states exactly and total energy conservation property
at the same time.

The Euler equations with gravitation have wide applications in
geophysical and astrophysical flow problems. In the case of a time-
dependent gravitational potential, the model can be coupled with
the Poisson equation to represent the self-gravity, which leads to
the Euler—Poisson equations. They play an important role in many
geophysical and astrophysical flows, for example, core-collapse
supernova (CCSN) explosions (Miiller & Steinmetz 1995; Couch,
Graziani & Flocke 2013; Miiller 2020), star formation (Ostriker,
Stone & Gammie 2001; McKee & Ostriker 2007), planet formation
(Armitage 2011; Simon et al. 2016), and plasma physics applications
(Guo 1998; Suzuki 2011). Self-gravitating astrophysical dynamics
are often physically complex, and numerical methods are usually
employed to simulate such complicated systems.

The Euler equations with gravitation belong to the family of
hyperbolic conservation laws with source terms. One of the most
important features of such systems is that they admit non-trivial
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time-independent steady-state solutions. Well-balanced schemes are
introduced to preserve such steady states exactly on the discrete
level and shown to be efficient and accurate for capturing small
perturbations to such steady states. These perturbations may be at
the level of the truncation error of standard numerical schemes and
can be hard to capture with relatively coarse meshes. The well-
balanced methods have been widely studied in the context of the
shallow water equations over a non-flat bottom topology (see e.g.
Bermudez & Vazquez 1994; LeVeque 1998; Audusse et al. 2004;
Xing & Shu 2005; Gallardo, Parés & Castro 2007; Noelle, Xing &
Shu 2007; Xing, Zhang & Shu 2010). In recent years, well-balanced
methods for the Euler equations with static gravity have attracted
much attention and have been developed within several different
frameworks: see e.g. Xu, Luo & Chen (2010), Képpeli & Mishra
(2014, 2016), Chandrashekar & Klingenberg (2015), Thomann, Zenk
& Klingenberg (2019) for first- and second-order schemes; and Xing
& Shu (2013), Ghosh & Constantinescu (2016), Li & Xing (2016a,b),
Chandrashekar & Zenk (2017), Grosheintz-Laval & Képpeli (2019),
Klingenberg, Puppo & Semplice (2019), Veiga et al. (2019), Castro
& Parés (2020) for high-order schemes. Some of these works assume
that the desired equilibrium is explicitly known (Klingenberg et al.
2019; Wu & Xing 2021), while others only need a pre-description
of the desired equilibrium (Li & Xing 2018), and work for a class
of equilibria. Recently, several works are established without any
information of the desired equilibrium state (Franck & Mendoza
2016; Képpeli & Mishra 2016; Berberich et al. 2021). For the Euler—
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Poisson equations considered in this paper, the equilibrium states are
more complicated due to the coupling with the Poisson equation.

For the Euler—Poisson equations, another important feature is
that they conserve the total energy, which is defined as the sum
of the potential, internal, and kinetic energies. In the standard
formulation of the Euler—Poisson equations, the effect of gravity
is included as source terms, and the total energy conservation
statement is obtained in a non-trivial way. Thus, conserving the total
energy numerically becomes challenging. For some systems, e.g. in
hydrostatic equilibrium, the total energy can be much smaller than
either the potential or internal energies, which means that even a
small truncation error in standard methods for the potential energy
can lead to a large error in the total energy, and eventually the wrong
numerical solution (Jiang & Goodman 2011). Fully conservative
schemes for the Euler—Poisson equations, which conserve mass,
momentum, and total energy, have been studied under the framework
of finite difference methods in the last 15 yr. One popular technique
is to transfer the energy equation to the equation for total energy
and rewrite the governing equations in conservative form (see e.g.
Jiang et al. 2013). Another popular technique does not involve the
reformulation of the unknown variables, but applies integration by
parts and the mass conservation equation to discretize the source term
in the energy equation (see e.g. Mikami et al. 2008; Hanawa 2019;
Mullen, Hanawa & Gammie 2021). With a careful approximation of
the source term in the energy equation, one can carry out a rigorous
proof to show the conservation of total energy. In this paper, we adopt
the second technique and study it in the framework of high-order
finite element DG methods. We note that we solve the Euler—Poisson
equations in spherical symmetry, where we are unable to formulate
the momentum equation in conservative form. For this reason we do
not consider momentum conservation in this paper (cf. Jiang et al.
2013; Mullen et al. 2021).

The main objective of this paper is to develop high-order DG meth-
ods for the Euler—Poisson equations, which are well-balanced and at
the same time have the total energy conservation property. The well-
balanced DG scheme for the Euler equations with a time-independent
gravitational potential was studied in Li & Xing (2018), where the key
component to achieve the well-balanced property is to decompose
the source into equilibrium and fluctuation components and treat
them differently in the source term approximation. Here we consider
the extension of this technique to the Euler—Poisson equations. One
non-trivial difficulty encountered in the procedure is the complexity
of the equilibrium state, which is now governed by the well-known
Lane-Emden equation. For total energy conservation, very recent
work presented in Mullen et al. (2021), where a second-order finite
difference, fully conservative scheme was proposed and studied.
Here, the extension to the framework of DG methods is studied,
which involves a special integration by parts and novel second- and
third-order Runge—Kutta (RK) time discretization, where different
source term approximations are introduced in each stage of RK
method to ensure the conservation of total energy. A carefully
designed slope limiter in spherical symmetry is also introduced to
eliminate oscillations near discontinuities while still maintaining
the well-balanced and total-energy-conserving properties. To the
best of our knowledge, the design of well-balanced methods for
the Euler—Poisson system has not been studied in the context of
DG methods, and there are no existing Runge—Kutta discontinuous
Galerkin (RKDG) schemes that can conserve the total energy for the
Euler—Poisson equations. This is the first paper trying to tackle both
challenges simultaneously.

The main motivating astrophysical application for this work is
the simulation of CCSNe in the context of non-relativistic, self-
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gravitating hydrodynamics with DG methods (see also Pochik et al.
2021). After the collapse of the iron core of a massive star, the inner
core settles into an approximate hydrostatic equilibrium, which is not
easily captured by standard numerical methods, unless a relatively
high spatial resolution is used (Képpeli & Mishra 2016). Moreover,
conserving the total energy in CCSN simulations with standard
numerical methods and moderate spatial resolution is challenging
(e.g. Miiller, Janka & Dimmelmeier 2010). The kinetic energy of the
explosion is a key quantity of interest targeted by CCSN simulation
codes, and is typically on the order of 10°' erg (or less; e.g. Lentz
et al. 2015; Melson et al. 2015; Burrows et al. 2020). Thus, for
reliable estimates of the explosion energy, the total energy should be
conserved to well within this threshold. The use of high-order, well-
balanced, and energy-conserving numerical methods, as developed
in this paper, may help to provide reliable estimates for quantities
of interest from CCSN simulations at a reduced computational
cost.

The rest of the paper is organized as follows. In Section 2, we
introduce the Euler—Poisson equations, their steady-state solutions,
and discuss total energy conservation. In Section 3, we present
the structure-preserving numerical methods for the Euler—Poisson
equations. We start by introducing the conventional DG methods for
the Euler—Poisson equations, and then discuss the well-balanced
modifications and total-energy-conserving source term and time
discretization, which leads to our well-balanced and total-energy-
conserving fully discrete RKDG scheme. In Section 4, numerical
examples are given to verify the properties of our proposed methods.
Concluding remarks are provided in Section 5.

2 MATHEMATICAL MODEL

In this section, we introduce the Euler equations with self-gravity in
spherical symmetry, and discuss the steady-state solutions and total
energy conservation property of the model.

2.1 Euler-Poisson equations

The Euler equations in spherical symmetry take the form

0 10

Tt 5o (rou) =0, M
dpu 10 2p 0P

ot ﬁ&(’z(p“2+p)) =5 P @
oF 10 oD

5 rr (F(E T pu) = —pu ®

where r is the radial coordinate, p is the mass density, # denotes
the fluid velocity, p is the pressure, and E = pe + % pu? is the total
non-gravitational energy with e being the specific internal energy.
An additional thermodynamic equation to link p with (p, e), called
the equation of state (EoS), is needed. For ideal gases, it is given by

p =y —1)pe, 4)

where y is the (constant) ratio of specific heats. The gravitational
potential & can be obtained from the density p via the Poisson
equation
10 ( , 0@
(2
r? or or
where G is the gravitational constant. The coupling of these two
models yields the Euler—Poisson equations in spherical symmetry.

) =4nGp, ®)
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2.2 Steady states and the Lane-Emden equation

The Euler equations (1)—(3) admit the following zero-velocity steady

states:
op 09
=0, —=-p—. 6
" or or ©)

Considering the polytropic hydrostatic equilibrium characterized by

p = p(r),

p=x«p’, (N

we can combine equations (5)—(7) to obtain the steady-state equation

1 0 /r?
r2or \ p kre

which is the equation satisfied by p(r). By introducing the quantities
6 and n defined by

p=A0", y= ntl 9)

n

0
%*52) = —4nGp, @)

with A = p. being the value of density p at the centre r = 0,
equation (8) can be simplified as

(n+DkA'5 10 [ ,00
SR () = e, 10

4nG 2or \" or a0
Let us define the scaled radial coordinate & as

(n + Diea'=
4nG

and this equation can be non-dimensionalized into the well-known
Lane—Emden equation for the polytropic hydrostatic equilibrium:

10 (,00 ,
fae (93) = "

As a second-order ordinary differential equation (ODE) for 6(&), it
requires two boundary conditions.

E=—, « , (11)

r
o

(i) Since A = p. = plg =¢ and p = A", we have 0|z — = 1 at the
centre £ = 0.

(ii) The polytropic equilibrium (7) leads to

dp 00

= vl o 13

Kypt S %3 £ (13)
We have 0p/0r = —p 0®/0r = 0 at r = 0 (because there is no mass
inside zero radius). Therefore, we conclude that

2| _
08 |y

op
or

0. (14)

REMARK 2.1. The methods presented in this paper are to preserve
the steady state (equations 6 and 7) for the ideal EoS (equation 4)
up to round-off errors, but can deal with problems for general EoS
without preserving the steady states up to machine error.

2.3 Total energy conservation

The solutions of the Euler—Poisson system (1)—(5) satisfy the
following conservation law for the total energy:

0 1 19
— (E+ -pd ——(r*((E F,) ) =0, 15
az( Taf )+r26r(r ((E+p)u+F)) (15)
where
1 02 o _ 0
Fo=——|o O— —O—P @, 16
e 87tG< oror ot or >+p” (16)
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which leads to the total energy conservation,

0

1
— E+—p® | ridr =0, 17
o [ (54 300) i an

if the boundary fluxes are zero. Here % p® is the canonical gravita-
tional energy density of a self-gravitating system.

Below, we sketch the main derivation steps of equation (15),
which will be useful in the derivation of the total-energy-conserving
numerical methods. Let us decompose the time derivative into two
terms as

O (gl o), (FF 130, 1 39 ,
o1 2PP)T = o T2 TP )"

0E 0p , 1 0d 0p 2
==+ “|lp=——5P|r. 18
(az+az )r+2<pat ot : (18)

For the first term, we have

OE 3p N\, ([ ./,
(EJFE@)r - (—a(r (E+p)u)

= (2 (B + p)ut ouw)). (19)

which follows from equations (1) and (3). For the second term, we
have

1/ 0@ 0p )
E@E‘a@’
I [0 /,00\00 00 /,00
= — —_— -\ = —— 7¢
871G (ar(r ar)az a;ar(r ar) )
d

r

811G or o1 or oror
3/ ,0°® 3/ ,0D\ 0D
_ o) ~ (2222
ar(r orot )+az(r ar) or
1 3/ ,0000 o/, 0%
_ 0 (20200 0 @ 20
871G (ar(r or az) or (r orot ))- (20)

which follows from equation (5) and integration by parts. The
combination of these leads to the conservative form of the total
energy (equation 15).

REMARK 2.2. We note that the form of the energy flux in equa-
tion (16) is not unique (Jiang et al. 2013; Mullen et al. 2021).
The different energy fluxes will not affect the numerical methods
proposed in this paper, which will be derived based on the original
form (equations 1-5). The energy flux in equation (16) is introduced
only as a tool for the proof of the total energy conservation

property.

3 NUMERICAL METHODS

In this section, we present the high-order, total-energy-conserving,
and well-balanced DG scheme for the Euler—Poisson equations (1)—
(5), which preserves the polytropic equilibrium (equation 8), and at
the same time has the total energy conservation property (equation
17) on the discrete level.
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3.1 Notations

Let us divide the computational domain Q@ = {r: r € [0, R]} into
computational cells:

K,:{r:re[rj_%,r”%]} and Arjzrﬂ_%—rj_% 2n
for j = 1,..., N. We define the finite dimensional function space:
Vii={veLXQ): vk, € PX(K;), V1< j<N}, (22)

where P* denotes the polynomial space up to degree k, and let
I, = {(C.¥.8)": & .8 € V). (23)

For any unknown variable u, we denote its numerical approximation
in the DG method by u;,, which belongs to the piecewise polynomial
space V. For ¢ € V), the limit values at the cell boundaries r i
from the left and the right are defined by

- o
Vo= IV =0 V= B v 0. Y

We introduce the Gauss—Radau projection, to be used later in
designing the well-balanced methods. For a function u € L*(2) and
k > 1, we define its projection Pu into the space V), as

/ Puwdr=/ uydr, Yyl € PUK)) (25)

K;j K;j

for every cell K; and

Pu(r’ ) =u(? ). (26)
J=3 J=3

3.2 The approximation of the gravitational potential

Compared with the Euler equations with static gravitational field
studied in Li & Xing (2018) and Wu & Xing (2021), the Euler—
Poisson equations (1)—(5) involve the additional Poisson equation (5)
that governs the relation between time-dependent & and the density
p. There are extensive numerical methods that could be used to
solve the Poisson equation. Here, we present the following simple
approach to compute ® numerically.

Note that the source terms in equations (2) and (3) involve only
the derivative 0®/dr, however, we will compute the numerical
approximation of both d®/dr and & in this paper, denoted by 0®,/0r
and &, respectively, as the latter will be used in the design of total-
energy-conserving methods.

We can integrate the Poisson equation (5) directly and obtain

oo AnG [
ho_ 4T / ot dr, 27)
or 2 Jo

R
®, = B,(R) - / 9 g, (28)

. or

with the boundary conditions d®,(0)/dr = 0 and ®,(R) = constant.
Equations (27) and (28) mean that we calculate 0¥, /0r and P, cell
by cell that

2
d, 4G [T "1 0®
") = ”—/ ptdr + 220G ) (29)

or r? r2  or 2

-5
forre Kj,j=1,.., N and
"ivd 0y,
or
forr € Kj, j = N,..., 1. We set ®,(R) = 0 in the numerical tests of
this paper to observe the total energy conservation up to round-off

error. Note that pj, is a piecewise polynomial of degree k, hence the
integrals in equations (29) and (30) can be evaluated exactly over

Pu(r) = @p(rj, 1) —/ dr (30)
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each computational cell K;. The detailed procedure is summarized in
the following steps.

(i) Assume pj, is P* piecewise polynomial taking the form, for r
€K, j=1,.,N,

Lh (r)

k
=> piir'. (1)
K

(ii)) Compute the integration in equation (29) exactly and obtain
0d,/0r as

. 2
2D, 4G Gy TP i1,
or @ = r? ; i+3 |- ]+ rz  or (rj’%)
— -1
k+1
= Zgj’[ rl + gjrz_z (32)
i=1

forreKj,j=1,.,N.
(iii) Compute the integration in equation (30) exactly and obtain

[OJF
g it =
i+1 T

forr e Kj,j=N,..., 1. Here p; ; in equation (31) and g; ; in equation
(32) are the polynomial coefficients of degree i (i > 0) in the jth
cell for p;, and 0®,/dr, respectively. g; _» in equation (32) are the
coefficient of the term 1/#2 for 0®,,/0r.

Tl

k+1 i+h

Pu(r) = @p(rj 1) — ( (33)

i=1 T=r

3.3 The standard DG scheme

In this section, we will briefly review the standard DG method
for the Euler—Poisson equations (1)—(5), which will be used in
the numerical section for comparison. For ease of presentation, we
denote equations (1)—(3) as

ou 1o ,
T rza(” S@) =s(u, @), (34)
where
P pu
u=|pu|, fay=| pu+p |,
E (E + p)u
0
s, @)= [ 2 - p2® ). (35)
—pu 3%

To derive the semidiscrete DG scheme, we multiply the equa-
tions by 72 and test functions, apply integration by parts, and replace
the boundary value by a monotone numerical flux, which leads to the
following DG scheme: find u;, € II; such that for any test function
v = (¢, ¥, 8)" e II,, it holds that

2 2 - 2 +
ar/Kfuh'vr dr—|—rj+%fj+% L —rj_%fjf% iy
- [ fan-@ortar =, (36)
K;
where s ; is the approximation of || x, S, @) vr? dr taking the form
0
si= (o0 = [ i, G =) yridr | (37)
sj[~3J fK/_ —(pu)p %8 r2dr
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and j‘ is the monotone numerical flux. In this paper, to have good
performance in capturing shocks and optimal error convergence rate,
we consider the Harten—Lax—van Leer contact (HLLC) flux (Toro
2013):

= fy . ub)

fuy) if0< S,
S+ S (uy —u;,) ifS™<0<S$", 38)
F@)+ St (uf —uy) ifS$* <0< s5H,
f@h if0> S+,
where S~, ST, and S* are the signal speeds:
S™ =min{u, —c;, uf —ci},
S* = max{u;, +c,, uf +cjh (39)
g P ot o (ST —wy) = pru (ST —ui) 40)

pi (S™—up) =i (ST —uj)

¢, » ¢ are the sound speeds calculated from u;,, u;, respectively,
and u, u} denote the intermediate states that can be computed via

ut = pt §* —uj;
* h Si — S

1

S*

X . 41

Ehi (S*—ui) (S*_ phi ) @0
ﬁ h Py (8—uir)

The initial condition u;, o € II; of the numerical method is given by
upo = Pu(r,1 =0), (42)

where u.(r,t = 0) is the exact initial data, and P stands for the
Gauss—Radau projection (equations 25 and 26).

3.4 The well-balanced DG scheme

In this section, we will introduce the well-balanced DG scheme that
maintains the polytropic equilibrium (equation 8), or equivalently
the Lane—Emden equation (12). There are some recent works (Xing
2014; Grosheintz-Laval & Képpeli 2020; Parés & Parés-Pulido
2021) on designing well-balanced methods for general steady states
including non-zero equilibrium, which will be studied in future work.

3.4.1 Solution of Lane—Emden equation

As illustrated in Section 2.2, the polytropic equilibrium state of the
Euler—Poisson equations is based on the solution of the Lane—Emden
equation. The Lane-Emden equation can be analytically solved
(Maciel 2015) only for a few special integer values of the index
n, as outlined below:

1
analytical solution forn =0 (i.e. y =00): Gp(§) =1 — 852,

(43)
. . . , sin(&)
analytical solution forn =1 (i.e.y =2): 6,(§) = PR (44)
analytical solution for 5 < e 6) 05(&) !
yti uti n=>5ie.y=-): (E) = ———.
5 e
(45)
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For all other values of n, we must resort to numerical solutions.
Rewrite the equation (12) as

00 % Op 2

— =, — = 0", 46
& &2 d § (46)
coupled with boundary conditions (0) = 1 and ¢(0) = 0. We denote
them in the vector form by

_9
and F(¢,y) = &2
9n§2

47

) _r — 0
gy— (§,y) withy= v

Note that when & = 0, we let F(0, y(0)) = 0 following the given
boundary conditions. Equation (47) is a system of ODEs, which can
solve by various numerical methods. For example, we can use the
fifth-order Runge—Kutta—Fehlberg technique in Hairer, Norsett &
Wanner (1987):

Vi =Y, +hY bk, (48)

i=1
where y; denotes the numerical solution at the grid §;, h = &;41 —
&,andk;,i=1,2,...,s,1is given by

ki = F(&; +cih, y; + h(ainky + ainks + -+ + ai i—1ki—1)),  (49)

with the coefficients aj;, b;, and ¢; given in the following Butcher
tableau:

0

1] 1

41 4

303 2

8| 32 32

121932 7200 7296

13(2197 2197 2196 . (50)

] 439 g 3680 845
216 513 4104

1 8 ) 3544 1859 11

20 27 2565 4104 40
16 0 6656 28561 9 2
135 12825 56430 50 55

The numerical solution of equation (12) can be solved with enough
accuracy by taking small enough 4. We note that the solution of
the Lane—-Emden equation only depends on n (i.e. y). For each
computational example, y is fixed, hence we can pre-calculate and
save the numerical solution 6, at the beginning of the simulation.

3.4.2 Decomposition of the numerical solutions

To design the well-balanced method, we follow the approach in
Xing (2014) where well-balanced methods for the moving water
equilibrium of the shallow water equations are designed. The first
step is to separate the numerical solutions into the well-balanced
equilibrium component #§ € I, and the fluctuation part u!, € II,, at
each time-step, which will be elaborated below.

We start by recovering the desired equilibrium state u9 that
satisfies the polytropic equilibrium (equation 8) and usually does
not belong to II,. For the given y (or n), the solution 6, of Lane—
Emden equation (12) can be pre-computed. Then we evaluate the
density and pressure of the numerical solution u,(r, t) at the centre
r = 0 and denote them by py and py. By setting k = p()/pg and

o=,/ %Kpg_z/(ﬁlTEG) in equation (11), we can define the desired
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equilibrium state u? as

o @ ()7

uwl(r) = 0 . (51)
Y
700 (0n (5)) 7
Suppose the initial condition is in the equilibrium state, i.e. #ex(r, 0)
satisfies the polytropic equilibrium (equation 8). Note that although
uy, € I, defined in equation (42) is not in perfect equilibrium,
the above procedure can recover the exact equilibrium, i.e. we can
compute u¢ from u;, o with #® = u.(r, 0).
Next we can define u$ € II,, as the projection of #¢ into the DG
solution space:

u$ = Pu, (52)

and also define the fluctuation term uf € II,, as

ul =u, —u. (53)
For the 6, explicitly given in equations (43)—(45), the integration
in the definition of the projection in equation (52) can be evaluated
exactly. Otherwise, the integration is computed by using the values
at the Gaussian quadrature points that can be obtained from interpo-
lation.

REMARK 3.1. When recovering the desired equilibrium state u¢,
two practical issues in the implementation are noted. First, since the
density is positive, #(&) should also be positive for robustness of the
simulation, and one should pay attention to the range of the solution
of 0(&). If the analytical solution of the Lane—Emden equation is
used, there is a constraint on the range of & for n = 0, 1. For example,
0o(&) > 0 for & € [0, «/5) and 01(§) > 0 for & € [0, m). If the
numerical solution of the Lane—Emden equation is used, 6(§) may
become negative due to numerical integration errors. Therefore, if
there is arange constraint on 6 (&) and a cell K; where the value of 6(&)
is outside of this range constraint, we set u¢ «, = 0 for robustness
of the simulation. Second, if the solution is t06 far away from the
equilibrium state, for example, for the cells K; with

pd(rj,%) > 2,0;’],7% or pd(rjf%) > 217:,]«4’ (54)

we set ud| K = =0 to avoid the accumulation of error since ud is

calculated globally

3.4.3 Well-balanced numerical flux and source term approximation

With the decomposition of the numerical solutions into the equilib-
rium component #$ and the fluctuation part u at each time-step, we
can now present the well-balanced numerical fluxes and the well-
balanced source term approximation.

We can define the modified cell boundary values of u, as

5, — _.d *,+ _d
uh,j+%_u ( )+uh;+" uh,j+%_u ( )+uh;+"
(55)
where u¢ is continuous over the whole computational domain and
defined in equation (51), and ug is defined in equation (53). The
well-balanced numerical flux ]* can be evaluated by

Fr=Fay uph, (56)

with } being the HLLC flux defined in equation (38).
For the well-balanced source term approximation, we follow the
main idea in Xing (2014) and Li & Xing (2018), but with some
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modifications introduced below. As s?] in equation (37) equals to
zero automatically at the equilibrium state, we focus only on the term
sﬁ-zl. Since u¢ is the equilibrium solution and continuous, we have

2 d — 2 d +
r u r. 1 V. — I u r. 1 -V,
J+%f( ( J+7)) j+3 .I*%f( ( 1—7)) i-%

—/ [ (u®) - @v)r*dr —/ s (', %) - vridr =0, (57)
K

K/ 7

where ®¢ is solved exactly from p¢ in equation (5). Because u, €I,
is the projection of u¢ with high-order accuracy, and ¢ is continuous
at the cell interfaces, we have

2 [2] d - _ 2 2] d +
g (0 () ¥y =g £ (e (s ) ) 07

- [ apewre - | (Zrﬁ’—p a;’) Y ridr
K; K;

J

= O((Ar)*™, (58)

where f21 denotes the second component of f and 0d$/dr is
evaluated as in equation (27):

0d; 47'(G/r e 24 (59)
= - dr,
or 2 Jo Ph
aq>h(0) Lo wh
with —"= = 0. The approximation of the source term s} is then
defined as
T
wb [2].wb _[3] [2l.wb __ _[2] [2].cor
O [ ] R (60)
where s 21 and s B are defined in equation (37) and the correction
term s[2J eor takes the form

[2],cor __ 2 d - _ 2
= 0 ) 0 () 97

2 a
—/ pi(a,wrzdr—/ ("h o8
K: Kj r 5

J
which will play an important role in the well-balanced proof.

> 1//r2dr,

(61)

3.4.4 Well-balanced semidiscrete DG scheme

The well-balanced semidiscrete DG scheme can be written as: find
uy, € II, such that for any test function v = (¢, ¥, §)7 € II,, it holds
that

a,/ uj, cvridr = £j(uh, V) =
K

J

Fi(up, v) + sy, v),  (62)

with s‘]’-’b defined in equation (60) and

*

fj_% N

i

S T S 2
Fi(up,v) = rj+%fj+% vH%—I-rj_

~
|
S

1
2

+ / fuy) - @, v)r’dr, (63)
K

with the source term approximation s}"b defined in equation (60),

and the numerical flux }* defined in equation (56). We have the
following result on its well-balanced property.

PROPOSITION 3.2. The semidiscrete DG scheme (equation 62), with
initial condition defined in equation (42), maintains the equilibrium
state (equation 8) exactly.

Proof. Suppose the initial condition is at the equilibrium state
(equation 8). We will complete the well-balanced proof in three
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steps. First, we will show that u, = uf, and f}, = 0. By the definition
of u® in equation (51), we can conclude that u® = u, as both
are the stationary solutions of equation (8) and share the same
value at the centre r = 0. It then follows from equations (52)
and (53) that uj, = u; and uf, = 0. Moreover, we conclude that
0, /0r = 0d;,/0r, because 0P,/0r and 0Py, /dr are calculated
from pj, and pj;, respectively, using equation (32), and p;, = pj,.
Second, we would like to show that f w2 - p¢ (r. 1 ) Since
jts itz

u' =0, we have that )~ =u;" = u? at the interface rj, i,
following the definition (equation 55). In equation (56), we have

Ak L ow— *, 4 _ *,%
Fivy =S ow ) =10

1wl [0

i (rﬂ%) , (64)
0
where the last equality follows from the zero velocity in the vector
d
u.

Lastly, itis easy to observe that the first and third components of £ ;
in equation (62) are zero. With the source term defined in equations
(60) and (61), the second component of £; can be simplified as

37+ s

L, v) = / S @)@ yyridr =12, 5y
Kj

2 7,2 2],wb
+r,>ifi[1]‘//t1 + S} ].wl
Jm27 )73 J72

2ps 0D¢
—/ (ﬂ — p;7h> W ridr —/ p;, (0,9) r2dr
K; r ar K

J

=0, (65)

where different underlines are used in the last equality to highlight
the terms that cancel each other. Therefore, we can conclude that the
semidiscrete scheme (equation 62) maintains the equilibrium state
(equation 8) exactly. (|

3.5 The well-balanced total-energy-conserving RKDG scheme

In this section, we present the approach to design a total-energy-
conserving fully discrete DG method to ensure the scheme has the
total energy conservation property (equation 17) on the discrete level.
This will involve two components: the approximation 55-3] of the
source term in the energy equation (3), and the temporal discretiza-
tion. To illustrate the idea, we will start with the semidiscrete method
to explain the approximation s?] , followed by the forward Euler time

discretization, and the high-order RK method at the end.

3.5.1 Semidiscrete total-energy-conserving method

The key idea of designing the total-energy-conserving scheme is on
the approximation of the source term in the energy equation (3). Let

us apply integration by parts on the source term approximation s_?l

MNRAS 514, 370-389 (2022)

in equation (37), which leads to

S}BJ :/ —(pu)n
K

J

= - ((pu)h <I>h8r2) r’:’l +/ ai ((pu)h r2) d, 5dr
" k; Or

0P
P " sr2 dr

r

A r 0
~ = (fMe,5r7) |7 ] —/ %‘Dhérzdr
K

K, 0
. [Bltec wx 0Py
=5 uh,f ,F,q)h,(s s (66)

where the superscript ‘tec’ stands for total-energy-conserving, § is
the test function, and f*[' is the first component of the numerical
flux in equation (56). Equation (1) is used to replace 2 ((pu), r?)
by —r?9,/dt (approximately).

With this reformulation of the source term, we can now modify the
semidiscrete well-balanced method (equation 62) slightly, and obtain
the semidiscrete well-balanced and total-energy-conserving scheme:
find u;, € II;, such that for any test function v = (¢, v, )T e M, it
holds that

2, / w vt dr = Fiuy, v) + Sy, v)
K

j

~x O
+ P (uh, LR 8) : ©67)
where
S[2J.wb_ 0 [2],wb 0 T S[3J,tec_ 0.0 [3].tec T
j =|%si Y s e =B : (68)

PROPOSITION 3.3. For the semidiscrete scheme (equation 67), we
have the following total energy conservation property:

0 1 A A
*/ (Eh-i-*/?h ‘bh> r*dr + (f*"[’”—i—f*’[”fbh
ot K; 2
1 0 (00, 09,00, , |
=\ )] )
8n G or \ or ot Or

qu

TP=0. (69
which is consistent with the continuous result in equation (15), and
leads to the conservation of total energy fQ(Eh + %ph d,)r*dr.

o
=2

Proof. Following the approach used in the proof of equation (15),
we decompose the first term into two parts:

0 1
— (Eh + =i CDh) rrdr =141, (70)
or Jg; 2
with
0E,  Opu 2
1= —_— O] dr, 71
/,<j(at+at h)rr an
1 6<I>h aph 2
I = — —— — — & dr. 72
/sz(pl Py o1 h)r r (72)

We set the test function v as (0, 0, 1)T in equation (67) to obtain
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Table 1. Example 4.1, L' error of the numerical solutions for different
precision in the well-balanced test.

Case Precision P pu E

y=2 Double 3.89E-13 2.70E-15 6.52E-14
Quad 3.55E-31 3.44E-33 5.94E-32

y=12 Double 6.75E-13 8.00E-15 6.31E-13
Quad 6.04E-31 8.00E-33 5.74E-31

0E),
/ "2 dr
K; ot
S (f

which leads to the simplification of part I as

+1° q’h)

" d

o /ﬂebhr dr,  (73)
1
2

~%,[3] (1]
1=—(f* +7 CDh)r fj. (74)
"%
Next, note that the evaluation of @, in equations (27) and (28) is
exact, i.e.
0 0d
4nGoprt= — | r2—1 ), (75)
or or

therefore, following the exact same step in the proof of equation (15)
in Section 2.3, we have

G L (%00 2 (39
T 8nG \or or i \or )"

The combination of these two equations leads to the total energy
conservation property, which finishes the proof. U

-
i+

(76)
o+
j-3

3.5.2 Forward Euler time discretization and total energy
conservation

The extension of the total energy conservation property in Propo-
sition 3.3 to fully discrete schemes coupled with high-order RK
methods is a non-trivial task. Let us start with the simpler first-order
Euler method, and use it as an example to illustrate how to obtain
the fully discrete second- and third-order total-energy-conserving
schemes.

The straightforward application of the forward Euler method to
the semidiscrete well-balanced and total-energy-conserving scheme
(equation 67) may not conserve the total energy automatically. The
only term that needs extra care is the approximation of SD] ¢ in
equations (66) and (68), and the fully discrete scheme with forward
Euler discretization is given by

/uZ“ vridr
K/
= / uj - vridr + At (fj(u;,v)+s§2]~wb(u',;,u)
K; ’

- pn+l o' (D”+1+CI)
S ].tec , * , . h ) 77
+ (uh A . 77)

Note that although the right-hand side of equation (77) contains
o' and @7, the proposed scheme is still an explicit scheme as
outlined below. First, we can use the density equation to explicitly
evaluate p ™', and obtain @' following equations (32) and (33).
Next the momentum equation is solved to update (,ou)Z“. Finally,
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with the available p}f“ and <I>ZJrl , we can solve the energy equation to
compute E;! explicitly.

PROPOSITION 3.4. The fully discrete forward Euler DG scheme
(equation 77) conserves total energy:

/ (Elr:-H 4 1[0;:-*—1 Q)ZH) rzdr
Q 2
1
= / (EZ + =p} <I>Z) ridr, (78)
Q 2

with outer boundary conditions d>Z(R):<I>Z“(R):O and

~ K

fN+ =0,

Proof. The main structure of the proof is similar to that of the
semidiscrete method in Proposition 3.3, with more terms due to
the temporal discretization. In each cell K, we take the difference of
the total energy in equation (78) and separate it into two parts:

1 1
/ (2,0,'1’+1 optt 5,02 <I>Z> ridr +/ (E,';+1 — E}) ridr
Kj

= 1+11, (79)
with
1
= / 5 (P! = o) (@3 + @) riar
K
+ / (E1' — E7) rdr, (80)
K;j
1
II=/ E(—p;;“ O + pj @) ridr. (81)
K

J
Let us introduce the notation
n+% _ q)ZH + @j
72 .

D, (82)
We note that f , and @} are single valued in our schemes.
By setting the test functlon v = (0,0, 1)T in equation (77), we can
derive

/ EZ“rzdr:/ E; rzdr—/ (,o,'l’+1
K; K; K;

J J J

—At (r2 (f Ty fromth n+°>>r

where f*[1is the ith component of the numerical flux J*. Therefore,
we can simplify the term I as

N atn, 1 "
1= —At <r2 (f* 1[3]+f* [l]q);:"'z))

r.
J-

) n+2 zdr

: (83)

il
j+%

(84)

=

Following the equality (equation 75) in the evaluation of ®;, we
have

. . a aq)n+1 .
4nG/Kth“ cphrzdr:/l(ja <r2 a}; >d>hdr

J

a(Dn+l r
or
rl__
0 0Py
4n G / o ortt r2dr =/ — (rz h) <I>Z+1dr
K: Kj 5r ar

J

r, n n+1

= (r? 20%i q>"+1 +3 _/ 00} 90} r2dr. (86)
or k., Oor or

i+3 a¢n+l QP
- / L, (85)
k., Or or

[SE

r.
j—

=
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Figure 1. Example 4.1, numerical results at time r = 0.2 for the small perturbation test. ‘wb’ denotes the proposed DG scheme, and ‘non-wb’ denotes the
standard DG scheme. The ‘wb’ result is compared with ‘non-wb’ result and the reference solution.

Therefore, we can simplify term II as

1[0

n+l r. 1
_ . _r26q>h+ itz
81 G or ! or

o) . 87

We combine equations (79)—(84) and sum over all the cells K; to
obtain

1 1
/ (E;LH—I 4 710;-%—1 (D2+l> rzdr _ / ( 4 ph (D") r2dr

N n n+l Tipd
= L ,J&q;"‘*'l —}" a(b @)l 2
Zle 8n G or " or

—Ar (}’2 (},*A,n.[S] + j*,n,[lj n+x ))

— | r n+l q)n

8nG or " .
)) R

— At (rZ (}.*,n,[S] + }*,n,[l] n+2
0
- (88)

~\~

N

/
1 [ 00! a<b"+' !
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where the last equality is due to the outer boundary condition
®/(R) = IT(R) = Hz (R) =0 and f* 131 = 0. Therefore, the
2

fully discrete forward Euler DG scheme (equation 77) has the total
energy conservation property. U

REMARK 3.5. The assumptions on the outer boundary condition

*,1,

(ie. Pj(R) = <I>Z+'(R) =0 and f,\,Jr = 0) are only used in the
last equality of the proof. We use these assumptions for ease of
presentation. The total energy conservation property of our numerical
methods does not depend on these assumptions. In Section 4.4, we
consider a numerical example without the assumption f;,ilfj =0,
and observe conservation of total energy, after adding correction
terms due to the outer boundary. We can deal with the case without
the assumption &} (R) = CD”“(R) = 0 in a similar way by adding
correction term. We refer to Section 4.4 for the details on these
correction terms and the numerical observation.

REMARK 3.6. We note that our proposed scheme (equation 77) still
has the well-balanced property. The only thing to check is that the
source term approximation S 31t — () holds at the steady state. This

holds due to the fact that £ =0, u} =0, and also p} = p;'*!
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Table 2. Example 4.2, accuracy test near the equilibrium state for k =2 with
our proposed third-order RKDG scheme (equations 94-96).

N 0 pu E

10 2.62E-07 - 1.63E-07 - 2.23E-07 -
20 3.09E-08 3.08 1.71E-08 3.25 2.41E-08 3.21
40 3.73E-09 3.05 2.16E-09 2.98 3.08E-09 297
80 4.48E-10 3.06 2.97E-10 2.86 4.24E-10 2.86

Table 3. Example 4.2, accuracy test near the equilibrium state for k = 2
with the standard DG scheme (equation 36) and third-order RKDG time
discretization (equation 93).

N ] pu E

10 1.84E-04 - 1.48E-04 - 2.19E-04 -
20 2.62E-05 2.81 2.03E-05 2.87 2.16E-05 3.34
40 3.35E-06 297  2.56E-06 2.99 3.96E-06 2.87
80 4.34E-07 2.95 3.33E-07 2.94 4.25E-07 2.80

Table 4. Example 4.2, accuracy test far away from the equilibrium state for
k =1, 2 with equation (108).

Case N P pu E

k=1 25  4.12E-04 - 5.17E-04 - 6.46E-04 -
50 1.04E-04 198 1.31E-04 198 1.63E-04 1.99
100 2.63E-05 1.99 3.29E-05 199 4.10E-05 1.99
200 6.60E-06 1.99 8.59E-06 2.00 1.03E-05 2.00

k=2 25  1.29E-05 - 1.75E-05 - 9.69E-06 -
50 1.82E-06 2.82 241E-06 2.86 1.33E-06 2.87
100 2.44E-07 290 3.17E-07 292 1.75E-07 2.92
200 3.16E-08 295 4.08E-08 296 2.25E-08 2.96

by updating the density equation with the well-balanced DG method
at the steady state.

3.5.3 High-order Runge—Kutta time discretization

In this section, we will extend the well-balanced and total-energy-
conserving method (equation 77) coupled with forward Euler dis-
cretization to high-order Runge—Kutta (RK) discretization. In Mullen
et al. (2021), the fully discrete energy-conserving schemes with
second- and third-order RK time discretization are introduced in the
context of finite difference methods. The key idea is to use different
source term approximations for each stage of the RK method, and a
similar idea will be explored here. Comparing with the RK methods
in Mullen et al. (2021) and this paper, the main difference is that we
involve additional terms, such as the approximation of %. This is
because our DG schemes include test functions and the relationship
between the variables u is more complicated.

Let us start with the second-order RK method. For the differential
equation of the general form w, = L(w), a second-order RK method
can be formulated as

wh = w" + At L(w"),
1
wt = w4 3 (w® + Ar Lw™))

Lw") + E(w“)))
— )

w" 4+ At ( (89)
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Starting from the forward Euler method (equation 77), the fully dis-
crete total-energy-conserving scheme with second-order RK method
(equation 89) is given by

/ u - vridr
Kv

J

=/Kf

AP
+ e (uz, N 5) ) (90)

At
/ witt v ridr
K

J

n (D
=/ uz.vr2dr+Al<]:j(uh’v)+fj(uh v
Kj

uz )] r2dr + At (]:j(uz, v) + S}Z].wb(uz’ )

2

+S;Z],wb(u2’ v) +Sj[_2],wb(u§11)’ v)
2

n+1 n
~4,(0,1 —
+S}3],lec (ugo,n’ f*( )7 P - 14 v¢§,0'2),5> )’ 1)

where we introduced the following notations:
~%,(0,1) 1 Ak A~ (1)
;=S (),

1
©,1) n (1
o =2 (cb,, + )

1
o = (ug ).

1
Y = S @+ ). ©02)
The third-order strong-stability-preserving RK method for w, =
L(w) can be formulated as

w = w" 4+ Ar L(w"),
3 1
w® = an + 2 (w + Ar L(w™"))
Cwi At (Lw") + LwD)
N 2 2 ’

1 2
wtl = —w' + 3 (w(z) + At £(w(2)))

3
Lw") + Lw?) + 4£(w(2)))
G .

w4 A < 93)

The fully discrete total-energy-conserving scheme with this third-
order RK method is given by

/uﬁ,l)-vrzdr:/ uZ~vr2dr
K; K;

J J
+ At <fj(uz, v) + SP(uf, v)
(D

~ —p" 1
+ S (uz,f*'",ip — ,¢2+2,6)), (94)

/uf)-vrzdr:/ uz-vrzdr
K; K;

J J

At (fj(u;, v) + F(”, v)

+ 2 2
S;Z],wb(uz’ )+ SJ[_Z],wb(u;11)7 v)
2
2 n
[3],tec ©,1) 0O P —p 0,2)
+S/- (uh S ,T/z,q)h ,5)>7 95
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Figure 2. The solution of well-balanced scheme (blue) and standard DG scheme (red) by using N = 200 cells, compared with the reference solution (black)
produced with N = 800 cells. From left to right: the numerical solutions of density, velocity, pressure at time # = 0.15, and the time history of the changes in
total energy. The maximum absolute value of the changes in total energy is 8.049 x 1013 for the proposed scheme.

/u’“rl vrzdr_/ u}l - vridr
K; K;

J

A (f(uh,v)+f<u(” v) + 47, v)

6
2 wb(uh7 v) +$[2 wb(u(l) v) _’_48}2],%(“;12)7 v)
6

n+1 n
C ~5,(0,2) — 3
+Sj[_3],te (uzo.z)’ 7 ( ’/) o 14 ,d>§lo’3),8) ), (96)

with the following notations:

#(1)

| — N — N —

~.%,(0,2)
f

(f +7 +4f*(2))

u©2 (uﬁ + u(') + 4u<2)) ,

oY = (@) + )t ©7)

Note that different source term approximations of 51[-3]'lec are
employed in the each stage of the RK method, in order to simultane-
ously achieve the total energy conservation property and high-order
accuracy. The proofs of the well-balanced property and total energy
conservation of the high-order RKDG methods (equations 90 and 91
and equations 94-96) follow the exact same approach as that of the
forward Euler DG scheme (equation 77), and is omitted here to save
space.

MNRAS 514, 370-389 (2022)

3.6 TVB limiter

For problems containing strong discontinuities, oscillations may
develop in the solutions obtained with DG methods, and in this case
non-linear limiters are needed after each stage of the RK methods to
control these oscillations. One popular choice is the total variation
bounded (TVB) limiter (Cockburn & Shu 1989). Its extension to the
system in spherically symmetrical coordinates has been considered
in Pochik et al. (2021), and will be employed here, provided some
modifications to ensure the total-energy-conserving property.

We start by defining two different cell averages of u;, in cell Kj:
the standard and weighted cell averages given by

B ij uy dr ~ ij w, r*dr
Uj=-—F——-, Uj=—F——5——, (98)
fK]_ 1dr fo r2dr

respectively. In cell
as

K;, the forward and backward slopes are defined

Uiy — I 7
Auh =2 8 Aub = ==L 99)
Fjv1 =7 rj—Tj-1

where rj = (r; 1 +r, 1 )/2 denotes the mid-point of K;. Then we
apply the minmod functlon in Cockburn & Shu (1989) to obtain

Auj = minmod (Au;, pAu, pAu?), (100)
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Figure 3. Example 4.4, the figure of numerical solution (blue) of density p (top left) and velocity u (top right) during collapse, compared with the standard
scheme (red) and the reference solution (black). We compared the solutions at select central densities, approximately [1010, 101, 10'2, 1013, 1014] g cm™3,
which correspond to (—¢) = [51.0, 15.0, 5.0, 1.5, 0.5] ms. Velocity gradually decreases over time. The comparison of the total energy conservation between our
proposed scheme and standard scheme versus central density shows in the bottom that when the time is close to (—7) = 0.5 ms, our proposed scheme has a much

smaller total energy conservation than the standard scheme.

where

U, ot
Au; = —————= (101)
iy g

with B being a constant to be specified. In Pochik et al. (2021), it
was shown that 8 = 1.75 yields good results for a range of problems,
and this value will also be used in this paper. If Auj and Au; are
the same, this indicates that a limiter is not needed in this cell. When
they are different, we mark this cell K; as a troubled cell. In such cell,
we define a new linear polynomial &, ; as

~ ~0 <
iy =u; + Aui(r —rj),

0 ~ AfK/_(r—rj)rzdr

i =i, — Au; I (102)
JK;

J

which has the updated slope Au; while keeping the same weighted
cell average as it ;. In the cells that are not marked as troubled cells,
we simply set it ; = u, ;. Finally, we replace the solution u;, by the

updated solution #,, and continue the computation with the updated
solution. This finishes the TVB limiter procedure. One can easily
verify that the weighted cell average of i, ; are the same as u;, in
each computational cell, which yields the mass conservation property
of the limiter procedure.

Since the total energy depends non-linearly on the variable pj,
this TVB limiter may destroy the total energy conservation property,
which is satisfied by the proposed fully discrete method. To ensure
the total-energy-conserving property, we slightly modify the TVB
limiter on the variable E), as outlined below. Since the Euler—Poisson
system does not conserve the non-gravitational energy E in the
partial differential equation (PDE) level, we propose an additional
correction of Ej, ; as follows:

- Ji 3(endn = @)t dr
Ep;=Ep;+ — 5

Sy, r2adr

J

(103)
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Table 5. Example 4.5, the time of bounce, central density at the bounce time, and central density at the final time for
different number of cells. The left- and right-hand columns below each label represent the result of the proposed scheme

and standard scheme, respectively.

N Ary (km) a—1 1y, (ms) pb (101* gecm™3) pr (1014 gem™3)
128 2 2292 x 1072 91.10 91.09 3.65 3.66 2.87 2.81
256 1 1.136 x 1072 91.13 91.13 3.68 3.68 2.81 2.79
512 0.5 5.659 x 1073 91.16 91.16 3.65 3.63 2.81 2.80
1024 0.25 2.823 x 1073 91.16 91.16 3.63 3.63 2.81 2.80
2048 0.125 1.410 x 1073 91.17 91.17 3.62 3.62 2.81 2.80
0.3 - - - 1 : - -
—t=01.14ms t=91.14ms /
t=91.94ms t=91.94ms %
t=93.63ms t=93.63ms
02r 1=97.81ms i 081 1=97.81ms il
———1=101.99ms t=101.99ms
———1=106.16ms 1=106.16ms
206 -
[
° 3
= 5]
E S04r _
° B
> €
Soat 1
0
03 . . . . . .
1 10 100 1000 1 10 100 1000

radius [km]

radius [km]

Figure 4. Example 4.5, fluid velocity and thermal energy ratio versus radius after bounce. We use N = 256 cells and select six time slices after the bounce.

to ensure that the total energy fK (Ep+ %ph ®;,) dr is not changed by
J

the limiting procedure. Here E, ; is the updated numerical solution
of E, E~h, ; is obtained in equation (102), p;, is the numerical solution
before limiting, p;, is the numerical solution after limiting, and &,
and @, are the gravitational potential calculated from p;, and gy,
respectively. Note that ®,, is evaluated after 7 is available in all the
cells, hence even though a cell K is not marked as troubled cell, the
value of @, in this cell may be different from the original &, due
to modified p;, in troubled cells in other locations. Therefore, this
correction (equation 103) will be applied for every cell regardless of
being marked as troubled cells or not.

The procedure of applying TVB limiter in each stage of RK method
is summarized below, where the forward Euler time discretization is
used for ease of presentation.

(1) At each time level ' (or every intermediate stage of RK
method), compute o} ™', (pu); ™" for all cells K;.
(i1) Apply the TVB limiter to obtain ﬁZ+l, ,BE"H.
(iii) Evaluate ®}™' based on the limited 5"
(iv) Compute E,':“ (which employs the limited ,5},”1 and @Z“)
and apply TVB limiter with total-energy-conserving correction to

E!! (which involves both !, &' and ', 11,

REMARK 3.7. For the purpose of the well-balanced property, we
use u;, — uj, instead of u;, as an indicator to identify the troubled
cells (Xing 2014). If a cell is marked as a troubled cell, the update
procedure is still applied on u;, as mentioned above. In the steady
state, we have u;, — uj, = 0, hence the TVB limiter will not take
effect, and the well-balanced property will not be affected by the
limiter.
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4 NUMERICAL EXAMPLES

In this section, numerical examples will be provided to verify the
properties of our proposed scheme, including the well-balanced prop-
erty, total energy conservation properties, and high-order accuracy.
We use P? piecewise polynomial in the DG method and the third-
order RK method (equations 94-96) in the numerical tests, unless
otherwise stated. The Courant—Friedrichs—Lewy (CFL) number is
set as 0.16 to determine the time-step size.

4.1 Well-balanced and small perturbation tests

In this example, we consider a simple polytropic equilibrium and
verify that our proposed scheme has the well-balanced property to
maintain this equilibrium up to round-off error. We set G = 1/(47t) in
this example, and choose two cases, y = 2 and y = 1.2, along with
po = 1 and k = 1. We have the following initial data:

V2sin(%) 2sin’(42)
0 0) = ——22  Lu(r,00=0, p(r,0) = 72&
r r
(104)
if y =2, and
1 -2.5
p(r,0) = (1 + ﬁrz) ;o pu(r,0)=0,
1 -3
p(r,0) = (1 + ﬁﬂ) (105)

if y = 1.2, on the domain 2 = [0, 1]. The reflecting boundary condi-
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tion is considered for the inner boundary and we set u™(1) = u~(1)
at the outer boundary. We set the stopping time ¢ = 4 on the mesh
with 200 uniform cells, and present the L' errors of the numerical
solutions in Table 1, where both single and double precisions have
been considered in the simulation. We can see that errors stay at
the level of round-off errors for different precision, which verify the
desired well-balanced property.

Next, we show the advantage of our proposed scheme in capturing
a small perturbation to the equilibrium state. The initial data are given
by imposing a pressure perturbation to the y = 2 equilibrium:

/2 sin (%)

p(r,0) = ———, pu(r,0)=0,
r
2sin? (=
p(r, 0) = # + Aexp(—100r%) (106)
r

on the domain 2 = [0, 0.5]. The pressure is perturbed by a Gaussian
bump of amplitude A = 107 in this test. We compute the solutions
until 7 = 0.2. A reference solution is computed with N = 400 for
comparison. We plot the velocity and pressure perturbation for N =
100 in Fig. 1, compared with the numerical solution of the non-well-
balanced DG scheme from Section 3.3, and the reference solution.
From the figures, we can see that the well-balanced scheme resolves
the perturbation much better on a relatively coarse mesh. Similar test
under the framework of finite difference methods in three dimensions
can also be found in Kippeli & Mishra (2014).

4.2 Accuracy test

(i) The accuracy test near the equilibrium state.
In this example, we test the accuracy of the numerical solution near
the equilibrium state and use the same initial condition in equation
(106) with parameter A = 0.001. We set the domain © = [0, 0.5],
polynomial degree k = 2, and stopping time ¢ = 0.2, same as those
in Section 4.1. Since the exact solution is unknown, we use the
numerical solution of N = 640 as a reference solution. The error
table are shown in Table 2. We can observe the optimal convergence
rate for all the variables. In addition, we also list the errors of the
standard DG scheme (equation 36) in Table 3 for comparison. We
observe that although both schemes have the optimal convergence
order, the errors of our proposed scheme are much smaller than those
of the standard scheme.

(i) The accuracy test far away from the equilibrium state.
In this example, we provide an accuracy test for solutions far away
from the equilibrium state, to test the high-order convergence rate of
the DG methods. We consider the following ‘manufactured’ exact
solutions:

exp(t —r) 1
p(r,t) = — u(r,ty=1, p@r,t)= - (107)
r r
As a result, the Euler—Poisson equation (34) becomes
ou 10
— + 5 (P f@) = s, ®) + w(r), (108)
or  rtor
with an additional source term w(r) given by
2t — 2 200 — )\ "
w(r) = (o, _SPRUZ ) A et r))) . 09)
r r

In this test, we set y =2, G = 1/(4m), the computational domain is €2
=[0.5, 1], and the stopping time is set to # = 0.1. The exact solution
is used to provide the boundary condition for the Euler equations,
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and the boundary condition for the Poisson equation is set as

D,
=, (0.5) = —dexp(t —0.5). €05 =0. (110)

Since our computational domain does not contain the origin r =
0, our approach of recovering the reference equilibrium state u¢
needs an additional boundary condition instead of equation (14).
For simplicity, we skip the steps of recovering the reference state in
Section 3.4.2 and set a global steady state u¢ explicitly for all cells
without using equation (51):

V/2sin (ﬁ)

25sin? (L)
Py = ———52, —

wlry=0, p'tr) = = L(111)
We have performed the simulations for various mesh size N. The
results for k = 1 with the second-order RKDG scheme (equations 90
and 91) and k = 2 with the third-order RKDG scheme (equations 94—
96) are shown in Table 4. We can observe the optimal convergence
rate for all the variables and k = 1, 2, which confirms the high-
order accuracy of the proposed RKDG method. More specifically,
the different source term approximations in each stage of the third-
order RK method (equation 94-96) yield the desired third-order
accuracy.

4.3 Explosion

In this example, we validate the shock capturing and total energy
conservation properties of our proposed scheme. The initial data are
given by

sin(+/27t/kr)

p(r,0) = N pu(r,0) =0,
_ Jakp(r, 0%, r<r,
P 0= {xp(r, 0% r>n, (2

where we set k = 1, y = 2, G = 1 and increase the equilibrium
pressure by a factor « = 10 for » < r; = 0.1. The computational
domain is set as = [0, 0.5], and discretized with N = 200 cells.
We use P? piecewise polynomial and the third-order RK method
(equations 94-96). We set the boundary condition of the velocity
1(0.5, 1) = 0 at the outer domain boundary. We perform the simulation
up to time ¢ = (.15, and the numerical results are shown in Fig. 2.
Both the well-balanced scheme and the standard DG scheme perform
similarly in capturing shocks, which means our proposed scheme
does not diminish the robustness of the shock capturing capability.
Moreover, we can observe that our proposed scheme conserves total
energy up to machine precision, while the standard DG scheme
produces an error of about 3.5 x 107 at r = 0.15.

4.4 Yahil-Lattimer collapse

In this section, we consider the Yahil-Lattimer collapse test, which
involves self-gravity and was studied in Endeve et al. (2019),
using standard DG methods. It models the self-similar collapse
of a polytropic star, i.e. p = kp?. In Yahil (1983), self-similar
solutions to the gravitational collapse problem were constructed
for 6/5 < y < 4/3. With two-dimensional parameters in the model
(the gravitational constant G and the polytropic constant «), the
dimensionless similarity variable is

X =k 2GY V2 (g2, (113)

where the origin of time is the moment of infinite central density.
All the hydrodynamic variables can be expressed as a function of X,
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Figure 5. Example 4.5, central density as a function of time for the proposed (top two), the standard (mid two), and the standard with correction (equation
103) (bottom two) DG schemes with N = 128 (blue dashed), 256 (red dash—dotted), 512 (green dotted), and 2048 (black solid). The right-hand figures represent

zoomed-in versions for ¢ € [90, 110].

and the time-dependent Euler equations can be recast as a system
of ODEs (see Yahil 1983, for details). Therefore, we use these self-
similar solutions solved by the ODEs given in Yahil (1983) as a
reference solution.

We show some numerical results obtained with y = 1.3. We set the
computational domain to © = [0, 10'°] cm discretized with N = 256
cells, and the collapse time to (—f) = 150 ms. We use a geometrically

MNRAS 514, 370-389 (2022)

increasing cell spacing,

Ar; =a'"'Ar,

: j=1,..,N, (114)

:errj Jj=

=

with the size of the innermost cell set to Ar; = 1 x 10° cm, and
increasing at a rate a = 1.03203. The size of the last element
is about 3 x 108 c¢cm. The gravitational constant G is set to
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Figure 6. Example 4.5, the mass density versus radius at = 0.11 s of the proposed (blue dashed) and the standard DG scheme (red dash—dotted) with N =
128 (top two), 256 (bottom two) compared with a reference solution of N = 2048 (black solid). The two right-hand figures represent the zoom-in version at r €

[200, 1100] km.

Table 6. Example 4.5, four energies at time t = 0.11 s. We compare the results of three schemes in this table for different
number of cells N: the well-balanced and total-energy-conserving scheme, the standard scheme, the standard scheme
with the new limiter correction (equation 103).

N Case Ein(10% erg)  Epin (10°"erg)  —Egray (10°" erg)  AE (107 erg)
128 wb 120.0 3.658 122.6 4.386 x 1071
Standard 117.7 4.091 119.1 1.269
Standard with correction 119.0 3.838 121.0 4219 x 1072
256 wb 117.7 3.452 120.0 2.886 x 10710
Standard 116.8 3.681 118.8 0.425
Standard with correction 117.3 3.543 119.6 5.976 x 1073
512 wb 117.2 3.509 119.7 2.395 x 10710
Standard 116.9 3.602 119.2 0.170
Standard with correction 117.1 3.546 119.5 1.448 x 1073
1024 wb 117.2 3.542 119.7 5.404 x 10710
Standard 117.1 3.584 119.5 0.112
Standard with correction 117.1 3.559 119.6 3.545 x 1074
2048 wb 117.2 3.556 119.7 1.466 x 1072
Standard 117.1 3.578 119.6 0.038
Standard with correction 117.1 3.566 119.7 4.610 x 107>
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6.67430 x 1078 ecm™ g=! s72. We use the reference solution
at time (—7) = 150 ms to compute the initial density and ve-
locity. The polytropic constant x = 9.54 x 10" is used to give
the initial pressure. We use the reflecting boundary condition for
the inner boundary and zeroth-order extrapolation for the outer
boundary.

We simulate collapse until (—#) = 0.5 ms, and the central density
increases from about 10° to 10'* g cm™3. We plot the density
p and velocity u at different times in Fig. 3, and compare the
results with the reference solutions obtained in Yahil (1983). The
figures show that our numerical method performs well during
collapse. We also compare the total energy conservation property
between our proposed scheme and the standard DG scheme. The
total energy is defined as Ei = [, (E + 3 p @) r?dr. The total
energy conservation for RK3 time discretization AE is defined as
follows:

AE(@"™™") = E(t™") — E(t™)
~n,[3
f']lvil% + f(l).m +4f(2)’[3]

+4mtAL R? Ney TV
S ,
M
AE = Z AE@™Hh, (115)

m=1

where R is the outer boundary, N is the number of cells, and M is
the number of time-steps. When the time is close to (—7) = 0.5 ms
and the density grow rapidly to 10 g cm™3, our proposed scheme
maintains total energy conservation to round-off error, while that of
the standard scheme is much larger.

4.5 Toy model of stellar core collapse, bounce, and shock
evolution

We consider a toy model of core-collapse supernova (CCSN) as
considered in Janka, Zwerger & Moenchmeyer (1993) and Kippeli
& Mishra (2016). This test simulates the spherically symmetric and
adiabatic collapse, bounce, shock evolution, and protoneutron star
formation for a simplified model using a phenomenological EoS. This
test provides a stringent check on the energy conservation properties
of our proposed scheme — especially during core bounce when CCSN
codes typically exhibit an abrupt change in the total energy (e.g.
Skinner et al. 2019; Bruenn et al. 2020).

The governing equations are given by equations (1)—(3) and (5)
with a non-ideal EoS. We first set y = 4/3 and obtain an equilibrium
state according to equations (6) and (7) for a central density p. =
109 gem™3, polytropic constant k = 4.897 x 10' (in cgs units),
and gravitational constant G = 6.67430 x 1078 cm™3 g~ s72. We
initialize the collapse by reducing the adiabatic index from y = 4/3
to a slightly smaller value y; = 1.325. Then the initial internal energy
density is set as pe = kp”' /(y; — 1) where the initial density p is
the equilibrium density for y = % and the initial momentum is set to
Zero.

The EoS in this test consists of two parts, a polytropic part and a
thermal part, taking the form

P = Pp + Pus (116)
pe = (pe), + (pe)n. (117)

The polytropic part is given by

Kl,OV' » P < Pnucs
= = 118
Pe Pp(ﬂ) {szyzy P = Pnucs ( )
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where ppe = 2 x 10'* gecm™ is the nuclear density parameter and

separates two different regimes with different adiabatic indexes, y,
= 1.325 and y, = 2.5. (This mimics the stiffening observed in more
realistic EoSs as the matter composition transitions from consisting
of nucleons and nuclei to bulk nuclear matter.) The polytropic internal
energy density is given by

1
Elp s £ < Pnuc, (119)

ey = e =
(pe), = (pe)p(p) {Ezpyz + E3p, P> Prucs

where the parameters E, E,, E3, k1, and k; are given by

E, = ﬁs Ky =k, K= (r—1Ey,
-
K - V2=V _
Er= i Es= T Eil L (120)

One can easily check that the polytropic pressure and internal energy
density are both continuous across the density p = ppu. The thermal
part is given by

P = Vi — D(p)un, (p&)n = pe — (pe)y, (121)

where Yy, = 1.5. We note that the initial thermal pressure is zero in
this test. Combining the above expressions, we can write the complete
EoS in this test as

(ym — Dpe + %Kp”, £ < Pucs
L
Y2 — Yih

p=pp,e)=q Vn—Dpe+ — KpU T2 o1
o =D —v1) -
_mkpnuc P> P = Pnuc-
(122)

We note that there may be a different y in different regions of
the computational domain (y; versus y,) and we use the y of
the innermost cell to calculate n and the corresponding numerical
solution 6, in Section 3.4.1.

We set the computational domain as = [0, 1.5 x 10*] km with
a geometrically increasing cell spacing,

Arj=ri1 =11 =a/'Ary, j=1,..,N, (123)

J+ J
such that the mesh can be defined by specitying the size of the
innermost cell Ar; and the increasing rate a. Different values of Ar,
and a have been utilized in the test with values specified in Table 5.
We use the reflective boundary condition for the inner boundary
and zeroth-order extrapolation for the outer boundary. We set k =
2 and use the third-order RK method (equations 94-96) in this test.
The simulation is performed from ¢ = 0 to 0.11 s. According to
the description in Janka et al. (1993) and Kiéppeli & Mishra (2016),
the central density will continue to increase until it exceeds nuclear
density py,c and the EoS stiffens to form an inner core that eventually
settles to a new equilibrium configuration (the protoneutron star).
Because of its inertia, the inner core overshoots its equilibrium and
rebounds to form the shock wave. This is the so-called core bounce,
and in this paper the time of bounce is set as the time when the average
density within the innermost 2 km, which is called central density,
reaches its maximum. Because of the absence of energy losses in
our model (i.e. from deleptonization by neutrinos and dissociation of
nuclei below the shock), the shock wave does not stall, but propagates
towards the outer boundary of the domain.

We note that the dynamics before bounce is similar to the case
discussed in Section 4.4. We refer to the top right-hand panel in
Fig. 3 for the evolution of the velocity, and the thermal energy ratio
Pw = (pe)m/(pe) is almost zero across the whole computational
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Figure 7. Example 4.5, the time history of the internal energy Ejy (blue solid), kinetic energy Eyi, (green dashed), negative gravitational energy —FEgray (red
dash—dotted), and change in total energy AE (black dotted), with N = 128 (left-hand figures) and N = 256 (right-hand figures). We compared the solutions of
our proposed scheme (in the top figures), the standard DG scheme (in the mid figures), and standard DG scheme with correction term (equation 103) (in the

bottom figures).
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domain before bounce. To illustrate the dynamics after bounce, we
refer to Fig. 4, which shows the fluid velocity and thermal energy
ratio versus radius for select time slices. We can see the shock forms
at bounce at a radius between 10 and 20 km, and then gradually
propagates to the outer boundary. The thermal energy remains very
small in the inner core, below the location where the shock formed,
while it increases sharply across the shock. Behind the initial shock,
several smaller shocks form and propagate radially as a result of
oscillations in the protoneutron star as it settles to a hydrostatic
equilibrium state.

We test the proposed well-balanced and energy-conserving DG
method and the standard DG method with different number of grids
and present them in Table 5, from which we observe that the time
of bounce, the central density of the bounce, and the final central
density at r = 110 ms are very similar for all the cases N = 128, 256,
512, 1024, and 2048. We show the central density as a function of
time in Fig. 5. Both the proposed and standard DG schemes simulate
this test well. In the zoom-in figure, the proposed scheme is shown to
be slightly better than the standard scheme for N =256 and 7 € [91,
94]. In Fig. 6, we show the density versus radius at = 0.11 s for the
case N = 128 and 256. We can observe that there are small shocks
at the region r € [200, 1100], and our proposed scheme performs
much better than standard scheme in capturing these shocks (when
compare with the high-resolution reference simulation), especially
for the case with N = 256.

At last, we define the energies as follows:

1
Epn = / pe Amtr* dr, Eyy = / f,ou2 477 dr,
Q Q2

1
Egus = / Lodamar, (124)
Q2

where Ejn, Eyin, and Egr,, denote the internal energy, kinetic energy,
and gravitational energy, respectively. We list these three energies
Eini, Exin, —Egrav, and the total energy conservation AE in equation
(115) for different number of cells N at time r = 0.11 s in Table 6. Our
objective is to study how different schemes and limiters affect the
total energy conservation AE. Three different cases are considered
in this table: our well-balanced and total-energy-conserving scheme,
the standard RKDG scheme, and the standard scheme with the new
limiter correction (equation 103) (results for this latter scheme are
also plotted in the bottom panels in Fig. 5). The reason for including
the standard scheme with the correction is motivated by results from
Pochik et al. (2021), which suggest that limiters may negatively
impact the energy conservation properties of the standard DG scheme
for the Euler—Poisson system. From Table 6 (rightmost column), we
can see that the well-balanced scheme can maintain the total energy
conservation to round-off errors. For the standard scheme, neither the
case with the standard limiter nor the case with the correction term
can maintain the round-off errors. However, we note that the standard
scheme with the correction is substantially better than the standard
scheme with the standard limiter. We plot Eiy, Exin, —Egrayv, and total
energy conservation AE versus time in Fig. 7 for the simulations
with N = 128 and 256. We can see that the total energy conservation
for the standard scheme increases rapidly near bounce, and remains
relatively constant thereafter, while for our proposed scheme the
change in the total energy remains small and is not affected by core
bounce.

5 SUMMARY AND CONCLUSION

We have developed high-order, total-energy-conserving, and well-
balanced DG methods for solving the Euler—Poisson equations in
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spherical symmetry. Our proposed scheme can preserve polytropic
steady states and the total energy up to round-off errors. Keys to
these properties are the new way of recovering the steady states, the
well-balanced numerical flux, the novel source term approximations
(the well-balanced and total energy conserving parts), the total
energy correction term for the limiter, and the newly defined time
discretization. We have compared the performance of our proposed
scheme with the standard scheme in several different situations,
which all demonstrate the benefits of our proposed scheme. In all
these examples, we can observe the round-off errors for the steady
state solutions and total energy conservation, while the standard
scheme cannot. In our opinion, the properties of our proposed scheme
may be advantageous for simulating CCSNe in the context of non-
relativistic, self-gravitating hydrodynamics.

There are still challenges that remain to be solved in future
works. Importantly, CCSNe, and related systems where the methods
developed here could be applicable, are inherently multidimensional
due to e.g. rotation, hydrodynamic instabilities, and magnetic fields
(Miiller 2020). The steady states considered in this work are valid
only in spherical symmetry, and it will likely become much more
complicated to generalize the well-balanced property to multiple
spatial dimensions, which is the main reason we did not consider
multidimensional methods in this paper. For extensions to multiple
spatial dimensions, the main difficulty relates to how the desired
steady states are characterized. However, for problems that can be
characterized as being nearly spherically symmetric (i.e. where the
gravitational potential is dominated by the monopole component),
such as CCSNe originating from slowly rotating stars, the methods
developed here may potentially still be beneficial, but this remains to
be investigated. The extension of the energy conservation property
to multiple spatial dimensions appears to be more straightforward,
and will be considered in a future study. Another topic to consider
in future work is the generalization of the well-balanced property to
tabulated nuclear EoSs needed for more physically realistic models.
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